JP4301029B2 - Continuous casting method of high Ti content steel - Google Patents

Continuous casting method of high Ti content steel Download PDF

Info

Publication number
JP4301029B2
JP4301029B2 JP2004038322A JP2004038322A JP4301029B2 JP 4301029 B2 JP4301029 B2 JP 4301029B2 JP 2004038322 A JP2004038322 A JP 2004038322A JP 2004038322 A JP2004038322 A JP 2004038322A JP 4301029 B2 JP4301029 B2 JP 4301029B2
Authority
JP
Japan
Prior art keywords
mold
powder
slab
mold powder
meniscus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004038322A
Other languages
Japanese (ja)
Other versions
JP2005224852A (en
Inventor
浩起 藤田
俊朗 石毛
聡 羽鳥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004038322A priority Critical patent/JP4301029B2/en
Publication of JP2005224852A publication Critical patent/JP2005224852A/en
Application granted granted Critical
Publication of JP4301029B2 publication Critical patent/JP4301029B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、Tiを0.1〜1.0質量%含有する高Ti含有鋼の連続鋳造方法に関し、詳しくは、表面欠陥の少ない鋳片を安定して鋳造することができる高Ti含有鋼の連続鋳造方法に関するものである。   The present invention relates to a continuous casting method of a high Ti-containing steel containing 0.1 to 1.0% by mass of Ti, and more specifically, a high Ti-containing steel capable of stably casting a slab having few surface defects. The present invention relates to a continuous casting method.

析出型耐磨耗鋼の代表として知られる、Tiを0.1〜1.0質量%含有する高Ti含有鋼は、連続鋳造時の不可避的な酸化反応により、溶鋼中のTiが酸化してTiO2 が発生する。このTiO2 は、鋳型内の溶鋼湯面(以下、「メニスカス」と記す)上に添加したモールドパウダー中に濃化して高融点化合物(CaO・TiO2 )を析出させ、モールドパウダーの粘性や融点などの特性を変化させる。そのため、鋳型と凝固シェルとの間へのモールドパウダーの流れ込み量(以下、「パウダー消費量」と記す)が減少して鋳片表面に縦割れが発生したり、また、高融点化合物が凝固シェルに巻き込まれ、所謂ノロカミが発生して品質異常となる。 A high Ti-containing steel containing 0.1 to 1.0% by mass of Ti, known as a representative of precipitation-type wear-resistant steel, oxidizes Ti in the molten steel due to the inevitable oxidation reaction during continuous casting. TiO 2 is generated. This TiO 2 is concentrated in the mold powder added on the molten steel surface in the mold (hereinafter referred to as “meniscus”) to precipitate a high melting point compound (CaO · TiO 2 ), and the viscosity and melting point of the mold powder. Change the characteristics such as. For this reason, the amount of mold powder flowing into the mold and the solidified shell (hereinafter referred to as “powder consumption”) decreases, causing vertical cracks on the surface of the slab, and high melting point compounds are solidified shells. In other words, so-called roaring occurs and the quality becomes abnormal.

また、溶鋼中のTiとC及びNとの反応によって生成するチタン炭化物、チタン窒化物、チタン炭窒化物がモールドパウダー中に吸収され、デッケル(「皮張り」ともいう)の生成を助長する。デッケルの生成により、メニスカスの温度は低下し、モールドパウダーの滓化不足を招く。これもノロカミ或いは縦割れの要因となり、品質異常につながる。   In addition, titanium carbide, titanium nitride, and titanium carbonitride generated by the reaction of Ti, C, and N in the molten steel are absorbed into the mold powder, and promote the generation of deckle (also referred to as “skinning”). Due to the generation of deckle, the temperature of the meniscus is lowered, resulting in insufficient hatching of the mold powder. This also becomes a cause of roar and vertical cracks, leading to quality abnormalities.

品質異常に留まらず、最悪の場合には、パウダー消費量の不足によって鋳型と凝固シェルとの焼き付きを起こし、ブレークアウトなどの操業事故を発生させる。これらの問題点を解決し、高Ti含有鋼を安定して鋳造するために、従来様々な対策が実施されている。   In the worst case, not only the quality abnormalities, but in the worst case, the mold and the solidified shell are seized due to insufficient powder consumption, causing operational accidents such as breakout. In order to solve these problems and stably cast a high Ti-containing steel, various countermeasures have been conventionally implemented.

例えば、特許文献1には、鋳片引抜き速度を0.8〜1.2m/minの範囲としてサイン曲線で鋳型を振動させる際に、鋳型振動ストロークSを2〜5mmの範囲内とし、鋳型振動数fを120サイクル/min以上とし、且つ、鋳型振動数f×鋳型振動ストロークS≦600を満たす振動条件にて高Ti含有鋼を連続鋳造する方法が開示されている。特許文献1によれば、振動条件を低ストローク且つ高振動数とするので、普通鋼の鋳造に一般的に使用されているモールドパウダーを使用しても、オシレーションマークを浅くし、且つ、ノロカミなどの表面欠陥を防止することができるとしている。   For example, in Patent Document 1, when the mold is vibrated with a sine curve with the slab drawing speed in the range of 0.8 to 1.2 m / min, the mold vibration stroke S is in the range of 2 to 5 mm, and the mold vibration is A method of continuously casting a high Ti-containing steel under vibration conditions satisfying the number f of 120 cycles / min or more and satisfying the mold frequency f × the mold vibration stroke S ≦ 600 is disclosed. According to Patent Document 1, since the vibration condition is a low stroke and a high frequency, even if a mold powder generally used for casting of ordinary steel is used, the oscillation mark is made shallow and It is said that surface defects such as can be prevented.

また、特許文献2には、浸漬ノズルの吐出孔角度θを上向き2〜8度の範囲内とし、且つ浸漬ノズルの浸漬深さHを80〜130mmとして高Ti含有鋼を連続鋳造する方法が開示されている。特許文献2によれば、このようにして鋳造することで、メニスカスにおける溶鋼が常時更新され、モールドパウダーの融解熱となる熱を常に供給するので、TiO2 を吸収したモールドパウダーであっても消費量を高めることができ、鋳片の表面欠陥が防止されるとしている。
特開平7−251251号公報 特開平10−314892号公報
Further, Patent Document 2 discloses a method of continuously casting high Ti-containing steel by setting the discharge hole angle θ of the immersion nozzle upward in the range of 2 to 8 degrees and the immersion depth H of the immersion nozzle being 80 to 130 mm. Has been. According to Patent Document 2, by casting in this way, the molten steel in the meniscus is constantly renewed, and the heat that is the melting heat of the mold powder is always supplied. Therefore, even mold powder that has absorbed TiO 2 is consumed. The amount can be increased and surface defects of the slab are prevented.
JP 7-251251 A Japanese Patent Laid-Open No. 10-314892

連続鋳造鋳片は、歩留り向上及び省エネルギーのために、鋳片表面の無手入れのままで次工程の熱間圧延工程に供給されることが望ましい。しかし、無手入れで供給するためには、鋳片の縦割れやノロカミなどの表面欠陥の全てを防止する必要がある。   The continuous cast slab is desirably supplied to the next hot rolling step without care of the surface of the slab in order to improve yield and save energy. However, in order to supply without maintenance, it is necessary to prevent all surface defects such as vertical cracks of the slab and blades.

本発明者等が高Ti含有鋼を無手入れ化するための連続鋳造方法を検討した結果、上記の従来技術には以下の問題点のあることが判明した。即ち、特許文献1の技術では、オシレーションマーク深さは浅くなり、横割れには有効であるが、鋳型振動条件を低ストローク且つ高振動数とするので、パウダー消費量が減少し、縦割れやノロカミが発生することがあり、安定して無手入れとすることはできない。また、特許文献2の技術では、浸漬ノズルの吐出孔角度及び浸漬深さのコントロールだけであり、デッケルの生成防止に対しては極めて有効であるが、これだけでは不十分であり、或る頻度で縦割れ及びノロカミが発生することが判明した。   As a result of studying the continuous casting method for making the high Ti-containing steel unmanaged, the present inventors have found that the above-mentioned prior art has the following problems. That is, in the technique of Patent Document 1, the oscillation mark depth is shallow and effective for lateral cracking, but the mold vibration condition is low stroke and high frequency, so the powder consumption is reduced, and vertical cracking occurs. And scabs may occur and cannot be stably maintained. Further, in the technique of Patent Document 2, only the control of the discharge hole angle and the immersion depth of the immersion nozzle is effective, and this is extremely effective for preventing the generation of deckle, but this is not sufficient, and at a certain frequency. It was found that vertical cracks and scabs occurred.

このように従来の方法は、高Ti含有鋼を無手入れとするための鋳片表面欠陥の防止に効果を十分に発揮しているとは言い難く、改善の余地が大きいのが現状である。   As described above, it is difficult to say that the conventional method is sufficiently effective in preventing the surface defects of the slab for keeping the high Ti-containing steel unmaintained, and there is much room for improvement.

本発明は上記事情に鑑みてなされたもので、その目的とするところは、鋳片の表面欠陥を防止し、無手入れで圧延することが可能な高Ti含有鋼の連続鋳造方法を提供することである。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a continuous casting method of high Ti-containing steel that can prevent surface defects of a slab and can be rolled without maintenance. It is.

本発明者等は、上記課題を解決すべく鋭意研究・検討を行った。以下に、研究・検討結果を説明する。   The inventors of the present invention have conducted intensive studies and studies to solve the above problems. The following describes the results of research and examination.

本発明者等の調査結果から、高Ti含有鋼の無手入れ化を阻害する表面欠陥は、ノロカミと縦割れに代表されることが分かった。そこで、上記課題を解決するための手段として、ノロカミと縦割れとを同時に防止することができる連続鋳造方法を検討した。   From the investigation results of the present inventors, it has been found that surface defects that hinder the maintenance of high Ti-containing steel are represented by noro-kami and vertical cracks. Therefore, as a means for solving the above-mentioned problems, a continuous casting method capable of simultaneously preventing a wolf and a vertical crack was examined.

高Ti含有鋼の連続鋳造の場合、モールドパウダーは溶鋼中から浮上するTiO2 を吸収するので、モールドパウダー中に高融点のCaO・TiO2 が生成され、これによってモールドパウダーの融点や粘性などの特性が変化する。また、モールドパウダーは生成したチタン炭化物、チタン窒化物、チタン炭窒化物を吸収するので、これらの化合物を核としてメニスカスにデッケルが発生する。ノロカミを防止し且つ縦割れを防止するためには、生成した高融点のCaO・TiO2 を溶融させると同時に、デッケルの生成を抑制する或いは生成したデッケルを溶融させる必要がある。そのためには、メニスカスにおける溶鋼は常時更新され、モールドパウダーの融解熱となる熱を常に供給しなければならない。 In the case of continuous casting of high Ti-containing steel, the mold powder absorbs TiO 2 that floats from the molten steel, so high-melting point CaO · TiO 2 is generated in the mold powder. The characteristic changes. Further, since the mold powder absorbs the generated titanium carbide, titanium nitride, and titanium carbonitride, deckle is generated in the meniscus with these compounds as nuclei. In order to prevent stagnation and to prevent vertical cracks, it is necessary to melt the produced high melting point CaO.TiO 2 and at the same time suppress the production of the deckle or melt the produced deckle. For this purpose, the molten steel in the meniscus must be constantly renewed, and heat that is the melting heat of the mold powder must be constantly supplied.

従って、高Ti含有鋼の連続鋳造においては、浸漬ノズルからの吐出流を、通常の炭素鋼の場合に比較してメニスカスに多く供給することが必要となる。しかし、供給量を多くし過ぎてメニスカスの溶鋼流速を速くし過ぎると、メニスカスに渦や湯暴れなどが発生し、未溶融のモールドパウダーが巻き込まれ、却ってモールドパウダー性のノロカミが発生することになるので、メニスカスに供給する吐出流は適正な範囲にしなければならない。   Therefore, in continuous casting of high Ti content steel, it is necessary to supply more discharge flow from the immersion nozzle to the meniscus than in the case of normal carbon steel. However, if the supply amount is increased too much and the molten steel flow velocity of the meniscus is increased too much, vortex and hot water will be generated in the meniscus, and unmelted mold powder will be involved, and on the contrary, mold powder-like scab will be generated. Therefore, the discharge flow supplied to the meniscus must be in an appropriate range.

本発明者等は、種々の試験の結果から、浸漬ノズルの吐出孔角度θと浸漬ノズルの浸漬深さHとを適正に制御することで、メニスカスに渦や湯暴れを発生することなく溶鋼を更新でき、その結果、高Ti含有鋼の表面欠陥を改善できることを見出した。   Based on the results of various tests, the present inventors have appropriately controlled the discharge hole angle θ of the immersion nozzle and the immersion depth H of the immersion nozzle, so that the molten steel can be produced without causing vortex or runaway in the meniscus. It was found that the surface defects of the high Ti-containing steel can be improved as a result.

即ち、吐出孔角度θが上向き2〜8度の範囲で、且つ浸漬深さHが80〜130mmの範囲では、メニスカスにおける湯面変動が少なく、また溶鋼の更新も順調に行なわれるので、ノロカミと縦割れとを同時に抑制することができることを見出した。尚、浸漬ノズルの吐出孔角度θとは、吐出孔の向きと水平線とのなす角度で表し、吐出孔の向きが水平より上側の場合を上向き、水平より下側の場合を下向きと定義し、また、浸漬ノズルの浸漬深さHとは、浸漬ノズルの吐出孔の上端位置とメニスカスとの距離で定義する。   That is, when the discharge hole angle θ is in the range of 2 to 8 degrees upward and the immersion depth H is in the range of 80 to 130 mm, the molten metal surface fluctuation in the meniscus is small and the molten steel is renewed smoothly. It was found that longitudinal cracks can be suppressed simultaneously. In addition, the discharge hole angle θ of the immersion nozzle is represented by an angle formed by the direction of the discharge hole and the horizontal line, and when the direction of the discharge hole is above the horizontal, it is defined as upward, and when it is below the horizontal, it is defined as downward. The immersion depth H of the immersion nozzle is defined by the distance between the upper end position of the discharge hole of the immersion nozzle and the meniscus.

吐出孔角度θが上向き8度を超えると、吐出孔からメニスカスに向かって流れる吐出流が多くなり、メニスカスにおいて渦、湯暴れなどが発生して湯面変動が激しくなる。この湯面変動により、未溶融のモールドパウダーが強制的に溶鋼中に巻き込まれ、凝固シェルに捕捉されてノロカミが発生する。この場合に、浸漬深さHを増大して深くすると、メニスカスの湯面変動は抑えられノロカミは減少するが、溶鋼の更新が不足してモールドパウダーの溶融化が妨げられ、パウダー消費量が減少して縦割れが増加する。このように、吐出孔角度θが上向き8度を超えると浸漬ノズルの浸漬深さを変更しても、ノロカミと縦割れとを同時に防止することができないことが分かった。   When the discharge hole angle θ exceeds 8 degrees upward, the discharge flow that flows from the discharge hole toward the meniscus increases, and vortex and hot water fluctuation occur in the meniscus, resulting in severe fluctuations in the molten metal surface. Due to the fluctuation of the molten metal surface, unmelted mold powder is forcibly wound into the molten steel, and is trapped by the solidified shell and generates nox. In this case, if the immersion depth H is increased and deepened, the meniscus level fluctuation is suppressed and the swarf is reduced, but the molten steel is insufficiently renewed to hinder the melting of the mold powder and the powder consumption is reduced. As a result, vertical cracks increase. Thus, it has been found that when the discharge hole angle θ exceeds 8 degrees upward, even if the immersion depth of the immersion nozzle is changed, it is not possible to simultaneously prevent the throat and the vertical crack.

一方、吐出孔角度θが上向き2度未満では、水平方向或いは水平よりも下向きに流れる吐出流が多くなり、メニスカスにおける吐出流による溶鋼の更新が少なくなる。そのため、メニスカスの溶鋼温度が低下してモールドパウダーの溶融化が阻害され、パウダー消費量が減少して縦割れが発生する。この場合に、浸漬深さHを浅くしてメニスカスにおける溶鋼の更新を図ると、縦割れは減少するが、メニスカスの湯面変動が激しくなり、モールドパウダーが巻き込まれてノロカミが増加する。このように、吐出孔角度θが上向き2度未満では、浸漬ノズルの浸漬深さHを変更しても、ノロカミと縦割れとを同時に防止することができないことが分かった。   On the other hand, when the discharge hole angle θ is less than 2 degrees upward, the discharge flow that flows in the horizontal direction or downward from the horizontal increases, and renewal of the molten steel due to the discharge flow in the meniscus decreases. Therefore, the molten steel temperature of the meniscus is lowered to inhibit the melting of the mold powder, the powder consumption is reduced, and vertical cracks are generated. In this case, when the immersion depth H is made shallow and the molten steel is renewed in the meniscus, the vertical cracks are reduced, but the molten metal surface fluctuation of the meniscus becomes intense, the mold powder is caught and the scab is increased. Thus, when the discharge hole angle θ is less than 2 degrees upward, it has been found that even if the immersion depth H of the immersion nozzle is changed, it is not possible to simultaneously prevent the throat and the vertical crack.

また、浸漬ノズルの浸漬深さHが80mm未満では、浸漬深さHが浅過ぎるためにメニスカスに湯面変動が現れてノロカミが発生し、逆に、浸漬ノズルの浸漬深さHが130mmを超えると、浸漬深さHが深過ぎるためにメニスカスにおける溶鋼の更新が阻害され、縦割れが発生することが分かった。   Further, when the immersion depth H of the immersion nozzle is less than 80 mm, since the immersion depth H is too shallow, a fluctuation of the molten metal surface appears in the meniscus, and noxia is generated. Conversely, the immersion depth H of the immersion nozzle exceeds 130 mm. And, since the immersion depth H was too deep, it was found that the renewal of the molten steel in the meniscus was hindered and vertical cracking occurred.

しかし、高Ti含有鋼の連続鋳造の場合、モールドパウダーは溶鋼中から浮上するTiO2 を吸収するので、融点及び粘性などモールドパウダーの特性が少なからず変化する。本発明者等の更なる研究の結果、浮上するTiO2 を吸収することにより、モールドパウダーの特性が所定の特性の範囲内から外れてしまった場合には、上記のようにしてメニスカスの溶鋼流動を制御しても、縦割れ及びノロカミが発生することが判明した。 However, in the case of continuous casting of high Ti-containing steel, the mold powder absorbs TiO 2 that floats from the molten steel, so the properties of the mold powder, such as melting point and viscosity, change considerably. As a result of further research by the present inventors, when the characteristics of the mold powder deviate from the range of the predetermined characteristics by absorbing the floating TiO 2 , the molten steel flow of the meniscus is as described above. It was found that vertical cracks and blades were generated even when the control was performed.

そこで、モールドパウダー中へのTiO2 のピックアップ量をどの程度まで抑えれば、モールドパウダーの特性を過剰に損なわずに鋳造できるかを検討した。ここで、溶鋼中から浮上してくるTiO2 の質量は溶鋼の単位質量当たり一定であると仮定し、TiO2 のピックアップ量を決める要因としてパウダー消費量に注目した。これは、パウダー消費量が多くなれば、溶鋼に接触している溶融したモールドパウダーの更新が促進され、TiO2 のピックアップ量が少なくなり、逆に、パウダー消費量が少なくなれば、モールドパウダーの更新が遅れ、TiO2 のピックアップ量が多くなることに基づくものである。 Accordingly, an examination was made as to how much the amount of TiO 2 picked up into the mold powder can be reduced without excessively deteriorating the properties of the mold powder. Here, assuming that the mass of TiO 2 floating from the molten steel is constant per unit mass of the molten steel, attention was paid to the amount of powder consumed as a factor for determining the amount of TiO 2 picked up. This is because if the powder consumption increases, the renewal of the molten mold powder in contact with the molten steel is promoted, and the amount of TiO 2 pick-up decreases. Conversely, if the powder consumption decreases, the mold powder This is based on the fact that the update is delayed and the amount of TiO 2 pickup increases.

図1に、パウダー消費量とモールドパウダー中へのTiO2 のピックアップ量との関係を調査した結果を示す。図1に示すように、パウダーの消費量とTiO2 のピックアップ量とは強い相関が見られ、パウダー消費量が増加するほどTiO2 のピックアップ量が減少することが分かった。 FIG. 1 shows the results of investigating the relationship between the powder consumption and the amount of TiO 2 picked up into the mold powder. As shown in FIG. 1, a strong correlation was found between the amount of powder consumed and the amount of TiO 2 picked up, and it was found that the amount of TiO 2 picked up decreased as the amount of powder consumed increased.

一方、モールドパウダー中へのTiO2 のピックアップ量とモールドパウダーの特性変化とを対比した試験結果から、図1に示す縦軸のTiO2 のピックアップ指数が0.4を越えると、モールドパウダーの特性が急激に変化することが分かった。TiO2 のピックアップ指数が0.4以下になるのは、図1からも明らかなように、パウダー消費量が0.3kg/m・min以上のときである。 On the other hand, from the test results comparing the amount of TiO 2 picked up into the mold powder and the change in the characteristics of the mold powder, when the TiO 2 pickup index on the vertical axis shown in FIG. Was found to change rapidly. The pickup index of TiO 2 becomes 0.4 or less when the powder consumption is 0.3 kg / m · min or more, as is apparent from FIG.

これらの結果から、0.3kg/m・min以上のパウダー消費量を確保することで、TiO2 のピックアップ指数は0.4以下に抑制され、モールドパウダーの特性変化は最小限に抑えられ、モールドパウダーの特性を過剰に損なうことなく鋳造することができることが分かった。 From these results, by securing a powder consumption of 0.3 kg / m · min or more, the pickup index of TiO 2 is suppressed to 0.4 or less, and the characteristic change of the mold powder is suppressed to the minimum. It has been found that casting can be performed without excessively degrading the properties of the powder.

一方、パウダー消費量が0.6kg/m・minを越えると、流れ込み量が多くなり過ぎてモールドパウダーの不均一流入が発生し、縦割れが発生することが分かった。即ち、パウダー消費量が0.3〜0.6kg/m・minとなる条件下で鋳造する必要があることが分かった。具体的には、パウダー消費量が0.3〜0.6kg/m・minとなるように、使用するモールドパウダーを選定する、または、鋳片引き抜き速度や鋳型振動などの鋳造条件を選定して鋳造することである。当然ながら両者を選定してもよい。尚、本発明におけるパウダー消費量は、凝固シェルと鋳型壁面との1m長さ当たりの接触面において、1分間当たりに流入するモールドパウダーの質量で示したものである。   On the other hand, when the powder consumption exceeded 0.6 kg / m · min, it was found that the amount of flow increased so much that the mold powder flowed unevenly and vertical cracks occurred. That is, it has been found that it is necessary to cast under conditions where the powder consumption is 0.3 to 0.6 kg / m · min. Specifically, the mold powder to be used is selected so that the powder consumption is 0.3 to 0.6 kg / m · min, or the casting conditions such as the slab drawing speed and mold vibration are selected. It is to cast. Of course, both may be selected. In addition, the powder consumption in this invention is shown with the mass of the mold powder which flows in per minute in the contact surface per 1 m length of a solidification shell and a mold wall surface.

本発明は、上記研究・検討結果に基づいてなされたものであり、本発明に係る高Ti含有鋼の連続鋳造方法は、0.1〜1.0質量%のTiを含有する高Ti含有鋼の連続鋳造方法において、浸漬ノズルの吐出孔角度θを上向き2〜8度の範囲内とすると共に、浸漬ノズルの浸漬深さHを80〜130mmの範囲内とし、且つ、モールドパウダーの消費量が0.3〜0.6kg/m・minの範囲内となる条件で鋳造することを特徴とするものである。   The present invention has been made on the basis of the above research and examination results, and the continuous casting method for high Ti content steel according to the present invention is a high Ti content steel containing 0.1 to 1.0% by mass of Ti. In the continuous casting method, the discharge nozzle angle θ of the immersion nozzle is in the range of 2 to 8 degrees upward, the immersion depth H of the immersion nozzle is in the range of 80 to 130 mm, and the consumption of the mold powder is Casting is performed under conditions that fall within a range of 0.3 to 0.6 kg / m · min.

本発明によれば、高Ti含有鋼の連続鋳造において、浸漬ノズルの吐出孔角度θと浸漬ノズルの浸漬深さHとを最適な範囲に制御すると同時に、パウダー消費量を所定の範囲内に制御して鋳造するので、ノロカミもまた縦割れも極めて少ない健全な鋳片が得られ、無手入れで熱間圧延することが可能となる。その結果、製品歩留りの向上や省エネルギーの向上などが達成され、工業上有益な効果がもたらされる。   According to the present invention, in continuous casting of high Ti-containing steel, the discharge hole angle θ of the immersion nozzle and the immersion depth H of the immersion nozzle are controlled to an optimal range, and at the same time, the powder consumption is controlled within a predetermined range. Therefore, a sound slab with very little rotting and vertical cracks can be obtained, and hot rolling can be performed without maintenance. As a result, an improvement in product yield, an improvement in energy saving, and the like are achieved, and an industrially beneficial effect is brought about.

以下、添付図面を参照して本発明を具体的に説明する。図2は、本発明を実施したスラブ連続鋳造機の鋳型部の正面断面の概要図である。   Hereinafter, the present invention will be described in detail with reference to the accompanying drawings. FIG. 2 is a schematic diagram of a front cross section of a mold part of a slab continuous casting machine embodying the present invention.

図2において、相対する鋳型長辺4と、鋳型長辺4の内部に内装された相対する鋳型短辺5とから構成された鋳型3の上方には、タンディッシュ6が配置されている。タンディッシュ6の底部には上ノズル13が配置され、そして、上ノズル13の下面に接して、固定板14、摺動板15及び整流ノズル16からなるスライディングノズル7が配置され、更に、スライディングノズル7の下面に接して、下部に一対の吐出孔2を有する浸漬ノズル1が配置され、タンディッシュ6から鋳型3への溶鋼流出孔17が形成されている。取鍋(図示せず)からタンディッシュ6の内部に注入された溶鋼8は、溶鋼流出孔17を経由して、浸漬ノズル1の下部に設けられ、且つ鋳型3内の溶鋼8に浸漬された吐出孔2より、吐出流12を鋳型短辺5に向けて鋳型3内に注入される。そして、溶鋼8は鋳型3内で冷却されて凝固シェル9を形成し、鋳型3の下方に連続的に引き抜かれ鋳片となる。尚、図2では吐出流12を片側のみ表示している。   In FIG. 2, a tundish 6 is disposed above a mold 3 composed of opposed mold long sides 4 and opposed mold short sides 5 housed inside the mold long sides 4. An upper nozzle 13 is disposed at the bottom of the tundish 6, and a sliding nozzle 7 including a fixed plate 14, a sliding plate 15, and a rectifying nozzle 16 is disposed in contact with the lower surface of the upper nozzle 13. Further, the sliding nozzle An immersion nozzle 1 having a pair of discharge holes 2 in the lower part is disposed in contact with the lower surface of 7, and a molten steel outflow hole 17 from the tundish 6 to the mold 3 is formed. The molten steel 8 injected into the tundish 6 from the ladle (not shown) was provided at the lower part of the immersion nozzle 1 via the molten steel outflow hole 17 and immersed in the molten steel 8 in the mold 3. From the discharge hole 2, the discharge flow 12 is injected into the mold 3 toward the mold short side 5. The molten steel 8 is cooled in the mold 3 to form a solidified shell 9, and is continuously drawn below the mold 3 to form a cast piece. In FIG. 2, the discharge flow 12 is shown only on one side.

上ノズル13には、Arガス導入管(図示せず)が接続され、浸漬ノズル1の内壁へのTiO2 及びAl23 の付着防止のために、Arガスが、上ノズル13の内部の微細気孔を通じて溶鋼流出孔17内に吹き込まれている。鋳型3内のメニスカス10上には、モールドパウダー11が添加されている。 An Ar gas introduction pipe (not shown) is connected to the upper nozzle 13, and Ar gas is supplied to the inner wall of the upper nozzle 13 in order to prevent adhesion of TiO 2 and Al 2 O 3 to the inner wall of the immersion nozzle 1. The molten steel outflow hole 17 is blown through the fine pores. Mold powder 11 is added on the meniscus 10 in the mold 3.

浸漬ノズル1は外形を円形または楕円形とし、浸漬ノズル1の内面底部には凹状の湯溜まり部が形成されている。吐出孔2は浸漬ノズル1の中心を対称として左右に各1つ設けられており、吐出孔2の断面形状は円形または楕円形或いは四角形とすればよい。そして、浸漬ノズル1の吐出孔角度θを、上向き2度から上向き8度の範囲内の任意の値に設定する。但し、鋳片表面性状の安定性から浸漬ノズル1の吐出孔角度θは限定範囲の中央値である上向き5度前後(4〜6度)とすることが好ましい。   The immersion nozzle 1 has a circular or elliptical outer shape, and a concave hot water reservoir is formed on the bottom of the inner surface of the immersion nozzle 1. One discharge hole 2 is provided on each of the left and right with the center of the immersion nozzle 1 symmetrical, and the cross-sectional shape of the discharge hole 2 may be circular, elliptical, or square. Then, the discharge hole angle θ of the immersion nozzle 1 is set to an arbitrary value within the range of 2 degrees upward to 8 degrees upward. However, from the stability of the slab surface properties, the discharge hole angle θ of the immersion nozzle 1 is preferably about 5 degrees upward (4 to 6 degrees), which is the median value of the limited range.

そして、浸漬深さHを80mmから130mmの範囲の任意の値に設定して鋳造を実施する。尚、浸漬深さHを限定範囲の境界値である80mmや130mmに設定すると、鋳造中の外乱によりメニスカス10の位置が変化して、浸漬深さHが限定範囲外になることもあるので、この浸漬深さHも100mmから110mmの限定範囲の中央値側に設定することが、安定して表面欠陥を防止するうえで好ましい。ここで、本発明において、浸漬ノズル1の吐出孔角度θとは、吐出孔2の向きと水平線とのなす角度で表し、吐出孔2の向きが水平より上側の場合を上向き、水平より下側の場合を下向きと定義し、また、浸漬ノズル1の浸漬深さHとは、浸漬ノズル1の吐出孔2の上端位置とメニスカス10との距離で定義する。   Then, casting is performed with the immersion depth H set to an arbitrary value in the range of 80 mm to 130 mm. If the immersion depth H is set to 80 mm or 130 mm, which is the boundary value of the limited range, the position of the meniscus 10 may change due to disturbance during casting, and the immersion depth H may be outside the limited range. This immersion depth H is also preferably set to the median side of the limited range of 100 mm to 110 mm in order to stably prevent surface defects. Here, in the present invention, the discharge hole angle θ of the submerged nozzle 1 is represented by an angle formed by the direction of the discharge hole 2 and a horizontal line, upward when the direction of the discharge hole 2 is above the horizontal, and below the horizontal. The immersion depth H of the immersion nozzle 1 is defined by the distance between the upper end position of the discharge hole 2 of the immersion nozzle 1 and the meniscus 10.

また、パウダー消費量が0.3〜0.6kg/m・minの範囲の任意の値となるモールドパウダー及び鋳造条件を選定し、その条件で鋳造する。この場合、鋳片表面性状の安定性から、望ましくは、パウダー消費量が0.45〜0.50kg/m・minとなる条件で鋳造することが好ましい。パウダー消費量は、使用するモールドパウダー11の粘性などの特性、及び、鋳片引抜き速度や鋳型3の振動条件によって決定されので、予め種々の特性のモールドパウダーを用いて鋳片引き抜き速度及び鋳型3の振動条件を変更した試験を実施し、これらの鋳造条件とモールドパウダー特性とでパウダー消費量を把握しておき、鋳造条件に応じて使用するモールドパウダー11を選定できるようにすることが好ましい。使用するモールドパウダー11としては、高Ti含有鋼用のものでも、通常の炭素鋼用のものでも何方でもよいが、表面欠陥を安定して防止するうえで、高Ti含有鋼用モールドパウダーが好ましい。   Moreover, the mold powder and casting conditions from which powder consumption becomes arbitrary values in the range of 0.3 to 0.6 kg / m · min are selected, and casting is performed under the conditions. In this case, from the viewpoint of the stability of the slab surface properties, it is preferable to cast under conditions where the powder consumption is 0.45 to 0.50 kg / m · min. The amount of powder consumption is determined by the characteristics such as the viscosity of the mold powder 11 to be used, the slab drawing speed and the vibration conditions of the mold 3. It is preferable to conduct a test in which the vibration conditions are changed, grasp the powder consumption based on these casting conditions and mold powder characteristics, and select the mold powder 11 to be used according to the casting conditions. The mold powder 11 to be used may be one for high Ti content steel or ordinary carbon steel, but in order to stably prevent surface defects, high Ti content steel mold powder is preferable. .

鋳片引抜き速度は0.7〜1.8m/min、そして、鋳片厚みが150〜250mm、鋳片幅が650〜2300mmであるスラブ形状の鋳片が対象となる。また、浸漬ノズル1の肉厚は10mm〜50mmの寸法でよく、吐出孔2の断面積は20〜120cm2 とすればよい。 The slab drawing speed is 0.7 to 1.8 m / min, and the slab shape slab having a slab thickness of 150 to 250 mm and a slab width of 650 to 2300 mm is an object. Moreover, the thickness of the immersion nozzle 1 may be a dimension of 10 mm to 50 mm, and the cross-sectional area of the discharge hole 2 may be 20 to 120 cm 2 .

このようにして0.1〜1.0質量%のTiを含有する高Ti含有鋼を連続鋳造することにより、メニスカス10における溶鋼8が常時更新されるので、デッケルの発生が防止されると共にモールドパウダー11の溶融熱となる熱が常に供給されてモールドパウダー11の溶融が促進され、更に、パウダー消費量を所定の範囲に制御することによって、溶鋼8と接触するモールドパウダー11が更新されるので、TiO2 のピックアップに起因するモールドパウダー11の特性変化を最小限に抑えて鋳造することができるため、ノロカミ及び縦割れの極めて少ない健全な鋳片を得ることができ、無手入れで熱間圧延することが可能となる。その結果、製品歩留りの向上や省エネルギーを達成することができる。 Since the molten steel 8 in the meniscus 10 is constantly renewed by continuously casting the high Ti-containing steel containing 0.1 to 1.0% by mass of Ti in this way, the generation of deckle is prevented and the mold is prevented. Since heat as melting heat of the powder 11 is always supplied, melting of the mold powder 11 is promoted, and furthermore, the mold powder 11 in contact with the molten steel 8 is updated by controlling the powder consumption within a predetermined range. Since the casting can be performed while minimizing the characteristic change of the mold powder 11 caused by the pickup of TiO 2 , it is possible to obtain a sound slab with extremely little slag and vertical cracks, and hot rolling without maintenance. It becomes possible to do. As a result, improvement in product yield and energy saving can be achieved.

図2に示す構成の連続鋳造機を用いて本発明を実施した例を以下に説明する。鋳片断面寸法の厚みが250mm、幅が1500mmであるスラブ連続鋳造機を用い、Ti含有量が0.4質量%の高Ti含有鋼を、0.8m/minの鋳片引抜き速度で鋳造した。使用した浸漬ノズルは、内径が80mm、肉厚が30mm、吐出孔断面積が50cm2 であり、底部に深さ15mmの凹状湯溜まり部が設けられ、吐出孔角度θは上向き5度とした。そして、浸漬深さHを100mmとし、高Ti含有鋼用のモールドパウダー用い、Arガスを9Nl/minの流量で浸漬ノズル内に吹き込んで鋳造した。使用したモールドパウダーは、予めパウダー消費量が0.4〜0.5kg/m・minとなることを確認したモールドパウダーを用いた。また、比較のために、吐出孔角度θ及び浸漬深さHは本発明例と同一であるが、パウダー消費量が本発明の限定範囲外であるモールドパウダーを使用した鋳造(比較例)も併せて実施した。 An example in which the present invention is implemented using the continuous casting machine having the configuration shown in FIG. 2 will be described below. Using a slab continuous casting machine having a slab cross-sectional thickness of 250 mm and a width of 1500 mm, a high Ti-containing steel having a Ti content of 0.4 mass% was cast at a slab drawing speed of 0.8 m / min. . The immersion nozzle used had an inner diameter of 80 mm, a wall thickness of 30 mm, a discharge hole cross-sectional area of 50 cm 2 , a concave hot water reservoir with a depth of 15 mm was provided at the bottom, and the discharge hole angle θ was 5 degrees upward. Then, the immersion depth H was set to 100 mm, a mold powder for high Ti-containing steel was used, and Ar gas was blown into the immersion nozzle at a flow rate of 9 Nl / min for casting. The mold powder used was a mold powder whose powder consumption was confirmed to be 0.4 to 0.5 kg / m · min in advance. For comparison, the discharge hole angle θ and the immersion depth H are the same as those of the present invention example, but the casting using the mold powder whose powder consumption is outside the limited range of the present invention (comparative example) is also included. Carried out.

得られた鋳片の表面を浸透探傷試験法によって調査し、縦割れの長さと個数分布を測定した。また、浸透探傷試験法による縦割れの調査後、鋳片表面を2mm厚みでスカーフした後にスカーフ面を浸透探傷試験法によって調査し、ノロカミの大きさと個数分布を測定した。鋳片の表面性状は、縦割れ及びノロカミを含めて総合的に評価した。   The surface of the obtained slab was examined by the penetrant testing method, and the length and number distribution of longitudinal cracks were measured. Moreover, after investigating the vertical crack by the penetration testing method, the slab surface was scarfed with a thickness of 2 mm, and then the scarf surface was examined by the penetration testing method, and the size and number distribution of the blade were measured. The surface property of the slab was comprehensively evaluated including vertical cracks and blades.

表1に、本発明例及び比較例1〜3における鋳造条件及び鋳片の表面性状評価結果をまとめて示す。表1の鋳片表面性状評価の欄における○印は、縦割れ及びノロカミが極めて少なく、無手入れで熱間圧延ができる表面状態を表し、×印は、縦割れ或いはノロカミが発生し、鋳片の表面手入れが必要な表面状態であることを表している。   Table 1 summarizes the casting conditions and the evaluation results of the surface properties of the slabs of the present invention and Comparative Examples 1 to 3. In the column of slab surface property evaluation in Table 1, ○ mark indicates a surface state in which there are very few vertical cracks and scratches and it can be hot-rolled without maintenance, and × marks indicate vertical cracks or cracks that occur. This indicates that the surface condition requires surface care.

Figure 0004301029
Figure 0004301029

表1からも明らかなように、本発明例では縦割れ及びノロカミが共に極めて少なく、良好な表面状態の鋳片を鋳造することができた。これに対して比較例1〜3では、縦割れ或いはノロカミが発生し、無手入れのままの熱間圧延はできないことが確認された。   As is apparent from Table 1, in the present invention example, both vertical cracks and blades were extremely small, and a slab having a good surface state could be cast. On the other hand, in Comparative Examples 1 to 3, vertical cracks or blades occurred, and it was confirmed that hot rolling without maintenance cannot be performed.

パウダー消費量とモールドパウダー中へのTiO2 のピックアップ量との関係を示す図である。Is a diagram showing the relationship between TiO 2 of the pickup of the powder consumption and in the mold powder. 本発明を適用したスラブ連続鋳造機の鋳型部の正面断面の概要図である。It is a schematic diagram of the front cross section of the casting_mold | template part of the slab continuous casting machine to which this invention is applied.

符号の説明Explanation of symbols

1 浸漬ノズル
2 吐出孔
3 鋳型
4 鋳型長辺
5 鋳型短辺
6 タンディッシュ
7 スライディングノズル
8 溶鋼
9 凝固シェル
10 メニスカス
11 モールドパウダー
12 吐出流
13 上ノズル
14 固定板
15 摺動板
16 整流ノズル
17 溶鋼流出孔
DESCRIPTION OF SYMBOLS 1 Immersion nozzle 2 Discharge hole 3 Mold 4 Mold long side 5 Mold short side 6 Tundish 7 Sliding nozzle 8 Molten steel 9 Solidified shell 10 Meniscus 11 Mold powder 12 Discharge flow 13 Upper nozzle 14 Fixed plate 15 Sliding plate 16 Rectification nozzle 17 Molten steel Outflow hole

Claims (1)

0.1〜1.0質量%のTiを含有する高Ti含有鋼の連続鋳造方法において、浸漬ノズルの吐出孔角度θを上向き2〜8度の範囲内とすると共に、浸漬ノズルの浸漬深さHを80〜130mmの範囲内とし、且つ、モールドパウダーの消費量が0.3〜0.6kg/m・minの範囲内となる条件で鋳造することを特徴とする、高Ti含有鋼の連続鋳造方法。   In the continuous casting method of high Ti-containing steel containing 0.1 to 1.0% by mass of Ti, the immersion nozzle discharge hole angle θ is set in the range of 2 to 8 degrees upward, and the immersion nozzle immersion depth Continuous casting of high Ti-containing steel, characterized in that H is cast in a range of 80 to 130 mm and mold powder consumption is in a range of 0.3 to 0.6 kg / m · min. Casting method.
JP2004038322A 2004-02-16 2004-02-16 Continuous casting method of high Ti content steel Expired - Lifetime JP4301029B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004038322A JP4301029B2 (en) 2004-02-16 2004-02-16 Continuous casting method of high Ti content steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004038322A JP4301029B2 (en) 2004-02-16 2004-02-16 Continuous casting method of high Ti content steel

Publications (2)

Publication Number Publication Date
JP2005224852A JP2005224852A (en) 2005-08-25
JP4301029B2 true JP4301029B2 (en) 2009-07-22

Family

ID=34999966

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004038322A Expired - Lifetime JP4301029B2 (en) 2004-02-16 2004-02-16 Continuous casting method of high Ti content steel

Country Status (1)

Country Link
JP (1) JP4301029B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907540A (en) * 2015-06-15 2015-09-16 江苏大学 Method for electro slag liquid state pouring continuous casting billet with molten steel flow divider

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4833744B2 (en) * 2006-06-09 2011-12-07 黒崎播磨株式会社 Immersion nozzle
CN106180623A (en) * 2016-07-25 2016-12-07 江阴兴澄特种钢铁有限公司 A kind of continuous casting process producing high titanium abrasion-resistant stee on straight-bow type continuous casting machine
US10751791B2 (en) * 2016-09-16 2020-08-25 Nippon Steel Stainless Steel Corporation Continuous casting method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104907540A (en) * 2015-06-15 2015-09-16 江苏大学 Method for electro slag liquid state pouring continuous casting billet with molten steel flow divider
CN104907540B (en) * 2015-06-15 2017-03-08 江苏大学 A kind of method of the liquid pouring of electroslag continuous casting billet of strip steel water diverter

Also Published As

Publication number Publication date
JP2005224852A (en) 2005-08-25

Similar Documents

Publication Publication Date Title
EP1952913B1 (en) Method for manufacture of ultra-low carbon steel slab
JP4301029B2 (en) Continuous casting method of high Ti content steel
JP4337565B2 (en) Steel slab continuous casting method
JP4079415B2 (en) Submerged nozzle for continuous casting of thin slabs
JP2012020294A (en) Method for changing immersion depth of immersion nozzle
JP4216642B2 (en) Immersion nozzle and continuous casting method using the same
JP4725244B2 (en) Ladle for continuous casting and method for producing slab
JP4749997B2 (en) Continuous casting method
KR101193850B1 (en) Method for detecting dropping alien substance of submerged entry nozzle and continuous casting method using the same
JP5835131B2 (en) Immersion nozzle
JP4527693B2 (en) Continuous casting method of high Al steel slab
JP4320043B2 (en) Continuous casting method of medium and high carbon steel using submerged dammed nozzle
JP3817209B2 (en) Continuous casting method for stainless steel slabs to prevent surface and internal defects
JP4448452B2 (en) Steel continuous casting method
JPH10314892A (en) Method for continuously casting high ti-containing steel
JP4527832B2 (en) Steel continuous casting method
JP4474948B2 (en) Steel continuous casting method
JP3460687B2 (en) Steel continuous casting method
JP2004106021A (en) Method for casting molten stainless steel using vertical-bending type continuous caster
JP5034288B2 (en) Steel continuous casting method.
JP2004098082A (en) Method for casting molten stainless steel performing electromagnetic stirring
JP2023178223A (en) Continuous casting method for steel
KR101435117B1 (en) Method for stabilizing meniscus in continuous casting
JP2008030089A (en) Immersion nozzle for continuously casting molten steel and continuous casting method
KR101400035B1 (en) Method for producing high quality slab

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080730

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090331

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4301029

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090413

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120501

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130501

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140501

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term