JP4292671B2 - Hydrocarbon emission reduction device for internal combustion engine - Google Patents

Hydrocarbon emission reduction device for internal combustion engine Download PDF

Info

Publication number
JP4292671B2
JP4292671B2 JP2000052318A JP2000052318A JP4292671B2 JP 4292671 B2 JP4292671 B2 JP 4292671B2 JP 2000052318 A JP2000052318 A JP 2000052318A JP 2000052318 A JP2000052318 A JP 2000052318A JP 4292671 B2 JP4292671 B2 JP 4292671B2
Authority
JP
Japan
Prior art keywords
hydrocarbon
adsorbent
air
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000052318A
Other languages
Japanese (ja)
Other versions
JP2001234781A (en
Inventor
摩島  嘉裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000052318A priority Critical patent/JP4292671B2/en
Publication of JP2001234781A publication Critical patent/JP2001234781A/en
Application granted granted Critical
Publication of JP4292671B2 publication Critical patent/JP4292671B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排ガス中の炭化水素(以下「HC」と表記する)を浄化する触媒を備えた内燃機関の炭化水素排出量低減装置に関するものである。
【0002】
【従来の技術】
近年の自動車では、HCの排出量を低減するために、エンジンの燃焼改善によって未燃HC量を減少させると共に、排気管に三元触媒等の触媒を設置してエンジンから排出されるHCを浄化するようにしている。
【0003】
【発明が解決しようとする課題】
ところで、エンジン停止後、サージタンク等の吸気通路内には、前回運転時に噴射された燃料の一部が吹き返し等により残留していることがある。また、エンジン停止中は、燃料噴射弁から燃料が僅かずつ漏れて吸気通路内に拡散することがある。これらの原因で、エンジン停止後に吸気通路内に拡散した燃料(HC)は、次回のエンジン始動時に気筒内に吸入される。
【0004】
しかし、クランキング開始直後は、気筒判別が完了するまで、燃料噴射弁の燃料噴射が開始されず、気筒内で燃焼が発生しないため、気筒内に吸入されたHCは、燃焼することなく排気管に排出される。しかも、冷間始動時は、排気管の触媒が未活性状態であるため、排気中のHCを十分に浄化することができない。この結果、吸気通路内に溜まっていたHCがそのまま大気中ヘ排出されてしまい、これがクランキング開始時のHC排出量を多くする原因となっていた。
【0005】
本発明はこのような事情を考慮してなされたものであり、従ってその目的は、エンジン停止中に吸気通路内に溜まっていたHCの大気中ヘの排出量を低減することができる内燃機関の炭化水素排出量低減装置を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明の請求項1の内燃機関の炭化水素排出量低減装置は、機関停止中に内燃機関の吸気通路内に残留する炭化水素(以下「残留炭化水素」という)を一時的に蓄え、炭化水素放出制御手段によって触媒の活性後に該残留炭化水素を吸入空気中に放出するようにしたものである。つまり、触媒活性後であれば、残留HCが気筒内で十分に燃焼されずに排気管に排出されても、そのHCを活性状態の触媒で浄化することができ、HC排出量を低減することができる。ここで、触媒活性の判定は、触媒温度を検出又は推定して行っても良いし、或は、機関始動後の経過時間が所定時間以上であるか否かで触媒活性を判定しても良い。また、請求項1では、機関停止中に吸気通路内の残留HCを吸着する炭化水素吸着材を設けると共に、この炭化水素吸着材と吸入空気との接触度合を切り換える切換手段を設け、前記炭化水素吸着材に吸着した炭化水素を放出する際に前記切換手段を炭化水素吸着材と吸入空気との接触度合を増加させる位置(以下「炭化水素放出位置」という)に切り換えるようにする。炭化水素吸着材と吸入空気との接触度合が増加すれば、炭化水素吸着材からのHCの放出が促進される。この構成では、切換手段によって残留HCの吸着と放出とを切り換えるタイミングを自由に設定でき、制御が容易である。
【0007】
また、近年の車両は、排ガスの空燃比を空燃比センサ(又は酸素センサ)で検出して空燃比フィードバック制御を行うようにしているが、一般に、空燃比センサは、触媒よりも先に活性化するため、触媒活性前であっても、空燃比センサの活性後は、空燃比を目標空燃比にフィードバック制御することができる。従って、始動後から空燃比センサの活性に要する所定時間経過後であれば、残留HCの放出を開始したとしても、空燃比フィードバック制御により、残留HCの放出量に応じて燃料噴射量が減量補正され、その結果、内燃機関から排出されるHC量が低減される。
【0008】
この場合、請求項2のように、残留炭化水素の放出制御中に該残留炭化水素の放出量に応じて燃料噴射量を減量補正することで空燃比を目標空燃比に制御するようにすると良い。つまり、残留HCの放出によるリッチずれ分だけ、燃料噴射量を減量補正すれば、排ガスの空燃比が目標空燃比(触媒の浄化ウインドウ)からずれることを防止でき、触媒のHC浄化効率を高めることができる。
【0010】
この場合、請求項のように、切換手段を炭化水素放出位置に切り換えた時に燃料噴射量を減量補正することで空燃比を目標空燃比に制御するようにしても良い。このようにすれば、残留HCの放出によるリッチずれ分だけ、燃料噴射量を減量補正できるので、排ガスの空燃比が目標空燃比(触媒の浄化ウインドウ)からずれることを防止でき、触媒のHC浄化効率を高めることができる。
【0011】
近年、気筒内の燃焼を促進させるために、吸気通路に設けたタンブル生成弁を駆動して吸入空気流に変化を与えて、気筒内にタンブル流を発生させるようにしたものがある。このようなタンブル生成弁を備えた内燃機関では、請求項のように、炭化水素吸着材をタンブル生成弁の近傍に設け、このタンブル生成弁を切換手段として用いるようにしても良い。このようにすれば、タンブル生成弁を利用して、炭化水素吸着材からHCを放出することができるので、新たに切換手段を設ける必要がなく、その分、低コスト化できる。
【0012】
或は、請求項のように、炭化水素吸着材をスロットル弁又はアイドルスピードコントロール弁の近傍に設け、切換手段としてスロットル弁又はアイドルスピードコントロール弁を用いるようにしても良い。この場合も、スロットル弁又はアイドルスピードコントロール弁を切換手段として利用できるので、新たに切換手段を設ける必要がなく、低コスト化できる。
【0013】
また、請求項のように、炭化水素吸着材に吸着した炭化水素を放出する際に外気導入手段によって炭化水素吸着材へ外気を導入するようにしても良い。このようにすれば、外気の導入タイミングによってHCの放出タイミングを自由に設定でき、制御が容易である。
【0014】
更に、請求項のように、吸入空気量が所定量以上の期間に、残留HCの放出制御を実行するようにしても良い。つまり、吸入空気量が多いときに残留HCを放出すれば、吸入空気量に対するHC放出量(リッチ成分増加量)の割合を小さくすることができ、空燃比のリッチずれを小さく抑えることができる。
【0015】
また、請求項のように、残留炭化水素の放出制御中に外気導入又はスロットル開度の増加により筒内充填空気量を増加させるようにしても良い。このようにすれば、残留HCの放出によるリッチ成分の増加分を、外気導入又はスロットル開度の増加によるリーン成分(酸素)の増加分で相殺することができ、空燃比のリッチずれを防止することができる。
【0016】
【発明の実施の形態】
[実施形態(1)]
以下、本発明の実施形態(1)を図1乃至図6に基づいて説明する。図1に示すように、内燃機関であるエンジン11の吸気管12には、スロットル開度を調整するスロットル弁14が設けられ、このスロットル弁14の下流側にサージタンク15が設けられている。このサージタンク15には、エンジン11の各気筒に空気を導入する吸気マニホールド16が設けられ、各気筒の吸気マニホールド16の吸気ポート近傍に、それぞれ燃料を噴射する燃料噴射弁17が取り付けられている。これら吸気管12、サージタンク15及び吸気マニホールド16によって吸気通路が構成されている。
【0017】
また、サージタンク15には、HC吸着材18が設けられ、エンジン停止中に吸気通路内に残留するHC(以下「残留HC」という)をこのHC吸着材18で吸着するようになっている。このHC吸着材18は、活性炭又はHC吸着作用を有する触媒成分(例えばPd等の貴金属)で形成されている。或は、HC吸着材18を、アルミナ層にPd等を担持させて形成したり、ゼオライトで形成したりしても良い。勿論、HC吸着材18を、活性炭、ゼオライト、触媒成分のうちの2種類以上を組み合わせて形成しても良い。
【0018】
本実施形態(1)では、サージタンク15の一側部に凹部19を形成し、この凹部19内にHC吸着材18を収容することで、HC吸着材18でサージタンク15の流路断面積が狭められないようにしている。更に、HC吸着材18の上流側には、モータやソレノイド等によって駆動される開閉弁20(切換手段)が設けられている。この開閉弁20を図1に実線で示す閉弁位置に切り換えると、サージタンク15内を流れる吸入空気とHC吸着材18との接触度合を小さくしてHC吸着材18にHCを吸着させた状態を保持する。一方、開閉弁20を図1に点線で示す開弁位置(炭化水素放出位置)に切り換えると、サージタンク15内を流れる吸入空気の一部がHC吸着材18に向かって流れ、吸入空気とHC吸着材18との接触度合が増加してHC吸着材18からHCが放出される。
【0019】
一方、エンジン11の排気管21には、排ガス中のHCを浄化する三元触媒等の触媒22が設けられ、この触媒22の上流側に排ガスの空燃比を検出する空燃比センサ23(又は酸素センサ)が設けられている。
【0020】
エンジン制御回路(以下「ECU」と表記する)24は、マイクロコンピュータを主体として構成され、燃料噴射量や点火時期を制御すると共に、ROM(記憶媒体)に記憶された図2のHC放出制御プログラムを実行することで、エンジン停止中にHC吸着材18に吸着されたHCの放出タイミングを触媒22の活性後又は始動から所定時間経過後に制御する。
【0021】
以下、図2のHC放出制御プログラムの処理内容を説明する。本プログラムは例えばイグニッションスイッチのオン後に周期的に実行され、特許請求の範囲でいう炭化水素放出制御手段としての役割を果たす。本プログラムが起動されると、まずステップ101で、始動後の経過時間が所定時間T1 以上となったか否かを判定する。この所定時間T1 は始動後に触媒22が活性状態となるのに必要な時間(例えば100秒)に設定されている。従って、始動後の経過時間が所定時間T1 に達していなければ、触媒22が未活性状態と判断して、ステップ102に進み、開閉弁20を閉弁位置に保持して、エンジン停止中にHC吸着材18に吸着したHCを引き続きHC吸着材18に吸着させた状態に保持する。
【0022】
この後、ステップ103に進み、始動後の経過時間が所定時間T2 以上、且つ吸入空気量Ga が所定量G1 (例えば10g/s)以上であるか否かを判定する。ここで、所定時間T2 は、始動後に空燃比センサ23が活性状態となるのに必要な時間(例えば30秒)に設定されている。従って、始動から所定時間T2 が経過する頃には、空燃比センサ23が活性状態になり、空燃比センサ23の出力に基づく空燃比フィードバック制御が開始されるため、HC吸着材18からHCを放出して空燃比がリッチずれしたとしても、空燃比フィードバック制御によって燃料噴射量が減量補正され、リッチずれが修正される。
【0023】
もし、始動後の経過時間が所定時間T2 に達していなければ、空燃比センサ23が未活性状態と判断して、開閉弁20を開弁することなく、ステップ105に進み、高温再始動(始動当初から触媒22が活性状態)であるか否かを判定するために、触媒22の温度が活性温度Ta (例えば300℃)未満であるか否かを判定する。触媒22の温度は触媒22に設置した温度センサ(図示せず)で検出したり、或は、冷却水温等から推定しても良い。もし、触媒22の温度が活性温度Ta 未満であれば、触媒22が未活性状態であるので、開閉弁20を閉弁したまま本プログラムを終了する。
【0024】
触媒22が未活性の期間中は、ステップ103で「Yes」と判定されたときのみ、つまり、始動後の経過時間が所定時間T2 以上(空燃比センサ23の活性後)で、且つ、吸入空気量Ga が所定量G1 以上となっている期間のみ、ステップ103からステップ104に進み、開閉弁20を開弁してHC吸着材18からHCを放出すると共に、そのHC放出量に応じて燃料噴射量を減量補正する(図4参照)。燃料噴射量の減量補正量Aは、図3のテーブルによって開閉弁20の開弁時間の積算値に応じて算出される。開閉弁20の開弁時間積算値が大きくなるほどHC吸着材18からのHC放出量が減少するため、図3のテーブルは、開閉弁20の開弁時間積算値が大きくなるほど減量補正量Aが少なくなるように設定されている。このステップ104の燃料噴射量の減量補正と前述した空燃比フィードバック制御によって、HC吸着材18からのHCの放出量に応じた燃料噴射量の減量補正が応答良く実施される。
【0025】
一方、始動後の経過時間が所定時間T1 以上(ステップ101で「Yes」)又は触媒22の温度が活性温度Ta 以上(ステップ105で「No」)と判定されたときには、触媒22が活性化したと判断して、ステップ106に進み、開閉弁20を開弁状態に保持してHC吸着材18からHCを放出する共に、燃料噴射量の減量補正を実行する。この場合も、減量補正量Aは、図3のテーブルによって算出される。
【0026】
以上説明した実施形態(1)によれば、エンジン停止中に吸気通路内の残留HCをHC吸着材18で吸着し、始動後に触媒22が活性状態になってから開閉弁20を開弁してHC吸着材18からHCを放出するようにしたので、HC吸着材18から放出したHCが気筒内で十分に燃焼されずに排気管21に排出されても、そのHCを活性状態の触媒22で浄化することができる。しかも、図2のステップ104の燃料噴射量の減量補正と空燃比フィードバック制御によって、HC吸着材18からのHC放出量に応じて燃料噴射量を減量補正することができるので、排ガスの空燃比が目標空燃比(触媒22の浄化ウインドウ)からずれることを防止でき、触媒22でのHC浄化効率を高めることができる。この結果、大気中ヘのHC排出量を効果的に低減することができる。
【0027】
更に、本実施形態(1)では、触媒22が活性化する前でも、始動から所定時間T2 が経過した後(空燃比センサ23の活性後)は、図4に示すように、吸入空気量Ga が所定量G1 以上であれば、開閉弁20を開弁してHC吸着材18からHCを放出すると共に、そのHC放出量に応じて燃料噴射量を減量補正する。このように、触媒22が活性化する前にHC吸着材18からHCを放出しても、図2のステップ104の燃料噴射量の減量補正と空燃比フィードバック制御によって、HC吸着材18からのHC放出量に応じた燃料噴射量の減量補正を極めて応答良く実施することができ、エンジン11から排気管21内に排出されるHC量を低減することができる。しかも、吸入空気量Ga が所定量G1 以上の期間にHC吸着材18からHCを放出するので、吸入空気量に対するHC放出量(リッチ成分増加量)の割合を小さくすることができ、空燃比のリッチずれを小さく抑えることができる。
【0028】
また、本実施形態(1)では、HC吸着材18の上流側に開閉弁20を設け、この開閉弁20を開弁して吸入空気とHC吸着材18との接触度合を増加させることで、HC吸着材18からHCを放出させるようにしているので、開閉弁20によってHC放出タイミングを自由に設定することができ、HC放出制御の仕様を容易に変更することができる。
【0029】
尚、上記実施形態(1)では、サージタンク15の一側部に凹部19を形成したが、図5の例のように、サージタンク15の両側部にそれぞれ凹部25を形成し、各凹部25内にHC吸着材26を収容して各HC吸着材26の上流側に開閉弁27を設けるようにしても良い。或は、図6の例のように、サージタンク15の上部に、複数個(1個でも良い)の凹部28をほぼ吸気方向に延びるように形成し、各凹部28内にHC吸着材29を収容して各HC吸着材29の下流側(上流側でも良い)に開閉弁30を設けるようにしても良い。
【0030】
また、HC吸着材と吸入空気との接触度合を切り換える切換手段は、開閉弁以外に、例えば、HC吸着材の露出面に沿ってスライドするスライド式のシャッターを用いても良く、適宜変更して実施できる。
【0031】
尚、本発明は、図2のステップ103,104の処理(触媒22が未活性の期間中にHCを放出する処理)を省略したり、或は、ステップ101とステップ105のいずれか一方の処理を省略して実施しても良い。
【0032】
[実施形態(2)]
次に、図7乃至図9を用いて本発明の実施形態(2)を説明する。図7に示すように、吸気マニホールド16には、気筒内にタンブル流を発生させるためのタンブル生成弁31が設けられている。このタンブル生成弁31は、吸気マニホールド16の流路断面の下半部を開閉するようになっている。このタンブル生成弁31の上流側の吸気マニホールド16内壁面にHC吸着材32が固定されている。このHC吸着材32は、吸気圧損とならないようにほぼ吸気方向に延びる流線形に形成されている。
【0033】
この場合、タンブル生成弁31が図7に実線で示す閉弁位置に位置している時には、吸気マニホールド16内の吸入空気がHC吸着材32と反対側(吸気マニホールド16の上半部)に流れるため、吸入空気とHC吸着材32との接触度合が小さくなり、HC吸着材32にHCが吸着された状態に保持される。一方、タンブル生成弁31が図7に点線で示す開弁位置に切り換えられると、吸気マニホールド16内の吸入空気がHC吸着材32側(吸気マニホールド16の下半部)にも流れるため、吸入空気とHC吸着材32との接触度合が増加してHC吸着材32からHCが放出される。これにより、タンブル生成弁31が前記実施形態(1)の開閉弁20と同様の役割を果たし、特許請求の範囲でいう切換手段として機能する。
【0034】
本実施形態(2)では、ECU24が、図8のHC放出制御プログラムを実行し、タンブル生成弁31を用いて、HC吸着材32からのHC放出タイミングを前記実施形態(1)と同じ方法で制御する。具体的には、始動後、触媒22が活性化するまでは、タンブル生成弁31を閉弁位置に保持して、HC吸着材32にHCを吸着した状態に保持する(ステップ201,202)。但し、触媒22が未活性であっても、始動から所定時間T2 以上経過し、且つ、吸入空気量Ga が所定量G1 以上であれば、ステップ204に進み、タンブル生成弁31を開弁してHC吸着材32からHCを放出すると共に燃料噴射量を減量補正する。燃料噴射量の減量補正量Aは、図9のテーブルによってタンブル生成弁31の開弁時間の積算値に応じて算出される。また、触媒22の活性後は、ステップ206に進み、タンブル生成弁31を通常制御して、タンブル生成弁31が開弁された時にHC吸着材32からHCを放出する共に燃料噴射量を減量補正する。
【0035】
以上説明した実施形態(2)においても、上記実施形態(1)と同様の効果を得ることができる。しかも、本実施形態(2)では、タンブル生成弁31を吸入空気とHC吸着材32との接触度合を切り換える切換手段として利用するので、新たに切換手段を設ける必要がなく、低コスト化の要求も満たすことができる。
【0036】
[実施形態(3)]
図10に示す本発明の実施形態(3)では、スロットル弁33をモータ(図示せず)等で駆動する電子スロットルシステムが搭載され、このスロットル弁33のバイパス通路34に、バイパス空気量を制御するアイドルスピードコントロール弁35が設けられ、スロットル弁33の下流側で、且つ、バイパス通路34の合流部34aよりも上流側の吸気管12の内壁面に、複数の流線形のHC吸着材36が固定されている。
【0037】
この場合、スロットル弁33を図10に実線で示す閉弁位置に位置している時には、アイドルスピードコントロール弁35が開弁されても、吸気管12内の吸入空気がHC吸着材36の下流側にバイパスして流れるため、吸入空気とHC吸着材36との接触度合が小さくなり、HC吸着材32にHCが吸着された状態に保持される。一方、スロットル弁33を図10に点線で示す開弁位置に切り換えると、吸気管12内の吸入空気がHC吸着材36に沿って流れるため、吸入空気とHC吸着材36との接触度合が増加してHC吸着材36からHCが放出される。これにより、スロットル弁33が前記実施形態(2)のタンブル生成弁31と同様の役割を果たし、特許請求の範囲でいう切換手段として機能する。
【0038】
本実施形態(3)では、スロットル弁33を用いて、HC吸着材32からのHC放出タイミングを前記実施形態(2)と同じ方法で制御する。従って、本実施形態(3)で用いるHC放出制御プログラムは、図8のHC放出制御プログラムのステップ202,204,206の処理において、「タンブル生成弁」を「スロットル弁」と読み替えるだけで良い。
【0039】
以上説明した実施形態(3)では、スロットル弁33を、吸入空気とHC吸着材36との接触度合を切り換える切換手段として利用するので、前記実施形態(2)と同じく、新たに切換手段を設ける必要がなく、低コスト化できる。尚、アイドルスピードコントロール弁35の下流側にHC吸着材を設置して、アイドルスピードコントロール弁35を、吸入空気とHC吸着材との接触度合を切り換える切換手段として利用するようにしても良い。
【0040】
尚、上記実施形態(2),(3)では、吸気通路の内壁面にHC吸着材32,36を固定するようにしたが、HC吸着材の設置形態は適宜変更しても良く、例えば、図11に示すように、吸気マニホールド16(又は吸気管12やサージタンク15)の内壁面に多数の粒状のHC吸着材37をほぼ均一に付着するようにしても良い。或は、図12に示すように、吸気マニホールド16(又は吸気管12やサージタンク15)の内壁面に、HC吸着材38を層状にコーティングするようにしても良い。
【0041】
[実施形態(4)]
本発明の実施形態(4)では、図13(a)に示すように、サージタンク15に形成した凹部19に、エア導入管40を介してエアポンプ41(外気導入手段)を接続している。ECU24は、凹部19内のHC吸着材18からHCを放出させる際に、開閉弁20を開弁すると共に、エアポンプ41を駆動し、凹部19内の活性炭等のHC吸着材18中に外気を導入することで、吸入空気と導入外気の両方の作用によってHC吸着材18からのHCの放出を促進させるようにしている。
【0042】
本実施形態(4)では、開閉弁20の開弁タイミングと外気の導入タイミングによってHC放出タイミングを自由に設定することができ、HC放出制御を容易に実施することができる。また、残留HCの放出によるリッチ成分の増加分を、外気導入によるリーン成分の増加分で相殺することができ、空燃比のずれ防止効果も得ることができる。
【0043】
また、図13(b)に示すように、吸気管12のスロットルバルブ14の上流側とサージタンク15の凹部19との間をエア導入管48で接続し、このエア導入管48の途中に制御弁49を設け、凹部19内のHC吸着材18からHCを放出させる際に、開閉弁20を開弁すると共に、制御弁49を開弁して、吸入空気をエア導入管48を通して凹部19内の活性炭等のHC吸着材18中に導入することで、HC吸着材18からのHCの放出を促進させるようにしても良い。
【0044】
尚、図13(a)又は(b)において、開閉弁20を省略して、エアポンプ41による外気の導入タイミングのみ又は制御弁49による吸入空気の導入タイミングのみでHC放出タイミングを設定するようにしても良い。
【0045】
また、HC吸着材の設置形態を種々変更しても良く、例えば、図14に示すように、サージタンク15の下部に、複数個の凹部43を吸気方向とほぼ直角方向に延びるように形成し、各凹部43内に収容したHC吸着材44の上流側に開閉弁45を設けると共に、各凹部43にエア導入管46を介してエアポンプ47を接続し、HC放出時に凹部43内のHC吸着材44に向かって外気を導入するようにしても良い。或は、図15に示すように、吸気管12のスロットルバルブ14の上流側とサージタンク15の各凹部43との間をエア導入管50で接続し、このエア導入管50の途中に制御弁51を設けるようにしても良い。いずれの場合も、開閉弁45を省略して、エアポンプ47による外気の導入タイミングのみ又は制御弁51による吸入空気の導入タイミングのみでHC放出タイミングを設定するようにしても良い。
【0046】
その他、本発明は、HC放出中にスロットル開度の増加により筒内充填空気量を増加させて、空燃比のリッチずれを防止するようにしても良い。
【図面の簡単な説明】
【図1】実施形態(1)を示すエンジン制御システムの概略構成図
【図2】実施形態(1)のHC放出制御プログラムの処理の流れを示すフローチャート
【図3】実施形態(1)の燃料噴射量の減量補正量のテーブルを概念的に示す図
【図4】実施形態(1)のHC放出制御の実行例を説明するためのタイムチャート
【図5】実施形態(1)の変形例(第1例)を説明するためのエンジン吸気側の主要部の横断面図
【図6】実施形態(1)の変形例(第2例)を説明するためのもので、(a)はエンジン吸気側の主要部の縦断面図、(b)は同横断面図
【図7】実施形態(2)を示すエンジン吸気側の主要部の縦断面図
【図8】実施形態(2)のHC放出制御プログラムの処理の流れを示すフローチャート
【図9】実施形態(2)の燃料噴射量の減量補正量のテーブルを概念的に示す図
【図10】実施形態(3)を示すエンジン吸気側の主要部の縦断面図
【図11】HC吸着材の他の設置形態(第1例)を説明するための吸気マニホールドの部分拡大断面図
【図12】HC吸着材の他の設置形態(第2例)を説明するための吸気マニホールドの部分拡大断面図
【図13】(a)は実施形態(4)を示すエンジン吸気側の主要部の横断面図、(b)は実施形態(4)の変形例を示すエンジン吸気側の主要部の横断面図
【図14】(a)はその他の実施形態(第1例)を示すエンジン吸気側の主要部の縦断面図、(b)は同横断面図
【図15】その他の実施形態(第2例)を示すエンジン吸気側の主要部の縦断面図
【符号の説明】
11…エンジン(内燃機関)、12…吸気管(吸気通路)、15…サージタンク(吸気通路)、16…吸気マニホールド(吸気通路)、18…HC吸着材、20…開閉弁(切換手段)、22…触媒、24…ECU(炭化水素放出制御手段)、26…HC吸着材、27…開閉弁(切換手段)、29…HC吸着材、30…開閉弁(切換手段)、31…タンブル生成弁(切換手段)、32…HC吸着材、33…スロットル弁(切換手段)、35…アイドルスピードコントロール弁、36〜38…HC吸着材、40…エア導入管(外気導入手段)、41…エアポンプ(外気導入手段)、44…HC吸着材、45…開閉弁(切換手段)、46…エア導入管(外気導入手段)、47…エアポンプ(外気導入手段)、48…エア導入管、49…制御弁、50…エア導入管、51…制御弁。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a hydrocarbon emission reduction device for an internal combustion engine provided with a catalyst for purifying hydrocarbons (hereinafter referred to as “HC”) in exhaust gas of the internal combustion engine.
[0002]
[Prior art]
In recent automobiles, in order to reduce HC emissions, the amount of unburned HC is reduced by improving the combustion of the engine, and a catalyst such as a three-way catalyst is installed in the exhaust pipe to purify HC emitted from the engine. Like to do.
[0003]
[Problems to be solved by the invention]
By the way, after the engine is stopped, in the intake passage such as a surge tank, part of the fuel injected during the previous operation may remain due to blow-back or the like. Further, when the engine is stopped, fuel may leak little by little from the fuel injection valve and diffuse in the intake passage. For these reasons, the fuel (HC) diffused into the intake passage after the engine is stopped is sucked into the cylinder at the next engine start.
[0004]
However, immediately after the start of cranking, the fuel injection of the fuel injection valve is not started until the cylinder discrimination is completed, and combustion does not occur in the cylinder. Therefore, the HC sucked into the cylinder is not combusted in the exhaust pipe. To be discharged. In addition, at the time of cold start, since the catalyst in the exhaust pipe is in an inactive state, HC in the exhaust cannot be sufficiently purified. As a result, the HC accumulated in the intake passage is discharged into the atmosphere as it is, which causes an increase in the amount of HC discharged at the start of cranking.
[0005]
The present invention has been made in view of such circumstances. Therefore, the object of the present invention is to provide an internal combustion engine capable of reducing the discharge amount of HC accumulated in the intake passage into the atmosphere when the engine is stopped. The object is to provide a device for reducing hydrocarbon emissions.
[0006]
[Means for Solving the Problems]
  In order to achieve the above object, a hydrocarbon emission reduction device for an internal combustion engine according to claim 1 of the present invention is a hydrocarbon remaining in an intake passage of an internal combustion engine when the engine is stopped (hereinafter referred to as “residual hydrocarbon”). Is temporarily stored, and the residual hydrocarbon is released into the intake air after activation of the catalyst by the hydrocarbon release control means. That is, after the catalyst is activated, even if residual HC is not sufficiently burned in the cylinder and is discharged to the exhaust pipe, the HC can be purified by the active catalyst, and the amount of HC emission can be reduced. Can do. Here, the determination of the catalyst activity may be performed by detecting or estimating the catalyst temperature, or the catalyst activity may be determined based on whether or not the elapsed time after engine start is a predetermined time or more. .According to a first aspect of the present invention, there is provided a hydrocarbon adsorbent that adsorbs residual HC in the intake passage while the engine is stopped, and a switching means for switching the degree of contact between the hydrocarbon adsorbent and the intake air. When the hydrocarbon adsorbed on the adsorbent is released, the switching means is switched to a position where the degree of contact between the hydrocarbon adsorbent and the intake air is increased (hereinafter referred to as “hydrocarbon release position”). If the degree of contact between the hydrocarbon adsorbent and the intake air increases, the release of HC from the hydrocarbon adsorbent is promoted. In this configuration, the timing for switching between adsorption and release of residual HC can be freely set by the switching means, and control is easy.
[0007]
In recent vehicles, the air-fuel ratio of exhaust gas is detected by an air-fuel ratio sensor (or oxygen sensor) to perform air-fuel ratio feedback control. In general, the air-fuel ratio sensor is activated prior to the catalyst. Therefore, even before the catalyst is activated, the air-fuel ratio can be feedback-controlled to the target air-fuel ratio after the air-fuel ratio sensor is activated. Therefore, if a predetermined time required for the activation of the air-fuel ratio sensor has elapsed since the start, even if the release of residual HC is started, the fuel injection amount is corrected by the air-fuel ratio feedback control to reduce the fuel injection amount according to the residual HC release amount. As a result, the amount of HC discharged from the internal combustion engine is reduced.
[0008]
In this case, as described in claim 2, it is preferable that the air-fuel ratio is controlled to the target air-fuel ratio by correcting the fuel injection amount to be reduced in accordance with the residual hydrocarbon release amount during the residual hydrocarbon release control. . That is, if the fuel injection amount is corrected to be reduced by the amount of rich deviation due to the release of residual HC, the air-fuel ratio of exhaust gas can be prevented from deviating from the target air-fuel ratio (catalyst purification window), and the HC purification efficiency of the catalyst can be increased. Can do.
[0010]
  In this case, the claim3As described above, the air-fuel ratio may be controlled to the target air-fuel ratio by correcting the fuel injection amount to decrease when the switching means is switched to the hydrocarbon release position. In this way, the fuel injection amount can be corrected by the amount of rich deviation due to the release of residual HC, so that the air-fuel ratio of the exhaust gas can be prevented from deviating from the target air-fuel ratio (catalyst purification window), and the HC purification of the catalyst. Efficiency can be increased.
[0011]
  In recent years, in order to promote combustion in a cylinder, a tumble generation valve provided in an intake passage is driven to change the intake air flow to generate a tumble flow in the cylinder. In an internal combustion engine equipped with such a tumble generating valve, the claims4As described above, the hydrocarbon adsorbing material may be provided in the vicinity of the tumble generating valve, and this tumble generating valve may be used as the switching means. In this way, since HC can be released from the hydrocarbon adsorbent using the tumble production valve, it is not necessary to provide a new switching means, and the cost can be reduced accordingly.
[0012]
  Or claims5As described above, the hydrocarbon adsorbent may be provided in the vicinity of the throttle valve or the idle speed control valve, and the throttle valve or the idle speed control valve may be used as the switching means. Also in this case, since the throttle valve or the idle speed control valve can be used as the switching means, it is not necessary to newly provide a switching means, and the cost can be reduced.
[0013]
  Claims6As described above, when releasing the hydrocarbon adsorbed on the hydrocarbon adsorbent, the outside air may be introduced into the hydrocarbon adsorbent by the outside air introduction means. In this way, the release timing of HC can be freely set according to the introduction timing of outside air, and control is easy.
[0014]
  Further claims7As described above, the residual HC release control may be executed during a period in which the intake air amount is equal to or greater than a predetermined amount. That is, if the residual HC is released when the intake air amount is large, the ratio of the HC release amount (rich component increase amount) to the intake air amount can be reduced, and the rich deviation of the air-fuel ratio can be suppressed to be small.
[0015]
  Claims8As described above, the in-cylinder charged air amount may be increased by introducing the outside air or increasing the throttle opening during the residual hydrocarbon release control. In this way, the increase in the rich component due to the release of residual HC can be offset by the increase in the lean component (oxygen) due to the introduction of outside air or the increase in the throttle opening, thereby preventing a rich shift in the air-fuel ratio. be able to.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
[Embodiment (1)]
Hereinafter, an embodiment (1) of the present invention will be described with reference to FIGS. As shown in FIG. 1, a throttle valve 14 that adjusts the throttle opening is provided in an intake pipe 12 of an engine 11 that is an internal combustion engine, and a surge tank 15 is provided downstream of the throttle valve 14. The surge tank 15 is provided with an intake manifold 16 for introducing air into each cylinder of the engine 11, and a fuel injection valve 17 for injecting fuel is attached in the vicinity of the intake port of the intake manifold 16 of each cylinder. . The intake pipe 12, the surge tank 15, and the intake manifold 16 constitute an intake passage.
[0017]
The surge tank 15 is provided with an HC adsorbing material 18 so that the HC adsorbing material 18 adsorbs HC remaining in the intake passage when the engine is stopped (hereinafter referred to as “residual HC”). The HC adsorbent 18 is made of activated carbon or a catalyst component having an HC adsorption action (for example, a noble metal such as Pd). Alternatively, the HC adsorbent 18 may be formed by supporting Pd or the like on an alumina layer, or may be formed of zeolite. Of course, the HC adsorbent 18 may be formed by combining two or more of activated carbon, zeolite, and catalyst components.
[0018]
In this embodiment (1), a recess 19 is formed on one side of the surge tank 15, and the HC adsorbent 18 is accommodated in the recess 19. Is not narrowed. Further, on the upstream side of the HC adsorbent 18, an on-off valve 20 (switching means) driven by a motor, a solenoid or the like is provided. When the on-off valve 20 is switched to the closed position shown by the solid line in FIG. 1, the contact degree between the intake air flowing through the surge tank 15 and the HC adsorbent 18 is reduced and HC is adsorbed by the HC adsorbent 18. Hold. On the other hand, when the on-off valve 20 is switched to the valve open position (hydrocarbon release position) indicated by a dotted line in FIG. 1, a part of the intake air flowing in the surge tank 15 flows toward the HC adsorbent 18, and the intake air and the HC The degree of contact with the adsorbent 18 increases and HC is released from the HC adsorbent 18.
[0019]
On the other hand, the exhaust pipe 21 of the engine 11 is provided with a catalyst 22 such as a three-way catalyst that purifies HC in the exhaust gas, and an air-fuel ratio sensor 23 (or oxygen) that detects the air-fuel ratio of the exhaust gas upstream of the catalyst 22. Sensor).
[0020]
The engine control circuit (hereinafter referred to as “ECU”) 24 is mainly composed of a microcomputer, controls the fuel injection amount and ignition timing, and stores the HC release control program of FIG. 2 stored in a ROM (storage medium). By executing the above, the release timing of the HC adsorbed on the HC adsorbent 18 while the engine is stopped is controlled after the activation of the catalyst 22 or after a predetermined time has elapsed from the start.
[0021]
Hereinafter, processing contents of the HC release control program of FIG. 2 will be described. This program is periodically executed after the ignition switch is turned on, for example, and serves as a hydrocarbon emission control means in the claims. When the program is started, first, at step 101, it is determined whether or not the elapsed time after the start is equal to or longer than a predetermined time T1. The predetermined time T1 is set to a time (for example, 100 seconds) necessary for the catalyst 22 to be in an active state after starting. Therefore, if the elapsed time after the start does not reach the predetermined time T1, it is determined that the catalyst 22 is in an inactive state, the process proceeds to step 102, the on-off valve 20 is held in the closed position, and the HC is stopped while the engine is stopped. The HC adsorbed on the adsorbent 18 is continuously held in the state adsorbed on the HC adsorbent 18.
[0022]
Thereafter, the routine proceeds to step 103, where it is determined whether or not the elapsed time after starting is a predetermined time T2 or more and the intake air amount Ga is a predetermined amount G1 (for example, 10 g / s) or more. Here, the predetermined time T2 is set to a time (for example, 30 seconds) necessary for the air-fuel ratio sensor 23 to be in an active state after starting. Accordingly, the air-fuel ratio sensor 23 is activated and the air-fuel ratio feedback control based on the output of the air-fuel ratio sensor 23 is started when the predetermined time T2 elapses from the start, so that HC is released from the HC adsorbent 18. Even if the air-fuel ratio deviates richly, the fuel injection amount is corrected to decrease by the air-fuel ratio feedback control, and the rich deviation is corrected.
[0023]
If the elapsed time after the start does not reach the predetermined time T2, it is determined that the air-fuel ratio sensor 23 is in an inactive state, the process proceeds to step 105 without opening the on-off valve 20, and a high temperature restart (start In order to determine whether or not the catalyst 22 is in an active state from the beginning, it is determined whether or not the temperature of the catalyst 22 is lower than the activation temperature Ta (for example, 300 ° C.). The temperature of the catalyst 22 may be detected by a temperature sensor (not shown) installed on the catalyst 22, or may be estimated from the cooling water temperature or the like. If the temperature of the catalyst 22 is lower than the activation temperature Ta, since the catalyst 22 is in an inactive state, this program is terminated while the on-off valve 20 is closed.
[0024]
During the period when the catalyst 22 is inactive, only when it is determined as “Yes” in step 103, that is, the elapsed time after the start is equal to or longer than the predetermined time T2 (after activation of the air-fuel ratio sensor 23), and the intake air Only during the period when the amount Ga is equal to or greater than the predetermined amount G1, the routine proceeds from step 103 to step 104, the on-off valve 20 is opened to release HC from the HC adsorbent 18, and fuel injection is performed according to the amount of HC released. The amount is corrected to decrease (see FIG. 4). The fuel injection amount decrease correction amount A is calculated according to the integrated value of the valve opening time of the on-off valve 20 by the table of FIG. As the valve opening time integrated value of the on-off valve 20 increases, the amount of HC released from the HC adsorbent 18 decreases. Therefore, in the table of FIG. 3, the amount of decrease correction A decreases as the valve opening time integrated value of the on-off valve 20 increases. It is set to be. By the fuel injection amount reduction correction in step 104 and the air-fuel ratio feedback control described above, the fuel injection amount reduction correction according to the HC release amount from the HC adsorbent 18 is performed with good response.
[0025]
On the other hand, when it is determined that the elapsed time after the start is equal to or longer than the predetermined time T1 (“Yes” in Step 101) or the temperature of the catalyst 22 is equal to or higher than the activation temperature Ta (“No” in Step 105), the catalyst 22 is activated. In step 106, the on-off valve 20 is held open to release HC from the HC adsorbent 18, and the fuel injection amount reduction correction is executed. Also in this case, the reduction correction amount A is calculated by the table of FIG.
[0026]
According to the embodiment (1) described above, the residual HC in the intake passage is adsorbed by the HC adsorbent 18 while the engine is stopped, and the on-off valve 20 is opened after the catalyst 22 is activated after starting. Since HC is released from the HC adsorbent 18, even if the HC released from the HC adsorbent 18 is not sufficiently burned in the cylinder and is discharged to the exhaust pipe 21, the HC is released by the active catalyst 22. Can be purified. In addition, the fuel injection amount can be corrected to be reduced in accordance with the amount of HC released from the HC adsorbent 18 by the fuel injection amount reduction correction and air-fuel ratio feedback control in step 104 of FIG. Deviation from the target air-fuel ratio (purification window of the catalyst 22) can be prevented, and the HC purification efficiency at the catalyst 22 can be increased. As a result, the amount of HC emissions into the atmosphere can be effectively reduced.
[0027]
Further, in the present embodiment (1), even before the catalyst 22 is activated, after a predetermined time T2 has elapsed from the start (after the activation of the air-fuel ratio sensor 23), as shown in FIG. Is equal to or greater than the predetermined amount G1, the on-off valve 20 is opened to release HC from the HC adsorbent 18, and the fuel injection amount is corrected to decrease in accordance with the HC release amount. Thus, even if HC is released from the HC adsorbent 18 before the catalyst 22 is activated, the HC from the HC adsorbent 18 is corrected by the fuel injection amount reduction correction and the air-fuel ratio feedback control in step 104 of FIG. The fuel injection amount reduction correction according to the released amount can be performed with very good response, and the amount of HC discharged from the engine 11 into the exhaust pipe 21 can be reduced. Moreover, since HC is released from the HC adsorbent 18 during a period when the intake air amount Ga is equal to or greater than the predetermined amount G1, the ratio of the HC release amount (rich component increase amount) to the intake air amount can be reduced, and the air-fuel ratio can be reduced. Rich shift can be reduced.
[0028]
In the present embodiment (1), an on-off valve 20 is provided on the upstream side of the HC adsorbent 18, and the on-off valve 20 is opened to increase the degree of contact between the intake air and the HC adsorbent 18, Since HC is released from the HC adsorbent 18, the HC release timing can be freely set by the on-off valve 20, and the specification of HC release control can be easily changed.
[0029]
In the embodiment (1), the recess 19 is formed on one side of the surge tank 15. However, as shown in the example of FIG. 5, the recess 25 is formed on both sides of the surge tank 15, and each recess 25 is formed. The HC adsorbent 26 may be accommodated therein, and an on-off valve 27 may be provided on the upstream side of each HC adsorbent 26. Alternatively, as in the example of FIG. 6, a plurality (or one) of recesses 28 may be formed in the upper portion of the surge tank 15 so as to extend substantially in the intake direction, and the HC adsorbent 29 is placed in each recess 28. The on-off valve 30 may be provided on the downstream side (or upstream side) of each HC adsorbent 29 by accommodating.
[0030]
The switching means for switching the degree of contact between the HC adsorbent and the intake air may use, for example, a sliding shutter that slides along the exposed surface of the HC adsorbent, in addition to the on-off valve. Can be implemented.
[0031]
In the present invention, the processing of steps 103 and 104 (processing of releasing HC during the period when the catalyst 22 is inactive) in FIG. 2 is omitted, or the processing of either one of steps 101 and 105 is performed. May be omitted.
[0032]
[Embodiment (2)]
Next, Embodiment (2) of this invention is demonstrated using FIG. 7 thru | or FIG. As shown in FIG. 7, the intake manifold 16 is provided with a tumble generating valve 31 for generating a tumble flow in the cylinder. The tumble generating valve 31 opens and closes the lower half of the flow passage cross section of the intake manifold 16. An HC adsorbent 32 is fixed to the inner wall surface of the intake manifold 16 upstream of the tumble generating valve 31. The HC adsorbent 32 is formed in a streamline extending substantially in the intake direction so as not to cause intake pressure loss.
[0033]
In this case, when the tumble generating valve 31 is located at the closed position indicated by the solid line in FIG. 7, the intake air in the intake manifold 16 flows to the side opposite to the HC adsorbent 32 (the upper half of the intake manifold 16). Therefore, the degree of contact between the intake air and the HC adsorbent 32 is reduced, and the HC adsorbent 32 is held in an adsorbed state. On the other hand, when the tumble generating valve 31 is switched to the valve open position indicated by the dotted line in FIG. 7, the intake air in the intake manifold 16 also flows to the HC adsorbent 32 side (lower half of the intake manifold 16). The degree of contact between the HC adsorbent 32 and HC is released from the HC adsorbent 32. Thereby, the tumble generating valve 31 plays the same role as the on-off valve 20 of the embodiment (1), and functions as a switching means in the claims.
[0034]
In the present embodiment (2), the ECU 24 executes the HC release control program of FIG. 8 and uses the tumble generating valve 31 to set the HC release timing from the HC adsorbent 32 in the same manner as in the above embodiment (1). Control. Specifically, after the start-up, until the catalyst 22 is activated, the tumble generating valve 31 is held in the closed position, and the HC adsorbent 32 is held in a state where HC is adsorbed (steps 201 and 202). However, even if the catalyst 22 is inactive, if the predetermined time T2 or more has elapsed from the start and the intake air amount Ga is the predetermined amount G1 or more, the routine proceeds to step 204 where the tumble generating valve 31 is opened. HC is released from the HC adsorbent 32 and the fuel injection amount is corrected to decrease. The fuel injection amount decrease correction amount A is calculated according to the integrated value of the valve opening time of the tumble generating valve 31 by the table of FIG. Further, after the activation of the catalyst 22, the routine proceeds to step 206, where the tumble generation valve 31 is normally controlled, and when the tumble generation valve 31 is opened, HC is released from the HC adsorbent 32 and the fuel injection amount is corrected to decrease. To do.
[0035]
In the embodiment (2) described above, the same effect as that of the embodiment (1) can be obtained. In addition, in the present embodiment (2), the tumble generating valve 31 is used as a switching means for switching the degree of contact between the intake air and the HC adsorbent 32, so that it is not necessary to newly provide a switching means, and a cost reduction is required. Can also be met.
[0036]
[Embodiment (3)]
In the embodiment (3) of the present invention shown in FIG. 10, an electronic throttle system for driving the throttle valve 33 with a motor (not shown) or the like is mounted, and the bypass air amount is controlled in the bypass passage 34 of the throttle valve 33. A plurality of streamline HC adsorbents 36 are provided on the inner wall surface of the intake pipe 12 downstream of the throttle valve 33 and upstream of the junction 34a of the bypass passage 34. It is fixed.
[0037]
In this case, when the throttle valve 33 is located at the closed position shown by the solid line in FIG. 10, the intake air in the intake pipe 12 is downstream of the HC adsorbent 36 even if the idle speed control valve 35 is opened. Therefore, the degree of contact between the intake air and the HC adsorbent 36 is reduced, and the HC adsorbent 32 is held in an adsorbed state. On the other hand, when the throttle valve 33 is switched to the valve open position indicated by the dotted line in FIG. 10, the intake air in the intake pipe 12 flows along the HC adsorbent 36, so the degree of contact between the intake air and the HC adsorbent 36 increases. Then, HC is released from the HC adsorbent 36. Thereby, the throttle valve 33 plays the same role as the tumble generating valve 31 of the embodiment (2), and functions as a switching means in the scope of the claims.
[0038]
In the present embodiment (3), the throttle valve 33 is used to control the HC release timing from the HC adsorbent 32 by the same method as in the above embodiment (2). Therefore, the HC release control program used in the present embodiment (3) only needs to read “tumble generation valve” as “throttle valve” in the processing of steps 202, 204 and 206 of the HC release control program of FIG.
[0039]
In the embodiment (3) described above, the throttle valve 33 is used as a switching means for switching the degree of contact between the intake air and the HC adsorbent 36, so that a switching means is newly provided as in the embodiment (2). There is no need and the cost can be reduced. Note that an HC adsorbent may be installed on the downstream side of the idle speed control valve 35, and the idle speed control valve 35 may be used as switching means for switching the degree of contact between the intake air and the HC adsorbent.
[0040]
In the above embodiments (2) and (3), the HC adsorbents 32 and 36 are fixed to the inner wall surface of the intake passage. However, the installation form of the HC adsorbent may be changed as appropriate, for example, As shown in FIG. 11, a large number of granular HC adsorbents 37 may be attached substantially uniformly to the inner wall surface of the intake manifold 16 (or the intake pipe 12 or the surge tank 15). Alternatively, as shown in FIG. 12, the HC adsorbent 38 may be coated in layers on the inner wall surface of the intake manifold 16 (or the intake pipe 12 or the surge tank 15).
[0041]
[Embodiment (4)]
In the embodiment (4) of the present invention, as shown in FIG. 13A, an air pump 41 (outside air introduction means) is connected to the recess 19 formed in the surge tank 15 via an air introduction pipe 40. When releasing HC from the HC adsorbent 18 in the recess 19, the ECU 24 opens the on-off valve 20 and drives the air pump 41 to introduce outside air into the HC adsorbent 18 such as activated carbon in the recess 19. Thus, the release of HC from the HC adsorbent 18 is promoted by the action of both the intake air and the introduced outside air.
[0042]
In the present embodiment (4), the HC release timing can be freely set according to the opening timing of the on-off valve 20 and the outside air introduction timing, and the HC release control can be easily performed. Further, the increase in the rich component due to the release of residual HC can be offset by the increase in the lean component due to the introduction of the outside air, and the effect of preventing the deviation of the air-fuel ratio can also be obtained.
[0043]
Further, as shown in FIG. 13 (b), the upstream side of the throttle valve 14 of the intake pipe 12 and the recess 19 of the surge tank 15 are connected by an air introduction pipe 48, and control is performed halfway through the air introduction pipe 48. When the valve 49 is provided and HC is released from the HC adsorbent 18 in the recess 19, the on-off valve 20 is opened, the control valve 49 is opened, and the intake air is introduced into the recess 19 through the air introduction pipe 48. It is also possible to promote the release of HC from the HC adsorbent 18 by introducing it into the HC adsorbent 18 such as activated carbon.
[0044]
13A or 13B, the on-off valve 20 is omitted, and the HC release timing is set only by the external air introduction timing by the air pump 41 or only by the intake air introduction timing by the control valve 49. Also good.
[0045]
Further, the installation form of the HC adsorbent may be variously changed. For example, as shown in FIG. 14, a plurality of recesses 43 are formed in the lower part of the surge tank 15 so as to extend in a direction substantially perpendicular to the intake direction. An opening / closing valve 45 is provided on the upstream side of the HC adsorbent 44 accommodated in each recess 43, and an air pump 47 is connected to each recess 43 via an air introduction pipe 46, so that the HC adsorbent in the recess 43 is released when HC is released. The outside air may be introduced toward 44. Alternatively, as shown in FIG. 15, the upstream side of the throttle valve 14 of the intake pipe 12 and each recess 43 of the surge tank 15 are connected by an air introduction pipe 50, and a control valve is provided in the middle of the air introduction pipe 50. 51 may be provided. In any case, the on-off valve 45 may be omitted, and the HC release timing may be set only by the outside air introduction timing by the air pump 47 or only by the intake air introduction timing by the control valve 51.
[0046]
  In addition, the present invention, HWhile releasing C, the amount of air charged in the cylinder may be increased by increasing the throttle opening to prevent the rich deviation of the air-fuel ratio.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of an engine control system showing an embodiment (1).
FIG. 2 is a flowchart showing a process flow of an HC release control program according to the embodiment (1).
FIG. 3 is a diagram conceptually showing a table of fuel injection amount reduction correction amounts according to the embodiment (1).
FIG. 4 is a time chart for explaining an execution example of HC release control according to the embodiment (1).
FIG. 5 is a cross-sectional view of the main part on the engine intake side for explaining a modification (first example) of the embodiment (1).
6A and 6B are diagrams for explaining a modified example (second example) of the embodiment (1), in which FIG. 6A is a longitudinal sectional view of the main part on the engine intake side, and FIG.
FIG. 7 is a longitudinal sectional view of the main part on the engine intake side showing the embodiment (2).
FIG. 8 is a flowchart showing the flow of processing of the HC release control program of the embodiment (2).
FIG. 9 is a diagram conceptually illustrating a table of fuel injection amount reduction correction amounts according to the embodiment (2).
FIG. 10 is a longitudinal sectional view of the main part on the engine intake side showing the embodiment (3).
FIG. 11 is a partially enlarged cross-sectional view of the intake manifold for explaining another installation mode (first example) of the HC adsorbent.
FIG. 12 is a partially enlarged cross-sectional view of the intake manifold for explaining another installation mode (second example) of the HC adsorbent.
13A is a cross-sectional view of the main part on the engine intake side showing the embodiment (4), and FIG. 13B is a cross-sectional view of the main part on the engine intake side showing a modification of the embodiment (4).
14A is a longitudinal sectional view of a main part on the engine intake side showing another embodiment (first example), and FIG. 14B is a transverse sectional view of the same.
FIG. 15 is a longitudinal sectional view of a main part on the engine intake side showing another embodiment (second example).
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Engine (internal combustion engine), 12 ... Intake pipe (intake passage), 15 ... Surge tank (intake passage), 16 ... Intake manifold (intake passage), 18 ... HC adsorbent, 20 ... On-off valve (switching means), DESCRIPTION OF SYMBOLS 22 ... Catalyst, 24 ... ECU (hydrocarbon release control means), 26 ... HC adsorbent, 27 ... Open / close valve (switching means), 29 ... HC adsorbent, 30 ... Open / close valve (switching means), 31 ... Tumble generation valve (Switching means), 32 ... HC adsorbent, 33 ... throttle valve (switching means), 35 ... idle speed control valve, 36 to 38 ... HC adsorbent, 40 ... air introduction pipe (outside air introduction means), 41 ... air pump ( Outside air introduction means), 44 ... HC adsorbent, 45 ... Open / close valve (switching means), 46 ... Air introduction pipe (outside air introduction means), 47 ... Air pump (outside air introduction means), 48 ... Air introduction pipe, 49 ... Control valve , 50 Air introduction pipe, 51 ... control valve.

Claims (8)

内燃機関の排ガス中の炭化水素を浄化する触媒を備えた内燃機関の炭化水素排出量低減装置において、
機関停止中に内燃機関の吸気通路内に残留する炭化水素(以下「残留炭化水素」という)を一時的に蓄え、前記触媒の活性後に該残留炭化水素を吸入空気中に放出する炭化水素放出制御手段と、
機関停止中に前記吸気通路内の残留炭化水素を吸着する炭化水素吸着材と、
前記炭化水素吸着材と吸入空気との接触度合を切り換える切換手段とを備え、
前記炭化水素放出制御手段は、前記炭化水素吸着材に吸着した炭化水素を放出する際に前記切換手段を前記炭化水素吸着材と吸入空気との接触度合を増加させる位置(以下「炭化水素放出位置」という)に切り換えることを特徴とする内燃機関の炭化水素排出量低減装置。
In a hydrocarbon emission reduction device for an internal combustion engine equipped with a catalyst for purifying hydrocarbons in exhaust gas of the internal combustion engine,
Hydrocarbon release control for temporarily storing hydrocarbons (hereinafter referred to as “residual hydrocarbons”) remaining in the intake passage of the internal combustion engine when the engine is stopped and releasing the residual hydrocarbons into the intake air after the activation of the catalyst Means ,
A hydrocarbon adsorbent that adsorbs residual hydrocarbons in the intake passage while the engine is stopped;
Switching means for switching the degree of contact between the hydrocarbon adsorbent and the intake air,
The hydrocarbon release control means is a position for increasing the degree of contact between the hydrocarbon adsorbent and the intake air when the hydrocarbon adsorbed on the hydrocarbon adsorbent is released (hereinafter referred to as “hydrocarbon release position”). hydrocarbon emissions reduction apparatus for an internal combustion engine, characterized in that switching to "hereinafter).
前記炭化水素放出制御手段は、前記残留炭化水素の放出制御中に該残留炭化水素の放出量に応じて燃料噴射弁の燃料噴射量を減量補正することで空燃比を目標空燃比に制御することを特徴とする請求項1に記載の内燃機関の炭化水素排出量低減装置。  The hydrocarbon release control means controls the air-fuel ratio to the target air-fuel ratio by correcting the fuel injection amount of the fuel injection valve to be reduced according to the residual hydrocarbon release amount during the residual hydrocarbon release control. The apparatus for reducing hydrocarbon emissions of an internal combustion engine according to claim 1. 前記炭化水素放出制御手段は、前記切換手段を前記炭化水素放出位置に切り換えた時に燃料噴射弁の燃料噴射量を減量補正することで空燃比を目標空燃比に制御することを特徴とする請求項1又は2に記載の内燃機関の炭化水素排出量低減装置。The hydrocarbon release control means controls the air-fuel ratio to a target air-fuel ratio by correcting the fuel injection amount of the fuel injection valve to decrease when the switching means is switched to the hydrocarbon release position. 3. The hydrocarbon emission reduction device for an internal combustion engine according to 1 or 2 . 前記炭化水素吸着材は、前記吸気通路に設置されたタンブル生成弁の近傍に設けられ、このタンブル生成弁を前記切換手段として用いることを特徴とする請求項1乃至3のいずれか1つに記載の内燃機関の炭化水素排出量低減装置。Said hydrocarbon adsorbent is provided in the vicinity of the tumble generation valve installed in the intake passage, wherein the tumble generation valve to any one of claims 1 to 3, characterized in that used as the switching means Hydrocarbon emission reduction device for internal combustion engines. 前記炭化水素吸着材は、スロットル弁又はアイドルスピードコントロール弁の近傍に設けられ、前記スロットル弁又は前記アイドルスピードコントロール弁を前記切換手段として用いることを特徴とする請求項1乃至3のいずれか1つに記載の内燃機関の炭化水素排出量低減装置。Said hydrocarbon adsorbent is provided in the vicinity of the throttle valve or idle speed control valve, any one of claims 1 to 3, characterized by using the throttle valve or the idle speed control valve as said switching means hydrocarbon emissions reduction apparatus for an internal combustion engine according to. 前記炭化水素吸着材に吸着した炭化水素を放出する際に前記炭化水素吸着材へ外気を導入する外気導入手段とを備えていることを特徴とする請求項1乃至5のいずれかに記載の内燃機関の炭化水素排出量低減装置。Internal combustion according to any one of claims 1 to 5, characterized in that it comprises a fresh air introducing means for introducing the outside air into the hydrocarbon adsorbent when releasing hydrocarbons adsorbed on the hydrocarbon adsorbent Engine hydrocarbon emission reduction device. 前記炭化水素放出制御手段は、吸入空気量が所定量以上の期間に前記残留炭化水素の放出制御を実行することを特徴とする請求項1乃至のいずれかに記載の内燃機関の炭化水素排出量低減装置。The hydrocarbon discharge of the internal combustion engine according to any one of claims 1 to 6 , wherein the hydrocarbon release control means executes the release control of the residual hydrocarbon during a period in which the intake air amount is a predetermined amount or more. Quantity reduction device. 前記炭化水素放出制御手段は、前記残留炭化水素の放出制御中に外気導入又はスロットル開度の増加により筒内充填空気量を増加させることを特徴とする請求項1乃至のいずれかに記載の内燃機関の炭化水素排出量低減装置。The hydrocarbon emissions control means according to any one of claims 1 to 7, characterized in that increasing the cylinder air charge amount by an increase in the outside air introduction or throttle opening during the controlled release of the residual hydrocarbons Hydrocarbon emission reduction device for internal combustion engines.
JP2000052318A 2000-02-24 2000-02-24 Hydrocarbon emission reduction device for internal combustion engine Expired - Fee Related JP4292671B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000052318A JP4292671B2 (en) 2000-02-24 2000-02-24 Hydrocarbon emission reduction device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000052318A JP4292671B2 (en) 2000-02-24 2000-02-24 Hydrocarbon emission reduction device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001234781A JP2001234781A (en) 2001-08-31
JP4292671B2 true JP4292671B2 (en) 2009-07-08

Family

ID=18573854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000052318A Expired - Fee Related JP4292671B2 (en) 2000-02-24 2000-02-24 Hydrocarbon emission reduction device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4292671B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7056474B2 (en) * 2001-10-29 2006-06-06 Visteon Global Technologies, Inc. Hydrocarbon sensor and collector
US7107759B2 (en) 2003-07-11 2006-09-19 Denso Corporation Apparatus for reducing hydrocarbon emission of internal combustion engine
JP3968330B2 (en) * 2003-08-08 2007-08-29 株式会社日立製作所 In-cylinder engine combustion control apparatus and method
US7578285B2 (en) 2005-11-17 2009-08-25 Basf Catalysts Llc Hydrocarbon adsorption filter for air intake system evaporative emission control
JP4675269B2 (en) 2006-03-30 2011-04-20 株式会社日本自動車部品総合研究所 Vaporized fuel adsorption device
US8372477B2 (en) 2009-06-11 2013-02-12 Basf Corporation Polymeric trap with adsorbent
US9856830B2 (en) * 2016-01-08 2018-01-02 Ford Global Technologies, Llc System and methods for reducing vehicle evaporative emissions

Also Published As

Publication number Publication date
JP2001234781A (en) 2001-08-31

Similar Documents

Publication Publication Date Title
JP4915277B2 (en) Exhaust gas purification device for internal combustion engine
JP4640480B2 (en) Exhaust gas purification device for internal combustion engine
JPH11270328A (en) Exhaust emission control device for multi-cylinder internal combustion engine
JPH10299463A (en) Exhaust emission control device for internal combustion engine
JP2000230416A (en) Failure detecting device for exhaust changeover valve in internal combustion engine
JPH07259539A (en) Exhaust emission control device of internal combustion engine
JP4344953B2 (en) Exhaust gas purification device for internal combustion engine
US20080236144A1 (en) Control system of internal combustion engine and method for controlling the same
JP4292671B2 (en) Hydrocarbon emission reduction device for internal combustion engine
JPH1181992A (en) Exhaust gas purifying device in internal combustion engine
JP2000054827A (en) Exhaust emission control device for internal combustion engine
JP2003106197A (en) Air-fuel ratio control system for internal combustion engine
JP4161429B2 (en) Lean combustion internal combustion engine
JP5392021B2 (en) Fuel injection control device for internal combustion engine
JP4206593B2 (en) In-cylinder injection internal combustion engine control device
JP3952109B2 (en) Exhaust gas purification device for internal combustion engine
JP4231958B2 (en) Engine control device
JP2005083205A (en) Control device for internal combustion engine
JP4622192B2 (en) Combustion control device for internal combustion engine
JP2002039025A (en) Device for reducing volume of hydrocarbon emitted from internal combustion engine
JP2001164930A (en) Exhaust emission control device for internal combustion engine
JPH11200961A (en) Evaporation purge control method of internal combustion engine
JP4657111B2 (en) Hydrocarbon adsorbent purge control device for internal combustion engine
JP3482876B2 (en) Exhaust gas purification device for internal combustion engine
JPH11311118A (en) Exhaust emission control device of turbocharged engine and control method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080611

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080711

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090330

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120417

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130417

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140417

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees