JP4290898B2 - Polyester resin foam and method for producing polyester resin foam - Google Patents

Polyester resin foam and method for producing polyester resin foam Download PDF

Info

Publication number
JP4290898B2
JP4290898B2 JP2001123160A JP2001123160A JP4290898B2 JP 4290898 B2 JP4290898 B2 JP 4290898B2 JP 2001123160 A JP2001123160 A JP 2001123160A JP 2001123160 A JP2001123160 A JP 2001123160A JP 4290898 B2 JP4290898 B2 JP 4290898B2
Authority
JP
Japan
Prior art keywords
polyester resin
foam
ratio
glycol
intrinsic viscosity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001123160A
Other languages
Japanese (ja)
Other versions
JP2002201260A (en
Inventor
大 小黒
武夫 林
岳志 広兼
正弘 黒川
義久 石原
健 青木
博俊 角田
義昭 百瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Mitsubishi Gas Chemical Co Inc
Original Assignee
JSP Corp
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp, Mitsubishi Gas Chemical Co Inc filed Critical JSP Corp
Priority to JP2001123160A priority Critical patent/JP4290898B2/en
Publication of JP2002201260A publication Critical patent/JP2002201260A/en
Application granted granted Critical
Publication of JP4290898B2 publication Critical patent/JP4290898B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Polyesters Or Polycarbonates (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、分岐化剤を使用することなく高い溶融粘度を示し、更に低極限粘度、すなわち短い重合時間でも優れた発泡成形性を示す発泡体用ポリエステル樹脂を基材樹脂とする発泡体及び該発泡体の製造方法に関するものである。
【0002】
【従来の技術】
ポリエチレンテレフタレートをはじめとする線状芳香族ポリエステル樹脂は、機械的性能、耐熱性、耐薬品性、寸法安定性等に優れているため、射出成形品、ブロー成形品、フィルム、繊維などの広範囲な用途を有している。しかしながら、該線状芳香族ポリエステル樹脂を押出発泡の基材樹脂として用いる場合、その溶融時の弾性が不足しており、また粘度も低いため、線状芳香族ポリエステル系樹脂を押出発泡させて独立気泡の高い良好な発泡体を得ることは極めて困難であるという問題がある。
【0003】
前記問題を改良する方法として、線状芳香族ポリエステル樹脂を押出発泡成形する際に、1分子中に2個以上の酸無水物基を有する化合物を該樹脂に混合する方法(特公平5−15736号公報)や前記と同様の酸無水物を特定の金属化合物基を有する化合物を該樹脂に混合する方法(特公平5−47575号公報)が開示されている。また、前記方法の他にも、分子量分布(質量平均分子量/数平均分子量)が5.0〜21.0のポリエステル樹脂を押出発泡成形する方法(特開平7−33899号公報)、Z平均分子量が1×106以上で、分岐パラメーターが0.8以下のポリエステル樹脂を押出発泡成形する方法(特開平11−166067号公報)が開示されている。
【0004】
いずれの方法においても、多官能カルボン酸無水物若しくは多官能グリシジル化合物を添加している。しかしながら、合成時に添加した場合には三次元化により、反応槽からの取り出しが困難であり、押出成形時に添加する、若しくはそれらの化合物を共重合した分岐状芳香族コポリエステル樹脂を押出成形時に添加する工程が必要であった。また、結晶性樹脂は融点以上の高温加熱が必要である。
【0005】
そこで、芳香族ポリエステル樹脂のグリコール成分としてシクロヘキサンジメタノールとエチレングリコールの混合物を使用した芳香族ポリエステル樹脂の発泡体が提案されている(特開平8−231751号公報)。この発明では発泡材料として、2種類のグリコール成分を使用した芳香族ポリエステル樹脂を用いたため、発泡時に結晶化速度を遅延することができ、均一、微細な気泡を有し、高倍率で、しかも断熱性、緩衝性、リサイクル性良好な発泡体が得られている。しかしながら、この発泡体は耐熱性及び機械的強度の点で必ずしも十分とはいえない。
【0006】
更に、芳香族ポリエステル樹脂のジカルボン酸成分として2,6−ナフタレンジカルボン酸とテレフタル酸の混合物を使用した芳香族ポリエステル系樹脂の発泡体が提案されている(特開平11−147969号公報)。この発泡体では、耐熱性を上げるために、2,6−ナフタレンジカルボン酸を増加すると、結晶化速度が増加することから独立気泡率の高い良好な発泡体を得る点で十分とはいえない。
【0007】
【発明が解決しようとする課題】
本発明は、独立気泡率が高く、耐熱性に優れたポリエステル発泡体及びその製造方法を提供することをその課題とする。
【0008】
【課題を解決するための手段】
本発明者らは前記課題を解決すべく鋭意検討の結果、環状エーテル骨格を有するポリエステル樹脂は、分岐化剤を使用することなく高い溶融粘度を示し、更に低極限粘度、すなわち短い重合時間でも優れた発泡成形性を示すことを見い出し、本発明に到達した。
【0009】
即ち、本発明によれば、以下に示すポリエステル樹脂発泡体及びポリエステル樹脂発泡体の製造方法が提供される。
(1)下記<1>または<2>に記載の発泡体用ポリエステル樹脂を基材樹脂とする見かけ密度が1.1g/cm以下のポリエステル樹脂発泡体。
<1>環状エーテル骨格を有するグリコールを10〜80モル%含むグリコールとジカルボン酸とを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
<2>環状エーテル骨格を有するジカルボン酸を10〜80モル%含むジカルボン酸とグリコールとを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
(2)見かけ密度が0.03〜1.1g/cm、厚みが0.2〜7mm、独立気泡率が少なくとも50%のシート状を呈することを特徴とする前記()に記載のポリエステル樹脂発泡体。
(3)下記<1>または<2>に記載の発泡体用ポリエステル樹脂を、押出機内で発泡剤の存在下に溶融混練し、次いで低圧下に押出すことを特徴とするポリエステル樹脂発泡体の製造方法。
<1>環状エーテル骨格を有するグリコールを10〜80モル%含むグリコールとジカルボン酸とを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
<2>環状エーテル骨格を有するジカルボン酸を10〜80モル%含むジカルボン酸とグリコールとを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
【0010】
【発明の実施の形態】
本発明で使用可能な環状エーテル骨格を有するグリコールとしては、従来公知の各種のもの、例えば、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカンや5−メチロール−5−エチル−2−(1,1−ジメチル−2−ヒドロキシエチル)−1,3−ジオキサン等が例示できるがこれらに限定されるものではない。
【0011】
本発明で使用可能な環状エーテル骨格を有するジカルボン酸としては、従来公知の各種のもの、例えば、3,9−ビス(2−カルボキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカンや、3,9−ビス(2−カルボメトキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカン等が例示できるがこれらに限定されるものではない。
【0012】
本発明で使用可能な芳香族ジカルボン酸としては、従来公知の各種のもの、例えば、テレフタル酸、イソフタル酸、フタル酸、2−メチルテレフタル酸、ナフタレンジカルボン酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等が例示できるがこれらに限定されるものではない。
【0013】
本発明において使用できる他のグリコール成分は、特に制限はされないが、その具体例を示すと、例えば、エチレングリコール、トリメチレングリコール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール等の脂肪族ジオール類、ポリエチレングリコール、ポリプロピレングリコール、ポリブチレングリコール等のポリエーテル化合物類、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、1,2−デカヒドロナフタレンジメタノール、1,3−デカヒドロナフタレンジメタノール、1,4−デカヒドロナフタレンジメタノール、1,5−デカヒドロナフタレンジメタノール、1,6−デカヒドロナフタレンジメタノール、2,7−デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、5−メチロール−5−エチル−2−(1,1−ジメチル−2−ヒドロキシエチル)−1,3−ジオキサン、ペンタシクロドデカンジメタノール等の脂環族ジオール類、4,4’−(1−メチルエチリデン)ビスフェノール、メチレンビスフェノール(ビスフェノールF)、4,4’−シクロヘキシリデンビスフェノール(ビスフェノールZ)、4,4’−スルホニルビスフェノール(ビスフェノールS)等のビスフェノール類のアルキレンオキシド付加物、ヒドロキノン、レゾルシン、4,4’―ジヒドロキシビフェニル、4,4’―ジヒドロキシジフェニルエーテル、4,4’―ジヒドロキシジフェニルベンゾフェノン等の芳香族ジヒドロキシ化合物のアルキレンオキシド付加物等が例示できる。
【0014】
本発明において使用できる他のジカルボン酸成分は、特に制限はされないが、その具体例を示すと、例えば、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、イソホロンジカルボン酸、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカン、3,9−ビス(2−カルボキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカン、3,9−ビス(2−カルボメトキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカン等が挙げられる。
【0015】
本発明で用いる発泡体用ポリエステル樹脂に使用する原料モノマーは以下に記載の通りである。
(1)本発明で用いるポリエステル樹脂の1つの態様は、グリコールが環状エーテル骨格を有するグリコールを10〜80モル%以上含むグリコールとジカルボン酸から得られるポリエステル樹脂である。グリコールが環状エーテル骨格を有するグリコールを上記配合割合とすることにより、本発明のポリエステル樹脂は、優れた発泡成形性を示すと共に、高い機械的性質、高い耐熱性を兼ね備えた発泡体を製造することができるというる特徴を備える。
【0016】
(2)本発明で用いるポリエステル樹脂の他の態様は、環状エーテル骨格を有するジカルボン酸を10〜80モル%以上含むジカルボン酸とグリコールとから得られるポリエステル樹脂である。環状エーテル骨格を有するジカルボン酸を上記配合割合とすることにより、ポリエステル樹脂は、優れた発泡成形性を示すと共に、高い機械的性質、高い耐熱性を兼ね備えた発泡体を製造することができるというる特徴を備える。
【0017】
(3)本発明で用いるポリエステル樹脂のさらに他の態様は、グリコールが環状エーテル骨格を有するグリコールを10〜80モル%以上含むグリコールと、ジカルボン酸が芳香族ジカルボン酸を90〜100モル%含むジカルボン酸を重縮合して得られるポリエステル樹脂である。グリコールとジカルボン酸をそれぞれ上記配合割合とすることにより、ポリエステル樹脂から得られる発泡体は、更に高い機械的性質、耐熱性を有するという特徴を備える。
【0018】
本発明において、ポリエステル樹脂の極限粘度及び溶融粘度は、以下の方法より測定した。
(1)極限粘度
混合溶媒(フェノール/1,1,2,2−テトラクロロエタン(質量比):6/4)を用いて25℃恒温下で測定する。
(2)溶融粘度
測定温度240℃、剪断速度100(1/sec)の条件下で測定する。
【0019】
本発明で用いるポリエステル樹脂の極限粘度は、0.3〜1.2、好ましくは0.5〜1.0、更に好ましくは0.6〜0.8(dl/g)の範囲である。極限粘度が上記範囲内のポリエステル樹脂の場合には、それから得られる発泡体が強度特性に優れるという特徴を有する上、発泡成形性に優れ、独立気泡率の高い発泡体の製造が容易となる。ポリエステル樹脂の溶融粘度/極限粘度の比は、1500〜5000、好ましくは1500〜4000、更に好ましくは2000〜3500(Pa・s・g/dl)である。前記粘度比をこのような範囲に保持することにより、独立気泡率の高い発泡体の製造が容易となる。
【0020】
本発明で用いるポリエステル樹脂は、ガラス転移温度が90℃以上であることが好ましい。ガラス転移温度が90℃以上であると耐熱性の高い発泡体の製造が容易となる。また、ポリエステル樹脂は、降温時結晶化発熱ピークの熱量が4J/g以下(0も含む)であることが好ましい。降温時結晶化発熱ピークの熱量が4J/g以下(0も含む)であると独立気泡率の高い発泡体の製造が容易となる。また、降温時結晶化発熱ピークの熱量が4J/g以下(0も含む)のポリエステル樹脂からなる発泡シートは熱成形時の伸びに優れると共に、同樹脂からなる発泡ビーズからの型内成形体は発泡ビーズ間の融着性に優れる。
【0021】
本発明で用いるポリエステル樹脂を製造する方法には特に制限はなく、従来公知の方法を適用することが出来る。例えば、エステル交換法、直接エステル化法等の溶融重合法または溶液重合法を挙げることが出来る。エステル交換触媒、エステル化触媒、エーテル化防止剤、また重合に用いる重合触媒、熱安定剤、光安定剤等の各種安定剤、重合調整剤等も従来既知のものを用いることが出来る。エステル交換触媒としては、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物、またエステル化触媒として、マンガン、コバルト、亜鉛、チタン、カルシウム等の化合物、またエーテル化防止剤としてアミン化合物等が例示される。
【0022】
重縮合触媒としては、ゲルマニウム、アンチモン、スズ、チタン等の化合物が例示される。また熱安定剤としては、リン酸、亜リン酸、フェニルホスホン酸等の各種リン化合物を加えることも有効である。その他光安定剤、耐電防止剤、滑剤、酸化防止剤、離型剤等を加えても良い。また、直接エステル化法において、スラリー性改善のために水を加えても良い。
【0023】
本発明でいう発泡体とは、ポリエステル樹脂に気泡を生成させ、安定化したものである。その製造方法としては、主に、樹脂に発泡剤を含浸させた後、加熱して発泡させる方法と、溶融樹脂に高温高圧下にて発泡剤を練り混み、大気圧等の低圧下に移動させることにより発泡させる方法などがあるが、特に限定はされない。また、発泡体の形状としては、型内発泡成形体及び押出発泡成形体等の成形体があるが特に限定されない。なお、型内発泡成形体とは、樹脂をビーズ状に発泡させた後、金型内で加熱・成形・冷却して得られたものをいう。また、押出発泡成形体とは、樹脂を押出機内で発泡剤の存在下に溶融混練し、次いで低圧下に押出成形することにより得られたものをいう。いずれにしても、本発明の発泡体は見かけ密度が1.1g/cm3以下であることが好ましく、1.0g/cm3乃至0.01g/cm3であることがより好ましい。見かけ密度が1.1g/cm3を越えると発泡させたメリット(軽量化、断熱性の向上効果)が小さく、逆に0.01g/cm3よりも下回ると独立気泡率を高くすることが困難になってしまう。
【0024】
本発明の発泡体の内、見かけ密度が0.03〜1.1g/cm3、厚みが0.2〜7mm、独立気泡率が少なくとも50%のシート状を呈するもの(発泡シート)は熱成形性に優れるので好ましい。熱成形に使用される発泡シートの独立気泡率は70%以上がより好ましい。そのような発泡シートは、上記ポリエステル樹脂を発泡剤と共に押出機内においてポリエステル樹脂の溶融する温度で溶融混練して、次いで押出機先端に備え付けられたダイスより低圧下に押出発泡させてシート化することにより得られる。
【0025】
前記発泡剤としては、不活性ガス、飽和脂肪族炭化水素、飽和脂環族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、エーテル、ケトン等で、これらは単独又は2種以上組み合わせて用いられる。具体的には、炭酸ガス、窒素、メタン、エタン、ノルマルブタン、イソブタン、ノルマルペンタン、イソペンタン、ネオペンタン、ノルマルヘキサン、2−メチルペンタン、3−メチルペンタン、2,2−ジメチルブタン、2,3−ジメチルブタン、メチルシクロプロパン、シクロペンタン、1,1−ジメチルシクロプロパン、シクロヘキサン、メチルシクロペンタン、エチルシクロブタン、1,1,2−トリメチルシクロプロパン、ベンゼン、1,1,1,2−テトラフルオロエタン、1,1−ジルフルオロエタン、1,1,1,2,2−ペンタフルオロエタン、トリクロルトリフルオロエチレン、ジクロルテトラフルオロエチレン、ジメチルエーテル、2−エトキシエタノール、アセトン、エチルメチルケトン、アセチルアセトン等が挙げられる。発泡剤の使用量は、目標とする発泡体の見掛け密度に応じて適宜選定されるが、通常は、ポリエステル樹脂1kgに対して0.05〜3モル用いられる。発泡剤がポリエステル樹脂1kgに対して0.05モル未満では部分的に発泡した不均質な発泡体が得られたり、また3モルを超えると、ダイスでのガスシールが不安定になり良好な発泡体が得られにくくなる。
【0026】
前記ポリエステル樹脂を溶融し、その溶融物を発泡剤と混合して低圧帯域に押出して発泡体を得るに当り、溶融混合と冷却とをそれぞれ一台以上の押出機で行うことが望ましい。すなわち、一般に押出発泡は、樹脂を溶融し発泡剤を加えた後、樹脂が発泡に適した粘度に達するまで冷却することによって行われる。このため、樹脂と発泡剤との溶融混合においては、高回転で十分に混練することが望まれ、冷却においては冷却効率を高めるために、可能な限りせん断発熱を押えて低回転で押出すことが望まれる。従って、溶融混合と発泡のための冷却とを、一台の押出機で行う方法を採ると、十分な冷却を行なうために低回転で押し出す必要があるために、樹脂と発泡剤の混練が不十分となりやすく発泡状態が悪化したり、押出機の吐出量が低下し生産性が低下するといった問題を生じる。このため、本発明においては、溶融混合と冷却を各々一台以上の押出機で行なうことが好ましい。押出機の形状、種類は特に限定されるものではない。
【0027】
更に、本発明の発泡体の製造においては、タルクのような気泡調節剤を混合したり、アイオノマーのような熱可塑性樹脂、無機繊維や無機紛体の如き無機充填剤、難燃剤、帯電防止剤、酸化防止剤、着色剤等を適宜混合してもよい。
【0028】
【実施例】
以下実施例により本発明を更に具体的に説明する。但し本発明はこれらの実施例により限定されるものではない。
【0029】
尚、実施例、比較例中、ジメチルテレフタレートを「DMT」と、3,9−ビス(2−カルボキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカンを「SPD」と、2,6−ナフタレンジカルボン酸を「NDC」と、ピロメリット酸を「PMDA」と、エチレングリコールを「EG」と、ネオペンチルグリコールを「NPG」と、1,4−シクロヘキサンジメタノールを「CHDM」と、3,9−ビス(1,1−ジメチル−2−ヒドロキシエチル)2,4,8,10−テトラオキサスピロ〔55〕ウンデカンを「SPG」と、5−メチロール−5−エチル−2−(1,1−ジメチル−2−ヒドロキシエチル)−1,3−ジオキサンを「DOG」と略記する。
【0030】
実施例1〜4、比較例1〜5
ジカルボン酸成分として表中に記載のモル比のDMT、又はDMT−SPD、DMT−NDC、もしくはDMT−PMDAの混合物を、ジオール成分としてEG、又はEG−SPG、DOG−EG、CHDM−EG、もしくはNPG−EGの混合物を用いて重縮合させポリエステル樹脂を得た。次いで、該樹脂に、樹脂100質量部あたり核剤としてタルク1.5質量部を加え、このものを原料樹脂として、第1押出機(溶融混練用)に供給し、加熱、溶融、混練した後、発泡剤としてイソブタンをポリエステル樹脂100質量部当たり1.7質量部を押出機内に圧入して溶融混練し、次いで当該溶融混練物を第2押出機に供給し表に示す温度(表中には発泡温度と表記した。この温度はダイスへ入る直前の溶融樹脂の温度である)にて押出機先端の環状ダイスより押出し、これをチューブ状の発泡体としてその内面側をマンドレル(円柱状冷却ドラム)表面に接触させると共に発泡体外面に空気を吹き付けながら内外面を冷却しつつ引き取り、次いで押出方向に沿って切り開き、発泡シートを得た。得られた発泡シートの性状及び熱成形の結果を併せて表に示す。なお、ポリマーの物性の測定等は以下の方法によった。尚、比較例5においては三次元ポリマーも生成し、射出成形による試験片の調製は不可能であった。
【0031】
(1)樹脂の評価方法
〔ガラス転移温度〕
ポリエステル樹脂のガラス転移温度(Tg)は、(株)島津製作所製、示査走査型熱量計(型式:DSC/TA−50WS)を使用し、試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度20℃/minで測定した。
〔降温時結晶化発熱ピーク熱量〕
ポリエステル樹脂の降温時結晶化発熱ピーク熱量は、(株)島津製作所製、示査走査型熱量計(型式:DSC/TA−50WS)を使用し、試料約10mgをアルミニウム製非密封容器に入れ、窒素ガス(30ml/min)気流中昇温速度20℃/minで300℃まで加熱し、次いで降温速度20℃/minで20℃まで温度を低下させて測定した。
〔極限粘度〕
混合溶媒(フェノール/1,1,2,2−テトラクロロエタン(質量比):6/4)を用いて25℃恒温下で測定した。
〔溶融粘度〕
測定装置は東洋精機製キャピログラフを用いた。また、測定温度は240℃、剪断速度は100(1/sec)の範囲でおこなった。
【0032】
(2)発泡シートの評価
〔耐熱性〕
発泡体シートから、押出方向を縦、幅方向を横として、縦、横100mmの正方形試験片を切り出し、この試験片を85℃のオーブン内で30分加熱し、加熱後の縦及び横方向の収縮率が10%を越えたシートを耐熱性不良とした。
〔独立気泡率〕
発泡シートの独立気泡率は、ASTM−D2856−70に記載されている手順Cに従って、東芝ベックマン株式会社の空気比較式比重計930型を使用して測定(発泡シートから縦25mm、横25mmに切り出し(厚みはそのまま)、複数枚を重ねたときに最も25mm厚みに近づく枚数をサンプルカップ内に収容して測定)された発泡シート(複数枚のカットサンプル)の真の体積Vxを用い、次式により独立気泡率S(%)を計算し、N=3の平均値で求めた。
S(%)=(Vx−W/ρ)×100/(Va−W/ρ)
Vx:上記方法で測定された複数枚の発泡シートの真の体積(cm3)であり、発泡シートを構成する樹脂の容積と、発泡シート内の独立気泡部分の気泡全容積との和に相当する。
Va:測定に使用されたカットサンプルの外寸から計算されたカットサンプルの見掛け上の体積(cm3
W:測定に使用されたカットサンプル全重量(g)
ρ:発泡シートを構成する樹脂の密度(g/cm3
独立気泡率については以下に示す評価基準に基づき評価を行った。
A:独立気泡率が70%以上の場合
B:独立気泡率が50%以上、70%未満の場合
C:独立気泡率が50%未満の場合
〔熱成形性〕
開口部の直径160mm、深さ35mmの丼形状の金型を用い、単発成形機にて発泡シートを熱成形した。熱成形性の評価は以下の基準にて行った。
○:賦形性も良好で、ナキ〔表面の亀裂〕、割れの発生が無い事
△:賦形性はあるが、所々ナキ等の発生が見られる
×:原反自体に伸びが無く、賦形性が無い
【0033】
【表1】

Figure 0004290898
【0034】
【表2】
Figure 0004290898
【0035】
【発明の効果】
本発明のポリエステル樹脂発泡体は、独立気泡率が高く、耐熱性、環境適性に優れた発泡体であ、食品容器包装材、梱包緩衝材などの有用な素材として用いることができ、本発明の工業的意義は大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention, the partial岐化agent exhibited high melt viscosity without using further low intrinsic viscosity, i.e. foams with a short polymerization time even better foams polyester resins the base resin showing a foam molding properties And a method for producing the foam.
[0002]
[Prior art]
Linear aromatic polyester resins such as polyethylene terephthalate are excellent in mechanical performance, heat resistance, chemical resistance, dimensional stability, etc., and are widely used in injection molded products, blow molded products, films, fibers, etc. Has a use. However, when the linear aromatic polyester resin is used as a base resin for extrusion foaming, since the elasticity at the time of melting is insufficient and the viscosity is low, the linear aromatic polyester resin is extruded and foamed independently. There is a problem that it is extremely difficult to obtain a good foam having high air bubbles.
[0003]
As a method for improving the above problem, a compound having two or more acid anhydride groups in one molecule is mixed with the resin when a linear aromatic polyester resin is extruded and foamed (Japanese Patent Publication No. 515736). And a method of mixing a compound having a specific metal compound group with the same acid anhydride as described above (Japanese Patent Publication No. 5-47575). In addition to the above method, a method of extrusion foam molding a polyester resin having a molecular weight distribution (mass average molecular weight / number average molecular weight) of 5.0 to 21.0 (JP-A-7-33899), Z average molecular weight There at 1 × 10 6 or more, a method of branching parameter is extrusion foaming 0.8 or less of the polyester resin (JP-a-11-166067) have been disclosed.
[0004]
In any method, a polyfunctional carboxylic acid anhydride or a polyfunctional glycidyl compound is added. However, when added at the time of synthesis, it is difficult to take out from the reaction vessel due to three-dimensionalization, and it is added at the time of extrusion molding, or a branched aromatic copolyester resin copolymerized with these compounds is added at the time of extrusion molding. The process to do was necessary. In addition, the crystalline resin needs to be heated at a high temperature equal to or higher than the melting point.
[0005]
Therefore, an aromatic polyester resin foam using a mixture of cyclohexanedimethanol and ethylene glycol as the glycol component of the aromatic polyester resin has been proposed (Japanese Patent Laid-Open No. 8-231751). In this invention, since an aromatic polyester resin using two types of glycol components is used as the foaming material, the crystallization speed can be delayed at the time of foaming, it has uniform and fine bubbles, high magnification, and heat insulation. A foam having good properties, buffer properties and recyclability is obtained. However, this foam is not necessarily sufficient in terms of heat resistance and mechanical strength.
[0006]
Further, an aromatic polyester resin foam using a mixture of 2,6-naphthalenedicarboxylic acid and terephthalic acid as a dicarboxylic acid component of the aromatic polyester resin has been proposed (Japanese Patent Laid-Open No. 11-147969). In this foam, when 2,6-naphthalenedicarboxylic acid is increased in order to increase heat resistance, the crystallization rate increases, so that it is not sufficient to obtain a good foam having a high closed cell ratio.
[0007]
[Problems to be solved by the invention]
The present invention, closed cell ratio is high, and its object is to provide a process for producing a polyester foam及 patron having excellent heat resistance.
[0008]
[Means for Solving the Problems]
As a result of intensive studies to solve the above problems, the present inventors have shown that a polyester resin having a cyclic ether skeleton exhibits a high melt viscosity without using a branching agent, and is excellent in a low intrinsic viscosity, that is, a short polymerization time. As a result, the present invention has been found.
[0009]
That is, according to the present invention, a method of manufacturing shown to port Riesuteru resin foam and a polyester resin foam is provided below.
(1) A polyester resin foam having an apparent density of 1.1 g / cm 3 or less using the polyester resin for foam as described in <1> or <2> below as a base resin.
<1> A polyester resin obtained by polycondensation of a glycol containing 10 to 80 mol% of a glycol having a cyclic ether skeleton and a dicarboxylic acid, wherein the mass ratio of phenol to 1,1,2,2-tetrachloroethane Is a range of 0.3 to 1.2 (dl / g) of intrinsic viscosity measured at 25 ° C. using a 6: 4 mixed solvent, and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa · polyester resin for foams in the range of s · g / dl).
<2> A polyester resin obtained by polycondensation of a dicarboxylic acid containing 10 to 80 mol% of a dicarboxylic acid having a cyclic ether skeleton and a glycol, the mass of phenol and 1,1,2,2-tetrachloroethane The intrinsic viscosity measured at 25 ° C. using a mixed solvent with a ratio of 6: 4 is in the range of 0.3 to 1.2 (dl / g), and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa A polyester resin for foams in the range of s · g / dl).
(2) The polyester as described in ( 1 ) above, which has a sheet shape with an apparent density of 0.03 to 1.1 g / cm 3 , a thickness of 0.2 to 7 mm, and a closed cell ratio of at least 50%. Resin foam.
(3) A polyester resin foam characterized in that the polyester resin for foams according to <1> or <2> below is melt-kneaded in the presence of a foaming agent in an extruder and then extruded under low pressure. Production method.
<1> A polyester resin obtained by polycondensation of a glycol containing 10 to 80 mol% of a glycol having a cyclic ether skeleton and a dicarboxylic acid, wherein the mass ratio of phenol to 1,1,2,2-tetrachloroethane Is a range of 0.3 to 1.2 (dl / g) of intrinsic viscosity measured at 25 ° C. using a 6: 4 mixed solvent, and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa · polyester resin for foams in the range of s · g / dl).
<2> A polyester resin obtained by polycondensation of a dicarboxylic acid containing 10 to 80 mol% of a dicarboxylic acid having a cyclic ether skeleton and a glycol, the mass of phenol and 1,1,2,2-tetrachloroethane The intrinsic viscosity measured at 25 ° C. using a mixed solvent with a ratio of 6: 4 is in the range of 0.3 to 1.2 (dl / g), and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa A polyester resin for foams in the range of s · g / dl).
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Examples of glycols having a cyclic ether skeleton that can be used in the present invention include various conventionally known glycols such as 3,9-bis (1,1-dimethyl-2-hydroxyethyl) 2,4,8,10-tetra. Oxaspiro [5 . 5] Undecane, 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane and the like can be exemplified, but are not limited thereto.
[0011]
Examples of the dicarboxylic acid having a cyclic ether skeleton that can be used in the present invention include various conventionally known dicarboxylic acids such as 3,9-bis (2-carboxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] Undecane and 3,9-bis (2-carbomethoxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] Undecane and the like can be exemplified, but are not limited thereto.
[0012]
Examples of aromatic dicarboxylic acids that can be used in the present invention include various conventionally known ones such as terephthalic acid, isophthalic acid, phthalic acid, 2-methylterephthalic acid, naphthalenedicarboxylic acid, biphenyldicarboxylic acid, and tetralindicarboxylic acid. Although it can illustrate, it is not limited to these.
[0013]
Other glycol components that can be used in the present invention are not particularly limited, but specific examples thereof include, for example, ethylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,6 -Aliphatic diols such as hexanediol, diethylene glycol, propylene glycol and neopentyl glycol, polyether compounds such as polyethylene glycol, polypropylene glycol and polybutylene glycol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol 1,2-decahydronaphthalene diethanol, 1,3-decahydronaphthalene diethanol, 1,4-decahydronaphthalene diethanol, 1,5-decahydronaphthalene diethanol, 1,6-decahydronaphtha Dimethanol, 2,7-decahydronaphthalene diethanol, tetralin dimethanol, norbornane dimethanol, tricyclodecane dimethanol, 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl)- Alicyclic diols such as 1,3-dioxane and pentacyclododecanedimethanol, 4,4 ′-(1-methylethylidene) bisphenol, methylenebisphenol (bisphenol F), 4,4′-cyclohexylidenebisphenol (bisphenol) Z), alkylene oxide adducts of bisphenols such as 4,4′-sulfonylbisphenol (bisphenol S), hydroquinone, resorcin, 4,4′-dihydroxybiphenyl, 4,4′-dihydroxydiphenyl ether, 4,4′-dihydroxy Alkylene oxide adducts of aromatic dihydroxy compounds such as phenyl benzophenone can be exemplified.
[0014]
Other dicarboxylic acid components that can be used in the present invention are not particularly limited, and specific examples thereof include, for example, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, and dodecanedicarboxylic acid. Acid, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, norbornane dicarboxylic acid, tricyclodecane dicarboxylic acid, pentacyclododecanedicarboxylic acid, isophorone dicarboxylic acid, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) 2,4 , 8,10-tetraoxaspiro [5 . 5] Undecane, 3,9-bis (2-carboxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] Undecane, 3,9-bis (2-carbomethoxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] and undecane.
[0015]
The raw material monomers used for the polyester resin for foams used in the present invention are as described below.
(1) One aspect of the polyester resin used in the present invention is a polyester resin obtained from a glycol containing 10 to 80 mol% or more of a glycol having a cyclic ether skeleton and a dicarboxylic acid. By making the glycol having a cyclic ether skeleton into the above-mentioned blending ratio, the polyester resin of the present invention exhibits excellent foam moldability and produces a foam having high mechanical properties and high heat resistance. It has the feature of being able to.
[0016]
(2) Another embodiment of the polyester resin used in the present invention is a polyester resin obtained from a dicarboxylic acid containing 10 to 80 mol% or more of a dicarboxylic acid having a cyclic ether skeleton and a glycol. By a dicarboxylic acid having a cyclic ether skeleton and the mixing ratio, the polyester resin may exhibit high foaming moldability, high mechanical properties, being able to produce foams having both high heat resistance Features.
[0017]
(3) Still another embodiment of the polyester resin used in the present invention is that the glycol contains 10 to 80 mol% or more of a glycol having a cyclic ether skeleton and the dicarboxylic acid contains 90 to 100 mol% of an aromatic dicarboxylic acid. It is a polyester resin obtained by polycondensation of an acid. By the glycol and dicarboxylic acid respectively to the mixing ratio, foams obtained from the polyester resin comprises further high mechanical properties, characterized in that a heat-resistant.
[0018]
In the present invention, the intrinsic viscosity and melt viscosity of the polyester resin were measured by the following methods.
(1) Measurement is performed at a constant temperature of 25 ° C. using an intrinsic viscosity mixed solvent (phenol / 1,1,2,2-tetrachloroethane (mass ratio): 6/4).
(2) Melt viscosity is measured under the conditions of a temperature of 240 ° C. and a shear rate of 100 (1 / sec).
[0019]
The intrinsic viscosity of the polyester resin used in the present invention is in the range of 0.3 to 1.2, preferably 0.5 to 1.0, and more preferably 0.6 to 0.8 (dl / g). In the case of a polyester resin having an intrinsic viscosity within the above range, the foam obtained therefrom has the characteristics of excellent strength characteristics, and is excellent in foam moldability and facilitates the production of a foam having a high closed cell ratio. The polyester resin has a melt viscosity / intrinsic viscosity ratio of 1500 to 5000, preferably 1500 to 4000, and more preferably 2000 to 3500 (Pa · s · g / dl). By maintaining the viscosity ratio in such a range, it becomes easy to produce a foam having a high closed cell ratio.
[0020]
The polyester resin used in the present invention preferably has a glass transition temperature of 90 ° C. or higher. When the glass transition temperature is 90 ° C. or higher, it becomes easy to produce a foam having high heat resistance. Further, the polyester resin is preferably heat of cooling during crystallization exothermic peak is 4J / g or less (including 0). When the calorific value of the crystallization exothermic peak during cooling is 4 J / g or less (including 0), it becomes easy to produce a foam having a high closed cell ratio. In addition, a foamed sheet made of a polyester resin having a crystallization exothermic peak of 4 J / g or less (including 0) when the temperature is lowered is excellent in elongation at the time of thermoforming, and an in-mold molded product made of foamed beads made of the resin is Excellent fusion between foam beads.
[0021]
There is no restriction | limiting in particular in the method of manufacturing the polyester resin used by this invention, A conventionally well-known method is applicable. For example, a melt polymerization method such as a transesterification method or a direct esterification method or a solution polymerization method can be used. As the transesterification catalyst, esterification catalyst, etherification inhibitor, polymerization catalyst used in the polymerization, various stabilizers such as a heat stabilizer and a light stabilizer, polymerization regulators and the like, conventionally known ones can be used. Examples of the transesterification catalyst include compounds such as manganese, cobalt, zinc, titanium, and calcium, examples of the esterification catalyst include compounds such as manganese, cobalt, zinc, titanium, and calcium, and examples of the etherification inhibitor include amine compounds. The
[0022]
Examples of the polycondensation catalyst include compounds such as germanium, antimony, tin, and titanium. It is also effective to add various phosphorus compounds such as phosphoric acid, phosphorous acid, and phenylphosphonic acid as the heat stabilizer. Other light stabilizers, antistatic agents, lubricants, antioxidants, mold release agents and the like may be added. In the direct esterification method, water may be added to improve the slurry property.
[0023]
The foam referred to in the present invention is a product in which bubbles are generated in a polyester resin and stabilized. As a production method, mainly, a resin is impregnated with a foaming agent and then heated and foamed, and a foaming agent is kneaded and mixed with a molten resin at a high temperature and a high pressure, and moved under a low pressure such as atmospheric pressure. There is a method for foaming, but there is no particular limitation. Further, the shape of the foam includes, but is not particularly limited to, a molded body such as an in-mold foam molded body and an extrusion foam molded body. The in-mold foam molded product refers to a product obtained by foaming a resin into beads and then heating, molding, and cooling in a mold. Further, the extrusion foamed molded product refers to a product obtained by melt-kneading a resin in the presence of a foaming agent in an extruder and then extruding the resin under a low pressure. In any case, the foam of the present invention preferably has an apparent density of 1.1 g / cm 3 or less, and more preferably 1.0 g / cm 3 to 0.01 g / cm 3 . If the apparent density exceeds 1.1 g / cm 3 , the merit of foaming (weight reduction, heat insulation improvement effect) is small, and conversely if it is less than 0.01 g / cm 3, it is difficult to increase the closed cell ratio. Become.
[0024]
Among the foams of the present invention, those having an apparent density of 0.03 to 1.1 g / cm 3 , a thickness of 0.2 to 7 mm, and a closed cell ratio of at least 50% (foamed sheet) are thermoformed. Since it is excellent in property, it is preferable. The closed cell ratio of the foam sheet used for thermoforming is more preferably 70% or more. Such a foam sheet is obtained by melt-kneading the polyester resin together with a foaming agent at a temperature at which the polyester resin melts in an extruder, and then extruding and foaming the polyester resin under a low pressure from a die provided at the tip of the extruder. Is obtained.
[0025]
Examples of the foaming agent include an inert gas, a saturated aliphatic hydrocarbon, a saturated alicyclic hydrocarbon, an aromatic hydrocarbon, a halogenated hydrocarbon, an ether, a ketone, and the like. These may be used alone or in combination of two or more. . Specifically, carbon dioxide, nitrogen, methane, ethane, normal butane, isobutane, normal pentane, isopentane, neopentane, normal hexane, 2-methylpentane, 3-methylpentane, 2,2-dimethylbutane, 2,3- Dimethylbutane, methylcyclopropane, cyclopentane, 1,1-dimethylcyclopropane, cyclohexane, methylcyclopentane, ethylcyclobutane, 1,1,2-trimethylcyclopropane, benzene, 1,1,1,2-tetrafluoroethane 1,1-diylfluoroethane, 1,1,1,2,2-pentafluoroethane, trifluorotrifluoroethylene, dichlorotetrafluoroethylene, dimethyl ether, 2-ethoxyethanol, acetone, ethyl methyl ketone, acetylacetone, etc. All It is. Although the usage-amount of a foaming agent is suitably selected according to the apparent density of the target foam, 0.05-3 mol is normally used with respect to 1 kg of polyester resins. If the foaming agent is less than 0.05 mole per 1 kg of the polyester resin, a partially foamed heterogeneous foam can be obtained. If it exceeds 3 moles, the gas seal at the die becomes unstable and good foaming is achieved. It becomes difficult to obtain the body.
[0026]
When the polyester resin is melted and the melt is mixed with a foaming agent and extruded into a low pressure zone to obtain a foam, it is desirable to perform melt mixing and cooling with one or more extruders. That is, in general, extrusion foaming is performed by melting a resin and adding a foaming agent, and then cooling until the resin reaches a viscosity suitable for foaming. For this reason, in the melt mixing of the resin and the foaming agent, it is desirable to sufficiently knead at high rotation, and in cooling, in order to increase the cooling efficiency, extrusion is performed at low rotation while suppressing shear heat generation as much as possible. Is desired. Therefore, when the method of performing melt mixing and cooling for foaming with a single extruder is employed, it is necessary to extrude at a low speed in order to perform sufficient cooling. The foaming state is easily deteriorated, and the discharge amount of the extruder is reduced, resulting in lower productivity. For this reason, in this invention, it is preferable to perform melt mixing and cooling with one or more extruders, respectively. The shape and type of the extruder are not particularly limited.
[0027]
Furthermore, in the production of the foam of the present invention, a foam regulator such as talc is mixed, a thermoplastic resin such as ionomer, an inorganic filler such as inorganic fiber or inorganic powder, a flame retardant, an antistatic agent, You may mix antioxidant, a coloring agent, etc. suitably.
[0028]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
[0029]
In Examples and Comparative Examples, dimethyl terephthalate was replaced with “DMT” and 3,9-bis (2-carboxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] Undecane as “SPD”, 2,6-naphthalenedicarboxylic acid as “NDC”, pyromellitic acid as “PMDA”, ethylene glycol as “EG”, neopentyl glycol as “NPG”, 1, 4-Cyclohexanedimethanol is replaced with “CHDM” and 3,9-bis (1,1-dimethyl-2-hydroxyethyl) 2,4,8,10-tetraoxaspiro [5 . 5] Undecane is abbreviated as “SPG” and 5-methylol-5-ethyl-2- (1,1-dimethyl-2-hydroxyethyl) -1,3-dioxane is abbreviated as “DOG”.
[0030]
Examples 1-4, Comparative Examples 1-5
DMT or DMT-SPD, DMT-NDC, or a mixture of DMT-PMDA in the molar ratio described in the table as the dicarboxylic acid component, EG, or EG-SPG, DOG-EG, CHDM-EG, or the diol component Polyester resin was obtained by polycondensation using a mixture of NPG-EG. Next, 1.5 parts by mass of talc as a nucleating agent per 100 parts by mass of the resin is added to the resin, and this is supplied as a raw material resin to the first extruder (for melt kneading), heated, melted and kneaded Then, 1.7 parts by mass of isobutane as a foaming agent per 100 parts by mass of the polyester resin is press-fitted into the extruder and melt-kneaded, and then the melt-kneaded product is supplied to the second extruder and the temperature shown in the table (in the table) The temperature is expressed as the foaming temperature, which is the temperature of the molten resin immediately before entering the die, and is extruded from an annular die at the tip of the extruder, and this is used as a tubular foam and the inner side is a mandrel (cylindrical cooling drum) ) The surface was brought into contact with the surface and air was blown to the outer surface of the foam while the inner and outer surfaces were cooled, and then taken out along the extrusion direction to obtain a foam sheet. The properties of the obtained foamed sheet and the results of thermoforming are shown together in the table. The physical properties of the polymer were measured by the following method. In Comparative Example 5, a three-dimensional polymer was also produced, and it was impossible to prepare a test piece by injection molding.
[0031]
(1) Evaluation method of resin [glass transition temperature]
The glass transition temperature (Tg) of the polyester resin was measured by using a scanning scanning calorimeter (model: DSC / TA-50WS) manufactured by Shimadzu Corporation. Measurement was performed at a heating rate of 20 ° C./min in a gas (30 ml / min) air stream.
[Peak calorific value of crystallization exotherm during cooling]
The crystallization exothermic peak calorie of the polyester resin when the temperature is lowered is a Shimadzu Corporation, inspection scanning calorimeter (model: DSC / TA-50WS), and about 10 mg of a sample is put in an aluminum unsealed container, In a nitrogen gas (30 ml / min) stream, the temperature was increased to 300 ° C. at a temperature rising rate of 20 ° C./min, and then the temperature was decreased to 20 ° C. at a temperature decreasing rate of 20 ° C./min.
[Intrinsic viscosity]
Using a mixed solvent (phenol / 1,1,2,2-tetrachloroethane (mass ratio): 6/4), the measurement was performed at a constant temperature of 25 ° C.
[Melt viscosity]
The measuring device used was a Capillograph manufactured by Toyo Seiki. The measurement temperature was 240 ° C., and the shear rate was 100 (1 / sec).
[0032]
(2) Evaluation of foam sheet [heat resistance]
A square test piece having a length of 100 mm and a width of 100 mm was cut out from the foam sheet, with the extrusion direction being the vertical direction and the width direction being the horizontal direction, and the test piece was heated in an oven at 85 ° C. for 30 minutes. A sheet having a shrinkage ratio exceeding 10% was regarded as poor heat resistance.
[Closed cell ratio]
The closed cell ratio of the foamed sheet was measured using an air-comparing hydrometer 930 type manufactured by Toshiba Beckman Co., Ltd. according to Procedure C described in ASTM-D2856-70 (cut into 25 mm length and 25 mm width from the foam sheet). Using the true volume Vx of the foamed sheet (multiple cut samples) measured by accommodating the number closest to the thickness of 25 mm when a plurality of sheets are stacked in a sample cup (measured as it is) Was used to calculate the closed cell ratio S (%), and an average value of N = 3 was obtained.
S (%) = (Vx−W / ρ) × 100 / (Va−W / ρ)
Vx: True volume (cm 3 ) of a plurality of foam sheets measured by the above method, which corresponds to the sum of the volume of the resin constituting the foam sheet and the total cell volume of the closed cell portion in the foam sheet To do.
Va: Apparent volume of the cut sample calculated from the outer dimensions of the cut sample used for measurement (cm 3 )
W: Total weight of cut sample used for measurement (g)
ρ: Density of resin constituting the foam sheet (g / cm 3 )
The closed cell ratio was evaluated based on the following evaluation criteria.
A: When the closed cell ratio is 70% or more B: When the closed cell ratio is 50% or more and less than 70% C: When the closed cell ratio is less than 50% [Thermoformability]
A foam sheet was thermoformed by a single molding machine using a bowl-shaped mold having a diameter of 160 mm and a depth of 35 mm. The thermoformability was evaluated according to the following criteria.
○: Good formability, no cracks (surface cracks), no cracks Δ: There is formability, but some cracks are observed x: There is no elongation in the original fabric itself, No shape [0033]
[Table 1]
Figure 0004290898
[0034]
[Table 2]
Figure 0004290898
[0035]
【The invention's effect】
Po Riesuteru resin foam of the present invention has a high closed cell content, heat resistance, Ri excellent foam der environmental suitability, food packaging materials, can be used as a useful material such as packaging buffer material, the The industrial significance of the invention is great.

Claims (3)

下記<1>または<2>に記載の発泡体用ポリエステル樹脂を基材樹脂とする見かけ密度が1.1g/cm以下のポリエステル樹脂発泡体。
<1>環状エーテル骨格を有するグリコールを10〜80モル%含むグリコールとジカルボン酸とを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
<2>環状エーテル骨格を有するジカルボン酸を10〜80モル%含むジカルボン酸とグリコールとを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
A polyester resin foam having an apparent density of 1.1 g / cm 3 or less using the polyester resin for foams described in <1> or <2> below as a base resin.
<1> A polyester resin obtained by polycondensation of a glycol containing 10 to 80 mol% of a glycol having a cyclic ether skeleton and a dicarboxylic acid, wherein the mass ratio of phenol to 1,1,2,2-tetrachloroethane Is a range of 0.3 to 1.2 (dl / g) of intrinsic viscosity measured at 25 ° C. using a 6: 4 mixed solvent, and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa · polyester resin for foams in the range of s · g / dl).
<2> A polyester resin obtained by polycondensation of a dicarboxylic acid containing 10 to 80 mol% of a dicarboxylic acid having a cyclic ether skeleton and a glycol, the mass of phenol and 1,1,2,2-tetrachloroethane The intrinsic viscosity measured at 25 ° C. using a mixed solvent with a ratio of 6: 4 is in the range of 0.3 to 1.2 (dl / g), and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa A polyester resin for foams in the range of s · g / dl).
見かけ密度が0.03〜1.1g/cm、厚みが0.2〜7mm、独立気泡率が少なくとも50%のシート状を呈することを特徴とする請求項に記載のポリエステル樹脂発泡体。2. The polyester resin foam according to claim 1 , which has a sheet shape with an apparent density of 0.03 to 1.1 g / cm 3 , a thickness of 0.2 to 7 mm, and a closed cell ratio of at least 50%. 下記<1>または<2>に記載の発泡体用ポリエステル樹脂を、押出機内で発泡剤の存在下に溶融混練し、次いで低圧下に押出すことを特徴とするポリエステル樹脂発泡体の製造方法。
<1>環状エーテル骨格を有するグリコールを10〜80モル%含むグリコールとジカルボン酸とを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
<2>環状エーテル骨格を有するジカルボン酸を10〜80モル%含むジカルボン酸とグリコールとを重縮合して得られるポリエステル樹脂であって、フェノールと1,1,2,2−テトラクロロエタンとの質量比が6:4の混合溶媒を用いて25℃で測定した極限粘度が0.3〜1.2(dl/g)の範囲であり、かつ溶融粘度/極限粘度の比が1500〜5000(Pa・s・g/dl)の範囲である発泡体用ポリエステル樹脂。
A method for producing a polyester resin foam, wherein the polyester resin for foam according to <1> or <2> below is melt-kneaded in the presence of a foaming agent in an extruder and then extruded under low pressure.
<1> A polyester resin obtained by polycondensation of a glycol containing 10 to 80 mol% of a glycol having a cyclic ether skeleton and a dicarboxylic acid, wherein the mass ratio of phenol to 1,1,2,2-tetrachloroethane Is a range of 0.3 to 1.2 (dl / g) of intrinsic viscosity measured at 25 ° C. using a 6: 4 mixed solvent, and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa · polyester resin for foams in the range of s · g / dl).
<2> A polyester resin obtained by polycondensation of a dicarboxylic acid containing 10 to 80 mol% of a dicarboxylic acid having a cyclic ether skeleton and a glycol, the mass of phenol and 1,1,2,2-tetrachloroethane The intrinsic viscosity measured at 25 ° C. using a mixed solvent with a ratio of 6: 4 is in the range of 0.3 to 1.2 (dl / g), and the ratio of melt viscosity / intrinsic viscosity is 1500 to 5000 (Pa A polyester resin for foams in the range of s · g / dl).
JP2001123160A 2000-10-23 2001-04-20 Polyester resin foam and method for producing polyester resin foam Expired - Lifetime JP4290898B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001123160A JP4290898B2 (en) 2000-10-23 2001-04-20 Polyester resin foam and method for producing polyester resin foam

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000322673 2000-10-23
JP2000-322673 2000-10-23
JP2001123160A JP4290898B2 (en) 2000-10-23 2001-04-20 Polyester resin foam and method for producing polyester resin foam

Publications (2)

Publication Number Publication Date
JP2002201260A JP2002201260A (en) 2002-07-19
JP4290898B2 true JP4290898B2 (en) 2009-07-08

Family

ID=26602586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001123160A Expired - Lifetime JP4290898B2 (en) 2000-10-23 2001-04-20 Polyester resin foam and method for producing polyester resin foam

Country Status (1)

Country Link
JP (1) JP4290898B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011099046A (en) * 2009-11-06 2011-05-19 Mitsubishi Gas Chemical Co Inc Polyester resin composition
JP5777297B2 (en) 2010-06-24 2015-09-09 株式会社ジェイエスピー Method for producing polycarbonate resin foam molding
JP5665129B2 (en) * 2011-06-08 2015-02-04 株式会社ジェイエスピー Method for producing extruded foam of thermoplastic resin
KR101667999B1 (en) * 2015-10-30 2016-10-21 주식회사 휴비스 Heat resisting material having excellent heat resistance and strength, manufacturing method of the same and packaging container comprising the same
CN115160745A (en) * 2022-08-30 2022-10-11 江苏中科聚合新材料产业技术研究院有限公司 Modified polyethylene terephthalate foam material and preparation method thereof

Also Published As

Publication number Publication date
JP2002201260A (en) 2002-07-19

Similar Documents

Publication Publication Date Title
EP1164155B1 (en) Polyester resin and molded article
US6214897B1 (en) Compositions of polycondensed branched polyester polymers and aromatic polycarbonates, and the closed cell polymer foams made therefrom
JP4655106B2 (en) Polyester resin composition
JPH11504671A (en) Expandable branched polyester
JP4062416B2 (en) Polyester resin
EP2586819B1 (en) Method for producing polycarbonate resin foam molded body
JP3619154B2 (en) Crystalline aromatic polyester resin pre-foamed particles, in-mold foam molded article and foam laminate using the same
JP4290898B2 (en) Polyester resin foam and method for producing polyester resin foam
JPH07179736A (en) Resin composition having property manifesting high melt viscoelasticity and aromatic polyester-based resin foam using the same
JP5058473B2 (en) Heat-shrinkable polyester resin foam film
JP2003335847A (en) Polyester resin for foam
JP3448758B2 (en) Method for producing polycarbonate resin foam
JPH05117511A (en) Polyethylene terephthalate-based resin composition and production of foam using the same
JP2004035694A (en) Foamed polyester sheet
JPH11147969A (en) Polyester resin foam and its production thereof
JPH11140210A (en) Production of thermoplastic polyester resin foam
JP2000037805A (en) Foamed laminated sheet and molded container using the same
JPH08231751A (en) Foamed aromatic polyester resin and its production
JPH11152363A (en) Production of thermoplastic polyester-based resin foam
TW548290B (en) Polyester resin and foamed polyester sheet
JP2907683B2 (en) Method for producing polyester resin foam
JPH11302518A (en) Aromatic polyester-based resin composition and foam using the same
JPH093233A (en) Production of aromatic polyester resin foam
JP2003327741A (en) Prefoaming particle made of polyester resin
JPH1067878A (en) Foamed polyester resin sheet

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040512

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040602

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060803

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090122

A256 Written notification of co-pending application filed on the same date by different applicants

Free format text: JAPANESE INTERMEDIATE CODE: A2516

Effective date: 20090122

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090327

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090402

R150 Certificate of patent or registration of utility model

Ref document number: 4290898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250