JP4301045B2 - High-strength steel plate, plated steel plate, and production method thereof - Google Patents

High-strength steel plate, plated steel plate, and production method thereof Download PDF

Info

Publication number
JP4301045B2
JP4301045B2 JP2004076934A JP2004076934A JP4301045B2 JP 4301045 B2 JP4301045 B2 JP 4301045B2 JP 2004076934 A JP2004076934 A JP 2004076934A JP 2004076934 A JP2004076934 A JP 2004076934A JP 4301045 B2 JP4301045 B2 JP 4301045B2
Authority
JP
Japan
Prior art keywords
steel sheet
rolling
strength
annealing
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004076934A
Other languages
Japanese (ja)
Other versions
JP2005264212A (en
Inventor
裕美 吉田
金晴 奥田
俊明 占部
佳弘 細谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004076934A priority Critical patent/JP4301045B2/en
Publication of JP2005264212A publication Critical patent/JP2005264212A/en
Application granted granted Critical
Publication of JP4301045B2 publication Critical patent/JP4301045B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

この発明は、自動車、電気機器等の使途に有用な、引張強度TSが500MPa以上の高強度で、かつ全伸びElおよび平均r値(ランクフォード値)とのバランスに優れた高強度鋼板およびこれを安定に製造する方法を提案しようとするものである。   The present invention is a high-strength steel sheet that is useful for use in automobiles, electrical equipment, etc., has a high tensile strength TS of 500 MPa or more, and has an excellent balance between total elongation El and average r value (Rankford value). The present invention intends to propose a method for stably producing the above.

自動車や電機、機械などの産業用分野においてプレス成形して使用される鋼板は、優れた強度と延性を兼ね備えていることが要求され、このような要求特性は近年、益々高まっている。   Steel sheets used by press forming in industrial fields such as automobiles, electric machines, and machines are required to have both excellent strength and ductility, and such required characteristics are increasing more and more in recent years.

例えば自動車業界分野においては、近年、地球環境保全の観点から、CO2の排出量を規制するため、自動車の燃費改善が要求されている。加えて、衝突時に乗員の安全を確保するため、自動車車体の衝突特性を中心にした安全性の向上も要求されている。このように、自動車車体の軽量化と強化の双方が積極的に進められている。 For example, in the automobile industry field, in recent years, in order to regulate CO 2 emissions from the viewpoint of global environmental conservation, improvement in fuel efficiency of automobiles has been demanded. In addition, in order to ensure the safety of passengers in the event of a collision, it is also required to improve safety centered on the collision characteristics of the automobile body. Thus, both weight reduction and reinforcement of the automobile body are being actively promoted.

自動車車体の軽量化と強化を同時に満たすには、剛性が問題にならない範囲で部品素材を高強度化し、板厚を減ずることによる軽量化が効果的であると言われており、最近では高強度鋼板が自動車部品に積極的に使用されている。軽量化効果は、使用する鋼板が高強度であるほど大きくなるため、自動車業界では、例えば内板および外板用のパネル用材料として引張強度TS:440MPa以上の鋼板を使用する動向にある。   In order to satisfy the weight reduction and strengthening of automobile bodies at the same time, it is said that it is effective to increase the strength of component materials within a range where rigidity does not matter, and to reduce the weight by reducing the plate thickness. Steel plates are actively used in automotive parts. Since the weight reduction effect increases as the strength of the steel sheet used increases, the automotive industry tends to use steel sheets having a tensile strength of TS: 440 MPa or more as a panel material for inner plates and outer plates, for example.

一方、鋼板を素材とする自動車部品の多くは、プレス加工によって成形されるため、自動車用鋼板は優れたプレス成形性を有していることが必要とされる。しかしながら、高強度鋼板は、通常の軟鋼板に比べて成形性が大きく劣化するため、自動車の軽量化を進める上での課題として、TS≧440MPa、より好ましくはTS≧500MPaで、しかも年々複雑化する部品形状に対し、延性Elのみならず、良好なプレス成形性を兼ね備える鋼板の要求が高まっている。   On the other hand, since many automobile parts made of steel plates are formed by press working, the steel plates for automobiles are required to have excellent press formability. However, high-strength steel sheets are significantly worse in formability than ordinary mild steel sheets, and as a challenge to reduce the weight of automobiles, TS ≥ 440 MPa, more preferably TS ≥ 500 MPa, and more and more complicated year by year. There is a growing demand for steel sheets that have not only ductility El but also good press formability for the shape of parts to be made.

高強度鋼板は、通常の軟鋼板に比べてプレス成形性、特に深絞り性が大きく劣化するが、自動車の軽量化を進める上で、内外板パネルや足回りなど、絞り成形主体の部材に対応可能な、高強度で、しかも良好な深絞り成形性を兼ね備える鋼板の要求は高い。具体的には深絞り性の評価指標であるランクフォード値(以下「r値」という。)で、平均r値≧1.2の高強度鋼板が要求されている。   High-strength steel sheets are significantly deteriorated in press formability, especially deep drawability, compared to ordinary mild steel sheets. However, in order to reduce the weight of automobiles, they are compatible with members mainly made by drawing, such as inner and outer plate panels and suspensions. There is a high demand for a steel sheet that is capable of high strength and also has good deep drawability. Specifically, a high-strength steel sheet having an average r value ≧ 1.2 with a Rankford value (hereinafter referred to as “r value”), which is an evaluation index of deep drawability, is required.

従来、強度TSと延性Elの両立を図った鋼板として、フェライト相とマルテンサイト相から成る複合組織鋼板(Dual Phase鋼板、DP鋼板)が知られている。この鋼板は、延性が良好なだけでなく、降伏応力が低いので加工時の形状凍結特性が良好であり、上記組織を制御することにより、TSが高くElにも優れた鋼板が得られるが、マルテンサイト形成に必須である固溶Cが、高r値化に有効な{111}再結晶集合組織の形成を阻害するとされ、r値が低く深絞り性に劣るものであった。   Conventionally, a composite structure steel plate (Dual Phase steel plate, DP steel plate) composed of a ferrite phase and a martensite phase is known as a steel plate that achieves both strength TS and ductility El. This steel sheet not only has good ductility, but also has good shape freezing characteristics during processing because of low yield stress.By controlling the above structure, a steel sheet with high TS and excellent El can be obtained. Solid solution C essential for martensite formation is considered to inhibit the formation of {111} recrystallized texture effective for increasing the r value, and the r value is low and the deep drawability is poor.

従って、複雑化するプレス成形部品に対応するため、DP鋼板の特徴である、低降伏比、良好な強度−延性バランスを維持しつつ、当該DP鋼板の欠点であった低深絞り性を克服した、強度−延性−深絞り性バランスに優れる高強度複合組織鋼板の提供が切望されている。
複合組織鋼板のr値を改善する試みとして、例えば、特許文献1あるいは特許文献2の技術がある。
特公昭55−10650号公報 特開昭55−100934号公報
Therefore, in order to cope with the complicated press-formed parts, the low yield ratio and good strength-ductility balance, which are the characteristics of DP steel sheet, are maintained, and the low deep drawability, which was a drawback of the DP steel sheet, has been overcome. Therefore, there is an urgent need to provide a high-strength composite steel sheet having an excellent balance between strength, ductility and deep drawability.
As an attempt to improve the r value of the composite structure steel plate, for example, there is a technique of Patent Document 1 or Patent Document 2.
Japanese Patent Publication No.55-10650 JP-A-55-100934

特許文献1には、冷間圧延後、再結晶温度〜Ac3変態点の温度で箱焼鈍を行い、その後、複合組織とするため、700〜800℃に加熱した後、焼入焼戻しを行う方法が開示されている。しかしながら、この方法では、連続焼鈍時に焼入焼戻しを行うため、製造コストが問題となる。また、箱焼鈍は、連続焼鈍に比べて処理時間や効率の面で劣る。 Patent Document 1 discloses a method in which after cold rolling, box annealing is performed at a temperature of the recrystallization temperature to the Ac 3 transformation point, and then heating to 700 to 800 ° C. and quenching and tempering are performed in order to obtain a composite structure. Is disclosed. However, in this method, since the quenching and tempering is performed during the continuous annealing, the manufacturing cost becomes a problem. Further, box annealing is inferior in terms of processing time and efficiency as compared to continuous annealing.

特許文献2の技術は、高r値を得るために、冷間圧延後、まず箱焼鈍を行い、この時の温度をフェライト(α)相−オーステナイト(γ)相の2相域とし、その後、連続焼鈍を行うものである。この技術では、箱焼鈍の均熱時にα相からγ相にMnを濃化させる。このMn濃化相は、その後の連続焼鈍時に優先的にγ相となり、ガスジェット程度の冷却速度でも混合組織が得られるものである。しかしながら、この方法では、Mn濃化のため比較的高温で長時間の箱焼鈍が必要であり、そのため、鋼板間の密着の多発、テンパーカラーの発生および炉体インナーカバーの寿命低下など製造工程上多くの問題がある。   In the technique of Patent Document 2, in order to obtain a high r value, first, box annealing is performed after cold rolling, and the temperature at this time is set to a two-phase region of ferrite (α) phase-austenite (γ) phase. Continuous annealing is performed. In this technique, Mn is concentrated from the α phase to the γ phase during soaking of the box annealing. This Mn-concentrated phase preferentially becomes a γ phase during the subsequent continuous annealing, and a mixed structure can be obtained even at a cooling rate of the order of a gas jet. However, this method requires a relatively high temperature and long-time box annealing to concentrate Mn, and therefore, in the manufacturing process, such as frequent adhesion between steel plates, generation of temper collar, and decrease in the life of the furnace inner cover. There are many problems.

また、特許文献3には、C:0.003〜0.03%、Si:0.2〜1%、Mn:0.3〜1.5%、Ti:0.02〜0.2%(ただし、(有効Ti)/(C+N)の原子濃度比を0.4〜0.8)含有する鋼を、熱間圧延し、冷間圧延した後、所定温度に加熱後急冷する連続焼鈍を施すことを特徴とする深絞り性及び形状凍結性に優れた複合組織型高張力冷延鋼板の製造方法が開示されている。具体的には、質量%で、0.012%C−0.32%Si−0.53%Mn−0.03%P−0.051%Tiの組成の鋼を冷間圧延後α−γの2相域である870℃に加熱後、100℃/sの平均冷却速度で冷却することにより、r値=1.61、TS=482MPaの複合組織型冷延鋼板が製造可能である旨が示されている。しかし、100℃/sという大きな冷却速度を得るには水焼入設備が必要となる他、水焼入した鋼板は表面処理性の問題が顕在化し、また、TSは500MPaに到達しておらず、製造設備上および材質上の問題がある。
特公平1−35900号公報
Patent Document 3 discloses that C: 0.003 to 0.03%, Si: 0.2 to 1%, Mn: 0.3 to 1.5%, Ti: 0.02 to 0.2% (however, (effective Ti) / (C + N) atomic concentration ratio) 0.4 to 0.8), which is hot-rolled, cold-rolled, and then subjected to continuous annealing that is rapidly cooled after heating to a predetermined temperature, and is a composite structure type excellent in deep drawability and shape freezeability A method for producing a high-tensile cold-rolled steel sheet is disclosed. Specifically, steel with a composition of 0.012% C-0.32% Si-0.53% Mn-0.03% P-0.051% Ti in mass% is heated to 870 ° C, which is a two-phase region of α-γ after cold rolling. Thereafter, it is shown that by cooling at an average cooling rate of 100 ° C./s, a composite-structure cold-rolled steel sheet having an r value = 1.61 and TS = 482 MPa can be produced. However, in order to obtain a high cooling rate of 100 ° C / s, water quenching equipment is required, and water-quenched steel sheets have surface treatment problems, and TS has not reached 500 MPa. There are problems with manufacturing equipment and materials.
Japanese Patent Publication No. 1-35900

さらに、特許文献4には、C含有量との関係でV含有量の適正化を図ることで複合組織鋼板のr値を改善する技術が開示されている。これは、再結晶焼鈍前には鋼中のCをV系炭化物として析出させて固溶C量を極力低減させて高r値を図り、引き続きα−γの2相域で加熱することにより、V系炭化物を溶解させてγ中にCを濃化させて、その後の冷却過程でマルテンサイト相を生成させるものである。しかしながら、Vの添加は、高価であるためコストの上昇を招くこと、さらに熱延板中に析出したVCは、冷間圧延時の変形抵抗を高くするため、ロールへの負荷が大きく、トラブル発生の危険性を増大させるとともに、生産性の低下が懸念されるなどの製造上の問題がある。
特開2002−226941号公報
Furthermore, Patent Document 4 discloses a technique for improving the r value of a composite structure steel sheet by optimizing the V content in relation to the C content. This is because by precipitating C in the steel as V-type carbides before recrystallization annealing to reduce the amount of dissolved C as much as possible to achieve a high r value, and subsequently heating in the two-phase region of α-γ, V-type carbides are dissolved to concentrate C in γ, and a martensite phase is generated in the subsequent cooling process. However, the addition of V causes an increase in cost because it is expensive, and VC deposited in the hot-rolled sheet increases deformation resistance during cold rolling, resulting in a large load on the roll and trouble. There is a manufacturing problem such as an increase in the risk of production and a concern about a decrease in productivity.
Japanese Patent Laid-Open No. 2002-226941

また、深絞り性に優れた高強度鋼板およびその製造方法の技術として、特許文献5の技術がある。この技術は、所定のC量を含有し、平均r値が1.3以上、かつ組織中にベイナイト,マルテンサイト,オーステナイトのうち1種類以上を合計で3%以上有する高強度鋼板を得るものであり、その製造方法は、冷間圧延の圧下率を30〜95%とし、次いでAlとNのクラスターや析出物を形成することによって集合組織を発達させてr値を高めるための焼鈍と、引き続き組織中にベイナイト相、マルテンサイト相およびオーステナイト相のうち1種類以上を合計で3%以上有するようにするための熱処理を行うことを特徴とするものである。この方法では、冷間圧延後、良好なr値を得るための焼鈍と、組織を作り込むための熱処理をそれぞれ必要としており、また、焼鈍工程では、その保持時間が1時間以上という長時間保持を必要としており、工程的(時間的)に生産性が悪いという問題がある。さらに、得られる組織の第2相分率が比較的高いため、優れた強度−延性バランスを安定的に確保することは難しい。
特開2003−64444号公報
Moreover, there exists a technique of patent document 5 as a technique of the high strength steel plate excellent in deep drawability, and its manufacturing method. This technique obtains a high-strength steel sheet containing a predetermined amount of C, having an average r value of 1.3 or more, and having a total of 3% or more of one or more of bainite, martensite, and austenite in the structure, The manufacturing method includes a cold rolling reduction rate of 30 to 95%, followed by annealing to increase the r value by developing a texture by forming Al and N clusters and precipitates, and subsequently in the structure. In addition, heat treatment is performed to have a total of 3% or more of at least one of a bainite phase, a martensite phase, and an austenite phase. In this method, after cold rolling, annealing for obtaining a good r value and heat treatment for forming a structure are required, and in the annealing process, the holding time is a long time of 1 hour or more. There is a problem that productivity is poor in terms of process (time). Furthermore, since the second phase fraction of the obtained structure is relatively high, it is difficult to stably secure an excellent strength-ductility balance.
JP 2003-64444 A

深絞り性に優れる(軟)鋼板を高強度化するにあたり、従来検討されてきた固溶強化による高強度化の方法には、多量の或いは過剰な合金成分の添加が必要であり、これは、コスト的にも工程的にも、またr値の向上そのものにも課題を抱えるものであった。   In order to increase the strength of a (soft) steel sheet excellent in deep drawability, a method for increasing the strength by solid solution strengthening that has been conventionally studied requires the addition of a large amount or an excess of alloy components. In terms of cost, process, and improvement of the r value, there are problems.

また、組織強化を利用した方法では、2回焼鈍(加熱)法や高速冷却設備を必要とするため、製造工程上の問題があり、さらに、VCを活用した方法も開示されているが、高価なVの添加はコストの上昇を招く他、VCの析出は圧延時の変形抵抗を高くするため、これもまた安定した製造を困難にするものであった。   In addition, the method using the strengthening of the structure requires a two-time annealing (heating) method and a high-speed cooling facility, and thus has a problem in the manufacturing process. Further, although a method using VC is disclosed, it is expensive. Addition of V causes an increase in cost, and precipitation of VC increases deformation resistance during rolling, which also makes stable production difficult.

この発明は、このような従来技術の問題点を有利に解決した、強度−延性−深絞り性バランスに優れた高強度鋼板およびめっき鋼板ならびにそれらの製造方法を提案することを目的とする。 An object of the present invention is to propose a high-strength steel plate and a plated steel plate excellent in a balance between strength, ductility and deep drawability, and a method for producing them , which advantageously solves the problems of the prior art.

この発明は、上記のような課題を解決すべく鋭意検討を進めたところ、0.020〜0.050質量%というC含有量の範囲で、このC含有量との関係でNb含有量を規制した素材に、適切な処理を施して製造することにより、強度−延性バランスに優れ、かつ平均r値が 1.2以上を有する高強度鋼板を得ることに成功した。   As a result of diligent studies to solve the above-mentioned problems, the present invention is a material that regulates the Nb content in relation to the C content in the range of the C content of 0.020 to 0.050 mass%. By producing it with appropriate treatment, it succeeded in obtaining a high-strength steel sheet having an excellent balance between strength and ductility and having an average r value of 1.2 or more.

まず、本発明者らが行った基礎的な実験結果について説明する。
質量%で、0.020%C−0.5%Si−2.0%Mn−0.035%P−0.005%S−0.03%Al−0.002%Nを基本成分とし、これに原子比でNb/C=0〜1.2となるようNbを添加した種々の鋼素材を、1250℃に加熱してこの温度で均熱保持した後、仕上圧延出側温度(仕上圧延終了温度ともいう)が880℃となるように熱間圧延を行って、板厚を4mmとした。さらに、仕上圧延終了後、コイル巻取相当処理として650℃で3時間の保温後、炉冷する処理を施した。次いで圧下率70%の冷間圧延を施して板厚1.2mmとし、引き続きこれらの冷延板を700℃まで平均昇温速度10℃/sで昇温し、その後850℃まで平均昇温速度3℃/sで加熱し、焼鈍温度850℃で120秒間加熱保持した後、該焼鈍温度から500℃までの温度域を冷却速度15℃/sとなるようにして室温まで冷却する連続焼鈍を施した。
First, basic experimental results performed by the present inventors will be described.
In mass%, 0.020% C-0.5% Si-2.0% Mn-0.035% P-0.005% S-0.03% Al-0.002% N is the basic component, and Nb / C = 0 to 1.2 in atomic ratio. After heating various steel materials to which Nb is added to 1250 ° C and keeping soaking at this temperature, hot rolling is performed so that the finish rolling exit temperature (also referred to as finish rolling finish temperature) is 880 ° C. The plate thickness was 4 mm. Furthermore, after finishing rolling, as a coil winding equivalent process, a heat treatment was performed at 650 ° C. for 3 hours, followed by furnace cooling. Next, cold rolling with a rolling reduction of 70% was performed to obtain a sheet thickness of 1.2 mm. Subsequently, these cold-rolled sheets were heated to 700 ° C. at an average heating rate of 10 ° C./s, and then to 850 ° C. with an average heating rate of 3 After heating and holding at an annealing temperature of 850 ° C. for 120 seconds, continuous annealing was performed in which the temperature range from the annealing temperature to 500 ° C. was cooled to room temperature at a cooling rate of 15 ° C./s. .

得られた冷延焼鈍板について、引張試験を実施し引張特性を調査した。引張試験は、JIS5号引張試験片を用いて行った。引張強度TSは、圧延方向に対して垂直方向に引張試験を行ったときの値である。r値は、圧延方向(r)、圧延方向に45°方向(r)および圧延方向に垂直(90°)方向(r)からJIS5号引張試験片を採取し、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を算出し、これをr値とした。
平均r値={r+(2×r)+r}/4
About the obtained cold-rolled annealing board, the tension test was implemented and the tensile characteristic was investigated. The tensile test was performed using a JIS No. 5 tensile test piece. The tensile strength TS is a value when a tensile test is performed in a direction perpendicular to the rolling direction. The r value is specified in JIS Z 2254 by collecting JIS No. 5 tensile test specimens from the rolling direction (r L ), 45 ° direction (r D ) in the rolling direction and 90 ° direction (r C ) in the rolling direction. The average r value (average plastic strain ratio) was calculated based on the above, and this was used as the r value.
Average r value = {r L + (2 × r D ) + r C } / 4

図1は、CとNbの原子比、すなわち(Nb/93)/(C/12)の関係がTSとr値におよぼす影響を示した図である。図1から、鋼中のNb含有量をCとの原子比にして0.2〜0.7の範囲に制限することにより、1.2以上のr値と、組織強化により500MPa以上のTSを達成することが明らかになった。また、上記基本成分に{(Nb/93)+(Ti/48)}/(C/12)=0〜1.2となるように、Nb、Tiを添加した成分系についても同様の実験を行なったところ、Nb単独添加時と同様の結果が得られた。   FIG. 1 is a graph showing the influence of the atomic ratio of C and Nb, that is, the relationship of (Nb / 93) / (C / 12) on TS and r value. From Fig. 1, it is clear that by limiting the Nb content in the steel to an atomic ratio with C in the range of 0.2 to 0.7, an r value of 1.2 or more and a TS of 500 MPa or more can be achieved by strengthening the structure. became. In addition, the same experiment was performed for the component system in which Nb and Ti were added so that {(Nb / 93) + (Ti / 48)} / (C / 12) = 0 to 1.2. However, the same result as that obtained when Nb alone was added was obtained.

次に、質量%で、0.020%C−0.5%Si−2.0%Mn−0.035%P−0.005%S−0.03%Al−0.002%N−0.065%Nb(CとNbの原子比:Nb/C=0.42)の鋼素材を、1250℃に加熱してこの温度で均熱保持した後、仕上圧延出側温度が880℃となるように熱間圧延を行って、板厚を4mmとした。さらに、仕上圧延終了後、コイル巻取相当処理として650℃で3時間の保温後、炉冷する処理を施した。次いで圧下率70%の冷間圧延を施して板厚1.2mmとし、引き続きこれらの冷延板に、700℃までの温度域および700〜800℃の温度域を、それぞれ0.1〜20℃/sの平均昇温速度に種々変化させて、850℃まで加熱し、焼鈍温度850℃で120秒間加熱保持した後、該焼鈍温度から500℃の温度域での平均冷却速度が15℃/sとなるようにして室温まで冷却する連続焼鈍を施した。   Next, in mass%, 0.020% C-0.5% Si-2.0% Mn-0.035% P-0.005% S-0.03% Al-0.002% N-0.065% Nb (atomic ratio of C and Nb: Nb / C = The steel material of 0.42) was heated to 1250 ° C. and kept soaked at this temperature, and then hot-rolled so that the finish rolling exit temperature was 880 ° C., and the sheet thickness was 4 mm. Furthermore, after finishing rolling, as a coil winding equivalent process, a heat treatment was performed at 650 ° C. for 3 hours, followed by furnace cooling. Next, cold rolling with a rolling reduction of 70% was performed to obtain a sheet thickness of 1.2 mm. Subsequently, these cold rolled sheets were subjected to a temperature range of up to 700 ° C. and a temperature range of 700 to 800 ° C. of 0.1 to 20 ° C./s respectively Various changes to the average heating rate, heating to 850 ° C, heating and holding at 850 ° C for 120 seconds, then the average cooling rate in the temperature range from the annealing temperature to 500 ° C is 15 ° C / s Then, continuous annealing for cooling to room temperature was performed.

得られた冷延焼鈍板について、先述と同様に引張試験を実施し、引張強度TS、全伸びElおよび平均r値を求めた。   About the obtained cold-rolled annealing board, the tensile test was implemented similarly to the above-mentioned, and tensile strength TS, total elongation El, and average r value were calculated | required.

図2は、700〜800℃の温度域の平均昇温速度が、強度−延性−深絞り性バランス(TS×El×平均r値)におよぼす影響を示した図である。なお、これは700℃迄の温度域の平均昇温速度を10℃/s(一定)とした場合の結果である。図2から、700〜800℃の温度域の平均昇温速度を0.5〜5℃の範囲に制限することで、強度−延性−深絞り性バランス(TS×El×平均r値)の値が24000MPa・%以上と特性が向上することが明らかになった。尚、700℃まで昇温速度の変化は特性に大きな影響を与えなかったことを確認している。   FIG. 2 is a graph showing the influence of the average temperature increase rate in the temperature range of 700 to 800 ° C. on the strength-ductility-deep drawability balance (TS × El × average r value). This is the result when the average temperature increase rate in the temperature range up to 700 ° C. is 10 ° C./s (constant). From Fig. 2, by limiting the average temperature increase rate in the temperature range of 700 to 800 ° C to the range of 0.5 to 5 ° C, the value of strength-ductility-deep drawability balance (TS x El x average r value) is 24000 MPa.・ It became clear that the characteristics improved by more than%. It has been confirmed that the change in the heating rate up to 700 ° C. did not significantly affect the characteristics.

本発明は、上記した知見に基づき、さらに検討して得られたものであり、その要旨は以下の通りである。   The present invention has been obtained by further investigation based on the above-described findings, and the gist thereof is as follows.

(1)質量%で、
C:0.020〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.01〜0.3%
を含有し、かつ、Nb含有量とC含有量が、
0.2≦(Nb/93)/(C/12)≦0.7 (式中のNbおよびCは各々の元素の含有量(質量%))
なる関係を満たし、残部Feおよび不可避的不純物からなる成分組成を有するとともに、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、引張強度TS、全伸びElおよび平均r値の積(TS×El×平均r値)で表される強度−延性−深絞り性バランスの値が24000MPa・%以上であることを特徴とする高強度鋼板。
(1) In mass%,
C: 0.020 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.01-0.3%
And Nb content and C content are
0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (Nb and C in the formula are the contents of each element (mass%))
The balance has a component composition composed of Fe and inevitable impurities, and has a steel structure containing a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. A high-strength steel sheet characterized by a strength-ductility-deep drawability balance value of 24000 MPa ·% or more expressed by the product of strength TS, total elongation El, and average r-value (TS × El × average r-value) .

(2)上記組成に加えて、さらにMo:0.5質量%以下およびCr:0.5質量%以下の中から選択される1種または2種を含有することを特徴とする上記(1)に記載の高強度鋼板。 (2) In addition to the above composition, Mo or more, 0.5% by mass or less and Cr: 0.5% by mass or less selected from one or two selected from the above high Strength steel plate.

(3)上記組成に加えて、さらにTi:0.1質量%以下を含有し、かつ、鋼中のTiとSおよびNの含有量が、
(Ti/48)/{(S/32)+(N/14)}≦2 (式中のTi、SおよびNは各々の元素の含有量(質量%))
なる関係を満たし、かつ、NbおよびTiの含有量とC含有量が、
0.2≦{(Nb/93)+(Ti/48)}/(C/12)≦0.7 (式中のNb、TiおよびCは各々の元素の含有量(質量%))
なる関係を満たすことを特徴とする上記(1)または(2)に記載の高強度鋼板。
(3) In addition to the above composition, further containing Ti: 0.1% by mass or less, and the contents of Ti, S and N in the steel,
(Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 (Ti, S and N in the formula are the contents of each element (mass%))
And the Nb and Ti contents and the C content are
0.2 ≦ {(Nb / 93) + (Ti / 48)} / (C / 12) ≦ 0.7 (Nb, Ti and C in the formula are the contents of each element (mass%))
The high-strength steel sheet according to the above (1) or (2), characterized in that:

(4)熱間圧延工程、冷間圧延工程および焼鈍工程を施すことにより、上記(1)〜(3)のいずれかに記載の高強度鋼板を製造する方法であって、
該熱間圧延工程は、仕上圧延出側温度:800℃以上で仕上圧延を施した後、巻取温度:400〜720℃で巻き取る工程を包含し、
該冷間圧延工程は、圧下率40%以上で冷間圧延を施す工程を包含し、
該焼鈍工程は、700〜800℃の温度域を平均昇温速度:0.5〜5℃/sとして800〜950℃の焼鈍温度に加熱した後、該焼鈍温度から少なくとも500℃までの温度域を5℃/s以上の平均冷却速度で冷却する工程を包含することを特徴とする高強度鋼板の製造方法。
(4) A method for producing the high-strength steel sheet according to any one of (1) to (3) above by performing a hot rolling process, a cold rolling process, and an annealing process,
The hot rolling step includes a step of finishing rolling at a finish rolling exit temperature: 800 ° C. or higher and then winding at a winding temperature: 400 to 720 ° C.,
The cold rolling step includes a step of performing cold rolling at a rolling reduction of 40% or more,
In the annealing step, a temperature range of 700 to 800 ° C. is heated to an annealing temperature of 800 to 950 ° C. at an average rate of temperature increase of 0.5 to 5 ° C./s, and then the temperature range from the annealing temperature to at least 500 ° C. is 5 A method for producing a high-strength steel sheet, comprising a step of cooling at an average cooling rate of at least ° C / s.

(5)前記焼鈍工程は、前記冷却後、さらに200〜400℃の温度域で60秒間以上保持する保持処理工程を包含するものである上記(4)に記載の高強度鋼板の製造方法。
(6)上記(1)、(2)または(3)に記載の高強度鋼板の表面に、めっき層を具えることを特徴とするめっき鋼板。
(7)上記(4)または(5)に記載の方法により製造された高強度鋼板の表面に、めっき処理を施す工程を具えることを特徴とするめっき鋼板の製造方法。
(5) The said annealing process is a manufacturing method of the high strength steel plate as described in said (4) which includes the holding process process hold | maintained for 60 second or more in the temperature range of 200-400 degreeC after the said cooling.
(6) A plated steel sheet comprising a plated layer on the surface of the high-strength steel sheet according to (1), (2) or (3).
(7) A method for producing a plated steel sheet, comprising a step of plating the surface of the high-strength steel sheet produced by the method according to (4) or (5).

この発明は、C含有量が0.020〜0.050質量%の範囲において、従来の極低炭素IF鋼のように深絞り性に悪影響を及ぼす固溶Cの低減を徹底せずに、マルテンサイト形成に必要な程度の固溶Cを残存させた状態下にもかかわらず、{111}再結晶集合組織を発達させて平均r値≧1.2を確保して良好な深絞り性を有するとともに、鋼組織をフェライト相と、マルテンサイト相を含む第2相とを有する強度延性バランスに優れる複合組織鋼板とすることで、TS500MPa以上の高強度化を達成したものである。   This invention is necessary for the formation of martensite when the C content is in the range of 0.020 to 0.050% by mass without thoroughly reducing the amount of dissolved C that adversely affects deep drawability like conventional ultra-low carbon IF steels. Despite the state in which a certain amount of solute C remains, a {111} recrystallized texture is developed to secure an average r value ≧ 1.2 and good deep drawability, and the steel structure is made of ferrite. By making a steel sheet with a composite structure having an excellent balance of strength and ductility having a phase and a second phase containing a martensite phase, high strength of TS500 MPa or more is achieved.

さらに、本発明では、焼鈍工程における700〜800℃の温度域での平均昇温速度を適正に制限することで、強度−延性−深絞り性バランスがさらに向上することを見出した。   Furthermore, in this invention, it discovered that intensity | strength-ductility-deep-drawability balance was further improved by restrict | limiting appropriately the average temperature increase rate in the 700-800 degreeC temperature range in an annealing process.

これらの理由については、必ずしも明らかではないが、次のように考えられる。
本発明では、Nb含有量とC含有量が、0.2≦(Nb/93)/(C/12)≦0.7を満たすように設定することで、敢えてNbCとして析出固定されないCを存在させている。従来このようなCの存在が{111}再結晶集合組織の発達を阻害するとされてきたが、本発明では、全C含有量をNbCとして析出固定せずに高r値化を達成している。これは、固溶Cの存在による{111}再結晶集合組織形成に対する負の要因よりも、Nb添加および熱間圧延時の仕上圧延出側温度を適正に制御することで、熱延板組織を微細化し、加えてマトリックス中に微細なNbCを析出させることで、冷間圧延時に粒界近傍に歪を蓄積させて、粒界からの{111}再結晶粒の発生を促進するという正の要因の方が大きいためと考えられる。
特にマトリックス中にNbCを析出させることの効果は、従来の極低炭素鋼程度のC含有量では有効ではなく、本発明のC含有量の適正範囲(0.020〜0.050質量%)において初めてその効果を発揮するものと推測され、このC含有量の適正範囲を見出したことが本発明の技術思想の基盤となっている。
Although these reasons are not necessarily clear, they are considered as follows.
In the present invention, by setting the Nb content and the C content so as to satisfy 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7, C that is not precipitated and fixed as NbC is present. Conventionally, it has been said that the presence of such C inhibits the development of {111} recrystallized texture. However, in the present invention, the total C content is NbC, and a high r value is achieved without precipitation fixation. . Rather than a negative factor for the formation of {111} recrystallized texture due to the presence of solute C, the hot rolled sheet structure can be controlled by appropriately controlling the finish rolling exit temperature during Nb addition and hot rolling. Positive factor that refines and precipitates fine NbC in the matrix to accumulate strain near the grain boundary during cold rolling and promote the generation of {111} recrystallized grains from the grain boundary This is probably because of the larger.
In particular, the effect of precipitating NbC in the matrix is not effective at the C content of the conventional ultra-low carbon steel, and is not effective for the first time in the proper C content range (0.020 to 0.050 mass%) of the present invention. It is presumed to be exhibited, and finding the appropriate range of the C content is the basis of the technical idea of the present invention.

そして、NbC以外のC、その存在形態はおそらくセメンタイト系炭化物或いは固溶Cであると推測されるが、これらNbCとして固定されなかったCの存在により、焼鈍工程における冷却時にマルテンサイト相を形成可能とし高強度化にも成功したのである。   C other than NbC and its existence form are presumed to be cementite carbide or solute C, but the presence of C not fixed as NbC can form a martensite phase during cooling in the annealing process. And succeeded in increasing the strength.

さらに、詳細は定かではないが、焼鈍工程における加熱条件として、特に700〜800℃という、再結晶温度やAC1変態点を含む温度域での平均昇温速度の適正化を図ることは、再結晶集合組織の形成および発達、α−γ2相域中におけるCの2相分離、再結晶粒の成長具合などに影響をもたらし、特性を向上させることに寄与しているものと考えられる。 Furthermore, although details are not clear, it is not possible to optimize the average heating rate in the temperature range including the recrystallization temperature and the AC1 transformation point, particularly 700 to 800 ° C, as the heating conditions in the annealing process. It is considered that the formation and development of crystal texture, the two-phase separation of C in the α-γ2 phase region, the growth of recrystallized grains, and the like are affected, thereby contributing to the improvement of characteristics.

この発明の製造方法によれば、従来技術に対し、製鋼工程においては極低炭素鋼とするための脱ガス工程が不要であること、また固溶強化を利用するための過剰な合金元素の添加も不要でありコスト的にも有利である。さらに、過剰な炭化物の析出も抑えられているので、圧延時のロールへの負荷の懸念も小さく、一般に高r値化に有効とされる高冷延圧下率を得るにも好都合である。   According to the manufacturing method of the present invention, compared to the prior art, a degassing step for making an ultra-low carbon steel is not necessary in the steel making step, and addition of an excessive alloy element for utilizing solid solution strengthening. Is also unnecessary and advantageous in terms of cost. Furthermore, since excessive carbide precipitation is also suppressed, there is little concern about the load on the roll during rolling, and it is convenient to obtain a high cold rolling reduction that is generally effective for increasing the r value.

以下に本発明を詳細に説明する。
まず、本発明の鋼板の成分組成を限定した理由について説明する。なお、鋼板の成分組成における元素の含有量の単位はいずれも「質量%」であるが、以下、特に断らない限り、単に「%」で示す。
The present invention is described in detail below.
First, the reason which limited the component composition of the steel plate of this invention is demonstrated. In addition, although the unit of element content in the component composition of the steel sheet is “mass%”, hereinafter, it is simply indicated by “%” unless otherwise specified.

C:0.020〜0.050%
Cは、後述のNbとともに本発明における重要な元素である。Cは、高強度化に有効であり、フェライト相を主相としマルテンサイト相を含む第2相を有する複合組織の形成を促進して、TS≧500MPaとするため、本発明では複合組織形成および強度確保の観点から、Cを0.020%以上含有する必要がある。一方、0.050%を超えるCの含有は、良好なr値が得られなくなることから、C含有量の上限を0.050%とし、好ましくは0.035%、より好ましくは0.03%とする。
C: 0.020 to 0.050%
C is an important element in the present invention together with Nb described later. C is effective for increasing the strength and promotes the formation of a composite structure having a ferrite phase as a main phase and a second phase including a martensite phase, and TS ≧ 500 MPa. From the viewpoint of securing strength, it is necessary to contain 0.020% or more of C. On the other hand, if the C content exceeds 0.050%, a good r value cannot be obtained, so the upper limit of the C content is 0.050%, preferably 0.035%, more preferably 0.03%.

Si:0.01〜1.0%
Siは、フェライト変態を促進させ、未変態オーステナイト中のC含有量を上昇させてフェライト相とマルテンサイト相の複合組織を形成させやすくする他、固溶強化の効果がある。上記効果を得るためには、Siは0.01%以上含有することが必要であり、好ましくは0.05%以上とする。一方、Siが1.0%を超えて含有すると、熱間圧延時に赤スケールと称される表面欠陥が発生するため、鋼板とした時の表面外観を悪くする。
Si: 0.01-1.0%
Si promotes ferrite transformation and increases the C content in untransformed austenite to facilitate the formation of a composite structure of ferrite phase and martensite phase, and has an effect of strengthening solid solution. In order to acquire the said effect, it is necessary to contain Si 0.01% or more, Preferably it is 0.05% or more. On the other hand, if Si exceeds 1.0%, surface defects called red scales are generated during hot rolling, which deteriorates the surface appearance of the steel sheet.

Mn:1.0〜3.0%
Mnは、高強度化に有効であるとともに、マルテンサイト相が得られる臨界冷却速度を低くする作用があり、焼鈍後の冷却時にマルテンサイト相の形成を促す。また、Mnは、Sによる熱間割れを防止するのに有効な元素でもある。このような観点から、Mnは1.0%以上含有する必要があり、好ましくは1.2%以上とする。一方、3.0%を超える過度のMnを含有することは、r値および溶接性を劣化させるので、Mn含有量の上限は3.0%とする。
Mn: 1.0-3.0%
Mn is effective for increasing the strength and has the effect of lowering the critical cooling rate at which a martensite phase is obtained, and promotes the formation of a martensite phase during cooling after annealing. Mn is also an element effective for preventing hot cracking due to S. From such a viewpoint, Mn needs to be contained at 1.0% or more, preferably 1.2% or more. On the other hand, containing excessive Mn exceeding 3.0% degrades the r value and weldability, so the upper limit of the Mn content is 3.0%.

P:0.005〜0.1%
Pは、固溶強化の効果がある元素である。しかしながら、P含有量が0.005%未満では、その効果が現れないだけでなく、製鋼工程において脱燐コストの上昇を招く。したがって、Pは0.005%以上含有するものとし、好ましくは0.01%以上含有する。一方、0.1%を超える過剰なPの含有は、Pが粒界に偏析し、耐二次加工脆性および溶接性を劣化させる。従って、P含有量の上限は0.1%とした。
P: 0.005-0.1%
P is an element having an effect of solid solution strengthening. However, when the P content is less than 0.005%, not only the effect does not appear, but also the dephosphorization cost increases in the steel making process. Therefore, P is contained in an amount of 0.005% or more, preferably 0.01% or more. On the other hand, if the P content exceeds 0.1%, P segregates at the grain boundaries, and the secondary work brittleness resistance and weldability deteriorate. Therefore, the upper limit of the P content is set to 0.1%.

S:0.01%以下
Sは、不純物であり、熱間割れの原因になる他、鋼中で介在物として存在し鋼板の諸特性を劣化させるので、できるだけ低減する必要がある。具体的には、S含有量は、0.01%までは許容できるため、0.01%以下とする。
S: 0.01% or less S is an impurity and causes hot cracking, and also exists as inclusions in steel and deteriorates various properties of the steel sheet, so it is necessary to reduce it as much as possible. Specifically, the S content is 0.01% or less because it is acceptable up to 0.01%.

Al:0.005〜0.1%
Alは、鋼の脱酸元素として有用である他、不純物として存在する固溶Nを固定して耐常温時効性を向上させる作用があり、かかる作用を発揮させるためには、Al含有量は0.005%以上とする必要がある。一方、0.1%を超えるAlの含有は、高合金コストを招き、さらに表面欠陥を誘発するので、Al含有量の上限を0.1%とする。
Al: 0.005-0.1%
In addition to being useful as a deoxidizing element for steel, Al has the effect of fixing solute N present as an impurity to improve the normal temperature aging resistance. In order to exert such an effect, the Al content is 0.005. % Or more is necessary. On the other hand, the Al content exceeding 0.1% causes high alloy costs and further induces surface defects, so the upper limit of Al content is set to 0.1%.

N:0.01%以下
Nは耐常温時効性を劣化させる元素であり、できるだけ低減することが好ましい元素である。N含有量が多くなると耐常温時効性が劣化し、固溶Nを固定するために多量のAlやTi添加が必要となるため、できるだけ低減することが好ましいが、0.01%までは許容できるため、N含有量の上限を0.01%とする。
N: 0.01% or less N is an element that deteriorates room temperature aging resistance and is preferably reduced as much as possible. When the N content increases, the room temperature aging resistance deteriorates, and a large amount of Al or Ti is required to fix the solid solution N, so it is preferable to reduce it as much as possible, but up to 0.01% is acceptable, The upper limit of N content is 0.01%.

Nb:0.01〜0.3%、かつ0.2≦(Nb/93)/(C/12)≦0.7
Nbは、本発明において最も重要な元素であり、熱延板組織の微細化および熱延板中にNbCとしてCを析出固定する作用を有し、高r値化に寄与する元素である。このような観点から、Nbは0.01%以上含有する必要がある。一方、本発明では、焼鈍後の冷却過程でマルテンサイト相を形成させるための固溶Cを必要とするが、0.3%を超える過剰のNb含有は、この形成を妨げることになるので、Nb含有量の上限を0.3%とする。
Nb: 0.01 to 0.3% and 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7
Nb is the most important element in the present invention, and has the effect of refining the hot-rolled sheet structure and precipitating and fixing C as NbC in the hot-rolled sheet, and contributes to increasing the r value. From such a viewpoint, Nb needs to be contained in an amount of 0.01% or more. On the other hand, in the present invention, solid solution C is required for forming a martensite phase in the cooling process after annealing, but excessive Nb content exceeding 0.3% hinders this formation. The upper limit of the amount is 0.3%.

また、Nb含有の効果を奏するには、特にNb含有量(質量%)とC含有量(質量%)が、0.2≦(Nb/93)/(C/12)≦0.7(ただし、式中のNbおよびCは各々の元素の含有量)の範囲を満足するように、NbとCを含有させることが必要である。なお、ここで(Nb/93)/(C/12)はNbとCの原子濃度比を表している。(Nb/93)/(C/12)が0.2未満では、固溶Cの存在量が多く、高r値化に有効な{111}再結晶集合組織の形成を阻害することになる。また、(Nb/93)/(C/12)が0.7を超えると、マルテンサイト相を形成するのに必要なC量を鋼中に存在させることを妨げるので、最終的にマルテンサイト相を含む第2相を有する組織が得られない。したがって、Nb含有量を0.01〜0.3%とし、さらにNb含有量とC含有量が、0.2≦(Nb/93)/(C/12)≦0.7を満足するようにNbとCを含有させることとする。なお、より好ましくは0.3≦(Nb/93)/(C/12)≦0.5を満足するようにNbとCを含有させる。   In order to achieve the effect of Nb content, the Nb content (% by mass) and the C content (% by mass) are preferably 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (however, It is necessary to contain Nb and C so that Nb and C satisfy the range of the content of each element. Here, (Nb / 93) / (C / 12) represents the atomic concentration ratio of Nb and C. If (Nb / 93) / (C / 12) is less than 0.2, the abundance of solute C is large, and the formation of {111} recrystallized texture effective for increasing the r value is inhibited. Further, if (Nb / 93) / (C / 12) exceeds 0.7, the amount of C necessary to form the martensite phase is prevented from being present in the steel, so the martensite phase is finally included. A structure having a second phase cannot be obtained. Therefore, the Nb content is set to 0.01 to 0.3%, and Nb and C are further included so that the Nb content and the C content satisfy 0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7. To do. More preferably, Nb and C are contained so as to satisfy 0.3 ≦ (Nb / 93) / (C / 12) ≦ 0.5.

以上が本発明の高強度鋼板の基本組成である。
なお、本発明では、上記した組成に加えてさらに下記に示すMoおよびCrの1種または2種を添加してもよい。
The above is the basic composition of the high-strength steel sheet of the present invention.
In the present invention, one or two of Mo and Cr shown below may be added in addition to the above composition.

Mo:0.5%以下およびCr:0.5%以下の中から選択される1種または2種
MoおよびCrは、Mnと同様、マルテンサイト相が得られる臨界冷却速度を遅くする作用をもち、焼鈍工程における冷却時にマルテンサイト相の形成を促す元素であり、強度レベル向上に効果がある。また、NbほどではないがCを析出固定する作用を有し、高r値化に寄与する元素でもある。これらの効果を得るためには、MoおよびCrは0.05%以上含有することが好ましい。しかしながら、0.5%を超えて過剰にMo,Crを添加しても、これらの効果が飽和するだけでなく、特に高価なMoの過剰添加はコストの上昇を招くことから、MoおよびCrの含有量の上限は0.5%とすることが好ましい。
One or two selected from Mo: 0.5% or less and Cr: 0.5% or less
Mo and Cr, like Mn, have the effect of slowing down the critical cooling rate at which a martensite phase is obtained, are elements that promote the formation of the martensite phase during cooling in the annealing process, and are effective in improving the strength level. Further, although not as much as Nb, it has an action of precipitating and fixing C, and is also an element contributing to an increase in r value. In order to obtain these effects, it is preferable to contain 0.05% or more of Mo and Cr. However, adding Mo and Cr in excess of 0.5% not only saturates these effects, but also excessive addition of expensive Mo leads to an increase in cost, so the contents of Mo and Cr The upper limit is preferably 0.5%.

なお、本発明では、上記した組成に加えて、さらに下記に示すTiを添加してもよい。   In the present invention, in addition to the above composition, Ti shown below may be further added.

Ti:0.1%以下、かつ鋼中のTiとSとNの含有量が、(Ti/48)/{(S/32)+(N/14)}≦2なる関係を満たし、かつ、NbおよびTiの含有量とC含有量が、0.2≦{(Nb/93)+(Ti/48)}/(C/12)≦0.7なる関係を満たすこと   Ti: 0.1% or less, and the contents of Ti, S, and N in the steel satisfy the relationship of (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2, and Nb and The Ti content and the C content satisfy the relationship 0.2 ≦ {(Nb / 93) + (Ti / 48)} / (C / 12) ≦ 0.7.

Tiは、Alと同等或いはAl以上に固溶Nの析出固定に効果がある元素であり、この効果を得るためには0.005%以上含有することが好ましい。また、Tiは、TiCを形成しNbとほぼ同等の効果を発揮する。従って、高価なTiの0.1%を超える過剰の添加は、コストの上昇を招くばかりか、TiCの形成によりマルテンサイト相の形成に必要な固溶Cを鋼中に残すことを妨げるので、Ti含有量は、0.1%以下とすることが好ましく、かつ過剰なTiが固溶Cを鋼中に残すことを妨げないようにするため、鋼中でTiと優先的に結合するSおよびNの含有量との関係で(Ti/48)/{(S/32)+(N/14)}≦2を満たした上で、0.2≦{(Nb/93)+(Ti/48)}/(C/12)≦0.7なる関係を満たすように添加する。なお、ここで該関係式中のNb、Ti、SおよびNは各々の元素の含有量(質量%)である。   Ti is an element which is equivalent to Al or more effective than Al and is effective in precipitation fixation of solute N. In order to obtain this effect, Ti is preferably contained in an amount of 0.005% or more. Ti forms TiC and exhibits almost the same effect as Nb. Therefore, excessive addition exceeding 0.1% of expensive Ti not only increases the cost, but also prevents the solid solution C necessary for the formation of the martensite phase from remaining in the steel due to the formation of TiC. The amount is preferably 0.1% or less, and in order not to prevent excess Ti from leaving solid solution C in the steel, the contents of S and N that preferentially bond with Ti in the steel. (Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 and 0.2 ≦ {(Nb / 93) + (Ti / 48)} / (C / 12) Add so as to satisfy the relationship of ≦ 0.7. Here, Nb, Ti, S and N in the relational expression are the contents (mass%) of each element.

また、本発明では、上記した成分以外の残部鉄および不可避的不純物の組成とすることが好ましい。 Moreover, in this invention, it is preferable that the remainder other than an above-described component is set as the composition of iron and an unavoidable impurity.

なお、通常の鋼組成範囲内であれば、B、Ca、REM等を含有しても何ら問題はない。例えば、Bは、鋼の焼入性を向上する作用をもつ元素であり、必要に応じて含有できる。しかし、B含有量が0.003%を超えるとその効果が飽和するため、0.003%以下とすることが好ましい。   In addition, if it is in the normal steel composition range, even if it contains B, Ca, REM, etc., there is no problem. For example, B is an element having an effect of improving the hardenability of steel and can be contained as necessary. However, since the effect is saturated when the B content exceeds 0.003%, it is preferably 0.003% or less.

また、CaおよびREMは、硫化物系介在物の形態を制御する作用をもち、これにより鋼板の諸特性の劣化を防止する。このような効果は、CaおよびREMのうちから選ばれた1種または2種の含有量が合計で0.01%を超えると飽和する傾向があるので、これ以下とすることが好ましい。   Moreover, Ca and REM have the effect | action which controls the form of a sulfide type inclusion, and, thereby, prevents the deterioration of the various characteristics of a steel plate. Since such an effect tends to be saturated when the content of one or two selected from Ca and REM exceeds 0.01% in total, it is preferable to make the content less than this.

なお、その他の不可避的不純物としては、例えばSb、Sn、Zn、Co等が挙げられ、これらの含有量の許容範囲としては、Sb:0.01%以下,Sn:0.1%以下,Zn:0.01%以下,Co:0.1%以下の範囲である。   Other inevitable impurities include, for example, Sb, Sn, Zn, Co, etc. The allowable ranges of these contents are Sb: 0.01% or less, Sn: 0.1% or less, Zn: 0.01% or less , Co: 0.1% or less.

そして、本発明の高強度鋼板は、上記鋼組成を有することに加えて、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、平均r値が1.2以上であり、かつ、引張強度TS、全伸びElおよび平均r値の積(TS×El×平均r値)で表される強度−延性−深絞り性バランスの値が24000MPa・%以上であることが必要である。   The high-strength steel sheet of the present invention has a steel structure including a ferrite phase having an area ratio of 50% or more and a martensite phase having an area ratio of 1% or more in addition to having the steel composition described above. The r-value is 1.2 or more, and the strength-ductility-deep drawability balance value expressed by the product of tensile strength TS, total elongation El and average r-value (TS x El x average r-value) is 24000 MPa ·% That is necessary.

本発明の高強度鋼板は、平均r値が1.2以上を満足する良好な深絞り性を有し、引張強度≧500MPaの鋼板とするために、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有する鋼板、いわゆる複合組織鋼板であることが必要である。特に、本発明では、50%以上の面積率を占めるフェライト相の{111}再結晶集合組織を発達させることによって、平均r値≧1.2を達成することができる。フェライト相が少なくなり、面積率で50%未満となると、良好な延性と深絞り性を確保することが困難となり、プレス成形性が低下する傾向がある。なお、フェライト相は、面積率で70%以上とすることが好ましく、また、複合組織の利点を利用するため、フェライト相は面積率で99%以下とするのが好ましく、さらに好ましくは97%以下とする。加えて、マルテンサイト相は、面積率で1%以上とする必要がある。マルテンサイト相が1%未満では、良好な強度延性バランスを確保できず、ひいては、強度−延性−深絞り性バランスの値を24000MPa・%以上にできない。なお、マルテンサイト相は面積率で3%以上とするのがより好ましい。なお、マルテンサイト相の面積率が20%を超えると、深絞り性を劣化させる傾向にあるため、マルテンサイト相は面積率で20%以下とするのが好ましく、より好ましくは15%以下である。さらに、強度−延性−深絞り性バランスの値が24000MPa・%未満では、低深絞り性であった、従来のDP鋼の深絞り性を充分に改善したとは言えず、複雑化するプレス成形部品の用途に十分対応することができない。   The high-strength steel sheet of the present invention has a good deep drawability satisfying an average r value of 1.2 or more, and a ferrite phase having an area ratio of 50% or more in order to obtain a steel sheet having a tensile strength ≧ 500 MPa, It is necessary that the steel sheet has a steel structure containing 1% or more of martensite phase, that is, a so-called composite structure steel sheet. In particular, in the present invention, an average r value ≧ 1.2 can be achieved by developing a {111} recrystallization texture of a ferrite phase occupying an area ratio of 50% or more. When the ferrite phase is reduced and the area ratio is less than 50%, it becomes difficult to ensure good ductility and deep drawability, and the press formability tends to decrease. The ferrite phase is preferably 70% or more in area ratio, and in order to utilize the advantages of the composite structure, the ferrite phase is preferably 99% or less in area ratio, more preferably 97% or less. And In addition, the martensite phase needs to be 1% or more in terms of area ratio. If the martensite phase is less than 1%, a good strength ductility balance cannot be secured, and consequently the strength-ductility-deep drawability balance value cannot be made 24000 MPa ·% or more. The martensite phase is more preferably 3% or more in terms of area ratio. When the area ratio of the martensite phase exceeds 20%, the deep drawability tends to deteriorate. Therefore, the martensite phase is preferably 20% or less, more preferably 15% or less. . Furthermore, if the balance of strength, ductility, and deep drawability is less than 24000 MPa ·%, it cannot be said that the deep drawability of conventional DP steel, which was low deep drawability, has been sufficiently improved, and the press forming becomes complicated. It is not possible to cope with the use of parts.

ここで、「フェライト相」とは、ポリゴナルフェライト相のほか、オーステナイト相から変態した転位密度の高いベイニチックフェライト相を含む。   Here, the “ferrite phase” includes a polygonal ferrite phase and a bainitic ferrite phase having a high dislocation density transformed from an austenite phase.

加えて、上記したフェライト相、マルテンサイト相の他に、パーライト相、ベイナイト相あるいは残留オーステナイト(γ´)相などを含んだ組織としてもよい。   In addition, a structure containing a pearlite phase, a bainite phase, or a retained austenite (γ ′) phase in addition to the ferrite phase and martensite phase described above may be used.

次に、本発明の高強度鋼板を得るために限定した製造条件の理由、および好ましい製造条件について説明する。
本発明の製造方法に用いられる鋼スラブの組成は、上述した鋼板の組成と同様であるので、鋼スラブ組成の限定理由の記載は省略する。
Next, the reason for the manufacturing conditions limited to obtain the high-strength steel sheet of the present invention and the preferable manufacturing conditions will be described.
Since the composition of the steel slab used in the production method of the present invention is the same as that of the steel sheet described above, description of the reason for limiting the steel slab composition is omitted.

本発明の高強度鋼板は、上記した範囲内の組成を有する鋼スラブを素材とし、該素材に熱間圧延を施し熱延板とする熱間圧延工程と、該熱延板に酸洗後冷間圧延を施し冷延板とする冷間圧延工程と、該冷延板に再結晶と複合組織化を達成する焼鈍工程とを順次経ることにより製造できる。   The high-strength steel sheet of the present invention uses a steel slab having a composition within the above-mentioned range as a raw material, hot-rolling the hot-rolled sheet by subjecting the raw material to hot rolling, and cooling the hot-rolled sheet after pickling. It can be manufactured by sequentially performing a cold rolling process of performing cold rolling to obtain a cold rolled sheet and an annealing process for achieving recrystallization and complex structure formation on the cold rolled sheet.

本発明の製造方法で使用する鋼スラブは、成分のマクロ偏析を防止すべく連続鋳造法で製造することが望ましいが、造塊法や薄スラブ鋳造法で製造してもよい。また、鋼スラブを製造した後、いったん室温まで冷却し、その後、再度加熱する従来法に加え、冷却せず温片のままで加熱炉に装入し、熱間圧延する直送圧延、或いはわずかの保熱を行った後に直ちに熱間圧延する直送圧延・直接圧延などの省エネルギープロセスも問題なく適用できる。   The steel slab used in the production method of the present invention is preferably produced by a continuous casting method in order to prevent macro segregation of components, but may be produced by an ingot-making method or a thin slab casting method. Moreover, after manufacturing the steel slab, in addition to the conventional method of once cooling to room temperature and then heating again, the steel slab is charged directly into the heating furnace without being cooled and charged in a heating furnace. Energy-saving processes such as direct-rolling and direct rolling, in which hot rolling is performed immediately after heat retention, can also be applied without problems.

(熱間圧延工程)
スラブ加熱温度は、析出物を粗大化させることにより、{111}再結晶集合組織を発達させて深絞り性を改善するため、低い方が望ましい。しかし、加熱温度が1000℃未満では、圧延荷重が増大し、熱間圧延時におけるトラブル発生の危険性が増大するので、スラブ加熱温度は1000℃以上にすることが好ましい。なお、酸化重量の増加に伴うスケールロスの増大などから、スラブ加熱温度の上限は1300℃とすることが好適である。
(Hot rolling process)
The slab heating temperature is preferably low because the precipitates are coarsened to develop a {111} recrystallized texture and improve deep drawability. However, if the heating temperature is less than 1000 ° C., the rolling load increases and the risk of trouble during hot rolling increases, so the slab heating temperature is preferably 1000 ° C. or higher. Note that the upper limit of the slab heating temperature is preferably set to 1300 ° C. because of an increase in scale loss accompanying an increase in oxidized weight.

上記条件で加熱された鋼スラブに粗圧延および仕上圧延を行う熱間圧延を施す。ここで、鋼スラブは粗圧延によりシートバーとされる。なお、粗圧延の条件は特に規定する必要はなく、常法に従って行えばよい。また、スラブ加熱温度を低くし、かつ熱間圧延時のトラブルを防止するといった観点からは、シートバーを加熱する、所謂シートバーヒーターを活用することが好ましい。   The steel slab heated under the above conditions is subjected to hot rolling for rough rolling and finish rolling. Here, the steel slab is made into a sheet bar by rough rolling. The conditions for rough rolling need not be specified, and may be performed according to a conventional method. From the viewpoint of lowering the slab heating temperature and preventing troubles during hot rolling, it is preferable to use a so-called sheet bar heater that heats the sheet bar.

次いで、シートバーを仕上圧延して熱延板とする。このとき、仕上圧延出側温度(FT)は800℃以上とする。これは、冷間圧延および焼鈍後に優れた深絞り性が得られる微細な熱延板組織を得るためである。FTが800℃未満では、組織が加工組織を有し、冷延焼鈍後に{111}集合組織が発達しないだけでなく、熱間圧延時の圧延負荷が高くなる。従って、FTは800℃以上とする。なお、FTが980℃を超えると、組織が粗大化し、これもまた冷延焼鈍後の{111}再結晶集合組織の形成および発達を妨げる傾向があることから、高r値を得る観点から、FTの上限を980℃とすることが好ましい。   Next, the sheet bar is finish-rolled to obtain a hot-rolled sheet. At this time, the finish rolling outlet temperature (FT) is 800 ° C. or higher. This is to obtain a fine hot-rolled sheet structure that provides excellent deep drawability after cold rolling and annealing. If the FT is less than 800 ° C., the structure has a processed structure, and not only the {111} texture does not develop after cold rolling annealing, but also the rolling load during hot rolling becomes high. Therefore, FT should be 800 ° C or higher. When FT exceeds 980 ° C., the structure becomes coarse, and this also tends to hinder the formation and development of {111} recrystallized texture after cold rolling annealing, so from the viewpoint of obtaining a high r value, The upper limit of FT is preferably 980 ° C.

また、熱間圧延時の圧延荷重を低減するため、仕上圧延の一部または全部のパス間で潤滑圧延としてもよい。潤滑圧延を行うことは、鋼板形状の均一化や材質の均質化の観点から有効である。潤滑圧延の際の摩擦係数は、0.10〜0.25の範囲とするのが好ましい。さらに、相前後するシートバー同士を接合し、連続的に仕上圧延する連続圧延プロセスとすることも好ましい。連続圧延プロセスを適用することは、熱間圧延の操業安定性の観点からも望ましい。   Moreover, in order to reduce the rolling load at the time of hot rolling, it is good also as lubrication rolling between some or all passes of finishing rolling. Performing the lubrication rolling is effective from the viewpoint of uniforming the shape of the steel sheet and homogenizing the material. The coefficient of friction during lubrication rolling is preferably in the range of 0.10 to 0.25. Furthermore, it is also preferable to use a continuous rolling process in which the adjacent sheet bars are joined and finish-rolled continuously. The application of the continuous rolling process is also desirable from the viewpoint of the operational stability of hot rolling.

コイル巻取温度(CT)は、400〜720℃の範囲とする。この温度範囲が熱延板中にNbCを析出させるのに適正な温度範囲である。CTが720℃を超えると、結晶粒が粗大化し、強度低下を招くとともに冷延焼鈍後の高r値化を妨げることになる。またCTが400℃未満となると、NbCの析出が起こりにくくなり、高r値化に不利となる。なお、CTは、好ましくは550〜680℃とする。   The coil winding temperature (CT) is in the range of 400 to 720 ° C. This temperature range is an appropriate temperature range for depositing NbC in the hot rolled sheet. When CT exceeds 720 ° C., the crystal grains become coarse, leading to a decrease in strength and hindering a high r value after cold rolling annealing. Further, when the CT is lower than 400 ° C., NbC is hardly precipitated, which is disadvantageous for increasing the r value. CT is preferably 550 to 680 ° C.

上記のように、成分組成および熱間圧延条件を調整することにより、1)熱延板段階でC含有量全体の20%以上をNbCとして析出固定することができ、また、2)熱延板の組織を、小傾角粒界を含む平均結晶粒径が8μm以下とすることができ、これらは高r値化に有利となる。   As described above, by adjusting the component composition and hot rolling conditions, 1) 20% or more of the total C content can be deposited and fixed as NbC in the hot rolled sheet stage, and 2) hot rolled sheet The average crystal grain size including a low-angle grain boundary can be 8 μm or less, which is advantageous for increasing the r value.

1)熱延板段階において、NbCとして析出固定されるC量が全体のC含有量の20%以上であること
NbCとして析出固定されるC量が鋼中の全C量に占める割合(以下、単に「析出固定されるC量の割合」という。)とは、熱延板の析出物を化学分析(抽出分析)して得られるNb量(析出Nb量)から次式にて算出される値である。
[C]fix=100×12×([Nb]/93)/[C]total
なお、式中、[C]fixは析出固定されるC量の割合(%)、[C]totalは鋼中の全C含有量(質量%)、および[Nb]は析出Nb量(質量%)である。
1) The amount of C deposited and fixed as NbC in the hot-rolled sheet stage is 20% or more of the total C content.
The ratio of the amount of C that is precipitated and fixed as NbC to the total amount of C in the steel (hereinafter simply referred to as “the ratio of the amount of C that is fixed and fixed”) is the chemical analysis (extraction analysis) of the precipitate on the hot-rolled sheet. ) Is a value calculated from the following formula from the amount of Nb obtained (the amount of precipitated Nb).
[C] fix = 100 × 12 × ([Nb] / 93) / [C] total
In the formula, [C] fix is the ratio (%) of the amount of C that is precipitated and fixed, [C] total is the total C content (% by mass) in the steel, and [Nb] is the amount of precipitated Nb (% by mass). ).

冷間圧延および再結晶前の段階で固溶Cを低減することは、高r値化のために有効であり、本発明では、NbCとして析出固定されるC量が全体のC含有量の20%以上でその効果が現れる。なお、全体のC含有量に占める析出固定されるC量の割合の上限は、前述したNbの適正範囲の上限((Nb/93)/(C/12)=0.7)以内のNb含有量であれば問題なく、高r値化と焼鈍後のマルテンサイト相の形成が両立される。   Reducing solute C in the stage before cold rolling and recrystallization is effective for increasing the r value. In the present invention, the amount of C precipitated and fixed as NbC is 20% of the total C content. The effect appears at% or more. In addition, the upper limit of the ratio of the C amount precipitated and fixed in the total C content is the Nb content within the upper limit ((Nb / 93) / (C / 12) = 0.7) of the appropriate range of Nb described above. If there is no problem, both high r value and formation of the martensite phase after annealing are compatible.

2)熱延板の組織が小傾角粒界を含む平均結晶粒径で8μm以下であること
従来軟鋼板においては、熱延板の結晶粒径を微細化するほど、r値を高める効果があることが知られている。本発明においては、特に小傾角粒界も含めて粒径を測定した場合、その平均結晶粒径が8μm以下で高r値化に効果が現れる。なお、結晶粒径の測定方法としては、圧延方向に平行な板厚断面(L断面)について光学顕微鏡を用いて微視組織を撮像し、JIS G O552に準じた切断法により公称粒径dとして求めればよく、この他、EBSP(Electron Back Scatter Diffraction Pattern)等の装置を用いて求めてもよい。
2) The structure of the hot-rolled sheet is 8 μm or less in average grain size including a low-angle grain boundary. In conventional mild steel sheets, the effect of increasing the r value is increased as the crystal grain size of the hot-rolled sheet is refined. It is known. In the present invention, particularly when the particle diameter is measured including a low-angle grain boundary, an effect appears in increasing the r value when the average crystal grain diameter is 8 μm or less. As the method of measuring the crystal grain size, nominal particle size d n by the parallel plate thickness cross section in the rolling direction (L cross section) captures a microstructure with an optical microscope, pursuant to JIS G O552 cleavage method Alternatively, it may be obtained using an apparatus such as EBSP (Electron Back Scatter Diffraction Pattern).

(冷間圧延工程)
次いで、該熱延板に酸洗後冷間圧延を施し冷延板とする。ここで熱延板はスケールを除去するために酸洗を行う。酸洗は通常の条件にて行えばよい。冷間圧延条件は、所望の寸法形状の冷延板とすることができればよく、特に限定されないが、冷間圧延時の圧下率は少なくとも40%以上とすることが好ましく、より望ましくは50%以上とする。高r値化には高冷延圧下率が一般に有効であり、圧下率が40%未満では、{111}再結晶集合組織が発達せず、優れた深絞り性を得ることが困難となる。一方、この発明では冷間圧下率を90%までの範囲で高くするほどr値が上昇するが、90%を超えるとその効果が飽和するばかりでなく、冷間圧延時のロールへの負荷も高まるため、上限を90%とすることが好ましい。
(Cold rolling process)
Next, the hot-rolled sheet is pickled and then cold-rolled to obtain a cold-rolled sheet. Here, the hot-rolled sheet is pickled to remove scale. Pickling may be performed under normal conditions. The cold rolling condition is not particularly limited as long as it can be a cold-rolled sheet having a desired size and shape, but the rolling reduction during cold rolling is preferably at least 40%, more preferably 50% or more. And A high cold rolling reduction ratio is generally effective for increasing the r value. If the reduction ratio is less than 40%, the {111} recrystallized texture does not develop, and it becomes difficult to obtain excellent deep drawability. On the other hand, in this invention, the r value increases as the cold rolling reduction is increased in the range up to 90%, but when it exceeds 90%, not only the effect is saturated, but also the load on the roll during cold rolling is increased. Therefore, the upper limit is preferably 90%.

(焼鈍工程)
次に、上記冷延板に焼鈍を施す。該焼鈍は上記冷延板に700〜800℃の温度域の平均昇温速度を0.5〜5℃/sとして800〜950℃の温度域の焼鈍温度まで加熱し、次いで焼鈍温度から少なくとも500℃までの温度域を平均冷却速度:5℃/s以上として冷却し、さらに、必要に応じて、200〜400℃の温度で60秒間以上保持する。
(Annealing process)
Next, the cold-rolled sheet is annealed. The annealing is performed by heating the cold-rolled sheet to an annealing temperature in the temperature range of 800 to 950 ° C. with an average rate of temperature increase in the temperature range of 700 to 800 ° C. being 0.5 to 5 ° C./s, and then from the annealing temperature to at least 500 ° C. Is cooled at an average cooling rate of 5 ° C./s or more, and further maintained at a temperature of 200 to 400 ° C. for 60 seconds or more as necessary.

上記焼鈍工程における冷却速度は、マルテンサイト相の形成の観点から、焼鈍温度から少なくとも500℃までの温度域の平均冷却速度を5℃/s以上として冷却する必要がある。該温度域の平均冷却速度が5℃/s未満だとマルテンサイト相が形成されにくくフェライト単相組織となり組織強化が不足することになる。なお、500℃未満の温度域については特に規定する必要はなく、焼鈍設備に応じて適宜冷却すればよい。   The cooling rate in the annealing step needs to be cooled at an average cooling rate in the temperature range from the annealing temperature to at least 500 ° C. from the viewpoint of forming the martensite phase at 5 ° C./s or more. If the average cooling rate in the temperature range is less than 5 ° C./s, the martensite phase is hardly formed and a ferrite single phase structure is formed, resulting in insufficient strengthening of the structure. In addition, it is not necessary to prescribe | regulate in particular about the temperature range below 500 degreeC, What is necessary is just to cool suitably according to annealing equipment.

したがって、上記焼鈍は、本発明で必要とする冷却速度を確保するため連続焼鈍ラインで行う連続焼鈍とすることが好ましく、焼鈍温度を800〜950℃の温度域の温度として行う必要がある。本発明においては、焼鈍の際の最高到達温度である焼鈍温度を、概ね800℃以上とすることで、α−γの2相域、つまり、冷却後にフェライト相とマルテンサイト相を含む組織が得られる温度以上、かつ再結晶温度以上にすることができる。逆に、800℃未満では冷却後に十分なマルテンサイト相の形成がなされない、或いは再結晶が完了せずフェライト相の集合組織を調整できず高r値化が図れない。一方、950℃を超える高温では、再結晶粒が粗大化し、特性が著しく劣化する。また、焼鈍時間、すなわち焼鈍温度での加熱保持時間は、1秒間よりも短いと、集合組織が充分に発達しない場合があり、300秒間よりも長いと、結晶粒が粗大化し、TS低下や表面性状の劣化等、特性への悪影響が出る場合がある他、連結焼鈍ラインのラインスピードを極端に遅くすることになり、これは生産性の低下をも招くため、焼鈍時間は1〜300秒間とすることが好ましい。   Therefore, the annealing is preferably continuous annealing performed in a continuous annealing line in order to ensure the cooling rate required in the present invention, and the annealing temperature needs to be performed in a temperature range of 800 to 950 ° C. In the present invention, by setting the annealing temperature, which is the highest temperature at the time of annealing, to approximately 800 ° C. or higher, an α-γ two-phase region, that is, a structure containing a ferrite phase and a martensite phase after cooling is obtained. Above the recrystallization temperature and above the recrystallization temperature. On the other hand, if it is less than 800 ° C., a sufficient martensite phase is not formed after cooling, or recrystallization is not completed and the texture of the ferrite phase cannot be adjusted, so that the r value cannot be increased. On the other hand, at a high temperature exceeding 950 ° C., the recrystallized grains become coarse and the characteristics are remarkably deteriorated. Also, if the annealing time, that is, the heating and holding time at the annealing temperature is shorter than 1 second, the texture may not be sufficiently developed, and if it is longer than 300 seconds, the crystal grains become coarse, resulting in TS degradation and surface degradation. In addition to adverse effects on properties, such as deterioration of properties, etc., the line speed of the connected annealing line will be extremely slow, and this also leads to a decrease in productivity, so the annealing time is 1 to 300 seconds It is preferable to do.

また、本発明の鋼板は、強度−延性−深絞り性バランス(TS×El×r値)が24000MPa・%以上であることが必要であり、これを達成するため、焼鈍工程における加熱時の700〜800℃の温度域での平均昇温速度を0.5〜5℃/sの範囲に制限する必要がある。平均昇温速度が0.5℃/s未満ではTSが低下する傾向があり、さらに結晶粒が粗大化する傾向にあり、これは、鋼板表面性状の劣化を招く原因になるとともに、生産性の低下をも招く。一方、5℃/sを超えると、TSは高くなるものの、Elおよびr値が劣化する傾向にある。   Further, the steel sheet of the present invention needs to have a strength-ductility-deep drawability balance (TS × El × r value) of 24000 MPa ·% or more. To achieve this, 700 during heating in the annealing process is required. It is necessary to limit the average rate of temperature increase in the temperature range of ˜800 ° C. to the range of 0.5 to 5 ° C./s. When the average heating rate is less than 0.5 ° C / s, TS tends to decrease, and the crystal grains tend to become coarse. This causes deterioration of the steel sheet surface properties and decreases productivity. Also invite. On the other hand, when it exceeds 5 ° C./s, although TS increases, El and r values tend to deteriorate.

加えて、特に強度に対する延性を向上させる場合には、上記焼鈍温度からの冷却後、さらに、必要に応じて、200〜400℃の温度で60秒間以上保持する保持処理を施すことが好ましい。過度に硬質な第2相(マルテンサイト相)の存在は、詳細は定かではないが、強度−延性(特に局部伸び)バランス、さらにはr値をも劣化させる傾向にある。これに対し、200〜400℃の温度域で保持することで、詳細は定かではないが、内部応力の比較的小さいマルテンサイト相や低温変態相が形成するため、過度に硬質な第2相(マルテンサイト相)の生成を抑えることができる。保持温度が200℃未満だと、上記のような効果が得られにくく、一方、400℃超えだと、組織強化として有効なマルテンサイト相が得られにくい。また、保持時間は60秒間未満だと、充分にその効果が得られない。なお、保持時間の上限は特に設けないが、生産性の低下の点から、600秒間とすることが好適である。
また、上記保持処理は、連続焼鈍ラインで焼鈍する場合、連続焼鈍炉の過時効帯を使ったいわゆる過時効処理とすればよい。
In addition, when improving ductility with respect to strength in particular, after cooling from the annealing temperature, it is preferable to perform a holding treatment of holding at a temperature of 200 to 400 ° C. for 60 seconds or longer as necessary. The presence of the excessively hard second phase (martensite phase) is not clear in detail, but tends to deteriorate the strength-ductility (particularly local elongation) balance and also the r value. On the other hand, the details are not clear by holding in the temperature range of 200 to 400 ° C., but a martensite phase and a low-temperature transformation phase with relatively low internal stress are formed, and therefore an excessively hard second phase ( Martensite phase) can be suppressed. When the holding temperature is less than 200 ° C., the above-described effects are hardly obtained. On the other hand, when the holding temperature is more than 400 ° C., it is difficult to obtain a martensite phase effective for strengthening the structure. If the holding time is less than 60 seconds, the effect cannot be obtained sufficiently. The upper limit of the holding time is not particularly set, but 600 seconds is preferable from the viewpoint of productivity reduction.
Moreover, what is necessary is just to let the said holding process be what is called an overaging process using the overaging zone of a continuous annealing furnace, when annealing with a continuous annealing line.

また、上記冷延板の焼鈍工程の後に電気めっき処理、あるいは溶融めっき処理などの表面処理を施し、鋼板表面にめっき層を形成しても良い。ここでめっき層は、純亜鉛および亜鉛系合金めっきに限らず、AlやAl系合金めっきなど、従来、鋼板表面に施されている各種めっき層とすることも勿論可能である。   Moreover, after the annealing process of the cold-rolled sheet, a surface treatment such as an electroplating process or a hot dipping process may be performed to form a plating layer on the steel sheet surface. Here, the plating layer is not limited to pure zinc and zinc-based alloy plating, but can of course be various plating layers conventionally applied to the steel sheet surface, such as Al or Al-based alloy plating.

さらに、上記のように製造した冷延鋼板(冷延焼鈍板ともいう)に、形状矯正、表面粗度等の調整の目的で調質圧延またはレベラー加工を施してもよい。調質圧延或いはレベラー加工の伸び率は合計で0.2〜15%の範囲内であることが好ましい。0.2%未満では、形状矯正、粗度調整の初期の目的が達成できないおそれがあり、一方15%を超えると、顕著な延性低下をもたらす傾向があるため好ましくない。なお、調質圧延とレベラー加工では、加工形式が相違するが、その効果は、両者で大きな差がないことを確認している。調質圧延、レベラー加工はめっき処理後でも有効である。   Further, the cold-rolled steel sheet (also referred to as cold-rolled annealed sheet) manufactured as described above may be subjected to temper rolling or leveler processing for the purpose of adjusting shape correction, surface roughness, and the like. The total elongation of temper rolling or leveler processing is preferably in the range of 0.2 to 15%. If it is less than 0.2%, the initial purpose of shape correction and roughness adjustment may not be achieved. On the other hand, if it exceeds 15%, there is a tendency to cause a significant decrease in ductility. In addition, although the processing form differs between temper rolling and leveler processing, it has been confirmed that there is no significant difference in the effect between the two. Temper rolling and leveler processing are effective even after plating.

次に、本発明の実施例について説明する。
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これら鋼スラブを1250℃に加熱し粗圧延してシートバーとし、次いで、表2に示す条件の仕上圧延を施す熱間圧延工程により熱延板とした。これらの熱延板を酸洗後圧下率70%の冷間圧延を施す冷間圧延工程により冷延板とした。引き続き、これら冷延板に連続焼鈍ラインにて、表2に示す条件で連続焼鈍を行った。ここで、表2中、No.12の鋼種Fは、焼鈍の冷却を350℃まで行い、過時効帯にて350〜300℃の温度域で100秒間保持する保持処理(過時効処理)を施している。次いで、得られたこれらの冷延焼鈍板に伸び率0.5%の調質圧延を施し、各種特性を評価した。
Next, examples of the present invention will be described.
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These steel slabs were heated to 1250 ° C. and roughly rolled into sheet bars, and then hot-rolled sheets were formed by a hot rolling process in which finish rolling under the conditions shown in Table 2 was performed. These hot-rolled sheets were made into cold-rolled sheets by a cold rolling process in which they were pickled and then cold-rolled with a rolling reduction of 70%. Subsequently, these cold-rolled sheets were subjected to continuous annealing in the continuous annealing line under the conditions shown in Table 2. Here, in Table 2, No.12 steel type F is subjected to a holding treatment (overaging treatment) in which the annealing is cooled to 350 ° C and held in the overaging zone at a temperature range of 350 to 300 ° C for 100 seconds. ing. Subsequently, these cold-rolled annealed sheets were subjected to temper rolling with an elongation of 0.5%, and various properties were evaluated.

得られた各冷延焼鈍板および溶融亜鉛めっき鋼板の、微視組織、引張特性およびr値について調査した結果を表2に示す。また、熱間圧延工程後の熱延板について、NbCとして析出固定されるC量の割合と微視組織(結晶粒径)について、前述の方法で調べた。なお、結晶粒径の測定はJIS G O552に準じた切断法で行った。
調査方法は下記の通りである。
Table 2 shows the results of investigations on the microstructure, tensile properties, and r-value of each cold-rolled annealed sheet and hot-dip galvanized steel sheet. Moreover, about the hot-rolled sheet after a hot rolling process, the ratio of the amount of C precipitated and fixed as NbC and the microstructure (crystal grain size) were examined by the method described above. The crystal grain size was measured by a cutting method according to JIS G O552.
The survey method is as follows.

(i)冷延焼鈍板の微視組織
各冷延焼鈍板から試験片を採取し、圧延方向に平行な板厚断面(L断面)について、光学顕微鏡或いは走査型電子顕微鏡を用いて微視組織を撮像し、画像解析装置で主相であるフェライト相の面積率と第2相の種類および面積率を求めた。
(I) Microstructure of cold-rolled annealed plates Test specimens were taken from each cold-rolled annealed plate, and the microstructure (L cross-section) parallel to the rolling direction was measured using an optical microscope or a scanning electron microscope. The area ratio of the ferrite phase, which is the main phase, and the type and area ratio of the second phase were obtained using an image analyzer.

(ii)引張特性
得られた各冷延焼鈍板から圧延方向に対して90°方向(C方向)にJIS5号引張試験片を採取し、JIS Z 2241の規定に準拠してクロスヘッド速度10mm/minで引張試験を行い、引張強度(TS)および全伸び(El)を求めた。
(Ii) Tensile properties JIS5 tensile test specimens were sampled from each of the obtained cold-rolled annealed plates in the 90 ° direction (C direction) with respect to the rolling direction, and a crosshead speed of 10 mm / A tensile test was performed at min, and tensile strength (TS) and total elongation (El) were determined.

(iii)r値
得られた各冷延焼鈍板の圧延方向(L方向)、圧延方向に対し45°方向(D方向)および圧延方向に対し90°方向(C方向)からJlS5号引張試験片を採取した。これらの試験片に10%の単軸引張歪を付与した時の各試験片の幅歪と板厚歪を測定し、これらの測定値を用い、JIS Z 2254の規定に準拠して平均r値(平均塑性歪比)を算出し、これをr値とした。
(iii) r value JlS5 tensile test specimens from the rolling direction (L direction) of each obtained cold rolled annealed sheet, 45 ° direction (D direction) with respect to the rolling direction and 90 ° direction (C direction) with respect to the rolling direction. Were collected. Measure the width strain and plate thickness strain of each specimen when 10% uniaxial tensile strain was applied to these specimens, and use these measurements to determine the average r value in accordance with JIS Z 2254 regulations. (Average plastic strain ratio) was calculated and used as the r value.

Figure 0004301045
Figure 0004301045

Figure 0004301045
Figure 0004301045

表2に示す調査結果より明らかなように、本発明例では、いずれもTS500MPa以上であるとともに、平均r値が1.2以上で深絞り性に優れ、かつ強度−延性−深絞り性バランス(TS×El×平均r値)が24000MPa・%以上となっている。   As is clear from the investigation results shown in Table 2, all of the examples of the present invention have TS500 MPa or more, an average r value of 1.2 or more and excellent deep drawability, and a strength-ductility-deep drawability balance (TS × El x average r value) is 24000MPa% or more.

本発明によれば、TS500MPa以上であり、かつ平均r値が1.2以上と深絞り性に優れるとともに延性にも優れた高強度鋼板を安価にかつ安定して製造することが可能となり、産業上格段の効果を奏する。例えば、本発明の高強度鋼板を自動車部品に適用した場合、これまでプレス成形が困難であった部位も高強度化が可能となり、自動車車体の衝突安全性や軽量化に十分寄与できるという効果がある。また、自動車部品に限らず、家電部品やパイプ用素材としても適用可能である。   According to the present invention, it is possible to produce a high-strength steel sheet having a TS of 500 MPa or more and an average r value of 1.2 or more, which is excellent in deep drawability and excellent in ductility at low cost and stably in industrial terms. The effect of. For example, when the high-strength steel sheet of the present invention is applied to automobile parts, it is possible to increase the strength of parts that have been difficult to press-form so far, and it is possible to sufficiently contribute to collision safety and weight reduction of an automobile body. is there. Moreover, it is applicable not only to automobile parts but also to household appliance parts and pipe materials.

(Nb/93)/(C/12)の値がTSとr値におよぼす影響を示した図である。It is the figure which showed the influence which the value of (Nb / 93) / (C / 12) exerts on TS and r value. 700〜800℃の温度域の平均昇温速度が、強度−延性−深絞り性バランス(TS×El×平均r値)におよぼす影響を示した図である。It is the figure which showed the influence which the average temperature increase rate of a 700-800 degreeC temperature range has on strength-ductility-deep drawing property balance (TS * El * average r value).

Claims (7)

質量%で、
C:0.020〜0.050%、
Si:0.01〜1.0%、
Mn:1.0〜3.0%、
P:0.005〜0.1%、
S:0.01%以下、
Al:0.005〜0.1%、
N:0.01%以下および
Nb:0.01〜0.3%
を含有し、かつ、Nb含有量とC含有量が、
0.2≦(Nb/93)/(C/12)≦0.7 (式中のNbおよびCは各々の元素の含有量(質量%))
なる関係を満たし、残部Feおよび不可避的不純物からなる成分組成を有するとともに、面積率で50%以上のフェライト相と、面積率で1%以上のマルテンサイト相を含む鋼組織を有し、引張強度TS、全伸びElおよび平均r値の積(TS×El×平均r値)で表される強度−延性−深絞り性バランスの値が24000MPa・%以上であることを特徴とする高強度鋼板。
% By mass
C: 0.020 to 0.050%
Si: 0.01 to 1.0%
Mn: 1.0-3.0%
P: 0.005-0.1%
S: 0.01% or less,
Al: 0.005-0.1%
N: 0.01% or less and
Nb: 0.01-0.3%
And Nb content and C content are
0.2 ≦ (Nb / 93) / (C / 12) ≦ 0.7 (Nb and C in the formula are the contents of each element (mass%))
The balance has a component composition composed of Fe and inevitable impurities, and has a steel structure containing a ferrite phase with an area ratio of 50% or more and a martensite phase with an area ratio of 1% or more. A high-strength steel sheet characterized by a strength-ductility-deep drawability balance value of 24000 MPa ·% or more expressed by the product of strength TS, total elongation El, and average r-value (TS × El × average r-value) .
上記組成に加えて、さらにMo:0.5質量%以下およびCr:0.5質量%以下の中から選択される1種または2種を含有することを特徴とする請求項1に記載の高強度鋼板。   The high-strength steel sheet according to claim 1, further comprising one or two selected from Mo: 0.5% by mass or less and Cr: 0.5% by mass or less in addition to the above composition. 上記組成に加えて、さらにTi:0.1質量%以下を含有し、かつ、鋼中のTiとSおよびNの含有量が、
(Ti/48)/{(S/32)+(N/14)}≦2 (式中のTi、SおよびNは各々の元素の含有量(質量%))
なる関係を満たし、かつ、NbおよびTiの含有量とC含有量が、
0.2≦{(Nb/93)+(Ti/48)}/(C/12)≦0.7 (式中のNb、TiおよびCは各々の元素の含有量(質量%))
なる関係を満たすことを特徴とする請求項1または2に記載の高強度鋼板。
In addition to the above composition, further containing Ti: 0.1% by mass or less, and the contents of Ti, S and N in the steel,
(Ti / 48) / {(S / 32) + (N / 14)} ≦ 2 (Ti, S and N in the formula are the contents of each element (mass%))
And the Nb and Ti contents and the C content are
0.2 ≦ {(Nb / 93) + (Ti / 48)} / (C / 12) ≦ 0.7 (Nb, Ti and C in the formula are the contents of each element (mass%))
The high-strength steel sheet according to claim 1 or 2, wherein the following relationship is satisfied.
熱間圧延工程、冷間圧延工程および焼鈍工程を施すことにより、請求項1〜3のいずれかに記載の高強度鋼板を製造する方法であって、
該熱間圧延工程は、仕上圧延出側温度:800℃以上で仕上圧延を施した後、巻取温度:400〜720℃で巻き取る工程を包含し、
該冷間圧延工程は、圧下率40%以上で冷間圧延を施す工程を包含し、
該焼鈍工程は、700〜800℃の温度域の平均昇温速度:0.5〜5℃/sとして800〜950℃の焼鈍温度に加熱した後、該焼鈍温度から少なくとも500℃までの温度域を5℃/s以上の平均冷却速度で冷却する工程を包含することを特徴とする高強度鋼板の製造方法。
A method for producing the high-strength steel sheet according to any one of claims 1 to 3, by performing a hot rolling process, a cold rolling process, and an annealing process,
The hot rolling step includes a step of finishing rolling at a finish rolling exit temperature: 800 ° C. or higher and then winding at a winding temperature: 400 to 720 ° C.,
The cold rolling step includes a step of performing cold rolling at a rolling reduction of 40% or more,
In the annealing step, after heating to an annealing temperature of 800 to 950 ° C. as an average rate of temperature increase in the temperature range of 700 to 800 ° C .: 0.5 to 5 ° C./s, the temperature range from the annealing temperature to at least 500 ° C. is 5 A method for producing a high-strength steel sheet, comprising a step of cooling at an average cooling rate of at least ° C / s.
前記焼鈍工程は、前記冷却後、さらに200〜400℃の温度域で60秒間以上保持する保持処理工程を包含するものである請求項4に記載の高強度鋼板の製造方法。   The said annealing process is a manufacturing method of the high strength steel plate of Claim 4 which includes the holding | maintenance process process hold | maintained for 60 second or more in the temperature range of 200-400 degreeC after the said cooling. 請求項1、2または3に記載の高強度鋼板の表面に、めっき層を具えることを特徴とするめっき鋼板。A plated steel sheet comprising a plated layer on the surface of the high-strength steel sheet according to claim 1, 2 or 3. 請求項4または5に記載の方法により製造された高強度鋼板の表面に、めっき処理を施す工程を具えることを特徴とするめっき鋼板の製造方法。A method for producing a plated steel sheet, comprising a step of plating the surface of the high-strength steel sheet produced by the method according to claim 4 or 5.
JP2004076934A 2004-03-17 2004-03-17 High-strength steel plate, plated steel plate, and production method thereof Expired - Fee Related JP4301045B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004076934A JP4301045B2 (en) 2004-03-17 2004-03-17 High-strength steel plate, plated steel plate, and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004076934A JP4301045B2 (en) 2004-03-17 2004-03-17 High-strength steel plate, plated steel plate, and production method thereof

Publications (2)

Publication Number Publication Date
JP2005264212A JP2005264212A (en) 2005-09-29
JP4301045B2 true JP4301045B2 (en) 2009-07-22

Family

ID=35089067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004076934A Expired - Fee Related JP4301045B2 (en) 2004-03-17 2004-03-17 High-strength steel plate, plated steel plate, and production method thereof

Country Status (1)

Country Link
JP (1) JP4301045B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100958019B1 (en) * 2009-08-31 2010-05-17 현대하이스코 주식회사 Dual phase steel sheet and method for manufacturing the same
JP5532088B2 (en) * 2011-08-26 2014-06-25 Jfeスチール株式会社 High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP5408314B2 (en) * 2011-10-13 2014-02-05 Jfeスチール株式会社 High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
WO2013160928A1 (en) * 2012-04-23 2013-10-31 Jfeスチール株式会社 High-strength steel sheet and method for manufacturing same

Also Published As

Publication number Publication date
JP2005264212A (en) 2005-09-29

Similar Documents

Publication Publication Date Title
JP4635525B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4998757B2 (en) Manufacturing method of high strength steel sheet with excellent deep drawability
JP5408314B2 (en) High-strength cold-rolled steel sheet excellent in deep drawability and material uniformity in the coil and method for producing the same
JP5765116B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP4501699B2 (en) High-strength steel sheet excellent in deep drawability and stretch flangeability and method for producing the same
JP5532088B2 (en) High-strength hot-dip galvanized steel sheet excellent in deep drawability and manufacturing method thereof
JP4407449B2 (en) High strength steel plate and manufacturing method thereof
JP4752522B2 (en) Manufacturing method of high strength cold-rolled steel sheet for deep drawing
JP5251207B2 (en) High strength steel plate with excellent deep drawability and method for producing the same
JP4735552B2 (en) Manufacturing method of high strength steel plate and high strength plated steel plate
JP5327301B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP5262372B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4858004B2 (en) High-strength steel sheet with excellent ductility and deep drawability and method for producing the same
JP5076480B2 (en) High-strength steel sheet excellent in strength-ductility balance and deep drawability and method for producing the same
JP4301045B2 (en) High-strength steel plate, plated steel plate, and production method thereof
JP4506380B2 (en) Manufacturing method of high-strength steel sheet
JP4380353B2 (en) High-strength steel sheet excellent in deep drawability and strength-ductility balance and manufacturing method thereof
JP2004002909A (en) Complex metallographic structure type high tensile strength hot-dip galvanized cold rolled steel sheet with excellent deep drawability and stretch-flange formability, and manufacturing method
JP5655436B2 (en) High-strength steel sheet excellent in deep drawability and manufacturing method thereof
JP4525386B2 (en) Manufacturing method of high-strength steel sheets with excellent shape freezing and deep drawability
JP5251206B2 (en) High-strength steel sheet excellent in deep drawability, aging resistance and bake hardenability, and its manufacturing method
JP4985494B2 (en) Manufacturing method of high-strength cold-rolled steel sheets with excellent deep drawability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090306

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301045

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees