JP4292052B2 - Method and apparatus for processing gas containing CO and H2 - Google Patents

Method and apparatus for processing gas containing CO and H2 Download PDF

Info

Publication number
JP4292052B2
JP4292052B2 JP2003372290A JP2003372290A JP4292052B2 JP 4292052 B2 JP4292052 B2 JP 4292052B2 JP 2003372290 A JP2003372290 A JP 2003372290A JP 2003372290 A JP2003372290 A JP 2003372290A JP 4292052 B2 JP4292052 B2 JP 4292052B2
Authority
JP
Japan
Prior art keywords
gas
oxidation catalyst
catalyst
treated
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003372290A
Other languages
Japanese (ja)
Other versions
JP2005131584A (en
Inventor
洋一 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP2003372290A priority Critical patent/JP4292052B2/en
Publication of JP2005131584A publication Critical patent/JP2005131584A/en
Application granted granted Critical
Publication of JP4292052B2 publication Critical patent/JP4292052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

本発明はCO及びH2を含むガスの処理方法に関し、特に、主として半導体製造工程のエッチング装置などから排出されるCO及びH2を含む排ガスの処理方法及び装置に関する。 The present invention relates to a method for treating a gas containing CO and H 2 , and particularly relates to a method and an apparatus for treating an exhaust gas containing CO and H 2 discharged mainly from an etching apparatus or the like in a semiconductor manufacturing process.

近年、半導体工業の発展と共に、半導体製造工程において種々のガスが使用されるようになり、これらの工程からはCOやH2といった可燃性ガスが排出されることが多い。COは、可燃性ガスである上に、毒性が強く人体に有害であるため、これを含むガスを大気中に放出する前に処理が必要である。また、H2は各種の製造工程で使用されると共に、Low−k膜(層間絶縁膜)のエッチング工程において膜の特性を保つためにNH3をプロセスガスとして使用すると、副生成ガスとしてH2が発生する。H2は有害ガスではないが、COと同じく可燃性ガスである。また、有害ガスであるCOの処理装置の性能把握のために、ガス検知器(ガルバニル電池法)で処理ガスをモニターすると、COの他にも同時に検知してしまう(干渉性:CO25ppmとH2170ppmとが同感度)。このため、COの処理装置をガス検知器で適切に管理するためには、H2も同時に処理する必要がある。 In recent years, with the development of the semiconductor industry, various gases have been used in semiconductor manufacturing processes, and combustible gases such as CO and H 2 are often discharged from these processes. Since CO is a flammable gas and is highly toxic and harmful to the human body, it needs to be treated before releasing the gas containing it into the atmosphere. Also, the H 2 is used in various manufacturing processes, Low-k film by using the NH 3 to keep the properties of the film in an etching step (interlayer insulating film) as a process gas, H 2 as a by-product gas Occurs. H 2 is not a harmful gas, but it is a flammable gas like CO. In addition, if the processing gas is monitored with a gas detector (galvanyl battery method) in order to grasp the performance of the processing apparatus for CO, which is a harmful gas, it is detected at the same time in addition to CO (coherence: CO25 ppm and H 2). 170ppm is the same sensitivity). For this reason, in order to appropriately manage the CO treatment apparatus with the gas detector, it is necessary to treat H 2 at the same time.

従来技術において、CO及びH2を含むガスを処理する方法としては、CO及びH2を分解するための触媒として、(1)PdやPtをγ−アルミナなどの担体に担持させた貴金属触媒を用いる方法や、(2)酸化銅、酸化マンガンなどの金属酸化物系触媒を用いる方法などが提案されている。これらの提案された方法は、上記の触媒を用いて被処理ガスを処理することで、ガス中のCO及びH2を同時に酸化分解処理するというものである。 In the prior art, as a method of treating a gas containing CO and H 2 as a catalyst for decomposing the CO and H 2, a (1) a noble metal catalyst supported with Pd or Pt on a support such as γ- alumina There have been proposed a method of using, and (2) a method of using a metal oxide catalyst such as copper oxide and manganese oxide. These proposed methods treat the gas to be treated using the above-mentioned catalyst, thereby simultaneously oxidizing and decomposing CO and H 2 in the gas.

しかしながら、貴金属触媒を用いる場合、H2は室温で分解処理することが可能であるが、COについては処理温度を120℃以上にする必要がある。また、金属酸化物系触媒を用いる場合には、COは室温で分解処理することが可能であるが、H2については200℃以上にする必要がある。よって、提案された方法によってCO及びH2を同時に処理しようとすると、貴金属触媒については120℃以上、金属酸化物系触媒については200℃以上の処理温度が必要であった。しかし、半導体各種製造工程から排出される実際の排ガス中には、COやH2に加えてC24(テトラフルオロエチレン)が含まれている。この物質は、100℃以上の温度で貴金属触媒や金属酸化物触媒と激しく反応してフッ化物を生成し、この生成物が触媒の表面上を覆うことで、触媒を被毒してCOやH2の酸化反応効率を著しく低下させることが分かった。 However, when a noble metal catalyst is used, H 2 can be decomposed at room temperature, but for CO, the treatment temperature needs to be 120 ° C. or higher. When a metal oxide catalyst is used, CO can be decomposed at room temperature, but H 2 needs to be 200 ° C. or higher. Therefore, when CO and H 2 are to be treated simultaneously by the proposed method, a treatment temperature of 120 ° C. or higher is required for the noble metal catalyst and 200 ° C. or higher is required for the metal oxide catalyst. However, actual exhaust gas discharged from various semiconductor manufacturing processes contains C 2 F 4 (tetrafluoroethylene) in addition to CO and H 2 . This substance reacts violently with a precious metal catalyst or metal oxide catalyst at a temperature of 100 ° C. or more to produce fluoride, and this product covers the surface of the catalyst, poisoning the catalyst, and CO or H It was found that the oxidation reaction efficiency of 2 was significantly reduced.

24は、毒性はなく、可燃性ガスでもないので処理しなくても良いガスであり、COのガス検知器に対しても応答せず、干渉もしない。したがって、C24の分解反応による触媒の被毒を極力抑えて、COとH2とを同時に分解処理することができで、且つ長時間処理が可能なガスの処理方法及び装置の開発が望まれていた。 C 2 F 4 is not toxic and is not a flammable gas, so it does not need to be treated. It does not respond to or interfere with the CO gas detector. Therefore, development of a gas processing method and apparatus capable of simultaneously decomposing CO and H 2 while suppressing the poisoning of the catalyst due to the decomposition reaction of C 2 F 4 as much as possible and capable of long-time processing. It was desired.

24は、毒性はなく、可燃性ガスでもないので処理しなくても良いガスであり、COのガス検知器に対しても応答せず、干渉もしない。したがって、C24の分解反応による触媒の被毒を極力抑えて、COとH2とを同時に分解処理することができで、且つ長時間処理が可能なガスの処理方法及び装置の開発が望まれていた。 C 2 F 4 is not toxic and is not a flammable gas, so it does not need to be treated. It does not respond to or interfere with the CO gas detector. Therefore, development of a gas processing method and apparatus capable of simultaneously decomposing CO and H 2 while suppressing the poisoning of the catalyst due to the decomposition reaction of C 2 F 4 as much as possible and capable of long-time processing. It was desired.

本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、COとH2とを含むガスの処理において、被処理ガスをまずCO酸化触媒、次にH2酸化触媒に順次接触させることで、各分解対象物質の分解反応の温度を低く抑え、これによってC24の分解反応を抑制することができることを見出し、本発明を完成するに到った。本発明によれば、COの酸化分解、H2の酸化分解のいずれの反応も、室温〜100℃の温度で進行させることができる。 As a result of intensive studies to solve the above-mentioned problems, the present inventors contacted the gas to be treated first with the CO oxidation catalyst and then with the H 2 oxidation catalyst in the treatment of the gas containing CO and H 2. As a result, it was found that the temperature of the decomposition reaction of each decomposition target substance can be kept low, thereby suppressing the decomposition reaction of C 2 F 4 , and the present invention has been completed. According to the present invention, both the oxidative decomposition of CO and the oxidative decomposition of H 2 can proceed at a temperature of room temperature to 100 ° C.

即ち、本発明の一態様は、CO及びH2を含む被処理ガスを処理する方法であって、当該被処理ガスを、酸素の共存下で、まずCO酸化触媒と接触させ、次にH2酸化触媒と接触させることを特徴とする方法に関する。 That is, one embodiment of the present invention is a method for treating a gas to be treated containing CO and H 2. The gas to be treated is first contacted with a CO oxidation catalyst in the presence of oxygen, and then H 2. The present invention relates to a method characterized by contacting with an oxidation catalyst.

本発明にしたがって、CO及びH2を含む被処理ガスを、酸素の共存下で、まずCO酸化触媒と接触させ、次にH2酸化触媒と接触させると、被処理ガス中のCO及びH2は次式の反応によって酸化される。 According to the present invention, when a gas to be treated containing CO and H 2 is first brought into contact with a CO oxidation catalyst in the presence of oxygen and then brought into contact with an H 2 oxidation catalyst, CO and H 2 in the gas to be treated are brought into contact. Is oxidized by the reaction:

Figure 0004292052
Figure 0004292052

本発明方法において、CO酸化触媒としては、酸化銅(II)及び酸化マンガン(II)を主成分とする組成物により構成される金属酸化物系触媒を用いることができる。組成物中の酸化銅(II)と酸化マンガン(II)との割合としては、酸化銅(II)1重量部に対して酸化マンガン(II)2.0〜2.5重量部が好ましい。金属酸化物系触媒の形状としては、破砕品、押出成形品、打錠成形品などを用いることができる。後述するように、触媒を加熱して反応を行わせる場合には、通気抵抗の上昇などを考慮すれば、円柱状の打錠成形品で直径4〜5mm、特に好ましくは4.7mm、高さ4〜5mm、特に好ましくは4.7mmのものを好ましく用いることができる。本発明においてCO酸化触媒として用いることのできる金属酸化物の具体例としては、例えば、ズードケミー社製のN−140(組成:CuO=22wt%,MnO=50wt%)、重松製作所製のホプカリット触媒などを挙げることができる。   In the method of the present invention, as the CO oxidation catalyst, a metal oxide catalyst composed of a composition mainly composed of copper (II) oxide and manganese (II) oxide can be used. As a ratio of copper (II) oxide and manganese (II) oxide in the composition, 2.0 to 2.5 parts by weight of manganese (II) oxide is preferable with respect to 1 part by weight of copper (II) oxide. As the shape of the metal oxide catalyst, a crushed product, an extruded product, a tableted product, or the like can be used. As will be described later, when the reaction is carried out by heating the catalyst, in consideration of an increase in ventilation resistance, etc., it is a cylindrical tableting molded product having a diameter of 4 to 5 mm, particularly preferably 4.7 mm, and a height. Those having a thickness of 4 to 5 mm, particularly preferably 4.7 mm can be preferably used. Specific examples of the metal oxide that can be used as the CO oxidation catalyst in the present invention include, for example, N-140 (composition: CuO = 22 wt%, MnO = 50 wt%) manufactured by Zude Chemie, Hopkarit catalyst manufactured by Shigematsu Seisakusho, etc. Can be mentioned.

一方、本発明方法において、H2酸化触媒としては、Pd又はPtのいずれかをγ−アルミナに担持させた成形物により構成される貴金属触媒を用いることができる。γ−アルミナへの貴金属の担持量は、それぞれ、成形物100重量部に対して貴金属0.1〜5重量部が好ましく、0.5重量部が特に好ましい。貴金属の担持量が0.1重量部よりも小さいとH2の酸化力が弱くなり、一方5重量部よりも大きいと触媒が高価になる。貴金属を担持させる担体として用いられるγ−アルミナは、比表面積が130m2/g以上のものが好ましく、形状は球状で大きさ4〜6mmのものが好ましい。本発明においてH酸化触媒として用いることのできる貴金属触媒の具体例としては、例えば、ズードケミー社製のET−050(0.5%のPdをγ−アルミナに担持)、日揮ユニバーサル社製のRISC−88−06−EB、ヘレウス社製のK−0247などを挙げることができる。 On the other hand, in the method of the present invention, as the H 2 oxidation catalyst, a noble metal catalyst composed of a molded product in which either Pd or Pt is supported on γ-alumina can be used. The amount of noble metal supported on γ-alumina is preferably 0.1 to 5 parts by weight, particularly preferably 0.5 parts by weight, based on 100 parts by weight of the molded product. If the amount of noble metal supported is less than 0.1 parts by weight, the oxidizing power of H 2 becomes weak, whereas if it exceeds 5 parts by weight, the catalyst becomes expensive. The γ-alumina used as a carrier for supporting the noble metal preferably has a specific surface area of 130 m 2 / g or more, and preferably has a spherical shape and a size of 4 to 6 mm. Specific examples of the noble metal catalyst that can be used as the H oxidation catalyst in the present invention include, for example, ET-050 (0.5% Pd supported on γ-alumina) manufactured by Zude Chemie, RISC- manufactured by JGC Universal 88-06-EB, K-0247 manufactured by Heraeus, and the like.

本発明方法において、上述の触媒によるCO及びH2の酸化は、酸素の共存下で行う。酸素の添加量としては、被処理ガス中に含まれるCO及びH2を酸化するために必要なO2量と等量であればよく、好ましくは等量の2倍量程度の酸素を被処理ガスに添加することが好ましい。酸素添加の手段としては、空気を被処理ガス中に混合することによって行うことができる。 In the method of the present invention, the oxidation of CO and H 2 by the above catalyst is performed in the presence of oxygen. The amount of oxygen added may be equal to the amount of O 2 required to oxidize CO and H 2 contained in the gas to be processed, and preferably about twice as much oxygen as the amount to be processed. It is preferable to add to gas. The oxygen can be added by mixing air into the gas to be treated.

本発明方法においては、被処理ガスと各触媒との接触温度は室温〜100℃程度が好ましい。各触媒によるCO及びH2の酸化は室温で進行させることができるが、COが酸化されて生成したCO2が触媒の活性点に吸着して触媒の能力を低下させる場合があるので、このCO2を脱離させるために若干の加熱を行うことが好ましい。この観点からは、被処理ガスと触媒との接触を60℃程度の温度で行うことが特に好ましい。 In the method of the present invention, the contact temperature between the gas to be treated and each catalyst is preferably about room temperature to 100 ° C. Although the oxidation of CO and H 2 by each catalyst can proceed at room temperature, CO 2 produced by oxidation of CO may be adsorbed on the active sites of the catalyst and reduce the ability of the catalyst. In order to desorb 2 , it is preferable to carry out a slight heating. From this point of view, it is particularly preferable to perform contact between the gas to be treated and the catalyst at a temperature of about 60 ° C.

本発明を図面を参照して図面を参照して以下により具体的に説明する。図1は、本発明方法を実施するためのガス処理装置の一具体例の概念図である。図1に示す装置は、反応槽3と、反応槽に被処理ガスを導入する被処理ガス導入ライン1と、反応槽から処理済みのガスを排出するガス排出ライン7とを具備する。反応槽3は複数の層に分割されている。図1に示す形態では、3層に分割されていて、一番下の層には、CO酸化触媒として金属酸化物系触媒4が、中央の層には、H2酸化触媒として貴金属系触媒5がそれぞれ充填されている。また、好ましくは貴金属触媒層5の上部に更に金属酸化物触媒が充填されている予備槽6を設けることが好ましい。反応槽3の内部には、温度を測定するための熱電対8が挿入されている。また、反応槽の外側には、セラミックヒーターなどの加熱装置7が配置されている。 The present invention will be described more specifically below with reference to the drawings. FIG. 1 is a conceptual diagram of a specific example of a gas processing apparatus for carrying out the method of the present invention. The apparatus shown in FIG. 1 includes a reaction vessel 3, a gas introduction line 1 for introducing a gas to be treated into the reaction vessel, and a gas discharge line 7 for discharging a treated gas from the reaction vessel. The reaction vessel 3 is divided into a plurality of layers. In the form shown in FIG. 1, it is divided into three layers. The lowermost layer is a metal oxide catalyst 4 as a CO oxidation catalyst, and the middle layer is a noble metal catalyst 5 as an H 2 oxidation catalyst. Are filled respectively. In addition, it is preferable to provide a preparatory tank 6 that is further filled with a metal oxide catalyst above the noble metal catalyst layer 5. Inside the reaction vessel 3, a thermocouple 8 for measuring temperature is inserted. A heating device 7 such as a ceramic heater is disposed outside the reaction tank.

反応槽3の内部を熱電対8で温度測定しながら、加熱装置7によって所定の温度に加熱保持する。被処理ガスを、被処理ガス導入ライン1から導入する。この際、被処理ガス導入ライン1の途中に酸素源として空気2を供給することで、反応系に酸素を添加する。酸素の添加は、図1に示すように被処理ガス導入ラインに対して行ってもよいし、或いは反応槽3に直接供給してもよい。酸素を添加された被処理ガスは、反応槽3内のCO酸化触媒層4を通過し、この間に、被処理ガス中のCOがCO2に酸化される。次に、被処理ガスは反応槽3内のH2酸化触媒層5を通過し、この間に、被処理ガス中のH2がH2Oに酸化される。H2酸化触媒層5の出口には、ガス検知器10と接続されたガス検知器ライン9を配置して、出口ガス中のCO濃度をモニターすることが好ましい。金属酸化物触媒の被毒或いは能力低下などの原因で出口ガス中にCOが検出されたら、被処理ガスの導入を停止して、触媒を交換若しくは再生処理にかける。しかしながら、ウエハーの処理中などの理由により被処理ガスの導入を直ちに停止できない場合には、反応槽の最上部に予備層6を配置して、この中にCO酸化触媒として金属酸化物系触媒5’を充填することが好ましい。このような層6を配置することにより、出口ガス中に少量リークしたCOを酸化処理することが可能である。処理が完了したガスは、排出ライン7を通して排出される。 While the temperature of the inside of the reaction vessel 3 is measured with the thermocouple 8, the temperature is kept at a predetermined temperature by the heating device 7. A gas to be processed is introduced from a gas to be processed introduction line 1. At this time, oxygen is added to the reaction system by supplying air 2 as an oxygen source in the process gas introduction line 1. The addition of oxygen may be performed to the gas to be treated introduction line as shown in FIG. 1 or may be directly supplied to the reaction vessel 3. The to-be-treated gas to which oxygen is added passes through the CO oxidation catalyst layer 4 in the reaction tank 3, and during this time, CO in the to-be-treated gas is oxidized to CO 2 . Next, the gas to be treated passes through the H 2 oxidation catalyst layer 5 in the reaction tank 3, and during this time, H 2 in the gas to be treated is oxidized to H 2 O. A gas detector line 9 connected to the gas detector 10 is preferably disposed at the outlet of the H 2 oxidation catalyst layer 5 to monitor the CO concentration in the outlet gas. When CO is detected in the outlet gas due to poisoning of the metal oxide catalyst or a decrease in capacity, the introduction of the gas to be treated is stopped and the catalyst is replaced or regenerated. However, when the introduction of the gas to be processed cannot be stopped immediately due to reasons such as during wafer processing, a preliminary layer 6 is disposed at the top of the reaction tank, and the metal oxide catalyst 5 is used as a CO oxidation catalyst therein. It is preferable to fill '. By disposing such a layer 6, it is possible to oxidize CO leaked in a small amount in the outlet gas. The gas that has been processed is discharged through the discharge line 7.

本発明にかかる装置においては、反応槽内における金属酸化物系触媒と貴金属触媒との充填比率は、容積比で金属酸化物系触媒1に対して、貴金属触媒を0.1〜1とすることが好ましく、貴金属触媒を0.25とすることが特に好ましい。   In the apparatus according to the present invention, the filling ratio of the metal oxide catalyst to the noble metal catalyst in the reaction tank is 0.1 to 1 for the metal oxide catalyst 1 with respect to the volume ratio of the metal oxide catalyst. It is particularly preferable that the noble metal catalyst is 0.25.

本発明は、上記に説明したガス処理装置にも関する。即ち、本発明の他の態様は以下の通りである。
CO酸化触媒が充填された層とH2酸化触媒が充填された層とを有する反応槽と、反応槽のCO酸化触媒層に被処理ガスを導入するための被処理ガス導入ラインと、被処理ガス導入ライン中若しくは反応槽中に酸素を添加するための手段と、反応槽のH2酸化触媒層から処理済のガスを排出するガス排出ラインと、を具備することを特徴とする、CO及びH2を含む被処理ガスを処理するための装置;
CO酸化触媒層に、酸化銅(II)及び酸化マンガン(II)を主成分とする金属酸化物系触媒が充填されており、H2酸化触媒層に、パラジウム又は白金をγ−アルミナに担持させた貴金属触媒が充填されている上記に記載の装置;
反応槽に加熱手段が取り付けられている上記のいずれかに記載の装置。
The present invention also relates to the gas processing apparatus described above. That is, another aspect of the present invention is as follows.
A reaction vessel having a layer filled with a CO oxidation catalyst and a layer filled with an H 2 oxidation catalyst, a gas introduction line for introducing a gas to be treated into the CO oxidation catalyst layer of the reaction vessel, and a treatment CO, characterized by comprising: means for adding oxygen in the gas introduction line or in the reaction tank; and a gas discharge line for discharging the treated gas from the H 2 oxidation catalyst layer of the reaction tank. An apparatus for treating a gas to be treated containing H 2 ;
The CO oxidation catalyst layer is filled with a metal oxide catalyst mainly composed of copper (II) oxide and manganese oxide (II), and palladium or platinum is supported on γ-alumina on the H 2 oxidation catalyst layer. An apparatus as described above, which is filled with a precious metal catalyst;
The apparatus according to any one of the above, wherein heating means is attached to the reaction vessel.

また、図1では、単一の反応槽内にCO酸化触媒層及びH2酸化触媒層を配置した形態を示したが、これらの各層を別々の反応槽として配置し、これらの槽間を接続することによって反応装置を形成することもできる。即ち、本発明の他の態様は、CO酸化触媒が充填されたCO酸化反応槽と、H2酸化触媒が充填されたH2酸化反応槽と、上記両槽を接続する接続ラインと、CO酸化反応槽に被処理ガスを導入するための被処理ガス導入ラインと、被処理ガス導入ライン中若しくはCO酸化反応槽中に酸素を添加するための手段と、H2酸化反応槽から処理済のガスを排出するガス排出ラインと、を具備することを特徴とする、CO及びH2を含む被処理ガスを処理するための装置に関する。 Further, in FIG. 1, there is shown an embodiment in which to place the CO oxidation catalyst layer and H 2 oxidation catalyst layer in a single reaction vessel, it placed these layers as separate reaction vessel, connected between these tanks By doing so, a reactor can also be formed. That is, another aspect of the present invention includes a CO oxidation reaction tank filled with a CO oxidation catalyst, an H 2 oxidation reaction tank filled with an H 2 oxidation catalyst, a connection line connecting the two tanks, and a CO oxidation Process gas introduction line for introducing process gas into the reaction tank, means for adding oxygen in the process gas introduction line or CO oxidation reaction tank, and gas treated from the H 2 oxidation reaction tank And an apparatus for processing a gas to be processed containing CO and H 2 .

以下の実施例により、本発明をより具体的に説明する。
参考例1
図1に示す構成の装置によって通ガス試験を行った。セラミックヒーターカラム(内径150mm)に、1層目として市販の金属酸化物系触媒(ズードケミー社製、N−140、組成:CuO=22wt%,MnO=50wt%、径4.7mm×長さ4.7mmのタブレット形状)を12リットル充填し、次に2層目として市販の貴金属触媒(ズードケミー社製、ET−050、0.5%のPdをγ−アルミナに担持したもの、径4〜6mmの球状)を3リットル充填して、主処理層を形成した。この上に、更に上記と同じ金属酸化物系触媒を1リットル充填して予備処理層を形成した。
The following examples illustrate the invention more specifically.
Reference example 1
A gas passing test was performed using an apparatus having the configuration shown in FIG. In a ceramic heater column (inner diameter 150 mm), as a first layer, a commercially available metal oxide catalyst (Z-Chem, N-140, composition: CuO = 22 wt%, MnO = 50 wt%, diameter 4.7 mm × length 4. 7 liters of tablet shape) is filled with 12 liters, and then, as a second layer, a commercially available noble metal catalyst (manufactured by Zude Chemie, ET-050, 0.5% Pd supported on γ-alumina, 4-6 mm in diameter) The main treatment layer was formed by filling 3 liters of spherical). Further, 1 liter of the same metal oxide catalyst as described above was filled thereon to form a pretreatment layer.

カラムの内部温度が60℃になるようにセラミックヒーターで加熱し、カラムの底部からCO,H2,O2(空気),N2の混合ガスを通ガスした。ガス流量は、CO=900mL/min、H2=370mL/min、空気=20L/min、N2=40L/minで、流入濃度をCO=1.5%、H2=0.60%、O2=6.9%とした。 The column was heated with a ceramic heater so that the internal temperature of the column reached 60 ° C., and a mixed gas of CO, H 2 , O 2 (air), and N 2 was passed through the bottom of the column. The gas flow rate is CO = 900 mL / min, H 2 = 370 mL / min, air = 20 L / min, N 2 = 40 L / min, the inflow concentration is CO = 1.5%, H 2 = 0.60%, O 2 = 6.9%.

主処理層の出口に配置したガス検知器ラインの取出し口から主処理層の処理ガスを適宜サンプリングし、CO及びH2をガスクロマトグラフ質量分析装置(アネルバ製、AGS−7000U)を用いて分析した。 The processing gas of the main processing layer was appropriately sampled from the outlet of the gas detector line arranged at the outlet of the main processing layer, and CO and H 2 were analyzed using a gas chromatograph mass spectrometer (AGS-7000U, manufactured by Anelva). .

1時間通ガスを継続したが、その間、主処理層出口ガス中にCO及びH2はいずれも常時検出限界以下(CO<2ppm、H2<2ppm)であった。 The gas was continued for 1 hour, but during that time, both CO and H 2 were always below the detection limit (CO <2 ppm, H 2 <2 ppm) in the main treatment layer outlet gas.

比較例1
参考例1で用いたものと同じセラミックヒーターカラム内に、参考例1と同じ金属酸化物系触媒のみを15リットル充填し、参考例1と同様の条件で通ガスした。通ガスを開始して5分後に触媒層の出口ガスをサンプリングして分析したところ、Hガスが入口濃度とほぼ同じ0.60%検出された。COは、この時点では不検出であった。
Comparative Example 1
The same ceramic heater column as that used in Reference Example 1, only the same metal oxide-based catalyst as in Reference Example 1 was charged 15 liters, was passed through the gas under the same conditions as in Reference Example 1. When the outlet gas of the catalyst layer was sampled and analyzed 5 minutes after the start of gas flow, H 2 gas was detected as 0.60%, which was almost the same as the inlet concentration. CO was not detected at this point.

比較例2
参考例1で用いたものと同じセラミックヒーターカラム内に、参考例1と同じ貴金属触媒のみを15リットル充填し、参考例1と同様の条件で通ガスした。通ガスを開始して10分後に触媒層の出口ガスをサンプリングして分析したところ、COが45ppmと許容濃度(ACGIHのTLV−TWA値=25ppm)を超えて検出された。Hは、この時点では不検出であった。
Comparative Example 2
The same ceramic heater column as that used in Reference Example 1, only the same noble metal catalyst as in Reference Example 1 was charged 15 liters, was passed through the gas under the same conditions as in Reference Example 1. 10 minutes after starting the gas flow, the outlet gas of the catalyst layer was sampled and analyzed. As a result, CO was detected to exceed 45 ppm and the allowable concentration (ACGIH TLV-TWA value = 25 ppm). H 2 was not detected at this point.

比較例1及び2の結果から、金属酸化物系触媒及び貴金属触媒を単独で用いてCO及びH2の酸化処理を行おうとすると、60℃程度の加熱温度では十分に処理ができないことが分かる。 From the results of Comparative Examples 1 and 2, it can be seen that if a metal oxide catalyst and a noble metal catalyst are used alone to carry out the oxidation treatment of CO and H 2 , the treatment cannot be sufficiently performed at a heating temperature of about 60 ° C.

参考例3
金属酸化物系触媒と貴金属触媒のCによる被毒の影響を検討するために、処理温度とCの分解率との関係を調べた。
Reference example 3
In order to examine the influence of poisoning of the metal oxide catalyst and the noble metal catalyst by C 2 F 4 , the relationship between the treatment temperature and the decomposition rate of C 2 F 4 was examined.

セラミック製ミニカラム(径42mm×長さ136mm)内に、参考例1と同じ金属酸化物系触媒並びに貴金属触媒を、それぞれ単独で188mL充填した。それぞれのカラムをセラミック電気管状炉に装着し、カラムの中心温度を段階的に変化させて被処理ガスの通ガスを行った。カラム温度は、50℃、75℃、100℃、125℃、150℃とした。ガス流量は、C=1.3mL/min、O=40mL/min、N=400mL/minで、流入濃度はC=2950ppm、O=9.1%とした。
In a ceramic mini column (diameter 42 mm × length 136 mm), 188 mL each of the same metal oxide catalyst and noble metal catalyst as in Reference Example 1 was packed. Each column was attached to a ceramic electric tube furnace, and the gas to be treated was passed through the column at a stepwise change in the center temperature. Column temperature was 50 degreeC, 75 degreeC, 100 degreeC, 125 degreeC, and 150 degreeC. The gas flow rates were C 2 F 4 = 1.3 mL / min, O 2 = 40 mL / min, N 2 = 400 mL / min, and the inflow concentration was C 2 F 4 = 2950 ppm and O 2 = 9.1%.

カラム出口ガスをサンプリングしてC24に関してガスクロマトグラフ質量分析装置(アネルバ製、AGS−7000U)を用いて分析した。C24の出口濃度がほぼ一定となった90分後の濃度を基に、次式によって分解率を求めた。結果を表1に示す。 The column outlet gas was sampled and analyzed for C 2 F 4 using a gas chromatograph mass spectrometer (manufactured by Anerva, AGS-7000U). Based on the concentration after 90 minutes when the outlet concentration of C 2 F 4 became almost constant, the decomposition rate was determined by the following equation. The results are shown in Table 1.

式1Formula 1

Figure 0004292052
Figure 0004292052

Figure 0004292052
Figure 0004292052

表1より、処理温度(被処理ガスと触媒との接触温度)が100℃を超えるとCの分解率が急激に上昇することが分かる。この結果から、Cの分解により金属(又は貴金属)のフッ化物が生成してこれが触媒の表面を覆うことによって触媒が被毒されるという現象を抑制するためには、被処理ガスと触媒との接触温度を100℃以下に抑えることが好ましいことが理解できる。 From Table 1, it can be seen that when the treatment temperature (contact temperature between the gas to be treated and the catalyst) exceeds 100 ° C., the decomposition rate of C 2 F 4 rapidly increases. From this result, in order to suppress the phenomenon that a metal (or noble metal) fluoride is generated by decomposition of C 2 F 4 and this covers the surface of the catalyst, the catalyst is poisoned. It can be understood that the contact temperature with the catalyst is preferably suppressed to 100 ° C. or lower.

本発明によれば、H2及びCOを含むガスを処理するにあたって、従来法よりも低い温度でH2及びCOの酸化処理が可能である。したがって、従来法における被処理ガスを高温で触媒と接触させることによるC24の分解に起因する触媒の被毒を抑制することができ、半導体製造工程からのCO及びH2を含む排ガスの処理を極めて好適に行うことが可能になる。 According to the present invention, when treating a gas containing H 2 and CO, can be oxidized in H 2 and CO at low temperature than the conventional method. Therefore, the poisoning of the catalyst due to the decomposition of C 2 F 4 by contacting the gas to be treated with the catalyst at a high temperature in the conventional method can be suppressed, and the exhaust gas containing CO and H 2 from the semiconductor manufacturing process can be suppressed. It becomes possible to perform processing very suitably.

本発明の一態様にかかるガス処理装置の構成を示す概念図である。It is a conceptual diagram which shows the structure of the gas processing apparatus concerning 1 aspect of this invention.

Claims (8)

、CO及びHを含む被処理ガスを処理する方法であって、当該被処理ガスを、酸素の共存下で、室温〜100℃で、まずCO酸化触媒と接触させ、次にH酸化触媒と接触させることを特徴とする方法。A method of treating a gas to be treated containing C 2 F 4 , CO and H 2 , wherein the gas to be treated is first contacted with a CO oxidation catalyst at room temperature to 100 ° C. in the presence of oxygen, and then wherein the contacting with H 2 oxidation catalyst. CO酸化触媒として、酸化銅(II)及び酸化マンガン(II)を主成分とする金属酸化物触媒を用い、H酸化触媒として、パラジウム又は白金をγ−アルミナに担持させた貴金属触媒を用いる請求項1に記載の方法。 A claim using a metal oxide catalyst mainly composed of copper (II) oxide and manganese (II) as a CO oxidation catalyst, and a noble metal catalyst having palladium or platinum supported on γ-alumina as an H 2 oxidation catalyst. Item 2. The method according to Item 1. CO酸化触媒は、酸化銅(II)1重量部あたり2.0〜2.5重量部の酸化マンガン(II)を含み、
酸化触媒は、触媒全量100重量部に対してパラジウム又は白金を0.1〜5重量部含む、請求項2に記載の方法。
The CO oxidation catalyst contains 2.0 to 2.5 parts by weight of manganese (II) oxide per 1 part by weight of copper (II) oxide,
The method according to claim 2, wherein the H 2 oxidation catalyst contains 0.1 to 5 parts by weight of palladium or platinum with respect to 100 parts by weight of the total amount of the catalyst.
CO酸化触媒が充填された層とH酸化触媒が充填された層とを有する反応槽と、反応槽のCO酸化触媒層に被処理ガスを導入するための被処理ガス導入ラインと、被処理ガス導入ライン中若しくは反応槽中に酸素を添加するための手段と、反応槽のH酸化触媒層から処理済のガスを排出するガス排出ラインと、を具備し、C、CO及びHを含む被処理ガスを、酸素の共存下で、室温〜100℃で、まずCO酸化触媒と接触させ、次にH酸化触媒と接触させて、C、CO及びHを含む被処理ガスを処理するための装置。 A reaction vessel having a layer filled with a CO oxidation catalyst and a layer filled with an H 2 oxidation catalyst, a gas introduction line for introducing a gas to be treated into the CO oxidation catalyst layer of the reaction vessel, and a treatment target A means for adding oxygen in the gas introduction line or in the reaction tank, and a gas discharge line for discharging the treated gas from the H 2 oxidation catalyst layer of the reaction tank, and C 2 F 4 , CO and A gas to be treated containing H 2 is first brought into contact with a CO oxidation catalyst in the presence of oxygen at room temperature to 100 ° C. , and then brought into contact with an H 2 oxidation catalyst, so that C 2 F 4 , CO, and H 2 are mixed. An apparatus for treating a gas to be treated. CO酸化触媒層に、酸化銅(II)及び酸化マンガン(II)を主成分とする金属酸化物系触媒が充填されており、H酸化触媒層に、パラジウム又は白金をγ−アルミナに担持させた貴金属触媒が充填されている請求項4に記載の装置。 The CO oxidation catalyst layer is filled with a metal oxide catalyst mainly composed of copper (II) oxide and manganese (II) oxide, and palladium or platinum is supported on γ-alumina on the H 2 oxidation catalyst layer. 5. An apparatus according to claim 4, which is filled with a precious metal catalyst. 反応槽に加熱手段が取り付けられている請求項4又は5に記載の装置。   The apparatus according to claim 4 or 5, wherein heating means is attached to the reaction vessel. 酸化触媒層の下流側に、CO酸化触媒が充填された予備層が更に形成されている請求項4〜6のいずれかに記載の装置。 Downstream of the H 2 oxidation catalyst layer A device according to claim 4, the preliminary layer CO oxidation catalyst is filled is further formed. CO酸化触媒が充填されたCO酸化反応槽と、H酸化触媒が充填されたH酸化反応槽と、上記両槽を接続する接続ラインと、CO酸化反応槽に被処理ガスを導入するための被処理ガス導入ラインと、被処理ガス導入ライン中若しくはCO酸化反応槽中に酸素を添加するための手段と、H酸化反応槽から処理済のガスを排出するガス排出ラインと、を具備し、C、CO及びHを含む被処理ガスを、酸素の共存下で、室温〜100℃で、まずCO酸化触媒と接触させ、次にH酸化触媒と接触させて、C、CO及びHを含む被処理ガスを処理するための装置。 In order to introduce a gas to be treated into a CO oxidation reaction tank filled with a CO oxidation catalyst, an H 2 oxidation reaction tank filled with an H 2 oxidation catalyst, a connection line connecting the two tanks, and the CO oxidation reaction tank Gas to be treated, a means for adding oxygen in the gas to be treated line or in the CO oxidation reaction tank, and a gas discharge line for discharging the treated gas from the H 2 oxidation reaction tank. Then, the gas to be treated containing C 2 F 4 , CO and H 2 is first brought into contact with the CO oxidation catalyst at room temperature to 100 ° C. in the presence of oxygen, and then brought into contact with the H 2 oxidation catalyst. An apparatus for treating a gas to be treated containing 2 F 4 , CO, and H 2 .
JP2003372290A 2003-10-31 2003-10-31 Method and apparatus for processing gas containing CO and H2 Expired - Lifetime JP4292052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003372290A JP4292052B2 (en) 2003-10-31 2003-10-31 Method and apparatus for processing gas containing CO and H2

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003372290A JP4292052B2 (en) 2003-10-31 2003-10-31 Method and apparatus for processing gas containing CO and H2

Publications (2)

Publication Number Publication Date
JP2005131584A JP2005131584A (en) 2005-05-26
JP4292052B2 true JP4292052B2 (en) 2009-07-08

Family

ID=34648712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003372290A Expired - Lifetime JP4292052B2 (en) 2003-10-31 2003-10-31 Method and apparatus for processing gas containing CO and H2

Country Status (1)

Country Link
JP (1) JP4292052B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007278099A (en) * 2006-04-03 2007-10-25 Toyota Motor Corp Purifying method of exhaust gas, and cogeneration method of vehicle
JP2008272614A (en) * 2007-04-25 2008-11-13 Mitsubishi Heavy Ind Ltd Co removing catalyst, fuel reforming apparatus, fuel cell system and co removing method
JP5119804B2 (en) * 2007-08-23 2013-01-16 宇部興産株式会社 Processing apparatus and processing method for compound gas containing PFC and CO
JP5971777B2 (en) * 2012-05-18 2016-08-17 日清紡ホールディングス株式会社 Method and apparatus for treating carbon monoxide
CN114931848B (en) * 2022-05-31 2023-09-26 华南理工大学 SF based on low temperature plasma 6 Circulation degradation device and method

Also Published As

Publication number Publication date
JP2005131584A (en) 2005-05-26

Similar Documents

Publication Publication Date Title
KR20110139198A (en) Steriliser with exhaust gas cleaning system for decomposing nox with ozone
JP4292052B2 (en) Method and apparatus for processing gas containing CO and H2
WO2004111628A1 (en) Catalytic combustion type gas sensor and method for manufacture thereof
JP4226275B2 (en) Exhaust gas purification method
EP0738684B1 (en) Ozone generating apparatus
JPS6145486B2 (en)
WO1998046334A1 (en) Method for removing nitrogen oxides in exhaust gas
WO2023105975A1 (en) Method for analyzing gas containing nitrosyl fluoride, and method for removing nitrosyl fluoride in gas
EP1228800B1 (en) Process and apparatus for treating gas containing fluorine-containing compounds and CO
JP4843635B2 (en) Method for producing carbonyl fluoride with reduced hydrogen fluoride content
JP5119804B2 (en) Processing apparatus and processing method for compound gas containing PFC and CO
Luys et al. The adsorptive decomposition of nitrous oxide on supported copper catalysts: the influence of the metallic dispersion and type of support on the subsurface oxidation.
JP3006717B2 (en) NF lower 3 gas treatment method and equipment used for it
JP2018202336A (en) Gas processing device, gas processing method, and breakthrough detection method for gas processing device
JP4037751B2 (en) Exhaust gas dry detoxification apparatus and method
JP4276333B2 (en) Exhaust gas purification method
WO2022075351A1 (en) Method for removing oxygen molecule and method for purifying carbon monoxide
JP3999941B2 (en) Method and apparatus for processing gas containing NH3
JP5264216B2 (en) Carbon monoxide remover
JPH03181316A (en) Method for making nf3 harmless
JP7221057B2 (en) Apparatus and method for treating gas containing nitrogen oxides
JP2004149392A (en) Method for refining carbon monoxide
JPH092807A (en) Ozonizer
JPH08281063A (en) Purification method of harmful gas
JP2647723B2 (en) Detoxification method of organic semiconductor exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090406

R150 Certificate of patent or registration of utility model

Ref document number: 4292052

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term