JP4294344B2 - 電動機の制御方法及び制御装置 - Google Patents

電動機の制御方法及び制御装置 Download PDF

Info

Publication number
JP4294344B2
JP4294344B2 JP2003065700A JP2003065700A JP4294344B2 JP 4294344 B2 JP4294344 B2 JP 4294344B2 JP 2003065700 A JP2003065700 A JP 2003065700A JP 2003065700 A JP2003065700 A JP 2003065700A JP 4294344 B2 JP4294344 B2 JP 4294344B2
Authority
JP
Japan
Prior art keywords
motor
command
vibration
frequency
electric motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003065700A
Other languages
English (en)
Other versions
JP2004005469A (ja
Inventor
一朗 大山
友邦 飯島
徹 田澤
和成 楢崎
健一 鈴木
勝 西園
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2003065700A priority Critical patent/JP4294344B2/ja
Publication of JP2004005469A publication Critical patent/JP2004005469A/ja
Application granted granted Critical
Publication of JP4294344B2 publication Critical patent/JP4294344B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Control Of Position Or Direction (AREA)
  • Control Of Electric Motors In General (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、電動機の制御対象自体、又は電動機と制御対象とを連結する連結軸の機械剛性が低いことに起因して発生する、電動機又は制御対象の振動を抑制する電動機の制御方法及び制御装置に関する。
【0002】
【従来の技術】
従来から電動機を用いた位置決め制御において、マイクロコンピュータを用いたディジタルサーボ制御が行われている。平成5年電気学会全国大会No.1759「減速機ねじれ振動の制振制御」に、振動抑制を目的とする従来例の電動機の制御装置が開示されている。
従来例の電動機の制御装置を説明する。図26は、従来例の電動機の制御装置の構成図である。図26において、101は位置指令作成部、102は電動機、103は制御対象(負荷)、104は位置検出部、105はサーボコントローラである。サーボコントローラ105は、位置指令入力部106、前置フィルタ部107、指令追従制御部108を有する。指令追従制御部108は、位置偏差演算部(減算器)109、位置制御部110、速度演算部111、速度偏差演算部(減算器)112、速度制御部113、電流制御部114を有する。sはラプラス演算子である。
【0003】
位置指令作成部101が位置指令を作成し、サーボコントローラ105の位置指令入力部106に入力する。位置指令入力部106は前置フィルタ部107を介して位置指令θM*を指令追従制御部108に送る。従来例の制御装置は、電動機に連結された制御対象(負荷)103の位置(以後、「制御対象位置θL」と呼ぶ。)が位置指令θ*に一致するように電動機102を制御するための装置である。図26において、制御対象位置θLは検出できない。位置検出部104が電動機102の位置(以後、「電動機位置θM」と呼ぶ。)を検出する。サーボコントローラ105は、電動機位置θMが位置指令θ*に一致するように電動機102を制御する。これにより、従来例の制御装置は、制御対象位置θLが位置指令θ*に一致するように電動機102を制御する。電動機位置θM及び制御対象位置θLは素早く位置指令θ*に追従するよう制御される。
【0004】
制御対象(負荷)103自体及び電動機102と制御対象103とを連結する連結軸の剛性が高い制御系においては、従来例の制御装置は、高い精度で制御対象位置θLが位置指令θ*に一致するように、電動機102を制御することができる。
制御対象103自体又は電動機102と制御対象103とを連結する連結軸の剛性が低い制御系(連結軸のねじれ等を無視できないほど高精度の制御を行う制御系を含む。)においては、制御対象位置θLと電動機位置θMとの間に位相差が生じ、連結軸のねじれ振動が発生し易い。電動機位置θMが位置指令θ*に一致するように電動機102を制御する制御装置において、連結軸のねじれによる振動が発生すると、制御対象位置θLが位置指令θ*へ収束する速度が遅くなる。
【0005】
従来例において、前置フィルタ部107は、位置指令θ*のパターンを入力し、制御対象位置θLの振動を励起しないパターンθM*(電動機位置指令)に変化させる。指令追従制御部108は、電動機位置θMが電動機位置指令θM*に一致するように電動機102を制御する。前置フィルタ部107は、制御対象位置θLの振動を抑制し、電動機位置θM及び制御対象位置θLが位置指令θ*へ収束する速度を速くする。
【0006】
図26に示した従来例の制御装置における基本的な演算の流れを説明する。位置指令入力部106は、位置指令作成部101で作成された位置指令を入力する。位置指令入力部106は、入力した位置指令を単位変換して、サーボコントローラ105内での演算に用いる単位系と整合した位置指令θ*を生成し、出力する。
前置フィルタ部107は、位置指令θ*を2階微分し所定の係数1/(ωa)を乗算した振動抑制補償値を算出する。前置フィルタ部107は、位置指令θ*と算出した振動抑制補償値とを足し合わせて、電動機位置指令θM*を生成し、出力する。電動機が出力したトルクから電動機102までの系が有する***振周波数をfrとすると、好ましくはωa=2π・f(fはfr、もしくはfr近傍の周波数)とする。前置フィルタ部107によって振動が抑制される原理は後述する。
【0007】
指令追従制御部108の内部演算の流れを詳細に説明する。位置偏差演算部(減算器)109は、電動機位置指令θM*と電動機位置θMとを入力し、電動機位置偏差ΔθM(=θM*−θM)を算出する。位置制御部110は、位置比例ゲインKppを用いて、速度指令ωM*(=Kpp・ΔθM)を出力する。
速度演算部111は、電動機位置θMを微分し、電動機速度ωM(=θM・s)を算出する。速度偏差演算部(減算器)112は、速度指令ωM*と電動機速度ωMとを入力し、速度偏差ΔωM(=ωM*−ωM)を算出する。
速度制御部113は、速度偏差ΔωMに基づいて比例積分演算を行い、トルク指令T*を出力する。電流制御部114は、電動機102が出力するトルクTMがT*となるように、電動機102に流れる電流値Iを制御する。
【0008】
前置フィルタ部107によって振動が抑制される原理を説明する。電動機102が制御対象103を動かす系を、共振系のモデルとして一般的に用いられる、2慣性系(電動機102及び制御対象103)モデル(図27)で表す。実際にはトルクTMが制御対象位置θLを動かす系は複雑な数式モデルで表されることもある。
【0009】
図28は、図27に示す電動機102が低剛性の連結軸を通じて制御対象103を動かす系を、数式モデルで表したブロック図である。図28において、トルク指令T*に応じて、電動機102は十分速い応答で実際のトルクTMを発生する。トルク指令T*を入力してから実際のトルクTMを発生するまでの伝達関数をTM/T*=1と仮定する。JMは電動機102のイナーシャ、JLは制御対象103のイナーシャ、Ksは連結軸のバネ定数である。連結軸のイナーシャは、JM、JLに比べて十分小さいとして無視している。
【0010】
図28の数式モデルに基づきトルク指令T*から電動機位置θMまでの伝達関数θM/T*を求めると、式(1)となる。
(JLs2+Ks)/[{JM・JLs2+Ks(JM+JL)}s2] (1)
【0011】
図28の数式モデルに基づき電動機位置θMから制御対象位置θLまでの伝達関数θL/θMを求めると式(2)となる。
Ks/(JLs2+Ks) (2)
【0012】
図29は、図28のブロック図から求めた式(1)及び式(2)を用いて、図26の構成図と等価なラプラス演算子sで表したブロック図である。図29において、図26と同じ符号のブロックは図26と同じ機能を有する。
図29において、前置フィルタ部107が無い場合は位置指令θ*=θM*である。図29において電動機位置指令θM*から制御対象位置θLまでの伝達関数と、位置指令θ*から制御対象位置θLまでの伝達関数を比較することにより、前置フィルタ部107が無い場合と有る場合の応答の違いを説明する。
【0013】
前置フィルタ部107が無い場合の、即ち図29における電動機位置指令θM*から制御対象位置θLまでの伝達関数の周波数特性を述べる。図29のトルク指令T*から電動機位置θMまでの伝達関数の周波数特性は式(1)より図30(a)となる。図30(a)において、横軸が周波数であり、縦軸がゲインと位相である。横軸は対数表示となっている。他の周波数特性図も、横軸が周波数であり、縦軸がゲインと位相である。横軸は対数表示となっている。
制御対象の剛性が低い故、図30(a)は共振点及び***振点を有する。図30(a)において、共振の発生している周波数を共振周波数、***振の発生している周波数を***振周波数と呼ぶ。電動機位置指令θM*から電動機位置θMまでのフィードバックループを含む系の伝達関数の周波数特性は、図30(b)となる。
電動機位置θMから制御対象位置θLまでの伝達関数の周波数特性は、式(2)より図30(c)となる。電動機位置指令θM*から制御対象位置θLまでの伝達関数の周波数特性(前置フィルタ部107が無い場合の制御装置の応答周波数特性)は、図30(b)と図30(c)とを合わせて、図30(d)となる。図30(d)は***振周波数frにゲインピークを持つ。
【0014】
図31(a)は、電動機102の位置を一定量変移させることを指示する電動機位置指令θM*のパターンである。縦軸が電動機位置指令θM*(電動機102の位置の変移量)、横軸が時間である。これは一般的に用いられているS字指令である。図31(b)は、図31(a)の電動機位置指令θM*の微分波形であり、台形パターンとなる。このときの電動機位置偏差ΔθMの応答と、制御対象位置θLと電動機位置指令θM*との差である制御対象位置偏差ΔθLの応答とを図32に示す。図32の位置指令出力期間は、図31(a)の電動機位置指令θM*が変動している期間、すなわち図31(b)の電動機位置指令θM*の微分値が0でない期間を指す。
図32に示すように、位置指令出力完了後に制御対象位置偏差ΔθLが電動機位置偏差ΔθMに比べ大きく振動する。制御対象位置θLの振動周波数を測定すると、その振動周波数は、図30(d)に示す電動機位置指令θM*から制御対象位置θLまでの伝達関数の周波数特性におけるゲインピークが生じる周波数(***振周波数)近傍の周波数となる。電動機102と制御対象103とを連結する軸の剛性が低いことに起因し、制御対象位置θLは位置指令出力完了後に大きな振動を生じる。
【0015】
次に前置フィルタ部107が有る場合の、即ち図29における位置指令θ*から制御対象位置θLまでの伝達関数の周波数特性を述べる。電動機位置指令θM*から制御対象位置θLまでの伝達関数の周波数特性は、図30(d)である。前置フィルタ部107の周波数特性は、ωa=2π・fr(frは図30(a)における***振周波数)とすると、図33(a)となる。前置フィルタ部107は、周波数ωaで利得(ゲイン)が極小となり、ωaより高域では周波数が高くなるにつれてゲインが大きくなる周波数特性を有する。位置指令θ*から制御対象位置θLまでの伝達関数の周波数特性は、図30(d)と図33(a)を合わせた図33(b)となる。
【0016】
図33(b)を、前置フィルタ部107がない場合の位置指令から制御対象位置θLまでの伝達関数の周波数特性である図30(d)と比較すると、図33(b)は***振周波数におけるゲインピークが無い。即ち、前置フィルタ部107は、制御装置の応答特性の***振周波数におけるゲインピークを低減する。
位置指令θ*の指令パターンを図31(a)とした場合の制御対象位置偏差ΔθLと電動機位置偏差ΔθMの応答を図34に示す。前置フィルタ部107がない場合の応答である図32と比較すると、位置指令出力完了後の制御対象位置θLの振動が低減される。図32と図34の応答は図29の前置フィルタ部107以外の構成は同じである。
【0017】
以上のように従来例の制御装置において、図26の前置フィルタ部107は、位置指令θ*から制御対象位置θLまでの伝達関数の周波数特性に生じるゲインピークを低減する。これにより、ゲインピークに起因して位置指令出力完了後に発生した制御対象位置θLの振動が低減される。
図32の応答特性を有する系のパラメータ設定を一部変更した場合の応答特性を図35に示す。図35に示す系においては、図32に示す系と比較して、位置制御部110の位置比例ゲインKppと速度制御部113の速度比例ゲインKvpとを下げて、制御対象位置θLの位置指令出力完了後の振動を低減させた。図35では、位置指令出力完了後の振動振幅は図34と同程度であるが、図34よりも応答が遅くなっている。
従来例の制御装置において、前置フィルタ部107は、制御装置の高速応答性を保ったまま、位置指令出力完了後の制御対象位置θLの振動を低減できるという効果を奏する。
【0018】
【特許文献1】
特開平10−149210号公報
【特許文献2】
特開平6−028006号公報
【非特許文献1】
平成5年電気学会全国大会No.1759「減速機ねじれ振動の制振制御」
【0019】
【発明が解決しようとする課題】
従来例において、図29の位置指令入力部106が出力する位置指令θ*が図31(a)のパターンを有するとすると、前置フィルタ部107(その伝達関数は、位置指令の2階微分の補正項(s/ωa)を有する。)を通した後の電動機位置指令θM*の指令パターンは図36となる。図31(b)及び図36において、時点A、B、C、Dは図31(a)の指令パターンの加速度(位置指令の2階微分)変動時点である。時点A、B、C、Dでは電動機位置指令θM*の2階微分が急激に変動する。図29に示す系が図31(a)の指令パターンの位置指令θ*を入力した場合のトルク指令T*の波形を図37に示す。
【0020】
時点A、B、C、Dにおいて、電動機位置指令θM*の2階微分が急激に変動することに起因して、図37の破線の円で示す非常に大きなトルク指令T*が発生する。時点A、B、C、Dでの電動機位置指令θM*の2階微分の変動が大きいほど、つまりωaが小さい程、又は位置指令θ*の加速度が大きい程、時点A、B、C、Dで大きなトルク指令T*とが発生する。一般的にハード上の制約等により、トルク指令T*には上限が設けらる。トルクT*は、上限値より大きくならないようにリミットをかけられる。時点A、B、C、Dでの電動機位置指令θM*の2階微分の変動が過大な値となった場合、トルク指令T*はリミットをかけられる。トルク指令T*がリミットをかけられると、制御装置は高速応答を保ったまま振動を抑制するための適切なトルク波形を出力できなくなり、制御対象位置θLの振動収束に時間がかかるという問題があった。
【0021】
本発明は、制御対象(負荷)自体又は電動機と制御対象との連結部等の機械剛性が低い制御装置において、指令パターン及び制御対象の特性によらず電動機及び制御対象の振動を高速応答を保ったまま常に抑制する電動機の制御方法、及び制御装置を提供することを目的とする。具体的には、本発明は、指令パターン及び制御対象の特性によらず、トルク指令が過大値となってリミットをかけられることを防止する電動機の制御方法及び制御装置を提供することを目的とする。
本発明は、制御系の状態量に応じて(個々の制御装置(制御対象を含む。)の特性のばらつき、経時変化、及び/又はその状態量に至る履歴の差異に応じて)自動的に、電動機及び制御対象の振動を常に最適に抑制する電動機の制御方法、及び制御装置を提供することを目的とする。
【0022】
【課題を解決するための手段】
上記課題を解決するため、本発明は下記の構成を有する。
本発明の1つの観点による電動機の制御方法は、電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力ステップと、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタに前記指令を作用させて追従指令値を出力する前置フィルタステップと、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御ステップと、を有する。
【0023】
本発明の他の観点による電動機の制御装置は、電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力部と、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタを有し、前記フィルタに前記指令を作用させて追従指令値を出力する前置フィルタ部と、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御部と、を有する。
【0024】
本発明の電動機の制御方法及び制御装置は、制御対象自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制するという効果を奏する。本発明によれば、指令パターン又は制御対象の特性によらず常に電動機及び制御対象の振動を抑制することが出来る。本発明は、指令パターン及び制御対象の特性によらず、トルク指令が過大値となってリミットをかけられることを防止する電動機の制御方法及び制御装置を実現する。
【0025】
本発明の別の観点による電動機の制御方法は、電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力ステップと、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記指令を前記定数項に作用させて追従指令値を出力し、且つ前記指令をフィードフォワード補償項に作用させてフィードフォワード補償項補償量を出力するフィードフォワード型前置フィルタステップと、前記フィードフォワード補償項補償量と前記追従指令値に基づき、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御ステップと、を有する。
【0026】
本発明の別の観点による電動機の制御装置は、電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力部と、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記指令を前記定数項に作用させて追従指令値を出力し、且つ前記指令をフィードフォワード補償項に作用させてフィードフォワード補償項補償量を出力するフィードフォワード型前置フィルタ部と、前記フィードフォワード補償項補償量と前記追従指令値に基づき、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御部と、を有する。
【0027】
本発明の電動機の制御方法及び制御装置は、制御対象自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制するという効果を奏する。本発明によれば、指令パターン又は制御対象の特性によらず常に電動機及び制御対象の振動を抑制することが出来る。本発明は、指令パターン及び制御対象の特性によらず、トルク指令が過大値となってリミットをかけられることを防止する電動機の制御方法及び制御装置を実現する。
【0028】
指令追従制御ステップ(指令追従制御部)において、定数項に基づく指令値を電動機の追従目標値として制御を行う。フィードフォワード補償項補償量に基づいて制御対象(負荷)の振動を抑制する。例えば実施の形態1の構成(図1)においては、フィルタ部が入力した位置指令θ*を演算処理し、演算結果である電動機位置指令θM*を目標値として制御を行う故、位置指令θ*の演算処理における1LSB未満の成分について桁落ちが発生する。この演算誤差に起因して電動機位置の収束値誤差が発生する。上記の観点の発明によれば、位置指令θ*をそのまま目標値として制御を行う(目標値を演算処理しない)故、演算誤差による電動機位置の収束値誤差が発生しない。電動機位置の収束値誤差を補償する必要がない。本発明によれば、収束値誤差が発生する場合と比較して、高い精度で電動機を制御することができる。本発明によれば、誤差補償をした場合と比較して、ソフトウエア処理における誤差補償の演算時間を短縮でき、且つ製品開発時に誤差補償のソフトウエアを開発する労力及び時間を削減できる。
【0029】
本発明の別の観点による電動機の制御方法は、電動機、又は前記電動機に連結された制御対象に対する位置指令から導出された速度指令を入力する速度指令入力ステップと、前記速度指令と前記電動機又は前記制御対象の位置とに基づき前記位置指令を推定した推定位置指令を出力する指令推定ステップと、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記速度指令を前記定数項に作用させた値に、前記推定位置指令を前記フィードフォワード補償項に作用させて生成した前記フィードフォワード補償項補償量を加算して、追従速度指令値を出力する内部構成型前置フィルタステップと、前記追従速度指令値に前記電動機又は前記制御対象の速度が追従するよう制御する指令追従制御ステップと、を有する。
【0030】
本発明の別の観点による電動機の制御装置は、電動機、又は前記電動機に連結された制御対象に対する位置指令から導出された速度指令を入力する速度指令入力部と、前記速度指令と前記電動機又は前記制御対象の位置とに基づき前記位置指令を推定した推定位置指令を出力する指令推定部と、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記速度指令を前記定数項に作用させた値に、前記推定位置指令を前記フィードフォワード補償項に作用させて生成したフィードフォワード補償項補償量を加算して、追従速度指令値を出力する内部構成型前置フィルタ部と、前記追従速度指令値に前記電動機又は前記制御対象の速度が追従するよう制御する指令追従制御部と、を有する。
【0031】
本発明の電動機の制御方法及び制御装置は、制御対象自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制するという効果を奏する。本発明によれば、指令パターン又は制御対象の特性によらず常に電動機及び制御対象の振動を抑制することが出来る。本発明は、指令パターン及び制御対象の特性によらず、トルク指令が過大値となってリミットをかけられることを防止する電動機の制御方法及び制御装置を実現する。
【0032】
指令追従制御ステップ(指令追従制御部)において、電動機の追従目標値として指令値を用いる。フィードフォワード補償項補償量に基づいて、制御対象(負荷)の振動を抑制する。これにより、演算での桁落ちに起因する電動機位置の収束値誤差が発生しない。電動機位置の収束値誤差を補償する必要がない。本発明の制御方法及び制御装置は、演算誤差補償をしない場合と比較して、電動機の位置決め精度が高い。本発明は、演算誤差補償をした場合と比較して、ソフトウエア処理における演算誤差補償をするための演算時間を短縮でき、且つ製品開発時に演算誤差補償のソフトウエアを開発する労力及び時間を削減できる。又は制御用LSIにおいて演算誤差補償回路が不要である。
【0033】
例えば既存の制御用プログラムで基本ソフトウエアが構成されている制御方法、又は既存の制御用LSIで基本回路が構成されている制御装置においては、制御対象(負荷)の振動を抑制するためのプログラム又は回路を付加する際に、種々の制約条件がある(構成上の自由度が限定される)。例えば、指令入力ステップ(指令入力部)が入力した指令の値を外部に取り出せない(入力した指令の値が分からない)場合も多い。本発明は、基本の制御系を変更しない。本発明においては、入力した指令の値を推定し、推定指令に基づいてフィードフォワード補償量を算出し、フィードフォワード補償量を付加して電動機の出力を補正する。本発明は、例えば既存の制御用LSIで基本回路が構成されている制御装置において、制御対象自体もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を効果的に抑制する電動機の制御方法及び制御装置を実現する。
【0034】
本発明の別の観点による上記の電動機の制御方法においては、前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性の前記電動機又は前記制御対象の振動を励起する周波数の利得を可変とする。
本発明の別の観点による上記の電動機の制御装置においては、前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性の前記電動機又は前記制御対象の振動を励起する周波数の利得を可変とする。
本発明の電動機の制御方法及び制御装置は、所定の周波数の利得を可変とすることにより、振動抑制効果を更に向上させる。所定の周波数の利得を自動的に変化させても良い。
【0035】
本発明の別の観点による上記の電動機の制御方法においては、前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記高域周波数の利得を抑える特性を動作状態により変化させる。
本発明の別の観点による上記の電動機の制御装置においては、前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記高域周波数の利得を抑える特性を動作状態により変化させる。
本発明の電動機の制御方法及び制御装置は、電動機又は制御対象の動作状態に応じて高域の利得を抑える特性を自動的に調整する。これにより、高域の利得を抑えることによる制御装置の応答の遅れを小さくする。
【0036】
本発明の別の観点による上記の電動機の制御方法においては、前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記高域周波数の利得を抑える特性を、少なくとも前記電動機又は前記制御対象の振動を励起する周波数を決めるパラメータに基づき自動的に決定する。
本発明の別の観点による上記の電動機の制御装置においては、前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記高域周波数の利得を抑える特性を、少なくとも前記電動機又は前記制御対象の振動を励起する周波数を決めるパラメータに基づき自動的に決定する。
本発明の電動機の制御方法及び制御装置は、電動機又は前記制御対象の振動を励起する周波数と共に高域周波数の利得を抑える特性を自動的に決定する。これにより、制御装置の操作性が向上する。
【0037】
本発明の別の観点による上記の電動機の制御方法においては、前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記電動機又は前記制御対象の振動を励起する周波数を自動設定する振動周波数自動設定ステップを有する。
本発明の別の観点による上記の電動機の制御装置においては、前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記電動機又は前記制御対象の振動を励起する周波数を自動設定する振動周波数自動設定部を有する。
本発明の電動機の制御方法及び制御装置は、電動機又は制御対象の振動を励起する周波数を制御装置毎に自動的に設定する。本発明の電動機の制御方法及び制御装置は、経時変化又は環境条件により制御系の特性が変化した場合にも、適応的に最適の制御を実行し、電動機及び制御対象の振動を抑制する。これにより、制御装置の操作性が向上する。
【0038】
本発明の別の観点による上記の電動機の制御方法においては、前記振動周波数自動設定ステップが、前記制御対象の振動を検出する振動検出ステップと、検出した前記振動から振動周波数を抽出して前記電動機又は前記制御対象の振動を励起する周波数を決定する周波数決定ステップと、を有する。
本発明の別の観点による上記の電動機の制御装置においては、前記振動周波数自動設定部が、前記制御対象の振動を検出する振動検出部と、検出した前記振動から振動周波数を抽出して前記電動機又は前記制御対象の振動を励起する周波数を決定する周波数決定部と、を有する。
【0039】
本発明の電動機の制御方法及び制御装置は、制御対象の振動を検出することにより、制御対象の振動周波数を正確に検出する。本発明の電動機の制御方法及び制御装置は、例えば制御対象の特性変動により振動周波数が変わっても制御対象の振動を常に最適に低減することができる。
制御対象の振動を検出する方法は任意である。例えば感圧センサで構成された振動検出センサを制御対象の表面に貼り付ける。これにより、制御対象の振動周波数を正確に検出出来る。制御装置の操作性が向上する。
【0040】
本発明の別の観点による上記の電動機の制御方法においては、前記振動周波数自動設定ステップが、前記電動機の振動周波数に基づき前記電動機又は前記制御対象の振動を励起する周波数を決定する。
本発明の別の観点による上記の電動機の制御装置においては、前記振動周波数自動設定部が、前記電動機の振動周波数に基づき前記電動機又は前記制御対象の振動を励起する周波数を決定する。
本発明の電動機の制御方法及び制御装置は、電動機の振動を検出することにより、電動機の振動周波数を正確に検出する。本発明の電動機の制御方法及び制御装置は、例えば電動機の特性変動により振動周波数が変わっても電動機の振動を常に最適に低減することができる。
【0041】
本発明の別の観点による上記の電動機の制御方法においては、前記振動周波数自動設定ステップにおいて、前記電動機の応答に基づき前記電動機と前記制御対象の数式モデルを推定し、前記数式モデルに基づき前記電動機又は前記制御対象の振動を励起する周波数を決定する。
本発明の別の観点による上記の電動機の制御装置においては、前記振動周波数自動設定部が、前記電動機の応答に基づき前記電動機と前記制御対象の数式モデルを推定し、前記数式モデルに基づき前記電動機又は前記制御対象の振動を励起する周波数を決定する。
【0042】
本発明の電動機の制御方法及び制御装置は、電動機と制御対象の数式モデルを推定して、制御対象の振動周波数を正確に検出する。本発明の電動機の制御方法及び制御装置は、例えば制御対象の特性変動により振動周波数が変わっても制御対象の振動を常に最適に低減することができる。制御装置の操作性が向上する。本発明の電動機の制御方法及び制御装置は、制御対象の振動検出部を用いない故、安価である。
【0043】
本発明の別の観点による上記の電動機の制御方法においては、前記電動機又は前記制御対象の振動を励起する周波数が、前記電動機が出力したトルクから前記電動機の位置又は速度までの系が有する***振周波数である。
本発明の別の観点による上記の電動機の制御装置においては、前記電動機又は前記制御対象の振動を励起する周波数が、前記電動機が出力したトルクから前記電動機の位置又は速度までの系が有する***振周波数である。
本発明の電動機の制御方法及び制御装置は、電動機が出力したトルクが制御対象に伝達されるまでの系の振動を抑制し、高い応答性を有する制御方法及び制御装置を実現する。***振周波数の近傍の周波数とは、***振周波数と同一又は近似した周波数である。
【0044】
本発明の別の観点による電動機の制御方法において前記電動機又は前記制御対象の状態量が、前記電動機又は前記制御対象の位置又は速度である。
【0045】
本発明の別の観点による電動機の制御装置において前記電動機又は前記制御対象の状態量が、前記電動機又は前記制御対象の位置又は速度であることを特徴とする。
【0046】
本発明の電動機の制御方法及び制御装置は、制御対象自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制するという効果を奏する。本発明によれば、指令パターン又は制御対象の特性によらず常に電動機及び制御対象の振動を抑制することが出来る。本発明は、指令パターン及び制御対象の特性によらず、トルク指令が過大値となってリミットをかけられることを防止する電動機の制御方法及び制御装置を実現する。
【0047】
本発明の別の観点による装置は、上記の制御装置を有する。本発明の装置は、高い応答性を実現する。
【0048】
【発明の実施の形態】
以下本発明の実施をするための最良の形態を具体的に示した実施の形態について、図面とともに記載する。
【0049】
《実施の形態1》
図1〜9を用いて、本発明の実施の形態1の電動機の制御方法及び制御装置を説明する。図1は本発明の実施の形態1の電動機の制御装置の構成を示す図である。実施の形態1の電動機の制御装置は、カートリッジから取り出した電子部品(例えばIC)を自動的にプリント基板上に実装する実装機のヘッド(カートリッジから取り出した電子部品を、プリント基板上の所定の位置に載置するまで、保持する機構部)の位置を制御する制御装置である。本発明の電動機の制御装置及び制御方法の適用対象はこれに限られるものではなく、任意の装置に適用できる。実施の形態1の電動機の制御装置において、電動機2と制御対象3との連結部等の機械剛性が低い。制御対象(負荷)3自体の剛性が低くても良い。
【0050】
図1において、1は位置指令作成部、2は電動機、3は制御対象(負荷)、4は位置検出部、5は振動検出部、6はサーボコントローラである。サーボコントローラ6は、位置指令入力部7、前置フィルタ部8、指令追従制御部12を有する。前置フィルタ部8は、フィルタ部9、パラメータ自動設定部10を有する。指令追従制御部12は、位置偏差演算部(減算器)13、位置制御部14、速度演算部15、速度偏差演算部(減算器)16、速度制御部17、電流制御部18を有する。
【0051】
位置指令作成部1が位置指令を作成し、サーボコントローラ6の位置指令入力部7に入力する。位置指令入力部7は前置フィルタ部8を介して位置指令θ*を指令追従制御部12に送る。実施の形態1の制御装置は、電動機に連結された制御対象(負荷)3の位置(以後、「制御対象位置θL」と呼ぶ。)が位置指令θ*に一致するように電動機2を制御するための装置である。図1において、制御対象位置θLは検出できない。位置検出部4が電動機2の位置(以後、「電動機位置θM」と呼ぶ。)を検出する。サーボコントローラ6は位置指令に電動機位置θMが追従するように制御する。制御対象3は電動機2に連結されているため、制御対象位置θLも位置指令に追従することになる。
【0052】
位置指令入力部7は位置指令を入力して、内部演算に適した単位に変換して位置指令θ*として出力する。サーボコントローラ6は、電動機位置θMが位置指令θ*に一致するように電動機2を制御する。これにより、実施の形態1の制御装置は、制御対象位置θLが位置指令θ*に一致するように電動機2を制御する。電動機位置θM及び制御対象位置θLが位置指令θ*に素早く追従するよう制御される。制御対象3、もしくは電動機2と制御対象3とを連結する連結軸の剛性が低い実施の形態1の制御装置においては、制御対象位置θLが振動しやすい。制御対象位置θLの振動を抑制するために、前置フィルタ部8は、位置指令θ*のパターンを入力し、制御対象位置θLの振動を励起しないパターンθM*(電動機位置指令)に変化させる。指令追従制御部12は、位置検出部4が検出した電動機位置θMが電動機位置指令θM*に追従するように電動機2を制御する。制御装置は入力された位置指令に素早く追従する。
【0053】
図1の実施の形態1において、従来の電動機の制御装置(図26)と異なる点は、振動検出部5が追加されていること、及び前置フィルタ部8の内部構造が図26の前置フィルタ部107と異なることである。
振動検出部5は、制御対象3の振動を直接検出し、前置フィルタ部8のパラメータ自動設定部10に伝送する。振動検出部5の構成は任意である。実施の形態1の振動検出部5は、制御対象3の表面に取り付けられた感圧センサである。
前置フィルタ部8はパラメータ自動設定部10を有し、そのフィルタ部9の伝達関数が前置フィルタ部107と異なる。パラメータ自動設定部10は、振動検出部5の出力信号を入力し、その中に含まれる制御対象3の振動周波数を抽出する。パラメータ自動設定部10は、抽出した振動周波数に基づいて、フィルタ部9の特性(伝達関数)を決定する。
【0054】
この構成の違いにより得られる効果を以下に述べる。従来の電動機の制御方法は、制御対象103、もしくは電動機102と制御対象103とを連結する連結軸の剛性が低い制御系において、電動機位置θM及び制御対象位置θLの振動を抑制する効果を奏する。しかし、位置指令作成部101が作成する指令パターン又は制御対象103の特性によっては、トルク指令T*が過大となりトルクリミットをかける必要があった。その場合、制御装置は、最適な制御を行うことができず、位置指令に対する応答が遅くなり、制御対象位置θLの振動収束に時間がかかるという問題があった。
【0055】
図1の前置フィルタ部8のフィルタ部9は、位置指令θ*を入力し、制御対象3において振動を励起しにくい指令パターンに自動的に変換し、電動機位置指令θM*として出力する。位置指令作成部1が作成する指令パターン及び制御対象3の特性によらず、電動機位置指令θM*は上限値を超えること(リミットをかけられること)はない。実施の形態1の制御装置は、電動機2及び制御対象3の振動を常に最適に抑制する制御方法を実行する。
【0056】
次に図1の制御ブロックの詳細な動作を説明する。位置指令作成部1は、例えばPLC(Programable Logic Controller)で構成される。位置指令作成部1は、位置指令パターンを作成し、パターンに従い位置指令を出力する。
位置検出部4は電動機2の位置を検出し、電動機位置θMとして出力する。
サーボコントローラ6はディジタル制御を行う。サーボコントローラ6は、位置指令作成部1からの位置指令と、位置検出部4からの電動機位置θMとを一定周期ごとに入力し、演算処理して、電動機2を流れる電流Iを制御する。
【0057】
サーボコントローラ6が実行する1周期の演算処理のフローチャートを図2に示す。サーボコントローラ6は、図2に示す演算処理を一定の演算周期(例えば166μs)毎に繰り返す。図2の開始から終了までの処理を図1〜5を用いて説明する。各状態量の添字(n)は今回の演算周期での値、(n−1)は前回の演算周期での値を表す。
位置指令入力部7は、位置指令作成部1からの位置指令を読み込み、サーボコントローラ6の内部演算に適した単位系に変換し、位置指令θ*(n)を出力する(ステップS1の指令取込処理)。
指令追従制御部12は、位置検出部4が検出した電動機2の位置をθM(n)として取り込む(ステップS2の状態量取込処理)。
【0058】
前置フィルタ部8のパラメータ自動設定部10は、振動検出部5が検出した制御対象3の振動から、その振動周波数frを算出する(ステップS3の前置フィルタパラメータ自動設定処理)。ωa=2π・frとする。パラメータ自動設定部10が、制御対象3の振動周波数を算出する方法は任意である。例えばパラメータ自動設定部10は、振動検出部5が出力する振動信号のゼロクロス時間間隔を測定しその測定値から振動周波数を算出する。例えばパラメータ自動設定部10は、振動検出部5が出力する振動信号をFFT(fast Fourier Transform)により周波数スペクトラムに変換して振動周波数frを検出する。パラメータ自動設定部10は、算出した振動周波数frに基づき、ωa=2π・frとし、ωaに基づきωfを決定する。
【0059】
図3は、実施の形態1の制御装置におけるωaとωfとの関係を示すグラフである。パラメータ自動設定部10は、図3に示すグラフのωaとωfとをプロットした値を格納するテーブル、又は図3のグラフを表す関数を用いて、ωaに基づいてωfを決定する。ωaと位置指令θ*の加速度(2階微分)とを引数とした2次元テーブルを用いても良い。減衰係数ζは可変としても良いがここでは1に固定する。減衰係数ζは0でない値である。ωfの役割と、ωaと位置指令θ*の加速度を引数とする理由と、ζの適切な設定値と、の詳細な説明は後で行う。このようにして、パラメータ自動設定部10は、フィルタ部9のパラメータを決定する。
【0060】
フィルタ部9は、ωaとωfを用いて位置指令θ*(n)から電動機位置指令θM*(n)を算出する(ステップS4の前置フィルタ処理)。フィルタ部9は、図5に示す伝達関数を有する。図4(a)は、フィルタ部9の入出力間の伝達関数の周波数特性を示す図である。フィルタ部9の周波数特性はステップS3で決定したパラメータに従う。フィルタ部9は周波数ωa及びその近傍の周波数の利得を下げる特性をもつ。特にωaより高域の利得は、図33(a)の従来例の前置フィルタ部107の周波数特性に比較して低い。位置指令θ*から制御対象位置θLまでの周波数特性は図30(d)と図4(a)とを合わせたものとなり、図4(b)となる。図4(b)は、従来例の図33(b)と比較してωaより高域の利得が抑えられている。
図5は、フィルタ部9の内部構成をラプラス演算子sを用いた表現で示す図である。実際には図5の構成を双一次変換などの手法でディジタルフィルタに変換し、フィルタ部9はディジタルフィルタとして図4(a)の特性を実現している。ステップS4の効果の詳細な説明は後で行う。
【0061】
位置偏差演算部(減算器)13と位置制御部14は、位置制御処理を行う(ステップS5の位置制御処理)。まず、位置偏差演算部13は、ΔθM(n)=θM*(n)−θM(n)の演算を行い、電動機位置偏差ΔθM(n)を算出する。位置制御部14は、位置比例ゲインKppを用いて、ωM*(n)=Kpp・ΔθM(n)の演算を行い、速度指令ωM*(n)を算出する。
【0062】
速度演算部15、速度偏差演算部(減算器)16、速度制御部17は、速度制御処理を行う(ステップS6の速度制御処理)。まず速度演算部15が、電動機位置θMに基づき、電動機2の速度ωM(n)を算出する。速度演算部15が速度ωM(n)を算出する方法は任意である。速度演算部15は、例えば電動機位置θMの後進差分、双一次変換を用いた電動機位置θMの微分、又は速度オブザーバなどの手法により、速度ωM(n)を算出する。次に、速度偏差演算部16は、ΔωM(n)=ωM*(n)−ωM(n)の演算を行い、速度偏差ΔωM(n)を算出する。次に、速度制御部17は、速度比例ゲインKvpと速度積分時定数Tviを用いて式(3)及び式(4)の比例積分演算を行い、トルク指令T*(n)を算出する。Xvi(n)は積分演算用変数である。
【0063】
Xvi(n)=Xvi(n−1)+ΔωM(n)・Kvp/Tvi (3)
T*(n)=Kvp・ΔωM(n)+Xvi(n) (4)
【0064】
電流制御部18は、トルク指令T*(n)に対応する電流が電動機2に流れるよう制御する(ステップS7の電流制御処理)。以上で図2に示す処理を終える。
【0065】
図2のフローチャートにおける、ステップS4の前置フィルタ処理の効果と、ステップS3で導出するωfの役割と、ωaと位置指令θ*の加速度(2階微分)とを引数としてωfを導出する理由と、ζの適切な設定値と、を従来例と比較しながら説明する。
まず、ステップS4の前置フィルタ処理の効果を説明する。図5に示すフィルタ部9は、従来例の前置フィルタ部107(図26)と同一の伝達関数を有するブロック1と、2次フィルタであるブロック2とを直列に接続した構成を有する。ブロック1は、位置指令θ*から制御対象位置θLの振動を励起する周波数成分を除去する。ブロック1により、制御対象位置θLの振動を低減する効果が得られる。その詳細な原理は従来例と同じである故、説明を省略する。
【0066】
ブロック2が、位置指令θ*の加速度(2階微分)変動時点でトルク指令T*が過大な値となることを防止する。図6は、前置フィルタ部8(図1)が入力した位置指令θ*と、出力した電動機位置指令θM*の波形を示す図(横軸は時間、縦軸は位置指令θ*及び電動機位置指令θM*の値)である。破線が位置指令θ*、実線が電動機位置指令θM*である。位置指令θ*の波形は図31(a)に示す波形と同一である。位置指令θ*の1階微分は、図31(b)に示す波形を有する。この時、速度制御部17(図1)が出力するトルク指令T*の波形を図7に示す(横軸が時間、縦軸がトルク)。同一波形の位置指令θ*を入力した時、位置指令θ*の加速度変動を生じる時点A、B、C、Dにおいて、図6に示す電動機位置指令θM*(実施の形態1)は、従来例における電動機位置指令θM*(図36)に比べ急激に変動しない。これは、図5のブロック2の2次フィルタが、図4(a)の周波数特性の特にωaより高域の利得を、従来例で示した図33(a)よりも低くしていることに起因する。
【0067】
従来例(図37)においては、速度制御部113(図26)が出力するトルク指令T*は、位置指令θ*の加速度変動時点A、B、C、Dで、過大な値となり、リミットをかけられた。図7に示すように、本実施の形態においては、速度制御部17(図1)が出力するトルク指令T*は、位置指令θ*の加速度変動時点A、B、C、Dで、過大な値とはならず、リミットをかけられることはない。本実施の形態の制御方法及び制御装置は、指令パターン及び制御対象の特性によらず電動機及び制御対象の振動を常に最適に抑制して制御する。
【0068】
次にステップS3で導出するωfの役割と、ωaと位置指令θ*の加速度(2階微分)とを引数としてωfを導出する理由を述べる。フィルタ部9(図1)が図6に破線で示す位置指令θ*を入力した場合、図5のブロック1は、図36に実線で示す波形と同一の波形の信号を出力する。ブロック2(図5)は、図36に実線で示す波形の信号を入力し、図6に実線で示す電動機位置指令θM*を出力する。図36に実線で示すように、ブロック1の出力信号は位置指令θ*の加速度変動時点A、B、C、Dで急激に変化する。ωaが小さい程、また、位置指令θ*の加速度が大きい程、時点A、B、C、Dでのブロック1の出力信号の変化は大きくなる。図5のブロック図から分かるように、ωfはブロック2の2次フィルタのカットオフ周波数を規定する。
【0069】
図6において位置指令θ*の加速度が変動する時点A、B、C、Dでの、ブロック1(図5)の出力信号の変化が大きい程、パラメータ自動設定部10は、ωfを小さくして2次フィルタのカットオフ周波数を下げ、位置指令θ*の加速度が変動する時点A、B、C、Dでの電動機位置指令θM*の変化を小さくする。ωfを十分に小さくしなければ、位置指令θ*の加速度が変動する時点で図37のようにトルク指令T*が急激に増大し、リミットをかけられる。制御装置は、正常な制御ができなくなる。これが、パラメータ自動設定部10は、ステップS3においてωfをωaと位置指令θ*の加速度を引数として自動設定する理由である。パラメータ自動設定部10は、ωaが小さい程、位置指令θ*の加速度が大きい程、ωfを小さな値とする。このようにしてパラメータ自動設定部10がωfを自動的に設定することにより、本実施の形態の制御方法及び制御装置は、指令パターン及び制御対象の特性によらず電動機及び制御対象の振動を常に最適に抑制して制御する。
【0070】
図6において、破線の位置指令θ*は時点Dで変化を終えるが、前置フィルタ部8が出力する電動機位置指令θM*の変化終了時点は時点Dよりも遅れる。これは前置フィルタ部8のブロック2(図5)の2次フィルタの影響である。電動機位置指令θM*の変化の遅延は、制御装置の応答の遅延を生じるので好ましくない(従来例において、トルク指令T*が過大な値となり、リミットをかけられた場合に生じる応答の遅れと比較すれば、本実施の形態の制御装置は、はるかに応答が速い。)。
トルク指令T*がリミットをかけられやすい時点A、B、C、Dの直後以外の期間はブロック2の2次フィルタのカットオフ周波数を高くしてもトルクリミットはかからない。このことを利用して、パラメータ自動設定部10は、ωfを時間により変化させる。パラメータ自動設定部10は、特に時点Dの直後より後の期間はωfを大きくする。これにより電動機位置指令θM*の変化終了時点は早くなる。パラメータ自動設定部10がフィルタ部9のパラメータ切り換えを実施することにより、本実施の形態の制御方法及び制御装置は、高い応答性を実現する。
【0071】
次に減衰係数ζの適切な設定値を説明する。ζを1より小さくしていくと、図5のブロック2の周波数特性が周波数ωf付近でゲイン0dB以上のゲインピークを持ち始める。この場合、このゲインピークの周波数の振動が制御対象位置θLに現れる可能性がある故、ζを1以下に設定することは望ましくない。ζは大きくするほど電動機位置指令θM*の変化終了時点は長くなり(図6参照)、制御装置の応答が遅くなる。変化終了時点とは電動機位置指令θM*が変動を開始した後、変動を終了する時点である。したがって、ζを大きくしすぎることも望ましくない。従ってζは1程度に設定するのが望ましい。
【0072】
図8は、図31(a)及び(b)に示す位置指令を入力した時の、実施の形態1の制御装置(図1)の応答を示す波形図である。破線は電動機位置偏差ΔθM、実線は制御対象位置偏差ΔθLである。前置フィルタ部8がない場合の電動機位置偏差ΔθM、制御対象位置偏差ΔθLの応答波形である図32と比較すると、実施の形態1の制御装置においては、位置指令出力期間終了後の振動が抑制されている。
図5のブロック1の伝達関数を減衰項ζn/ωa・sを含む式(5)に変更しても良い。減衰係数ζnを調整することにより、周波数ωaの利得を調整できる。減衰係数ζnを適切に決定することにより、電動機位置偏差ΔθM及び制御対象位置偏差ΔθLの振動が更に抑制される。
【0073】
(1/ωa)・s+(2ζn/ωa)・s+1 (5)
【0074】
前置フィルタ部8がない従来例の制御装置において、図32に示す例よりも位置比例ゲインKppと速度比例ゲインKvpを低く設定して制御対象位置偏差ΔθLの振動を低減した場合の電動機位置偏差ΔθM、制御対象位置偏差ΔθLの応答を図35に示す。図8の応答は図35の応答よりも速い。本発明により、従来例と同様、高速応答を保ったまま、振動を低減できる。図8の応答の時のトルク指令T*の波形は図7である。位置指令θ*の加速度が変動する時点A、B、C、Dでトルク指令T*が急激に増大しておらず、リミット制限されることがない。本実施の形態の制御方法及び制御装置は、位置指令θ*の加速度が変動する時にも適切な応答をする。
【0075】
振動周波数11Hz、整定幅±125μmの条件で、実験での整定時間(位置指令の出力(変動)完了時点から、装置先端位置(制御対象3の先端)が目標値を中心とした整定幅に収束する時点までに要する時間)を比較する。前置フィルタなしの制御装置においては整定時間は725msであった。前置フィルタ部107を有する従来例の制御装置(図29)においてはトルクが飽和して振動が長時間収束しなかったため有意な整定時間を測定できなかった。本発明の制御装置(図1)においては整定時間は45msであった。本発明により、前置フィルタがない場合と比較して、整定時間を約1/16にできた。
【0076】
図38は、本発明の制御装置を搭載した実装機の構成を示す図である。図38において、図1と同一部には同一番号を付している。図38において、実装機はサーボモータ2a、2b、2cを有する。各サーボモータは、図1の電動機2に該当する。各サーボモータは、それぞれサーボアンプ6a、6b、6cによって制御される。
【0077】
本発明の制御方法及び制御装置によれば、制御対象、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制することができる。本発明の制御方法及び制御装置は、指令パターン又は制御対象の特性によらず常に自動的に電動機及び制御対象の振動を抑制する。トルク指令T*が過大な値になることが自動的に防止される。図1の前置フィルタ部8のパラメータ設定をすべて自動化することにより制御装置の応答が速くなり、制御装置を搭載する装置の操作性が向上する。制御対象の特性変動により振動周波数ωaが変わってもωaの設定値を自動的に変更する構成を有することにより、指令パターン又は制御対象の特性によらず常に振動を低減することができる。
【0078】
図1において指令追従制御部12の構成は、電動機位置指令θM*に電動機位置θMが追従するよう制御を行う構成であれば、他の構成であっても本実施の形態と同様の効果を得ることができる。
図1の前置フィルタ部8は位置指令作成部1の内部に構成してもよい。
【0079】
本実施の形態は位置制御系について説明を行った。これに限定されず、図9に示すような速度制御系においても本発明を適用できる。図9において、図1と同じ符号のブロックは図1と同じ役割をする。速度指令作成部20は、速度指令パターンを作成し、パターンに従い速度指令を出力する。速度検出部21は電動機2の速度を検出し、ωMとして出力する。サーボコントローラ22はディジタル制御を行う。サーボコントローラ22は、速度指令作成部20からの速度指令と、速度検出部21からの電動機速度ωMとを一定周期ごとに取り込み、演算処理して電動機2の電流Iを制御する。速度指令入力部23は速度指令作成部20からの速度指令を入力し、サーボコントローラ22の内部演算に適した単位系に変換し速度指令ω*として出力する。前置フィルタ部8(図5の伝達関数を有する。)は、速度指令ω*を入力し、電動機速度指令ωM*を出力する。前置フィルタ部8は、振動検出部5が検出した制御対象3の振動周波数を抽出し、振動周波数に基づいてフィルタの伝達関数のパラメータを定める。指令追従制御部24は、電動機速度指令ωM*に電動機速度ωMが追従するよう制御を行う。速度検出部21のかわりに位置検出部を配置してもよい。この場合はサーボコントローラ22の内部で位置検出部が検出した電動機2の位置情報を微分して電動機速度ωMを算出する。図9の前置フィルタ部8を速度指令作成部20の内部に配置してもよい。
【0080】
図9の速度制御装置において、制御対象、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制することができる。速度制御装置は、指令パターン又は制御対象の特性によらず常に自動的に適切に電動機を制御する。速度制御装置は、トルク指令が過大になることを自動的に防止する。図9の前置フィルタ部8のパラメータ設定を自動化することにより、制御装置の操作性を改善できる。
【0081】
図1のフィルタ部9は、図5の構成でなくても良い。図4(a)のように所定の周波数ωa(好ましくは、制御対象3の***振周波数fr×2π近傍)及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを有する構成であればよい。
図1の制御対象位置θLが複数の振動周波数で振動している場合は、フィルタ部9は、複数の振動周波数及びそれらの近傍の周波数の利得を下げ、且つ高域の利得を抑える特性とする。
【0082】
図2のフローチャートにおいて、ステップS2の状態量取込処理は開始からステップS5の前までのいずれかのタイミングで行えばよい。
電動機は特定の種類に限定されない。電動機は、直流電動機、永久磁石同期電動機、又は誘導電動機であっても良い。電動機は回転型の電動機に限定されず、リニアモータであっても良い。
位置指令θ*の指令パターンは位置指令作成部1でなく、サーボコントローラ6内部の位置指令入力部7で作成しても良い。この場合、位置指令入力部7は作成した指令パターンに基づき、一定周期ごとに位置指令θ*を出力する。
【0083】
《実施の形態2》
図10〜15を用いて、本発明の実施の形態2の電動機の制御方法及び制御装置を説明する。図10は本発明に係る実施の形態2の電動機の制御方法における制御ブロックの構成を示す図である。図10において、実施の形態1の図1と異なる点は、前置フィルタ部8の構成である。実施の形態2の前置フィルタ部8は、フィルタ部9の代わりに、等価フィルタ部11と補償値印加部30とを有する。図10において、図1と同じ符号のブロックは、実施の形態1と同じ役割をする。
【0084】
図10の制御装置の詳細な動作を説明する。位置指令作成部1、位置検出部4は実施の形態1と同じため説明を省略する。サーボコントローラ6は、ディジタル制御を行う。サーボコントローラ6は、位置指令作成部1からの位置指令と、位置検出部4からの電動機位置θMとを一定周期ごとに入力し、演算処理して、電動機2の電流Iを制御する。
サーボコントローラ6が実行する1周期の演算処理のフローチャートを図11に示す。サーボコントローラ6は、図11に示す演算処理を一定の演算周期(例えば166μs)毎に繰り返す。図11の処理を図10〜12を用いて説明する。図11において、図2と同じ符号のステップは実施の形態1と同じ処理を行う。図11のステップS1からS3までは図2のステップS1からS3と同じ処理を行うため説明を省略する。
【0085】
等価フィルタ部11は、位置指令θ*を入力し、補償値Xcを出力する(ステップS10の前置フィルタ処理)。図12に等価フィルタ部11の伝達関数をラプラス演算子sを用いて示す。実際には図12の伝達関数を双一次変換などの手法で変換したディジタルフィルタに変換して、等価フィルタ部11はディジタルフィルタとして演算を行なう。ディジタルフィルタはステップS1で出力した位置指令θ*を入力し、補償値Xcを出力する。等価フィルタ部11の構成を図12とする理由は後で述べる。
【0086】
位置偏差演算部(差分器)13は、ΔθM(n)=θ*(n)−θM(n)を計算して電動機位置偏差ΔθM(n)を出力する(ステップS11の位置制御処理1)。補償値印加部(加算器)30は、ステップS11の出力値ΔθM(n)にステップS10の出力値Xc(n)を加算した値を出力する(ステップS12の補償値印加処理)。位置制御部14は、ステップS12の出力値(ΔθM(n)+Xc(n))に位置比例ゲインKppを乗じた値である電動機速度指令ωM*(n)を出力する(ステップS13の位置制御処理2)。
【0087】
速度偏差演算部(差分器)16は、ステップS13の出力値(位置制御部14の出力値)からステップS2で取り込んだ電動機位置θM(n)を減じた値ΔωM(n)=ωM*(n)−θM(n)を出力する(ステップS14の速度制御処理1)。速度制御部17は、ステップS14の出力値ΔωM(n)を用いて式(3)及び式(4)の比例積分演算を行い、トルク指令T*(n)を出力する(ステップS15の速度制御処理2)。電流制御部18は、ステップS15の出力値T*(n)に対応する電流Iが電動機2に流れるよう制御する(ステップS16の電流制御処理)。以上が図11のフローチャートに示すサーボコントローラ6の内部演算1周期分の演算処理である。
【0088】
等価フィルタ部11の構成を図12とする理由を述べる。図1の実施の形態1のフィルタ部9の伝達関数は式(6)(図5)である。
{(1/ωa)・s+1}/{(1/ωf)・s+2ζ/ωf・s+1}(6)
【0089】
式(6)を変換すると式(7)となる。
1+[{(1/ωa−1/ωf)・s−(2ζ/ωf)・s}/{(1/ωf)・s+(2ζ/ωf)・s+1}] (7)
【0090】
これに基づき、図5を等価変換すると図13となる。図13のブロック3は図12と等しい。したがって、図1の実施の形態1の構成と、図10の本実施の形態の構成は等価である。実施の形態2は実施の形態1と等価であり、同一の効果を奏する。
【0091】
実施の形態2では、実施の形態1と比較して、θMの収束値が位置指令θ*の収束値からずれない。実施の形態2では、前置フィルタ部8の補償値Xcは位置偏差演算部13の後段の補償値印加部30で、電動機位置偏差ΔθMに加算される。位置偏差演算部13は、ΔθM=θ*−θMの演算を行う。指令追従制御部12は、電動機位置偏差ΔθMが0となるよう制御する。制御装置は位置指令θ*をそのまま目標値として電動機位置θMを制御する故、位置指令θ*の収束値(停止位置)と電動機位置θMの収束値が一致する。よって本実施の形態は、位置指令θ*の収束値からθMの収束値がずれない。
【0092】
図1の実施の形態1では、位置偏差演算部(減算器)13は、ΔθM=θM*−θMの演算を行う。指令追従制御部12は、電動機位置偏差ΔθMが0となるよう制御する。電動機位置指令θM*の収束値(停止位置)は図1のフィルタ部9の演算で発生する桁落ち等に起因して、位置指令θ*の収束値と異なる場合がある。
位置指令θ*と電動機位置θMの収束値が異なる故、位置指令θ*の収束値からθMの収束値がずれる。実施の形態1では位置指令θ*と電動機位置指令θM*の収束値を常に一致させるには、ずれ補償の処理が必要であった。実施の形態2では、ずれ補償の処理は必要ない。
【0093】
以上より、実施の形態2では実施の形態1と同等の効果が得られる。実施の形態2の制御方法及び制御装置は、制御対象、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機2及び制御対象3の振動を抑制する。実施の形態2の制御方法及び制御装置は、指令パターン又は制御対象3の特性によらず常に自動的に電動機及び制御対象の振動を抑制する。トルク指令T*が過大な値となることが、自動的に防止される。図10の等価フィルタ部11のパラメータ設定をすべて自動的に行なうことにより、制御装置の操作性が向上する。実施の形態2の制御方法及び制御装置は、制御対象の特性変動により振動周波数が変わっても、適応的にフィルタのパラメータの値を変えて、常に振動を低減する。
本実施の形態においては、図1のフィルタ9を等価変化しフィードフォワード構成とすることにより、演算の桁落ちによるずれがなくなる。ずれ補償を行う必要がない分、ソフトウエアによる演算時間を短縮でき、ソフト作成にかかる労力を軽減できる。又はずれ補償の回路をなくすことができ、LSIの開発労力を軽減し、LSIのチップ面積を小さくすることが出来る。
【0094】
図10の補償値印加部30は、位置偏差演算部13の後段に構成されていれば、メインの信号経路上のどこで印加しても良い。例えば、図10を図14又は図15に等価的に変換しても良い。図14及び図15の制御装置は、図10と同じ効果を奏する。図14の制御装置のフローチャート(制御方法)は、図11のステップS10において等価フィルタ部11及び位置制御部14の処理を行なって補償値Xcを算出し、図11のステップS12(補償値印加処理)をステップS13とステップS14の間で実行する。図15の制御装置のフローチャート(制御方法)は、図11のステップS10において等価フィルタ部11、位置制御部14及び速度制御部17の処理を行なって補償値Xcを算出し、図11のステップS12(補償値印加処理)をステップS15とステップS16の間で実行する。
【0095】
本実施の形態では図5の構成を式(7)により図13に等価変換した。本発明においては図5の伝達関数に限られず、図4(a)のような所定の周波数及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性と、を有する任意の伝達関数を用いることが出来る。式(7)と同様に、そのような伝達関数を1+Ge(s)の形に等価変換し、Ge(s)をフィードフォワード構成とすることができる。これにより、本実施の形態と同様の効果を得ることができる。
図11のステップS3の前置フィルタパラメータ自動設定処理は、ステップS10の前置フィルタ処理の前までに処理を終えれば、任意の時点で実行しても良い。ステップS10の前置フィルタ処理は、ステップS12の補償値印加処理の前までに処理を終えれば、任意の時点で実行しても良い。
【0096】
図10において指令追従制御部12の構成は、位置指令θ*に電動機位置θMが追従するよう制御を行う構成であれば、他の構成であっても本実施の形態と同様の効果を得ることができる。
図10の前置フィルタ部8は位置指令作成部1の内部に配置してもよい。
本実施の形態は位置制御系について説明を行ったが、実施の形態1で説明したのと同様に、速度制御系にも本発明を適用可能である。この場合前置フィルタ部は、速度指令パターンを作成して速度指令を出力する速度指令作成部の内部に配置してもよい。
図10の制御対象位置θLが複数の振動周波数で振動している場合は、等価フィルタ部11の伝達関数をGe(s)とすると、伝達関数1+Ge(s)は、複数の振動周波数及びそれらの近傍の周波数の利得を下げ、且つ高域の利得を抑える特性とする。
【0097】
図11のフローチャートにおいて、ステップS2の処理は開始からステップS11の前までのいずれかのタイミングで行えばよい。
電動機はある特定の種類に限定されない。電動機は、直流電動機、永久磁石同期電動機、又は誘導電動機であっても良い。電動機は回転型の電動機に限定されず、リニアモータであっても良い。
位置指令θ*の指令パターンは位置指令作成部1でなく、サーボコントローラ6内部の位置指令入力部7で作成しても良い。この場合、位置指令入力部7は作成した指令パターンに基づき、一定周期ごとに位置指令θ*を出力する。
【0098】
《実施の形態3》
図16〜21を用いて、本発明の実施の形態3の電動機の制御方法及び制御装置を説明する。図16は本発明に係る実施の形態3の電動機の制御装置の構成を示すブロック図である。図16において、実施の形態1の図1と異なる点は、前置フィルタ部8の構成である。実施の形態3の前置フィルタ部8は、フィルタ部9の代わりに、指令推定部40と等価内部フィルタ部41と補償値印加部(加算器)42とを有する。更に、位置指令入力部7、位置偏差演算部13、位置制御部14がサーボコントローラ43の外部に構成されている。サーボコントローラ43の外部に配置されたこれらのブロックは、例えば既存のLSI又は処理内容が公開されていない既存のソフトウエアで構成されている。これらのブロックにおける処理は変更することができず、且つこれらのブロックの出力信号は、特定の信号しか読み取ること(本発明の制御方法及び制御装置が利用すること)ができない。これらの点が図1と異なる。図16において、図1と同じ符号のブロックは、実施の形態1と同じ役割をする。
【0099】
図16の制御装置の詳細な動作を説明する。位置指令作成部1、位置検出部4は実施の形態1と同じため説明を省略する。位置指令入力部7、位置偏差演算部13、位置制御部14は実施の形態1と同じ役割を持つため、その説明は省略するが、実施の形態1と異なりサーボコントローラ43の外に構成されている。これらのブロックの動作を変更することができない。サーボコントローラ43は、位置制御部14が出力する速度指令ω*のみを入力する。サーボコントローラ43は、速度指令ω*以外の情報(例えば位置指令θ*)を上位から入力することができない。
サーボコントローラ43はディジタル制御を行う。サーボコントローラ43は、位置制御部14からの速度指令ω*と、位置検出部4からの電動機位置θMとを一定周期ごとに取り込み、演算処理して電動機2の電流Iを制御する。サーボコントローラ43が実行する1周期の演算処理のフローチャートを図17に示す。サーボコントローラ43は、図17に示す演算処理を一定の演算周期(例えば166μs)毎に繰り返す。図17の処理を図16〜18を用いて説明する。図2と同じ符号のステップにおいては実施の形態1での処理と同じ処理を行う。
【0100】
サーボコントローラ43は、位置制御部14が出力する速度指令ω*を取り込み、ω*(n)とする(ステップS20の指令取込処理)。ステップS2とステップS3は実施の形態1と同じため説明を省略する。指令推定部40、等価内部フィルタ部41、補償値印加部42は、演算を行って、速度指令ω*に補償値Xcを印加する(ステップS21の前置フィルタ処理)。
指令推定部40は、速度指令ω*と電動機位置θMから下記式(8)を用いて推定位置指令θe*を推定演算する。
θe(n)=ω*(n)/Kpp+θM(n) (8)
【0101】
図18に等価内部フィルタ部41の内部ブロックの伝達関数を示す。図13のブロック3と同じ構成、つまり図1の前置フィルタ9を式(7)を用いて等価変換した時の第2項の構成に、位置制御部の比例ゲインKppを乗じた構成である。実際には図18の伝達関数を双一次変換などの手法で変換したディジタルフィルタに変換して、等価内部フィルタ部41はディジタルフィルタとして演算を行なう。ディジタルフィルタは、式(8)で算出した推定位置指令θe*を入力し、補償値Xcを出力する。入力が位置指令θ*であるか又は推定位置指令θe*であるかの違いを除けば、図18は実施の形態2(図14)と同じ原理で動作する。図18の構成により、実施の形態2と同様の振動抑制効果が得られる。補償値印加部(加算器)42は、速度指令ω*と等価内部フィルタ部41が出力する補償値Xcとを加算し、ωM*として出力する。等価内部フィルタ部41の構成を図18とする理由は後で述べる。
ステップS6、ステップS7は実施の形態1と同じため説明を省略する。以上が図17のフローチャートに示すサーボコントローラ43の1周期の演算処理である。
【0102】
等価内部フィルタ部41の構成を図18とする理由を述べる。図1の実施の形態1の構成を、図19にラプラス演算子を用いたブロック図で示す。図19のFはフィルタ部9の伝達関数を表す式(6)である。G(s)は図29の電動機102の伝達関数であり、トルク指令T*から電動機位置θMまでの伝達関数である。sはラプラス演算子である。図19を等価変換したブロック図を図20に示す。図20において、F11、F21、F31、F32、F33はそれぞれ式(9)〜(13)である。
【0103】
F11(s)=Kpp・{(1/ωf−1/ωa)・s+(2ζ/ωf)・s}/{(1/ωa)・s+1} (9)
F21(s)=Kpp・{(1/ωf−1/ωa)・s+(2ζ/ωf)・s}/{(1/ωf)・s+(2ζ/ωf)・s+1} (10)
F31(s)=1/Kpp (11)
F32(s)=1 (12)
F33(s)=Kpp・{(1/ωa−1/ωf)・s−(2ζ/ωf)・s}/{(1/ωf)・s+(2ζ/ωf)・s+1} (13)
【0104】
図20(a)においてはブロックF11が周波数特性にゲインピークを持つ故に、実装した際に制御系が不安定になりやすい(例えばブロックF11の出力信号がリミットをかけられて、制御装置の制御が不安定になる。)。図20(b)においてはブロックF(s)が位置制御ループに直列に入る。F(s)が高域のフィードバック情報を除去してしまう故、制御装置の応答性が低下する。
図20(c)は本実施の形態の構成である。図20(c)の構成においては、図20(a)のようにゲインピークを持つブロックがないため、実装の際の制御系の安定性を確保できる。且つ、フィードバック情報と独立に振動抑制の補償量Xcを算出する故、図20(b)のように位置制御ループの応答性が低下しない。実施の形態3のように指令作成部及び制御ブロックの構成変更の自由度が限定されている場合でも(例えば既存のLSIの内部ブロックをそのまま使用し、そのブロックについては仕様を変更できない場合でも)、図1の前置フィルタ8を等価変換した図20(c)の構成により、制御系の安定性及び応答性を損なうことなく振動抑制効果を得ることができる。
【0105】
以上より、本実施の形態は、制御対象(負荷)、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機2及び制御対象3の振動を抑制することができる。実施の形態2の制御方法及び制御装置は、指令パターン又は制御対象3の特性によらず常に自動的に電動機及び制御対象の振動を抑制する。トルク指令T*が過大な値になることが自動的に防止される。図16の前置フィルタ部8のパラメータ設定をすべて自動的に行なうことにより、制御装置の操作性が向上する。実施の形態3の制御方法及び制御装置は、制御対象の特性変動により振動周波数が変わっても、適応的にフィルタのパラメータの値を変えて、常に振動を低減する。
本実施の形態は、図1のフィルタ9を等価変化し内部構成型とすることにより、演算の桁落ちによるずれがなくなる。ずれ補償を行う必要がない分、ソフトウエアによる演算時間を短縮でき、ソフト作成にかかる労力を軽減できる。又はずれ補償の回路をなくすことができ、LSIの開発労力を軽減し、LSIのチップ面積を小さくすることが出来る。
本発明によれば、指令作成部又は制御ブロックの構成変更の自由度が限定されている場合でも、制御系の安定性及び応答性を損なうことなく振動抑制効果を得ることができる。
【0106】
図20(c)は図21(a)のように電動機速度ωMから推定指令θe*を算出してもよい。フィードバックループ自体の安定性、応答性と独立に補償量Xcを算出する形式であれば、図20(c)を任意に等価変換をしても良い。例えば図20(c)を図21(b)、(c)のように等価変換しても良い。この場合、F34、F35、F36はそれぞれ式(14)〜(16)となる。
【0107】
F34(s)=1/Kpp・s (14)
F35(s)=1 (15)
F36(s)=Kpp・{(1/ωa−1/ωf)・s−2ζ/ωf}/{(1/ωf)・s+(2ζ/ωf)・s+1} (16)
【0108】
図20(c)及び図21の構成が変わらなければ、F31、F32、F33及びF34、F35、F36の式を他の式に等価変換してもよい。例えば、F34、F35、F36を式(17)〜(19)に等価変換してもよい。
【0109】
F34(s)=s (17)
F35(s)=Kpp (18)
F36(s)={(1/ωa−1/ωf)・s−2ζ/ωf}/{(1/ωf)・s+(2ζ/ωf)・s+1}(19)
【0110】
図20、図21に等価変換する前の図1のフィルタ部9の構成は、式(6)の構成に限られない。図4(a)のような所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを有する任意の構成をとることができる。
図16の制御対象位置θLが複数の振動周波数で振動している場合は、フィルタ部9は、複数の振動周波数及びそれらの近傍の周波数の利得を下げ、且つ高域の利得を抑える特性とする。
電動機はある特定の種類に限定されない。電動機は、直流電動機、永久磁石同期電動機、又は誘導電動機であっても良い。電動機は回転型の電動機に限定されず、リニアモータであっても良い。
【0111】
《実施の形態4》
図22、23を用いて、本発明の実施の形態4の電動機の制御方法及び制御装置を説明する。図22は本発明に係る実施の形態4の電動機の制御装置の構成を示すブロック図である。
本実施の形態が図1の実施の形態1と異なる点を述べる。図22の本実施の形態の制御装置においては、パラメータ自動設定部10が制御対象(負荷)3の振動周波数ωaを算出する方法が実施の形態1(図1)と異なる。本実施の形態の制御装置は振動検出部5(図1)を有していない。パラメータ自動設定部10は、電動機位置θMに基づきωaを求める。この点で実施例4は実施の形態1と異なる。本実施の形態の制御装置は、図1の振動検出部5が不要である故、実施の形態1より安価である。
【0112】
本実施の形態においては、制御対象位置θLの振動と同じ周波数の振動成分が電動機位置θMで検出できることが必要である。例えば制御対象3の慣性が電動機2の慣性に比較して非常に小さく、制御対象位置θLの振動と同じ周波数の振動成分が電動機位置θMに現れにくく、電動機位置θMから制御対象位置θLの振動を検出できない場合には、実施の形態4の構成を適用できない。電動機位置θMから制御対象位置θLの振動周波数ωaを算出できないからである。この点において、実施の形態4は、実施の形態1と異なり適用範囲に制約がある。
実施の形態4において、制御対象位置θLの振動と同じ周波数の振動成分が電動機位置θMで検出できるものとする。
【0113】
図22の制御装置の詳細な動作を説明する。位置指令作成部1、位置検出部4は実施の形態1と同じため説明を省略する。サーボコントローラ6はディジタル制御を行う。サーボコントローラ6は、位置指令作成部1からの位置指令と、位置検出部4からの電動機位置θMとを一定周期ごとに入力し、演算処理して電動機2の電流Iを制御する。サーボコントローラ6が実行する1周期の演算処理のフローチャートを図23に示す。サーボコントローラ6は、図23に示す演算処理を一定の演算周期(例えば166μs)毎に繰り返す。図23の処理を図22を用いて説明する。図23においてステップS22以外の処理は実施の形態1と同じため、説明を省略する。
【0114】
ステップS22の前置フィルタパラメータ自動設定処理では、パラメータ自動設定部10は、位置検出部4が検出した電動機位置θMに基づき、制御対象位置θLの振動周波数ωaを算出する。パラメータ自動設定部10は、例えば位置指令θ*の変化終了後の電動機位置偏差ΔθMのゼロクロス時間間隔を測定して電動機位置θMの振動周波数を算出する。電動機位置偏差Δθに代えて、電動機速度偏差ΔωM、又はトルク指令T*などの指令追従制御部12内部の状態量を用いてωaを算出しても良い。電動機位置θMの振動周波数と制御対象位置θLの振動周波数は理論的に同一であるため、算出した電動機位置θMの振動周波数を制御対象位置θLの振動周波数frとする。ωa=2π・frとする。
【0115】
パラメータ自動設定部10は、算出したωaに基づきωfを決定する。ωfは、高域の利得を下げる特性を持つフィルタ部9(図22)のカットオフ周波数を決める。ωfの決定においては、例えば図3に示すωaとωfとの関係を決めるグラフに基づくテーブル又は計算式を用いる。ωaと位置指令θ*の加速度を引数とした2次元テーブルを用いてωfを決定しても良い。減衰係数ζは1に固定する。ωaの役割と、ωfの役割と、ωaと位置指令θ*の加速度を引数としてωfを決定する理由と、ζの適切な設定値の詳細な説明は実施の形態1で行ったためここでは省略する。
【0116】
以上より、本実施の形態は、制御対象(負荷)自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機2及び制御対象3の振動を抑制することができる。実施の形態4の制御方法及び制御装置は、指令パターン又は制御対象3の特性によらず常に自動的に電動機及び制御対象の振動を抑制する。トルク指令T*が過大な値になることが自動的に防止される。前置フィルタ部8のパラメータ設定をすべて自動的に行なうことにより、制御装置の操作性が向上する。実施の形態4の制御方法及び制御装置は、制御対象の特性変動により振動周波数が変わっても、適応的にフィルタのパラメータの値を変えて、常に振動を低減する。
本実施の形態の制御方法及び制御装置は、実施の形態1の図1の振動検出部5が不要であるため、実施の形態1より安価である。
【0117】
図22において、指令追従制御部12の構成は、電動機位置指令θM*に電動機位置θMが追従するよう制御を行う構成であれば、他の構成であっても良い。そのような構成によっても、本実施の形態と同様の効果を得ることができる。
本実施の形態は位置制御系について説明を行ったが、実施の形態1で説明したのと同様に、速度制御系においても本発明を適用可能である。この場合前置フィルタ部8は、速度指令パターンを作成して速度指令を出力する速度指令作成部の内部に配置してもよい。
図22のフィルタ部9の構成は、図4(a)のような所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを有していれば、任意である。
【0118】
図22の前置フィルタ部8は位置指令作成部1の内部に配置してもよい。
図22の制御対象位置θLが複数の振動周波数で振動している場合は、フィルタ部9は、複数の振動周波数及びそれらの近傍の周波数の利得を下げ、且つ高域の利得を抑える特性とする。
図23のフローチャートにおいて、ステップS2の処理はステップS1の前に行っても良い。
電動機は特定の種類に限定されない。電動機は、直流電動機、永久磁石同期電動機、又は誘導電動機であっても良い。電動機は回転型の電動機に限定されず、リニアモータであっても良い。
位置指令θ*の指令パターンは位置指令作成部1でなく、サーボコントローラ6内部の位置指令入力部7で作成しても良い。この場合位置指令入力部7は作成した指令パターンに基づき、一定周期ごとに位置指令θ*を出力する。
【0119】
《実施の形態5》
図24、25を用いて、本発明の実施の形態5の電動機の制御方法及び制御装置を説明する。図24は本発明に係る実施の形態5の電動機の制御装置の構成を示すブロック図である。
本実施の形態が図1の実施の形態1と異なる点を述べる。図24の本実施の形態の制御装置では、パラメータ自動設定部10が制御対象(負荷)3の振動周波数ωaを算出する方法が実施の形態1(図1)と異なる。本実施の形態の制御装置は振動検出部5(図1)を有していない。本実施の形態では、パラメータ自動設定部10は、サーボコントローラ6の内部で演算に用いられる状態量から、電動機2及び制御対象3の数式モデルを用いて制御対象位置θLの振動周波数ωaを求める。
【0120】
図24の制御装置の詳細な動作を説明する。位置指令作成部1、位置検出部4は実施の形態1と同じため説明を省略する。サーボコントローラ6はディジタル制御を行う。サーボコントローラ6は、位置指令作成部1からの位置指令と、位置検出部4からの電動機位置θMとを一定周期ごとに入力し、演算処理して電動機2の電流Iを制御する。サーボコントローラ6が実行する1周期の演算処理のフローチャートを図25に示す。サーボコントローラ6は、図25に示す演算処理を一定の演算周期(例えば166μs)毎に繰り返す。図25の処理を図24を用いて説明する。ステップS25、S26、S27以外の処理は実施の形態1と同じため、説明を省略する。
ステップS25で、パラメータ自動設定部10は、電動機2が加速中かどうかを判断する。加速中であればステップS26の慣性推定処理に進み、加速中でなければステップS27の前置フィルタパラメータ自動設定処理に進む。ステップS26の慣性推定処理では、パラメータ自動設定部10は、サーボコントローラ6内の状態量である電動機位置θMとトルク指令T*とから、制御対象3の慣性JLを推定する。パラメータ自動設定部10は、式(20)〜(24)の演算を行う。
【0121】
ωMc(n)=θM(n)−θM(n−1) (20)
aM(n)=Ku・(ωMc(n)−ωMc(n−1)) (21)
aMf(n)=aMf(n−1)+Kf・(aM(n)−aMf(n−1))(22)
J(n)=aMf(n)/T*(n−1) (23)
JL(n)=J(n)−JM (24)
【0122】
ωMcは速度演算値、aMは加速度演算値、aMfはフィルタ後加速度演算値、Kfはフィルタ定数、Kuは単位系変換係数、Jは電動機2と制御対象3とを合わせた慣性、定数JMは電動機2の慣性である。ステップS27の前置フィルタパラメータ自動設定処理で、パラメータ自動設定部10は制御対象3の振動周波数frを算出する。ωa=2π・frとする。算出には式(25)を用いる。
【0123】
ωa(n)=(Ks/JL(n))1/2 (25)
【0124】
定数Ksはバネ定数である。ωaの算出に式(25)を用いる理由については後で述べる。算出したωaに基づき周波数ωfを決定する。ωfの決定は、例えば図3に示すωaとωfとの関係を決めたグラフに基づくテーブル又は計算式を用いる。ωaと位置指令θ*の加速度を引数とした2次元テーブルを用いてωfを決定しても良い。減衰係数ζは1に固定する。ωaの役割と、ωfの役割と、ωaと位置指令θ*の加速度を引数としてωfを決定する理由と、ζの適切な設定値の詳細な説明は実施の形態1で行ったためここでは説明を省略する。
【0125】
制御対象3の振動周波数ωaの算出に式(25)を用いる理由を述べる。従来例で説明したのと同様に、電動機2と制御対象3を図27のモデルで数式モデル化した場合、そのブロック図は図28になる。JMは電動機2の慣性、JLは制御対象3の慣性、Ksは電動機2と制御対象3の連結軸のバネ定数である。連結軸の慣性はJMとJLに比べて非常に小さいとして無視している。トルク指令T*から電動機位置θMまでの周波数特性は図30(a)となる。従来例の説明で述べたように、制御対象3の振動周波数ωa(=2π・fr)は図30(a)の***振周波数付近となる。振動周波数ωaは、図28のブロック図より下記式(26)で導出される。
【0126】
ωa=(Ks/JL)1/2 (26)
【0127】
式(25)のωaの算出は式(26)に基づいている。
以上より、本実施の形態は、制御対象(負荷)自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機2及び制御対象3の振動を抑制することができる。実施の形態5の制御方法及び制御装置は、指令パターン又は制御対象3の特性によらず常に自動的に電動機及び制御対象の振動を抑制する。トルク指令T*が過大な値になることが自動的に防止される。前置フィルタ部8のパラメータ設定をすべて自動的に行なうことにより、制御装置の操作性が向上する。実施の形態5の制御方法及び制御装置は、制御対象の特性変動により振動周波数が変わっても、適応的にフィルタのパラメータの値を変えて、常に振動を低減する。
本実施の形態の制御方法及び制御装置は、実施の形態1の図1の振動検出部5が不要であるため、実施の形態1より安価である。
【0128】
図25のステップS25、S26、S27で制御対象3の振動周波数ωaを算出する。ωaの推定法は式(20)〜式(25)に限られない。電動機2及び制御対象3の簡略化した数式モデルに基づき、サーボコントローラ6内部の状態量を用いてωa求める方法であれば、任意の方法をとることができる。
図24において指令追従制御部12の構成は、電動機位置指令θM*に電動機位置θMが追従するよう制御を行う構成であれば、他の構成であって良い。そのような構成によっても、本実施の形態と同様の効果が得られる。
【0129】
本実施の形態においては位置制御系について説明を行ったが、実施の形態1で説明したのと同様に、速度制御系にも本発明を適用可能である。この場合、前置フィルタ部は、速度指令パターンを作成して速度指令を出力する速度指令作成部の内部に配置してもよい。
図24のフィルタ部9の構成は、図4(a)のような所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを有する構成であれば任意である。
図24の前置フィルタ部8は位置指令作成部1の内部に配置してもよい。
図24の制御対象位置θLが複数の振動周波数で振動している場合は、フィルタ部9は、複数の振動周波数及びそれらの近傍の周波数の利得を下げ、且つ高域の利得を抑える特性とする。
【0130】
図25のフローチャートにおいて、ステップS2の処理はステップS1の前に行っても良い。
電動機は特定の種類に限定されない。電動機は、直流電動機、永久磁石同期電動機、又は誘導電動機であっても良い。電動機は回転型の電動機に限定されず、リニアモータであっても良い。
位置指令θ*の指令パターンは、位置指令作成部1でなく、サーボコントローラ6内部の位置指令入力部7で作成しても良い。この場合位置指令入力部7は作成した指令パターンに基づき、一定周期ごとに位置指令θ*を出力する。
【0131】
【発明の効果】
本発明によれば、前置フィルタが所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを併せ持つことにより、制御対象(負荷)自体、もしくは電動機と制御対象とを連結する連結軸の剛性が低いことに起因して発生する電動機及び制御対象の振動を抑制する効果を得ることができる。
本発明によれば、指令パターン又は制御対象の特性によらず常に電動機及び制御対象の振動を抑制できる。トルク指令T*が過大な値になることを自動的に防止する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0132】
本発明によれば、所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを併せ持つフィルタの伝達関数を等価変換し、フィードフォワード型前置フィルタとすることにより、演算での桁落ち等に起因する電動機位置の収束値誤差が発生せず、演算誤差の補正が不要で高い位置決め精度を実現する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0133】
本発明によれば、フィードバックループ内の状態量に基づき指令を推定した推定指令を生成し、所定の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、推定指令をフィードフォワード補償項に作用させて内部補償量を決定し、その内部補償量をフィードバックループ内部に入力する内部構成型前置フィルタを構成することにより、指令作成部及び制御ブロックの構成変更の自由度が限定されている場合でも、制御系の安定性や応答性を損なうことなく振動を抑制する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0134】
本発明によれば、所定の周波数ωaの利得を可変とすることにより、振動抑制効果を更に向上する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
本発明によれば、前置フィルタもしくはフィードフォワード型前置フィルタもしくは内部構成型前置フィルタの、高域の利得を抑える特性をトルク指令T*が過大値になりやすい期間となりにくい期間に応じて変化させることにより、高域の利得を抑える特性による応答性の遅れを低減する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0135】
本発明によれば、前置フィルタ部、フィードフォワード型前置フィルタ又は内部構成型前置フィルタが、高域の利得を抑える特性を少なくとも所定の周波数ωaに基づき自動的に決定することにより、自動的に応答性の良い電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
本発明によれば、前置フィルタ部、フィードフォワード型前置フィルタ又は内部構成型前置フィルタが、所定の周波数ωaを自動設定することにより、制御対象の特性変動により振動周波数が変わっても安定して常に振動を低減する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0136】
本発明は、制御対象の振動を検出し、その振動周波数に基づき所定の周波数ωaを決定する。これにより、最適の応答を自動的に行い、高い応答性を有する電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
本発明によれば、振動周波数自動設定の際に、電動機の振動周波数に基づき所定の周波数ωaを決定することにより、制御対象の振動検出部を用いることなく、安価な電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
【0137】
本発明によれば、振動周波数自動設定の際に、電動機と制御対象の数式モデルを推定し、数式モデルに基づき所定の周波数ωaを決定することにより、制御対象の振動検出部を用いることなく、安価な電動機の制御方法及び制御装置を実現できるという有利な効果が得られる。
本発明によれば、前置フィルタが前記電動機が出力したトルクから電動機位置までの系が有する***振周波数の近傍の周波数ωa及びその近傍の周波数の利得を下げる特性と、高域の利得を抑える特性とを併せ持つことにより、制御対象の振動を抑制し、高い応答性を有する制御方法及び制御装置を実現する。
【0138】
本発明に係る電動機の制御方法及び制御装置は、電動機を搭載する装置を制御対象とした場合、例えばワイヤボンダ、ダイボンダ、実装機、印刷機、多軸ロボット、又は工作機などの、機械剛性が低いことに起因し振動が発生しやすい任意の装置に適用することができる。これにより上記の効果を得ることができる。
【図面の簡単な説明】
【図1】本発明に係る実施の形態1の電動機の制御方法の構成を示す制御ブロック図
【図2】本発明に係る実施の形態1におけるフローチャート
【図3】本発明に係る実施の形態1における引数と設定値の関係を示したグラフ
【図4】(a)は本発明に係る実施の形態1におけるフィルタ部9の周波数特性図、(b)は位置指令θ*から制御対象位置θLまでの周波数特性図
【図5】本発明に係る実施の形態1におけるフィルタ部9の構成図
【図6】本発明に係る実施の形態1における位置指令θ*と電動機位置指令θM*の波形図
【図7】本発明に係る実施の形態1におけるトルク指令T*の波形図
【図8】本発明に係る実施の形態1における電動機位置偏差ΔθMと制御対象位置偏差ΔθLの波形図
【図9】本発明に係る実施の形態1の前置フィルタ部8を速度制御系に適用した場合のブロック図
【図10】本発明に係る実施の形態2の電動機の制御方法の構成を示す制御ブロック図
【図11】本発明に係る実施の形態2におけるフローチャート
【図12】本発明に係る実施の形態2における等価フィルタ部11の構成図
【図13】本発明に係る実施の形態1におけるフィルタ部9を等価変換した構成図
【図14】本発明に係る実施の形態2における図10と等価な構成図
【図15】本発明に係る実施の形態2における図10と等価な構成図
【図16】本発明に係る実施の形態3の電動機の制御方法の構成を示す制御ブロック図
【図17】本発明に係る実施の形態3におけるフローチャート
【図18】本発明に係る実施の形態3における等価内部フィルタ部41の構成図
【図19】本発明に係る実施の形態1における図1の構成をラプラス演算子を用いて表したブロック図
【図20】本発明に係る実施の形態3における図19と等価な構成図
【図21】本発明に係る実施の形態3における図20(c)と等価な構成図
【図22】本発明に係る実施の形態4の電動機の制御方法の構成を示す制御ブロック図
【図23】本発明に係る実施の形態4におけるフローチャート
【図24】本発明に係る実施の形態5の電動機の制御方法の構成を示す制御ブロック図
【図25】本発明に係る実施の形態5におけるフローチャート
【図26】従来の電動機の制御方法の制御ブロック図
【図27】低剛性装置のモデル図
【図28】低剛性装置を数式モデル化したブロック図
【図29】従来の電動機の制御方法の制御ブロック図
【図30】従来の電動機の制御方法に係る、(a)はトルク指令T*から電動機位置θMまでの伝達関数の周波数特性図、(b)は電動機位置指令θM*から電動機位置θMまでの伝達関数の周波数特性図、(c)は電動機位置θMから制御対象位置θLまでの伝達関数の周波数特性図、(d)は電動機位置指令θM*から制御対象位置θLまでの伝達関数の周波数特性図
【図31】従来の電動機の制御方法における、(a)は位置指令θ*の指令パターン図、(b)は位置指令θ*の微分波形図
【図32】従来の電動機の制御方法における、前置フィルタ部107がない場合の電動機位置偏差ΔθMと制御対象位置偏差ΔθLの波形図
【図33】従来の電動機の制御方法における、(a)は前置フィルタ部107の周波数特性図、(b)は位置指令θ*から制御対象位置θLまでの伝達関数の周波数特性図
【図34】従来の電動機の制御方法における、電動機位置偏差ΔθMと制御対象位置偏差ΔθLの波形図
【図35】従来の電動機の制御方法における、前置フィルタ部107がない場合で位置比例ゲインKpp、速度比例ゲインKvpが低い場合の電動機位置偏差ΔθMと制御対象位置偏差ΔθLの波形図
【図36】従来の電動機の制御方法における、位置指令θ*と電動機位置指令θM*の波形図
【図37】従来の電動機の制御方法における、T*の波形図
【図38】本発明を搭載した実装機を示す図
【符号の説明】
1 位置指令作成部
2 電動機
3 制御対象
4 位置検出部
5 振動検出部
6、22、43 サーボコントローラ
7 位置指令入力部
8 前置フィルタ部
9 フィルタ部
10 パラメータ自動設定部
11 等価フィルタ部
12 指令追従制御部
13 位置偏差演算部
14 位置制御部
15 速度演算部
16 速度偏差演算部
17 速度制御部
18 電流制御部
20 速度指令作成部
21 速度検出部
23 速度指令入力部
24 指令追従制御部
30、42 補償値印加部
40 指令推定部
41 等価内部フィルタ部

Claims (25)

  1. 電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力ステップと、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタに前記指令を作用させて追従指令値を出力する前置フィルタステップと、
    前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御ステップと、
    を有することを特徴とする電動機の制御方法。
  2. 電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力ステップと、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記指令を前記定数項に作用させて追従指令値を出力し、且つ前記指令をフィードフォワード補償項に作用させてフィードフォワード補償項補償量を出力するフィードフォワード型前置フィルタステップと、
    前記フィードフォワード補償項補償量と前記追従指令値に基づき、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御ステップと、
    を有することを特徴とする電動機の制御方法。
  3. 電動機、又は前記電動機に連結された制御対象に対する位置指令から導出された速度指令を入力する速度指令入力ステップと
    前記速度指令と前記電動機又は前記制御対象の位置とに基づき、前位置指令を推定した推定位置指令を出力する指令推定ステップと、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記速度指令を前記定数項に作用させた値に、前記推定位置指令を前記フィードフォワード補償項に作用させて生成したフィードフォワード補償項補償量を加算して、追従速度指令値を出力する内部構成型前置フィルタステップと、
    前記追従速度指令値に前記電動機又は前記制御対象の速度が追従するよう制御する指令追従制御ステップと、
    を有することを特徴とする電動機の制御方法。
  4. 前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性の、前記電動機又は前記制御対象の振動を励起する周波数の利得を可変とすることを特徴とする請求項1から請求項3のいずれかの請求項に記載の電動機の制御方法。
  5. 前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記高域周波数の利得を抑える特性を動作状態により変化させることを特徴とする請求項1から請求項4のいずれかの請求項に記載の電動機の制御方法。
  6. 前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記高域周波数の利得を抑える特性を、少なくとも前記電動機又は前記制御対象の振動を励起する周波数を決めるパラメータに基づき自動的に決定することを特徴とする請求項1から請求項5のいずれかの請求項に記載の電動機の制御方法。
  7. 前記前置フィルタステップ、前記フィードフォワード型前置フィルタステップ又は前記内部構成型前置フィルタステップが、前記電動機又は前記制御対象の振動を励起する周波数を自動設定する振動周波数自動設定ステップを有することを特徴とする請求項1から請求項6のいずれかの請求項に記載の電動機の制御方法。
  8. 前記振動周波数自動設定ステップが、前記制御対象の振動を検出する振動検出ステップと、検出した前記振動から振動周波数を抽出して、前記電動機又は前記制御対象の振動を励起する周波数を決定する周波数決定ステップと、を有することを特徴とする請求項7に記載の電動機の制御方法。
  9. 前記振動周波数自動設定ステップが、前記電動機の振動周波数に基づき、前記電動機又は前記制御対象の振動を励起する周波数を決定することを特徴とする請求項7に記載の電動機の制御方法。
  10. 前記振動周波数自動設定ステップにおいて、前記電動機の応答に基づき前記電動機と前記制御対象の数式モデルを推定し、前記数式モデルに基づき、前記電動機又は前記制御対象の振動を励起する周波数を決定することを特徴とする請求項7に記載の電動機の制御方法。
  11. 前記電動機又は前記制御対象の振動を励起する周波数が、前記電動機が出力したトルクから前記電動機の位置又は速度までの系が有する***振周波数であることを特徴とする請求項1から請求項10のいずれかの請求項に記載の電動機の制御方法。
  12. 前記電動機又は前記制御対象の状態量が、前記電動機又は前記制御対象の位置又は速度であることを特徴とする請求項1又は請求項2に記載の電動機の制御方法。
  13. 電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力部と、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタを有し、前記フィルタに前記指令を作用させて追従指令値を出力する前置フィルタ部と、
    前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御部と、
    を有することを特徴とする電動機の制御装置。
  14. 電動機、又は前記電動機に連結された制御対象に対する指令を入力する指令入力部と、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記指令を前記定数項に作用させて追従指令値を出力し、且つ前記指令をフィードフォワード補償項に作用させてフィードフォワード補償項補償量を出力するフィードフォワード型前置フィルタ部と、
    前記フィードフォワード補償項補償量と前記追従指令値に基づき、前記追従指令値に前記電動機又は前記制御対象の状態量が追従するよう制御する指令追従制御部と、
    を有することを特徴とする電動機の制御装置。
  15. 電動機、又は前記電動機に連結された制御対象に対する位置指令から導出された速度指令を入力する速度指令入力部と、
    前記速度指令と前記電動機又は前記制御対象の位置とに基づき、前位置指令を推定した推定位置指令を出力する指令推定部と、
    前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性と、前記電動機へのトルク指令がトルクリミット以下となるように前記電動機又は前記制御対象の振動を励起する周波数よりも高域の高域周波数の利得を抑える特性とを併せ持つフィルタの伝達関数を、定数項とフィードフォワード補償項との和に等価変換し、前記速度指令を前記定数項に作用させた値に、前記推定位置指令を前記フィードフォワード補償項に作用させて生成したフィードフォワード補償項補償量を加算して、追従速度指令値を出力する内部構成型前置フィルタ部と、
    前記追従速度指令値に前記電動機又は前記制御対象の速度が追従するよう制御する指令追従制御部と、
    を有することを特徴とする電動機の制御装置。
  16. 前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記電動機又は前記制御対象の振動を励起する周波数の利得を下げる特性の、前記電動機又は前記制御対象の振動を励起する周波数の利得を可変とすることを特徴とする請求項13から請求項15のいずれかの請求項に記載の電動機の制御装置。
  17. 前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記高域周波数の利得を抑える特性を動作状態により変化させることを特徴とする請求項13から請求項16のいずれかの請求項に記載の電動機の制御装置。
  18. 前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記高域周波数の利得を抑える特性を、少なくとも前記電動機又は前記制御対象の振動を励起する周波数を決めるパラメータに基づき自動的に決定することを特徴とする請求項13から請求項17のいずれかの請求項に記載の電動機の制御装置。
  19. 前記前置フィルタ部、前記フィードフォワード型前置フィルタ部又は前記内部構成型前置フィルタ部が、前記電動機又は前記制御対象の振動を励起する周波数を自動設定する振動周波数自動設定部を有することを特徴とする請求項13から請求項18のいずれかの請求項に記載の電動機の制御装置。
  20. 前記振動周波数自動設定部が、前記制御対象の振動を検出する振動検出部と、検出した前記振動から振動周波数を抽出して前記電動機又は前記制御対象の振動を励起する周波数を決定する周波数決定部と、を有することを特徴とする請求項19に記載の電動機の制御装置。
  21. 前記振動周波数自動設定部が、前記電動機の振動周波数に基づき前記電動機又は前記制御対象の振動を励起する周波数を決定することを特徴とする請求項19に記載の電動機の制御装置。
  22. 前記振動周波数自動設定部が、前記電動機の応答に基づき前記電動機と前記制御対象の数式モデルを推定し、前記数式モデルに基づき前記電動機又は前記制御対象の振動を励起する周波数を決定することを特徴とする請求項19に記載の電動機の制御装置。
  23. 前記電動機又は前記制御対象の振動を励起する周波数が、前記電動機が出力したトルクから前記電動機の位置又は速度までの系が有する***振周波数であることを特徴とする請求項13から請求項22のいずれかの請求項に記載の電動機の制御装置。
  24. 前記電動機又は前記制御対象の状態量が、前記電動機又は前記制御対象の位置又は速度であることを特徴とする請求項13又は請求項14に記載の電動機の制御装置。
  25. 請求項13から請求項24のいずれかの請求項に記載の制御装置を有する装置。
JP2003065700A 2002-03-29 2003-03-11 電動機の制御方法及び制御装置 Expired - Lifetime JP4294344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003065700A JP4294344B2 (ja) 2002-03-29 2003-03-11 電動機の制御方法及び制御装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002096445 2002-03-29
JP2003065700A JP4294344B2 (ja) 2002-03-29 2003-03-11 電動機の制御方法及び制御装置

Publications (2)

Publication Number Publication Date
JP2004005469A JP2004005469A (ja) 2004-01-08
JP4294344B2 true JP4294344B2 (ja) 2009-07-08

Family

ID=30446415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003065700A Expired - Lifetime JP4294344B2 (ja) 2002-03-29 2003-03-11 電動機の制御方法及び制御装置

Country Status (1)

Country Link
JP (1) JP4294344B2 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112005001415T5 (de) * 2004-06-16 2007-07-19 Kabushiki Kaisha Yaskawa Denki, Kitakyushu Verfahren und Vorrichtung zum automatischen Einstellen eines Vibrationsunterdrückungsfilters
JP4992323B2 (ja) * 2006-05-18 2012-08-08 パナソニック株式会社 サーボモータの制御装置
JP4926559B2 (ja) * 2006-06-26 2012-05-09 国立大学法人長岡技術科学大学 位置制御装置、位置制御方法、ロボット制御装置およびロボット制御方法
JP5002335B2 (ja) * 2007-05-29 2012-08-15 株式会社東芝 モータ制御装置,洗濯機及びモータ制御方法
JP5125283B2 (ja) * 2007-07-24 2013-01-23 富士電機株式会社 電動機の制御装置および電動機の制御プログラム
US8120303B2 (en) * 2008-09-29 2012-02-21 Oriental Motor Co., Ltd. Method and apparatus for controlling inertial system
KR101402486B1 (ko) 2010-10-27 2014-06-03 미쓰비시덴키 가부시키가이샤 전동기 제어 장치
JP5710367B2 (ja) * 2011-04-28 2015-04-30 学校法人東京理科大学 制御装置および制御方法、並びにプログラム
JP5904865B2 (ja) * 2012-05-02 2016-04-20 三菱電機株式会社 電動機制御装置
JP5642214B2 (ja) 2013-02-15 2014-12-17 株式会社神戸製鋼所 多関節ロボットの弾性変形補償制御装置
JP6312548B2 (ja) * 2014-07-31 2018-04-18 ファナック株式会社 機械剛性の自己測定機能および自己監視機能を有するサーボモータ制御装置
CN106712642B (zh) * 2016-12-07 2019-09-10 江苏理工学院 一种交流伺服控制***
JP7132024B2 (ja) * 2018-08-09 2022-09-06 オークマ株式会社 モータ制御装置
CN109807902B (zh) * 2019-04-08 2020-12-08 青岛大学 一种基于反步法的双机械臂力/位模糊混合控制方法
JP7277265B2 (ja) * 2019-06-05 2023-05-18 ファナック株式会社 振動を抑制するモータ制御装置及び産業機械
JP7344134B2 (ja) 2020-01-20 2023-09-13 オークマ株式会社 振動抑制装置及び振動抑制方法
WO2021176617A1 (ja) * 2020-03-04 2021-09-10 三菱電機株式会社 免振制御装置および免振制御方法
CN115420301B (zh) * 2022-05-16 2024-07-23 上海新跃联汇电子科技有限公司 一种角振动台的数字控制方法

Also Published As

Publication number Publication date
JP2004005469A (ja) 2004-01-08

Similar Documents

Publication Publication Date Title
JP4294344B2 (ja) 電動機の制御方法及び制御装置
US6936990B2 (en) Method for controlling electric motor and apparatus for controlling the same
CN105429540B (zh) 一种基于模型跟踪控制的交流伺服电机振动抑制方法
JP4879173B2 (ja) 電動機制御装置
JP5326429B2 (ja) 電動機の脈動抑制装置
JP5273575B2 (ja) 電動機制御装置
JP4685509B2 (ja) 交流電動機の駆動制御装置および駆動制御方法
US8638058B2 (en) Positioning control device
US10985684B2 (en) Motor control device
JP6671500B2 (ja) 電気モーターを制御する方法及びシステム
WO2010024194A1 (ja) 電動機の脈動抑制装置
JP4154149B2 (ja) ベクトル制御インバータ装置
JP5292637B2 (ja) 駆動装置および方法
JP2004334772A (ja) 電動機による位置決め制御方法及び装置
CN114223129A (zh) 电动机控制装置及其自动调整方法
JP3360935B2 (ja) 電動機制御系における機械共振検出装置及び制振制御装置
JP2005223960A (ja) 電動機の制御装置
CN113364376A (zh) 用于影响电力牵引机器的电磁力的设备和方法
WO2021157178A1 (ja) モータ制御装置
WO2023276198A1 (ja) モータ制御装置
JPWO2019123573A1 (ja) 電動機の制御装置
JP7443933B2 (ja) モータ制御装置
CN110299868A (zh) 一种超声波电机转速的控制方法及装置
WO2023171122A1 (ja) モータ制御装置、およびその自動調整方法
JPH11155295A (ja) 制振制御装置

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050523

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20061129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20090120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20090121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4294344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

EXPY Cancellation because of completion of term