JP4289205B2 - Continuous casting method and continuous cast slab - Google Patents

Continuous casting method and continuous cast slab Download PDF

Info

Publication number
JP4289205B2
JP4289205B2 JP2004127235A JP2004127235A JP4289205B2 JP 4289205 B2 JP4289205 B2 JP 4289205B2 JP 2004127235 A JP2004127235 A JP 2004127235A JP 2004127235 A JP2004127235 A JP 2004127235A JP 4289205 B2 JP4289205 B2 JP 4289205B2
Authority
JP
Japan
Prior art keywords
slab
segregation
unsolidified
steel
reduction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004127235A
Other languages
Japanese (ja)
Other versions
JP2005305517A (en
Inventor
章裕 山中
善久 白井
誠治 熊倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2004127235A priority Critical patent/JP4289205B2/en
Publication of JP2005305517A publication Critical patent/JP2005305517A/en
Application granted granted Critical
Publication of JP4289205B2 publication Critical patent/JP4289205B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

本発明は、鋼スラブの連続鋳造方法およびその連続鋳造方法により鋳造される耐水素誘起割れ性能に優れた鋼板製造用のスラブ鋳片に関する。   The present invention relates to a continuous casting method of a steel slab and a slab slab for producing a steel plate excellent in hydrogen-resistant cracking performance cast by the continuous casting method.

鋼の連続鋳造鋳片において、鋳片厚さ方向の中心部にC、S、P、Mnといった不純物
成分や合金成分の濃縮した偏析帯である中心偏析または等軸晶間に存在する粒状の偏析は、厚板製品における機械特性低下の原因となる重大な鋳造欠陥の一つである。特に、硫化水素を含む原油や天然ガスなどの輸送に使用されるラインパイプなどでは、このような偏析が残っていると水素集積のサイトとなり、しばしば水素誘起割れ(以降、「HIC」とも称する)の起点となる。
In the continuous cast slab of steel, the center segregation in the thickness direction of the slab is a segregation zone that is a segregation zone in which impurity components such as C, S, P, and Mn and alloy components are concentrated. Is one of the serious casting defects that cause deterioration of mechanical properties in thick plate products. In particular, in the case of line pipes used for transportation of crude oil and natural gas containing hydrogen sulfide, if such segregation remains, it becomes a site of hydrogen accumulation, often hydrogen induced cracking (hereinafter also referred to as “HIC”). Is the starting point.

これらの欠陥は、鋳造末期の未凝固相における残溶鋼が凝固するときに収縮して負圧状態となり、デンドライト樹間に微細に濃化したミクロ偏析をともなう溶鋼が吸い出されてデンドライト樹間から流出し、局所的に凝固組織が凝着した閉空間内に集積して凝固することによりマクロ的な偏析となるものである。   These defects are caused when the residual molten steel in the unsolidified phase at the end of casting solidifies and becomes a negative pressure state, and molten steel with microsegregation finely concentrated between the dendritic trees is sucked out from the dendritic trees. It flows out and accumulates in the closed space where the coagulated tissue is locally adhered and solidifies, resulting in macro segregation.

従来より、鋳片の凝固組織の制御や凝固末期に鋳片の表面から厚さ方向に機械的な圧下を与えることにより、これらのマクロ偏析による欠陥を低減しようとする方法が開示されている。例えば、特許文献1においては、鋳片の軸心部を含む20%以上の領域の鋳造組織を、電磁攪拌によって等軸晶化し、V偏析開始位置から凝固完了位置までの範囲において圧下する方法が開示されている。凝固組織を等軸晶化する理由は、凝固組織をできる限り球状に近い形態に制御することにより、結晶が互いに凝着合体するのを抑制し、溶鋼の流動性を高くするためである。また、圧下を加える理由は、鋳片内部の凝固収縮に対して、外部より圧下を加えることで、上述したマクロ偏析の根本的な原因を除去しようというものである。鋳片内部の凝固収縮を補償する程度の圧下を加える鋳片の未凝固圧下法は、「軽圧下法」と称され、連続鋳造分野において広く適用されている。この軽圧下法において圧下量を増大させると、凝固界面における凝固シェルの引張歪が増大し、鋳片の内部割れが発生する。   Conventionally, there has been disclosed a method for reducing defects due to macrosegregation by controlling the solidification structure of the slab and applying mechanical reduction in the thickness direction from the surface of the slab at the end of solidification. For example, in Patent Document 1, there is a method in which a cast structure in a region of 20% or more including the axial center portion of a slab is uniaxially crystallized by electromagnetic stirring and is reduced in a range from a V segregation start position to a solidification completion position. It is disclosed. The reason for equiaxed crystallization of the solidified structure is to control the solidified structure to be as close to a spherical shape as possible, thereby preventing the crystals from coagulating with each other and increasing the fluidity of the molten steel. The reason for applying the reduction is to remove the root cause of the macrosegregation described above by applying the reduction from the outside to the solidification shrinkage inside the slab. The unsolidified reduction method of a slab that applies a reduction that compensates for solidification shrinkage inside the slab is called a “light reduction method” and is widely applied in the field of continuous casting. When the amount of reduction is increased in this light reduction method, the tensile strain of the solidified shell at the solidification interface increases, and an internal crack of the slab occurs.

従来の軽圧下方法によっても、マクロ偏析欠陥の低減に対しては、少なからぬ効果が得られたが、昨今のますます高度化する製品品質への要求を考慮すると、従来の軽圧下方法では不十分と言わざるを得ない。すなわち、軽圧下法は、凝固収縮量に等しい圧下量を加えることにより負圧の発生を防止しようとする技術的思想に基づいているが、実際の連続鋳造においては、凝固シェルの成長は必ずしも鋳片の幅方向で均一でなく、また、浮遊等軸晶の分布も均一ではないため、これらは、鋳片を圧下したときに鋳片に変形抵抗の不均一を発生させる原因となる。それにもかかわらず、鋳片の外表面から幅方向に一律に圧下する方法では、凝固収縮に対する鋳片幅方向の均一な圧下補償が与えられず、マクロ偏析の低減も幅方向に不均一とならざるを得ない。また、連続鋳造機の長手方向の位置によって、凝固シェルの成長の程度および収縮量が相違し、これらに完全に適合できる圧下テーパを設けることは、事実上不可能である。   Even with the conventional light reduction method, a considerable effect was obtained in reducing macro segregation defects. However, considering the recent demand for increasingly sophisticated product quality, the conventional light reduction method is not effective. I must say enough. In other words, the light reduction method is based on the technical idea of preventing the generation of negative pressure by adding a reduction amount equal to the solidification shrinkage amount. However, in actual continuous casting, the growth of the solidified shell is not necessarily a casting. Since it is not uniform in the width direction of the piece, and the distribution of floating equiaxed crystals is not uniform, these cause non-uniform deformation resistance in the slab when the slab is crushed. Nevertheless, the method of uniformly rolling in the width direction from the outer surface of the slab does not provide uniform reduction in the width direction of the slab against solidification shrinkage, and the reduction in macrosegregation is not uniform in the width direction. I must. Further, the degree of growth and the amount of shrinkage of the solidified shell differ depending on the longitudinal position of the continuous casting machine, and it is practically impossible to provide a reduction taper that can be completely adapted to these.

近年、ますます過酷なサワー環境に耐えられる高強度および高靱性を有する高性能の耐HIC鋼板の製造が要求されつつある。このような材料の製造に当たっては、連続鋳造スラブの鋳造段階において、中心偏析やV字状偏析などのマクロ偏析、および等軸晶間に存在する粒状偏析などのセミマクロ偏析のさらなる低減が必要であり、上述した方法では、マクロ偏析やセミマクロ偏析の十分な低減は望めない。   In recent years, there has been a demand for production of high-performance HIC-resistant steel sheets having high strength and high toughness that can withstand increasingly severe sour environments. In the production of such materials, it is necessary to further reduce macro-segregation such as center segregation and V-shaped segregation and semi-macro segregation such as granular segregation existing between equiaxed crystals in the casting stage of continuous cast slabs. In the method described above, it is not possible to sufficiently reduce macro segregation or semi-macro segregation.

一方、本発明者は、特許文献2に未凝固部が存在する鋳片を鋳片厚さの5〜25%をバルジングさせた後、等軸晶の生成開始前に、バルジング相当量の厚さを一対のロールにより圧下する連続鋳造方法、それにより得られる鋳片、および前記の鋳片を熱間圧延することによる厚鋼板の製造法について提案した。この方法により鋳片を未凝固圧下した場合に、凝固界面が圧着されると、鋳片の中心部から、偏析しやすい溶質成分の濃化した溶鋼(以下、「濃化溶鋼」という)が排出されて凝固し、中心部は負偏析を形成する。中心部から排出された濃化溶鋼が上流側に均質に流動または拡散する場合には特に問題は起きないが、濃化溶鋼が一部の領域で滞留して、圧下ロールよりも下流側に持ち越され、鋳片での新たな偏析の原因となる場合がある。たとえ、このようなわずかな偏析であっても、上述したような高性能を要求される耐HIC鋼板の素材となる連続鋳造スラブにおいては、許容し難いものとなる。   On the other hand, the present inventor, after bulging 5 to 25% of the slab thickness of the slab having a non-solidified portion in Patent Document 2, before the start of the formation of equiaxed crystals, the thickness corresponding to bulging Proposed a continuous casting method of rolling down a pair of rolls, a slab obtained thereby, and a method of manufacturing a thick steel plate by hot rolling the slab. When the solidified interface is crimped when the slab is unsolidified by this method, the concentrated molten steel (hereinafter referred to as “concentrated molten steel”) is discharged from the center of the slab. It solidifies and the central part forms negative segregation. There is no particular problem when the concentrated molten steel discharged from the center flows or diffuses homogeneously upstream, but the concentrated molten steel stays in some areas and is carried downstream from the rolling roll. This may cause new segregation in the slab. Even such a slight segregation is unacceptable in a continuously cast slab which is a material of a HIC-resistant steel plate that requires high performance as described above.

特公昭64−4868号公報(特許請求の範囲および第4欄39行〜第5欄9行)Japanese Patent Publication No. 64-4868 (Claims and column 4, line 39 to column 5, line 9)

特開2000−94101号公報(特許請求の範囲および段落[0013]〜[0015])JP 2000-94101 A (claims and paragraphs [0013] to [0015])

前述のとおり、従来の鋳片の偏析防止技術には、下記の問題が残されていた。すなわち、(a)軽圧下法において圧下量を増大させると、内部割れが発生する。(b)鋳片幅方向に一律な圧下では、マクロ偏析の低減は幅方向に不均一となり、また、長手方向の凝固シェルの成長度の相違に適合する圧下テーパを設けることも不可能である。(c)バルジングさせた後に圧下する方法においても、圧下ロールよりも下流側に濃化溶鋼が持ち越されて偏析の原因となる場合がある。   As described above, the following problems remain in the conventional technology for preventing segregation of slabs. That is, when (a) the amount of reduction is increased in the light reduction method, an internal crack occurs. (b) Under uniform reduction in the slab width direction, the reduction of macro segregation becomes non-uniform in the width direction, and it is impossible to provide a reduction taper that matches the difference in the growth degree of the solidified shell in the longitudinal direction. . (c) Even in the method of rolling down after bulging, the concentrated molten steel may be carried over downstream of the rolling roll and cause segregation.

本発明は、上記の問題を同時に解決するためになされたものであり、その課題は、耐HIC性能に優れた鋼板製造用の、マクロ偏析およびセミマクロ偏析が著しく低減されたスラブ鋳片の連続鋳造方法および連続鋳造鋳片を提供することにある。   The present invention has been made to solve the above-mentioned problems at the same time, and its problem is to continuously cast slab slabs for producing steel sheets having excellent HIC resistance and having significantly reduced macrosegregation and semi-macrosegregation. It is to provide a method and a continuous cast slab.

本発明者らは、上記の課題を解決するために、鋳片の性状およびその鋳片から得られた鋼板の特性を調査するとともに、圧下ロール上流の適正な電磁攪拌位置および圧下量について研究し、下記の(a)〜(f)の知見を得て、本発明を完成させた。   In order to solve the above problems, the present inventors investigated the properties of the slab and the characteristics of the steel sheet obtained from the slab, and studied the appropriate electromagnetic stirring position and the amount of reduction upstream of the reduction roll. The following (a) to (f) were obtained, and the present invention was completed.

(a)未凝固圧下により排出された濃化溶鋼は、電磁撹拌装置によってメタルプールを撹拌することにより十分に流動し拡散するが、電磁攪拌位置には、圧下ロールとの位置関係から定まる適正な範囲が存在する。   (A) Although the concentrated molten steel discharged by unsolidified pressure is sufficiently flowed and diffused by stirring the metal pool with an electromagnetic stirring device, the electromagnetic stirring position is determined appropriately from the positional relationship with the rolling roll. A range exists.

(b)C含有率が0.1質量%未満の鋼では、電磁攪拌の適用により、若干の等軸晶が生成する場合があるが、セミマクロ偏析を残さないためには、このような等軸晶を大幅に増加させないことが必要である。   (B) In steel with a C content of less than 0.1% by mass, some equiaxed crystals may be generated by applying electromagnetic stirring, but in order to leave no semi-macro segregation, It is necessary not to increase the crystal significantly.

(c)未凝固圧下により中心偏析の生成を防止できても、セミマクロ偏析である等軸晶間の粒状偏析が残存する場合には、その鋳片を素材とした鋼板の耐HIC性能は著しく劣化する。   (C) Even if the generation of center segregation can be prevented by unsolidified pressure, if the grain segregation between equiaxed crystals, which is semi-macro segregation, remains, the HIC resistance performance of the steel plate made from the slab is remarkably deteriorated. To do.

(d)等軸晶の生成を極力抑制し、しかも未凝固圧下により排出された濃化溶鋼を撹拌することにより得られた鋳片を素材とした鋼板の耐HIC性能は極めて高い。   (D) The HIC resistance performance of a steel plate made from a cast slab obtained by stirring the concentrated molten steel discharged under unsolidified pressure while suppressing the formation of equiaxed crystals as much as possible is extremely high.

(e)C含有率が0.1質量%未満の鋼の場合、上記の適正な条件を満たす電磁攪拌位置は圧下ロールの上流3〜7mの範囲であり、等軸晶率を6%以下とすることが必要であって、圧下量の範囲は未凝固部厚さの40%以上である。   (E) In the case of steel with a C content of less than 0.1% by mass, the electromagnetic stirring position that satisfies the above-described proper condition is in the range of 3 to 7 m upstream of the rolling roll, and the equiaxed crystal ratio is 6% or less. The range of the amount of reduction is 40% or more of the unsolidified portion thickness.

(f)上記(a)〜(e)のようにして得られた鋳片を素材とすることにより、板厚方向の中心部20%以内の領域において粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下である耐水素誘起割れ性能に優れた鋼板を製造できる。   (F) By using the slab obtained as described in (a) to (e) above as a raw material, granular or linear semi-macro segregation or macro segregation in a region within 20% of the central portion in the thickness direction. A steel sheet excellent in hydrogen-induced crack resistance with a total area ratio of 5% or less can be produced.

本発明は、上記の知見に基いて完成されたものであり、その要旨は、下記の(1)に示す連続鋳造方法および(2)に示す連続鋳造鋳片にある。   The present invention has been completed based on the above findings, and the gist of the present invention resides in the continuous casting method shown in the following (1) and the continuous cast slab shown in (2).

(1)炭素含有率が0.1質量%未満の耐水素誘起割れ鋼板用の低炭素鋼を連続鋳造する際に、未凝固溶鋼を電磁力により攪拌するとともに、その電磁攪拌する位置の下流側の未凝固部を含む鋳片を圧下ロール対を用いて圧下する連続鋳造方法であって、最上流側の圧下ロール対の3〜7m上流の位置に電磁攪拌装置を配置し、等軸晶を増殖させずに等軸晶率が6%以下となるように未凝固溶鋼に電磁力を印加するとともに、圧下ロール対を用いて、未凝固部を含む鋳片の未凝固部厚さの40%以上を圧下することを特徴とする耐水素誘起割れ鋼板用の低炭素鋼の連続鋳造方法。
(1) When continuously casting low carbon steel for hydrogen-resistant cracked steel sheets with a carbon content of less than 0.1% by mass, the unsolidified molten steel is agitated by electromagnetic force and downstream of the electromagnetic agitation position Is a continuous casting method in which a slab containing an unsolidified portion is reduced using a reduction roll pair, and an electromagnetic stirrer is disposed at a position 3 to 7 m upstream of the uppermost-side reduction roll pair to form equiaxed crystals. While applying electromagnetic force to the unsolidified molten steel so that the equiaxed crystal ratio is 6% or less without proliferation, 40% of the thickness of the unsolidified portion of the slab including the unsolidified portion using a reduction roll pair A continuous casting method of low carbon steel for hydrogen-resistant cracked steel sheet , characterized by reducing the above.

(2)前記(1)に記載の連続鋳造方法により鋳造された、板厚方向の中心部20%以内の領域において粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下である耐水素誘起割れ性能に優れた鋼板製造用の連続鋳造鋳片。   (2) The total area ratio of granular or linear semi-macrosegregation or macrosegregation is 5% or less in a region within 20% of the central portion in the thickness direction, which is cast by the continuous casting method described in (1). Continuous cast slab for steel sheet production with excellent resistance to hydrogen-induced cracking.

本発明において、「等軸晶を増殖させずに」とは、等軸晶の新たな生成を防止し、等軸晶の増加を抑制することを意味する。   In the present invention, “without growing equiaxed crystals” means preventing new formation of equiaxed crystals and suppressing an increase in equiaxed crystals.

「等軸晶率」とは、鋳片の横断面において、等軸晶が生成している領域が横断面に対して占める面積率をいう。   “Equiaxial crystal ratio” refers to the area ratio occupied by the region where the equiaxed crystal is generated in the cross section of the slab.

「未凝固部厚さ」とは、鋳片内における未凝固部(固相率が0.8未満)の領域の鋳片厚さ方向の寸法をいう。   “Unsolidified part thickness” refers to the dimension in the slab thickness direction of an unsolidified part (solid phase ratio of less than 0.8) in the slab.

「粒状または線状の偏析」とは、鋳片におけるセミマクロ偏析、またはマクロ偏析である中心偏析やV字状偏析をいう。   “Granular or linear segregation” means semi-macro segregation in a slab, or central segregation or V-shaped segregation that is macro segregation.

そして、「偏析の面積率」とは、酸腐食などの処理を行った後に観察された偏析の存在範囲が板厚方向の中心部20%以内の領域に対して占める面積率をいう。   The “area ratio of segregation” refers to the area ratio of the segregation existing range observed after the treatment such as acid corrosion to the area within 20% of the central portion in the plate thickness direction.

本発明の方法によれば、未凝固溶鋼の電磁攪拌位置を圧下ロールの3〜7m上流とすることにより等軸晶の増加を抑制し、等軸晶率を6%以下とするとともに、未凝固溶鋼の40%以上を圧下することにより、マクロ偏析およびセミマクロ偏析を著しく低減したスラブ鋳片を連続鋳造することができ、前記鋳片を素材とする耐HIC性能に優れた鋼板の製造が可能となる。また、本発明の連続鋳造鋳片は、ラインパイプなどに用いられる耐HIC性能に優れた鋼板の製造に最適である。   According to the method of the present invention, the increase in equiaxed crystal is suppressed by setting the electromagnetic stirring position of unsolidified molten steel 3 to 7 m upstream of the reduction roll, the equiaxed crystal ratio is reduced to 6% or less, and unsolidified By rolling down 40% or more of the molten steel, it is possible to continuously cast slab slabs with significantly reduced macro segregation and semi-macro segregation, making it possible to produce steel sheets with excellent HIC resistance using the slabs as raw materials. Become. Moreover, the continuous cast slab of the present invention is most suitable for the production of a steel plate having excellent HIC resistance used for a line pipe or the like.

本発明は、炭素含有率が0.1質量%未満の低炭素鋼を連続鋳造する際に、未凝固溶鋼を電磁攪拌するとともに、その下流側の未凝固部を含む鋳片を圧下ロール対を用いて圧下する連続鋳造方法であって、圧下ロール対の3〜7m上流に電磁攪拌装置を配置し、等軸晶率が6%以下となるように電磁攪拌するとともに、圧下ロール対を用いて、未凝固部厚さの40%以上を圧下する低炭素鋼の連続鋳造方法、および連続鋳造鋳片である。本発明についてさらに詳細に説明する。   In the present invention, when continuously casting a low carbon steel having a carbon content of less than 0.1% by mass, the unsolidified molten steel is electromagnetically stirred, and the slab including the unsolidified portion on the downstream side is subjected to a pair of rolling rolls. This is a continuous casting method in which a magnetic stirring device is placed 3 to 7 m upstream of the pair of rolling rolls, and the magnetic stirring is performed so that the equiaxed crystal ratio is 6% or less. These are a continuous casting method of low carbon steel and a continuous cast slab that reduce 40% or more of the thickness of the unsolidified portion. The present invention will be described in further detail.

連続鋳造鋳片の凝固組織と炭素含有率との関係は、旧来から周知であり、その含有率が0.1質量%より小さい場合には、等軸晶率が著しく小さくなり、粒状偏析の発生を防止する観点から有利である。   The relationship between the solidification structure of a continuous cast slab and the carbon content has been known for a long time. When the content is less than 0.1% by mass, the equiaxed crystal ratio is remarkably reduced, and granular segregation occurs. This is advantageous from the viewpoint of preventing the problem.

前述したとおり、鋳片を未凝固圧下した場合に、凝固界面が圧着されると、中心部から濃化溶鋼が排出された状態で中心部が凝固し、負偏析を形成する。一方、排出された濃化溶鋼は、上流側に押し出されるが、この濃化溶鋼の流速は極めて小さく、流れの形態としては層流状態である。このため、当初からメタルプール内に存在した溶鋼と均質に混合させるのは容易ではない。そこで、この濃化溶鋼を当初からメタルプールないに存在した溶鋼と均一に混合させるために、電磁撹拌装置を圧下ロール上流の適正な位置に設置し、攪拌を強化した。以下に、本発明を前記の範囲に限定した理由および好ましい範囲について説明する。   As described above, when the slab is unsolidified and the solidification interface is pressure-bonded, the central portion is solidified while the concentrated molten steel is discharged from the central portion, and negative segregation is formed. On the other hand, the discharged concentrated molten steel is pushed upstream, but the flow rate of the concentrated molten steel is extremely small, and the flow is in a laminar flow state. For this reason, it is not easy to mix homogeneously with the molten steel present in the metal pool from the beginning. Therefore, in order to mix this concentrated molten steel uniformly with the molten steel that was not present in the metal pool from the beginning, an electromagnetic stirrer was installed at an appropriate position upstream of the reduction roll to enhance the stirring. The reason why the present invention is limited to the above range and the preferable range will be described below.

1)鋳片の未凝固部厚さの40%以上を圧下:
未凝固圧下の条件は、鋳片の未凝固部厚さの40%以上を圧下すること(以下、「圧下比率が40%以上」ともいう)である。圧下比率が40%未満では、圧下の効果が小さいために偏析成分の濃化した溶鋼が十分に排出されずに、圧下後の鋳片には偏析が残存する。そこで、圧下比率を未凝固部厚さの40%以上とした。一方、圧下比率を上昇させるにつれて、鋳片からの反力などの機械的抵抗が増加することから、圧下比率は80%以下とすることが好ましい。
1) Reduction of 40% or more of the unsolidified part thickness of the slab:
The condition of unsolidified reduction is to reduce 40% or more of the unsolidified portion thickness of the slab (hereinafter also referred to as “the reduction ratio is 40% or more”). If the reduction ratio is less than 40%, the effect of reduction is small, so that the molten steel enriched with the segregation component is not sufficiently discharged, and segregation remains in the slab after reduction. Therefore, the reduction ratio is set to 40% or more of the unsolidified portion thickness. On the other hand, as the rolling reduction ratio increases, mechanical resistance such as reaction force from the slab increases, so the rolling reduction ratio is preferably 80% or less.

本発明において、未凝固部厚さとは、前述のとおり、固相率が0.8の等固相率面の内部(鋳片の中心側)の鋳片厚さ方向の寸法をいう。しかしながら、未凝固部は完全に液体状態というわけではなく、固相と液相とが共存する状態にある。したがって、未凝固部厚さの40%を圧下した時に、内部の液体(未凝固溶鋼)がほぼ排出された状態となる。   In the present invention, the thickness of the unsolidified portion refers to the dimension in the slab thickness direction inside the uniform solid surface with the solid phase ratio of 0.8 (center side of the slab) as described above. However, the unsolidified part is not completely in a liquid state, and a solid phase and a liquid phase coexist. Therefore, when 40% of the unsolidified portion thickness is reduced, the internal liquid (unsolidified molten steel) is almost discharged.

さらに圧下の効果を高めるためには、凝固のさらに進行したクレータエンド近傍で圧下を行うのが好ましい。未凝固厚さで表せば、80mm〜20mmの範囲において圧下を行うのが好ましい。未凝固厚さが20mm未満では、すでに偏析部分も凝固し始めており、濃化溶鋼を十分に排出することは難しいからである。   In order to further enhance the reduction effect, it is preferable to perform the reduction in the vicinity of the crater end where the solidification has further progressed. In terms of the unsolidified thickness, it is preferable to perform the reduction in the range of 80 mm to 20 mm. This is because when the unsolidified thickness is less than 20 mm, the segregated portion has already started to solidify, and it is difficult to sufficiently discharge the concentrated molten steel.

2)最上流側の圧下ロール対の3〜7m上流に電磁攪拌装置を配置:
排出された濃化溶鋼とメタルプール内溶鋼を混合するためには、十分な撹拌強度を与えることはもちろんであるが、メタルプール内に十分な量の液相が存在することも必要である。圧下ロール対の位置の直前の上流において電磁攪拌を実施しても、鋳片中心部から排出された濃化溶鋼がメタルプール内に充満していること、および、メタルプール内の液相量が少ないことから、ほとんど撹拌の効果は得られない。
2) An electromagnetic stirrer is placed 3 to 7 m upstream of the pair of rolling rolls on the most upstream side:
In order to mix the discharged concentrated molten steel and the molten steel in the metal pool, it is necessary to provide sufficient stirring strength, but it is also necessary that a sufficient amount of liquid phase exists in the metal pool. Even if electromagnetic stirring is performed immediately upstream of the position of the pair of rolling rolls, the concentrated molten steel discharged from the center of the slab is filled in the metal pool, and the amount of liquid phase in the metal pool is Since there are few, the effect of stirring is hardly acquired.

圧下ロール対の位置よりも3m以上上流で撹拌する場合には、十分な攪拌強度が得られるため、濃化溶鋼は、当初存在したメタルプール内の液相と混合され、十分に希釈される。一方、7mよりも上流で電磁撹拌を行った場合には、攪拌強度は大きいものの、等軸晶が増加して粒状偏析の原因となることが判明した。また、7mよりも上流で攪拌を行った場合は、圧下ロールのやや上流で滞留した濃化溶鋼が、鋳片の引き抜きにともなって圧下ロール位置まで移動する間に、一部で凝固し、圧下しても液相側に排出されない場合があることが判明した。   In the case of stirring 3 m or more upstream from the position of the rolling roll pair, sufficient stirring strength can be obtained. Therefore, the concentrated molten steel is mixed with the liquid phase in the metal pool that originally existed and sufficiently diluted. On the other hand, when electromagnetic stirring was performed upstream of 7 m, it was found that although the stirring strength was large, equiaxed crystals increased and caused granular segregation. In addition, when stirring is performed upstream of 7 m, the concentrated molten steel staying slightly upstream of the reduction roll is partially solidified while moving to the reduction roll position as the slab is drawn, and the reduction roll is reduced. However, it was found that the liquid phase may not be discharged.

上述のとおり、圧下ロール位置から過度に上流で攪拌を行っても、また、過度に直前で攪拌を行っても、十分な攪拌効果は得られない。そこで、圧下ロール対の3〜7m上流に電磁攪拌装置を配置し、攪拌を行うこととした。複数の圧下ロールが存在する場合には、最上流側の圧下ロール対から電磁攪拌装置までの長さが上記の範囲となるように電磁攪拌装置を配置すればよい。なお、電磁攪拌装置の好ましい配置位置は、圧下ロール対の4〜6m上流である。   As described above, a sufficient stirring effect cannot be obtained even if the stirring is performed excessively upstream from the position of the rolling roll, or if the stirring is performed immediately before. Therefore, an electromagnetic stirrer was disposed 3 to 7 m upstream of the pair of rolling rolls to perform stirring. When there are a plurality of reduction rolls, the electromagnetic stirring apparatus may be arranged so that the length from the uppermost-side reduction roll pair to the electromagnetic stirring apparatus is within the above range. In addition, the preferable arrangement | positioning position of an electromagnetic stirrer is 4-6m upstream of a reduction roll pair.

3)等軸晶率が6%以下となるように未凝固溶鋼に電磁力を印加:
本発明は、等軸晶を増殖させずに等軸晶率が6%以下となるように未凝固部に電磁攪拌を行うことにより粒状偏析の生成を抑制するものであり、新たな等軸晶の生成を抑制することを狙っている。粒状偏析の原因となる等軸晶の増加を極力抑える観点から、等軸晶率は6%以下とすることが必要である。
3) Applying electromagnetic force to unsolidified molten steel so that the equiaxed crystal ratio is 6% or less:
The present invention suppresses the generation of granular segregation by electromagnetically stirring the unsolidified portion so that the equiaxed crystal ratio is 6% or less without increasing the equiaxed crystal. It aims to suppress the generation of. From the viewpoint of minimizing the increase in equiaxed crystals that cause granular segregation, the equiaxed crystal ratio needs to be 6% or less.

4)板厚方向の中心部20%以内におけるセミマクロ偏析またはマクロ偏析の合計面積率が5%以下:
本発明の鋳片は、板厚方向の中心部20%以内の領域において粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下である耐水素誘起割れ性能に優れた鋼板製造用の連続鋳造鋳片である。
4) The total area ratio of semi-macro segregation or macro segregation within 20% of the center in the thickness direction is 5% or less:
The slab of the present invention is for producing a steel sheet having excellent resistance to hydrogen-induced cracking in which the total area ratio of granular or linear semi-macrosegregation or macrosegregation is 5% or less in an area within 20% of the central portion in the thickness direction. It is a continuous cast slab of.

本発明において、粒状または線状の偏析とは、鋳片におけるセミマクロ偏析、またはマクロ偏析である中心偏析やV字状偏析をいう。また、その大きさ(幅または直径)は、鋳片段階では数mm〜数百μmであり、鋼板においては数百μm〜数十μmとなる。品質上問題となる成分は、主としてMn、PおよびSであるが、PおよびSは、本来は不純物であり、鋼の溶製段階において極力低減することが可能である。しかし、Mnは鋼板の強度調整を担う合金成分であり、重要な添加元素であることから、Mnは鋳片および鋼板における実質的な偏析成分として最も重視すべき元素である。   In the present invention, granular or linear segregation means semi-macro segregation in a slab, or central segregation or V-shaped segregation which is macro segregation. Further, the size (width or diameter) is several mm to several hundred μm in the slab stage, and several hundred μm to several tens μm in the steel sheet. The components that are problematic in terms of quality are mainly Mn, P and S, but P and S are inherently impurities, and can be reduced as much as possible in the steel melting stage. However, since Mn is an alloy component responsible for adjusting the strength of the steel sheet and is an important additive element, Mn is the most important element as a substantial segregation component in slabs and steel sheets.

上述のように、本発明の連続鋳造鋳片を素材として得られた鋼板は、板厚方向の中心部20%以内の領域において、粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下であるので、耐HIC性能に極めて優れていることが判明した。一般に、マクロ偏析、セミマクロ偏析は連続鋳造スラブの厚さ方向の中心近傍に存在しており、鋼板厚さ方向の中心部20%以内の領域において、上記のように粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下となる場合には、板厚の全域にわたって偏析は少ないことから、本発明の鋳片は、板厚方向の中心部20%以内の領域において、粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下である鋼板製造用の連続鋳造鋳片であることをその要件とした。   As described above, the steel sheet obtained using the continuously cast slab of the present invention as a raw material has a total area ratio of 5 or less of the granular or linear semi-macrosegregation or macrosegregation in the region within 20% of the central portion in the thickness direction. % Or less, it was found that the HIC resistance was extremely excellent. Generally, macro-segregation and semi-macro segregation exist in the vicinity of the center in the thickness direction of the continuous cast slab, and in the region within 20% of the central portion in the thickness direction of the steel sheet, When the total area ratio of macrosegregation is 5% or less, since segregation is small over the entire thickness of the plate, the slab of the present invention is granular or linear in the region within 20% of the central portion in the plate thickness direction. The semi-macrosegregation or the total area ratio of macrosegregation was 5% or less, and the requirement was that it was a continuous cast slab for steel plate production.

本発明の連続鋳造方法の効果および連続鋳造鋳片の性能を確認するため、以下に述べる鋳造試験を行い、その結果を評価した。   In order to confirm the effect of the continuous casting method of the present invention and the performance of the continuous cast slab, the following casting test was performed and the results were evaluated.

(試験方法)
1)鋳造方法
図1は、本発明の連続鋳造方法を実施するための連続鋳造装置の例を模式的に示す図である。連続鋳造装置としては垂直曲げ型の連続鋳造機を用い、鋳片厚:235mm、鋳片幅:1800mmの鋳片を鋳造した。
(Test method)
1) Casting method FIG. 1 is a diagram schematically showing an example of a continuous casting apparatus for carrying out the continuous casting method of the present invention. As a continuous casting apparatus, a vertical bending type continuous casting machine was used to cast a slab having a slab thickness of 235 mm and a slab width of 1800 mm.

対象とした鋼種は、鋼成分組成が質量%にて、C:0.06〜0.08%、Si:0.18〜0.25%、Mn:1.5〜1.55%、P:0.007〜0.009%、S:0.0004〜0.0006%、Ti:0.015〜0.02%、Nb:0.03〜0.04%、Ca:0.002〜0.0025%の耐HIC鋼である。鋳造速度は0.90〜1.05m/minの範囲で種々変更した。また、二次冷却比水量は1.5L/kg−steelとした。   The target steel types are steel components in mass%, C: 0.06 to 0.08%, Si: 0.18 to 0.25%, Mn: 1.5 to 1.55%, P: 0.007-0.009%, S: 0.0004-0.0006%, Ti: 0.015-0.02%, Nb: 0.03-0.04%, Ca: 0.002-0. 0025% HIC steel. The casting speed was variously changed in the range of 0.90 to 1.05 m / min. The secondary cooling specific water amount was 1.5 L / kg-steel.

浸漬ノズル1を経て鋳型3に注入された溶鋼4は、鋳型3、およびその下方の図示しない二次冷却スプレーノズル群から噴射されるスプレー水により冷却されて凝固シェル5を形成し、鋳片8となる。このとき、鋳片は、その内部に未凝固部10を保持したまま、ガイドロール群6および未凝固圧下ロール対7を経てピンチロール群11により引き抜かれる。圧下ロール対7は、メニスカス2より21mの位置に配置し、圧下ロール対7の直径はは450mmとし、圧下力はロール対当たり3.43×106Nとした。なお、図1には、垂直曲げ型連続鋳造機を用いた場合の例を示したが、本発明の方法は、もちろん、その他の湾曲型連続鋳造機などにも適用できる。 The molten steel 4 injected into the mold 3 through the immersion nozzle 1 is cooled by spray water sprayed from the mold 3 and a secondary cooling spray nozzle group (not shown) below the mold 3 to form a solidified shell 5. It becomes. At this time, the slab is pulled out by the pinch roll group 11 through the guide roll group 6 and the unsolidified rolling roll pair 7 while holding the unsolidified portion 10 therein. The reduction roll pair 7 was disposed at a position 21 m from the meniscus 2, the diameter of the reduction roll pair 7 was 450 mm, and the reduction force was 3.43 × 10 6 N per roll pair. In addition, although the example at the time of using a vertical bending type | mold continuous casting machine was shown in FIG. 1, of course, the method of this invention is applicable also to another curved type continuous casting machine.

図中の矢印B1−B2で示されるバルジング領域においては、ガイドロール群6は、その鋳片厚さ方向の間隔が鋳片引抜方向に段階的に増加するように配置されており、鋳片8の内部に未凝固部10が存在する領域をバルジングさせ、その下流に位置する未凝固圧下ロール対7により前記バルジング量相当分を圧下する。バルジングル量の調整は、ガイドロール群6の鋳片厚さ方向の間隔を調整することにより調節することが可能である。   In the bulging area indicated by arrows B1-B2 in the figure, the guide roll group 6 is arranged so that the interval in the slab thickness direction increases stepwise in the slab drawing direction. The area where the unsolidified portion 10 is present is bulged, and the bulging amount corresponding to the bulging amount is reduced by the unsolidified reduction roll pair 7 located downstream thereof. The amount of bulging can be adjusted by adjusting the gap in the slab thickness direction of the guide roll group 6.

本発明の鋳造方法においては、必ずしも鋳片を上記のように一旦バルジングさせた後に圧下する必要はないが、スラブ全幅を圧下する場合においては、スラブ両端辺近傍において完全に凝固していることから、この領域も含めて圧下するためには大きな圧下力を必要とする。しかも、スラブ両端辺近傍の領域は必ずしも圧下する必要がない。そこで、本実施例では、一旦バルジングさせた鋳片に対してバルジング量相当分の圧下を加える方法を採用することにより、スラブの端辺部に未凝固圧下ロール7による大きな圧下力が加わることを避け、圧下力を未凝固部分に有効に作用させて、偏析の排出効果を高めた。したがって、圧下ロールの強度が大きく、圧下能力のある圧下装置を使用する場合には、バルジングさせない平坦な形状の鋳片を両端辺ともに含めて圧下する方法を採用しても良い。本鋳造試験においては、バルジングは、一律にメニスカス2から約9mの位置から開始し、バルジング量は25mmとした。   In the casting method of the present invention, it is not always necessary to squeeze the slab once as described above, but when the slab full width is reduced, it is completely solidified in the vicinity of both slab ends. In order to reduce the pressure including this region, a large reduction force is required. Moreover, it is not always necessary to reduce the area in the vicinity of both sides of the slab. Therefore, in this embodiment, by adopting a method of applying a reduction corresponding to the bulging amount to the slab once bulged, a large reduction force by the unsolidified reduction roll 7 is applied to the edge of the slab. By avoiding this, the rolling force was effectively applied to the unsolidified part, and the segregation discharge effect was enhanced. Therefore, when using a reduction device having a high reduction roll strength and a reduction capability, a method of reducing the flat slab that is not bulged, including both sides, may be employed. In the casting test, the bulging was uniformly started from the position of about 9 m from the meniscus 2 and the bulging amount was 25 mm.

電磁撹拌には、移動磁場方式で、周波数が1.5Hz、電流が1000A、最大磁束密度が350ガウスの電磁攪拌装置を用いた。本電磁攪拌装置は、一方の短辺から他方の短辺に向かって溶鋼に流動の駆動力を与えることが可能であり、また、設定により駆動方向を正逆反転させることが可能である。本鋳造試験では、30秒毎に流動の駆動方向を反転させた。また、電磁攪拌コイルの電流値を調整して最大磁束密度を変更することにより、溶鋼の撹拌強度を変更した。   For the magnetic stirring, an electromagnetic stirring device using a moving magnetic field method, having a frequency of 1.5 Hz, a current of 1000 A, and a maximum magnetic flux density of 350 gauss was used. The electromagnetic stirring device can apply a driving force to the molten steel from one short side to the other short side, and can reverse the driving direction forward and backward depending on the setting. In this casting test, the driving direction of the flow was reversed every 30 seconds. Moreover, the stirring intensity | strength of molten steel was changed by adjusting the electric current value of an electromagnetic stirring coil and changing a maximum magnetic flux density.

鋳片圧下時の未凝固部厚さは、鋳造速度を変更することにより調整し、未凝固部厚さに対する圧下率の調整は、未凝固部厚さに応じて圧下量を調整することにより行った。なお、未凝固部厚さは、非定常伝熱解析などによって推定し、鋳造中の鋳片温度の測定および鋲打ち試験の結果によって、その推定精度を確認した。   The unsolidified part thickness during slab reduction is adjusted by changing the casting speed, and the reduction ratio relative to the unsolidified part thickness is adjusted by adjusting the reduction amount according to the unsolidified part thickness. It was. The thickness of the unsolidified part was estimated by unsteady heat transfer analysis and the accuracy of the estimation was confirmed by the measurement of the slab temperature during casting and the results of the hammering test.

電磁攪拌位置9は、ガイドロール群6を構成するロールセグメントの一つに設置されており、連続鋳造機内での上記セグメントの設置位置を変更することにより、配置位置を変更することが可能である。また、場合によっては、ロールセグメント内における電磁攪拌装置の設置位置を変更することにより、電磁攪拌装置の配置位置の調整を行った。なお、タンディッシュ内における溶鋼の過熱度(△T)は、40℃〜50℃の範囲でほぼ一定とした。   The electromagnetic stirring position 9 is installed in one of the roll segments constituting the guide roll group 6, and the arrangement position can be changed by changing the installation position of the segment in the continuous casting machine. . Further, in some cases, the arrangement position of the electromagnetic stirring device was adjusted by changing the installation position of the electromagnetic stirring device in the roll segment. In addition, the superheat degree ((DELTA) T) of the molten steel in a tundish was made substantially constant in the range of 40 to 50 degreeC.

等軸晶は、溶鋼の攪拌流速が大きく、また、攪拌位置における未凝固部厚さが大きいほど生成しやすくなる。そこで、電磁攪拌装置のコイルに流す電流値(最大電流1000Aで最大磁束密度350ガウスを発生)および電磁攪拌位置における未凝固部厚さを調整することにより、等軸晶の生成量を制御した。   The equiaxed crystal is more easily generated as the stirring speed of molten steel is larger and the thickness of the unsolidified portion at the stirring position is larger. Therefore, the amount of equiaxed crystals produced was controlled by adjusting the value of current flowing through the coil of the electromagnetic stirring device (maximum magnetic flux density of 350 gauss was generated at a maximum current of 1000 A) and the thickness of the unsolidified portion at the electromagnetic stirring position.

2)マクロ組織および偏析比の調査方法
図2は、鋳片のマクロ組織および成分偏析状況の調査用サンプルの採取方法を示す図である。各鋳造試験により得られた鋳片から長さ1mのサンプルを切り出し、鋳片長さ方向の両端部および中央部から3枚の横断面マクロ調査用の板サンプル12を切り出して調査に供した。それぞれの板サンプル12について、鋳片幅方向の端部からの凝固部約250mmを除去し、それぞれの板サンプルにおいて等軸晶の占める面積率を調査し、その面積率の平均値を求めて等軸晶率とした。
2) Investigation Method of Macro Structure and Segregation Ratio FIG. 2 is a diagram showing a method for collecting a sample for investigation of the macro structure and component segregation status of a slab. A sample having a length of 1 m was cut out from the slab obtained by each casting test, and three plate samples 12 for cross-sectional macro investigation were cut out from both end portions and the center portion in the slab length direction and used for the investigation. About each plate sample 12, about 250 mm of solidified portion from the end in the slab width direction is removed, the area ratio occupied by equiaxed crystals in each plate sample is investigated, and the average value of the area ratio is obtained, The axial crystal ratio was taken.

また、各横断面の板サンプル12から、EPMAによるマッピング分析(以下、「MA分析」とも称する)用のサンプル13を、鋳片の幅方向中央部(同図中において「C」にて示す)、幅方向の1/4の位置(同図において「1/4W」にて示す)および幅方向の3/4Wの位置(同図において「3/4W」にて示す)の3箇所から切り出し、合計9個のMA分析用のサンプル13について、MA分析を実施した。各々のMA分析は、鋳片の厚さ中心部の厚さ方向10mm×幅方向40mmの範囲について、ビーム径を50μmとして実施し、Mnの平均含有率を求めた。このMnの平均含有率を溶鋼鋳込み時のMnの平均含有率で除してMn偏析比を求め、さらに、このようにして求められた9個のサンプルについてのMn偏析比を算術平均して偏析比の代表値とした。   Further, from the plate sample 12 of each cross section, a sample 13 for mapping analysis by EPMA (hereinafter also referred to as “MA analysis”) is a central portion in the width direction of the slab (indicated by “C” in the figure). , Cut out from three places, a quarter position in the width direction (indicated by "1 / 4W" in the figure) and a 3 / 4W position in the width direction (indicated by "3 / 4W" in the figure), MA analysis was performed on a total of nine samples 13 for MA analysis. Each MA analysis was carried out with a beam diameter of 50 μm in the range of 10 mm thickness direction × 40 mm width direction at the center of the slab thickness, and the average content of Mn was determined. The average content of Mn is divided by the average content of Mn at the time of casting of molten steel to obtain the Mn segregation ratio. Further, the Mn segregation ratios of the nine samples thus obtained are arithmetically averaged and segregated. It was set as the representative value of the ratio.

3)鋼板の耐HIC性能試験および中心部の偏析調査方法
長さ8mの鋳片を採取し、加熱炉にて1150℃の加熱した後、約800℃から圧延を開始し、約500℃にて圧延を完了する一般的な圧延条件により、厚さ20mm、幅110mmの鋼板に圧延した。得られた各鋼板の長手方向を4等分した各板の両端とその中央側の3箇所の位置から、縦100mm×横100mm×厚さ20mmの全板厚試験片を採取し、NACE T0284に規定されたHIC試験法に準拠して、5質量%NaCl+0.5質量%CH3COOH+1気圧H2S飽和で温度25℃のNACE TM0177溶液中に96時間浸漬した。浸漬後の試験片に発生したHICによる割れの面積を超音波によるCスキャンにより測定し、試験片の全面積に占めるHICによる割れの面積率(以下、「CAR」ともいう)を求めた。
3) HIC resistance test of steel plate and segregation investigation method for the central part An 8 m long slab was collected, heated at 1150 ° C in a heating furnace, then rolled from about 800 ° C, and at about 500 ° C. It rolled into the steel plate of thickness 20mm and width 110mm by the general rolling conditions which complete rolling. A total plate thickness test piece having a length of 100 mm × width of 100 mm × thickness of 20 mm was taken from both ends of each plate obtained by dividing the longitudinal direction of each obtained steel plate into four equal parts and the central side thereof, and the sample was taken into NACE T0284. In accordance with the prescribed HIC test method, it was immersed for 96 hours in a NACE TM0177 solution at a temperature of 25 ° C. with 5 mass% NaCl + 0.5 mass% CH 3 COOH + 1 atm H 2 S saturation. The area of cracks caused by HIC generated in the test piece after immersion was measured by ultrasonic C-scan, and the area ratio of cracks caused by HIC in the total area of the test piece (hereinafter also referred to as “CAR”) was obtained.

また、上記のそれぞれの板の断面サンプルを用いて、鋼板厚さ方向の組織をピクリン酸溶液により腐食し、板厚方向の中心部20%以内におけるマクロ偏析、セミマクロ偏析の有無を調査した。なお、偏析の有無の確認は、5〜10倍の低倍率のルーペ、またはCCDカメラを使用したモニターにより行った。   Further, using the cross-sectional samples of the respective plates, the structure in the thickness direction of the steel plate was corroded with a picric acid solution, and the presence or absence of macrosegregation and semi-macrosegregation within 20% of the central portion in the thickness direction was investigated. In addition, the presence or absence of segregation was confirmed with a monitor using a low magnification magnifying glass of 5 to 10 times or a CCD camera.

(試験結果)
表1に試験条件および試験結果をまとめて示した。
(Test results)
Table 1 summarizes the test conditions and test results.

Figure 0004289205
Figure 0004289205

同表において、「鋼板厚さ中心部20%以内の偏析有無」の欄に記載された数値は、鋼板の厚さ中心部20%以内の領域において生成した偏析の存在範囲が厚さ中心部20%以内の領域に占める面積率を示す。   In the table, the numerical value described in the column “Presence / absence of segregation within 20% of steel plate thickness center” is the presence range of segregation generated in the region within 20% of thickness center of the steel plate. The area ratio in the area within% is shown.

試験番号1〜8は、本発明の連続鋳造方法で規定する条件を全て満足する本発明例についての試験であり、また、試験番号9〜18は、本発明の鋳造方法で規定する条件の少なくとも1つを満たさない比較例についての試験である。   Test Nos. 1 to 8 are tests for examples of the present invention that satisfy all the conditions specified by the continuous casting method of the present invention, and Test Nos. 9 to 18 are at least the conditions specified by the casting method of the present invention. It is the test about the comparative example which does not satisfy one.

本発明例である試験番号1〜8は、鋳片の等軸晶率が6%以下と低く、また、Mn偏析比の値も低減されており、鋳片の性状は極めて良好であった。これらを素材として圧延された鋼板の厚さ中心部20%以内の領域におけるセミマクロ偏析またはマクロ偏析は、殆どの試験において皆無であり、偏析が存在した僅かの試験においても偏析の面積率は3%以下であって、極めて良好は品質の鋼板が得られた。さらに、鋼板の耐HIC性能を示すCARの値も0%ないしは極めて低い数値であり、耐HIC性の評価基準であるCAR値が3%を超える試験結果は皆無である。上記のとおり、本発明の連続鋳造方法によれば、偏析の極めて低減された良好な性状の鋳片が得られ、それを素材として圧延された鋼板の耐HIC性能は極めて優れていることが確認された。   In Test Nos. 1 to 8, which are examples of the present invention, the equiaxed crystal ratio of the slab was as low as 6% or less, and the value of the Mn segregation ratio was also reduced, and the slab properties were extremely good. Semi-macro segregation or macro segregation in the region within 20% of the center of the thickness of the steel sheet rolled using these materials is none in most tests, and the area ratio of segregation is 3% even in a few tests where segregation existed. A steel sheet of very good quality was obtained. Furthermore, the value of CAR indicating the HIC resistance of the steel sheet is also 0% or extremely low, and there is no test result in which the CAR value, which is an evaluation standard for HIC resistance, exceeds 3%. As described above, according to the continuous casting method of the present invention, a slab having good properties with extremely reduced segregation is obtained, and it is confirmed that the HIC resistance of the steel sheet rolled using the slab is extremely excellent. It was done.

これに対して、試験番号9〜11は、それぞれ、試験番号1、2および4の条件において未凝固圧下量のみを減少させ、圧下比率を低下させた試験である。偏析成分の濃化した溶鋼の圧搾(搾り出し)が不十分であることから、鋳片のMn偏析比の値は高く、その結果、鋼板の厚さ中心部20%以内における偏析部の面積率が20%を超える部分が多発し、その部分においてCAR値も特に高い値を示し、試験番号9〜11全体としても耐HIC性能は不良となった。   In contrast, Test Nos. 9 to 11 are tests in which only the uncoagulated reduction amount was reduced and the reduction ratio was reduced under the conditions of Test Nos. 1, 2 and 4, respectively. Since the squeezing (squeezing) of the molten steel enriched with the segregation component is insufficient, the value of the Mn segregation ratio of the slab is high, and as a result, the area ratio of the segregation part within 20% of the thickness center part of the steel plate is The portion exceeding 20% occurred frequently, and the CAR value was also particularly high in that portion, and the HIC resistance performance was poor even in the test numbers 9 to 11 as a whole.

試験番号12〜15は、電磁攪拌の位置のみを、本発明で規定する範囲から外れた下流側または上流側に変更した試験である。電磁攪拌位置を未凝固圧下ロールよりも2m上流の位置とした試験番号12および14では、攪拌の効果が小さいことから、得られた鋳片のMn偏析比の値は高く、鋼板の全てのサンプル採取位置において、鋼板の厚さ中心部20%以内における偏析存在範囲の面積率が20%を超えている。その結果、CAR値も全てのサンプル採取位置において高い値を示し、特に端部では極めて高く、耐HIC性能が極めて劣った結果となった。   Test numbers 12 to 15 are tests in which only the position of electromagnetic stirring is changed to the downstream side or the upstream side outside the range defined in the present invention. In Test Nos. 12 and 14 where the electromagnetic stirring position is 2 m upstream from the unsolidified rolling roll, since the stirring effect is small, the Mn segregation ratio of the obtained slab is high, and all the samples of the steel plate At the sampling position, the area ratio of the segregation existing range within 20% of the thickness center of the steel sheet exceeds 20%. As a result, the CAR value was also high at all sampling positions, particularly extremely high at the edge, resulting in extremely poor HIC resistance.

電磁攪拌位置を未凝固圧下ロールよりも8m上流の位置とした試験番号13および15では、鋳片の等軸晶率が高なっており、また、Mn偏析比の値も高い。Mn偏析比の値が高くなったのは、等軸晶率が高くなったことにより等軸晶間の粒状偏析が増加したこと、および攪拌位置が未凝固圧下ロールから遠く離れたことにより、一部で滞留した濃化溶鋼が未凝固圧下ロールの位置に達した段階で、すでに凝固していたことによると推察される。この場合も、鋼板の厚さ中心部20%以内における偏析の面積率は20%を超えており、その結果、CAR値も高い値となって、耐HIC性能が劣った結果となった。   In test numbers 13 and 15 in which the electromagnetic stirring position is 8 m upstream from the unsolidified rolling roll, the equiaxed crystal ratio of the slab is high and the value of the Mn segregation ratio is also high. The value of the Mn segregation ratio increased because the increase in equiaxed crystal ratio caused an increase in granular segregation between equiaxed crystals, and because the stirring position was far from the unsolidified rolling roll. It is inferred that the concentrated molten steel staying at the part has already solidified at the stage where it reached the position of the unsolidified rolling roll. Also in this case, the segregation area ratio within 20% of the thickness center of the steel sheet exceeded 20%. As a result, the CAR value was also high, resulting in poor HIC resistance.

試験番号16〜18は、電磁攪拌の電流値のみを800〜900Aに増加して攪拌強度を増大させた試験である。その結果、鋳片のMn偏析比の値が著しくは上昇(悪化)しなかったものの、等軸晶率は大幅に増大し、これらを素材とした鋼板の厚さ中心部20%以内の領域における偏析の面積率は高くなり、それにともなって鋼板のCAR値も高い値となって、耐HIC性能は劣った結果となった。   Test numbers 16 to 18 are tests in which only the current value of electromagnetic stirring was increased to 800 to 900 A to increase the stirring strength. As a result, although the value of the Mn segregation ratio of the slab was not significantly increased (deteriorated), the equiaxed crystal ratio was greatly increased, and in the region within 20% of the central thickness of the steel plate using these as raw materials. The segregation area ratio increased, and the CAR value of the steel sheet increased accordingly, resulting in poor HIC resistance.

本発明の連続鋳造方法によれば、未凝固溶鋼の電磁攪拌位置を圧下ロールの3〜7m上流とすることにより等軸晶の増加を抑制するとともに、未凝固溶鋼の40%以上を圧下することにより、マクロ偏析およびセミマクロ偏析を著しく低減したスラブ鋳片を鋳造することができ、前記鋳片を素材とする耐HIC性能に優れた鋼板の製造が可能となる。また、本発明の連続鋳造鋳片は、ラインパイプなどに用いられる耐HIC性能に優れた鋼板の製造に最適である。よって、本発明の連続鋳造方法および鋳片は、高性能の耐HIC性を要求される鋼板製造技術に対して広範に寄与できる。   According to the continuous casting method of the present invention, the electromagnetic stirring position of the unsolidified molten steel is 3 to 7 m upstream of the reduction roll, thereby suppressing an increase in equiaxed crystals and reducing 40% or more of the unsolidified molten steel. Thus, it is possible to cast a slab slab with significantly reduced macro segregation and semi-macro segregation, and it is possible to manufacture a steel plate having excellent HIC resistance using the slab as a raw material. Moreover, the continuous cast slab of the present invention is most suitable for the production of a steel plate having excellent HIC resistance used for a line pipe or the like. Therefore, the continuous casting method and slab of the present invention can contribute widely to steel sheet manufacturing technology that requires high performance HIC resistance.

本発明の連続鋳造方法を実施するための連続鋳造装置の例を模式的に示す図である。It is a figure which shows typically the example of the continuous casting apparatus for enforcing the continuous casting method of this invention. 鋳片のマクロ組織および成分偏析状況の調査用サンプルの採取方法を示す図である。It is a figure which shows the sampling method of the sample for investigation of the macro structure of a slab, and a component segregation condition.

符号の説明Explanation of symbols

1:浸漬ノズル
2:メニスカス
3:鋳型
4:溶鋼
5:凝固シェル
6:ガイドロール
7:未凝固圧下ロール対
8:スラブ鋳片
9:電磁攪拌装置
10:未凝固部
11:ピンチロール
12:横断面マクロ調査用の板サンプル
13:マッピング分析(MA)用サンプル

1: immersion nozzle 2: meniscus 3: mold 4: molten steel 5: solidified shell 6: guide roll 7: unsolidified pressed roll pair 8: slab cast piece 9: electromagnetic stirrer 10: unsolidified part 11: pinch roll 12: crossing Plate sample for surface macro survey 13: Sample for mapping analysis (MA)

Claims (2)

炭素含有率が0.1質量%未満の耐水素誘起割れ鋼板用の低炭素鋼を連続鋳造する際に、未凝固溶鋼を電磁力により攪拌するとともに、その電磁攪拌する位置の下流側の未凝固部を含む鋳片を圧下ロール対を用いて圧下する連続鋳造方法であって、
最上流側の圧下ロール対の3〜7m上流の位置に電磁攪拌装置を配置し、等軸晶を増殖させずに等軸晶率が6%以下となるように未凝固溶鋼に電磁力を印加するとともに、
圧下ロール対を用いて、未凝固部を含む鋳片の未凝固部厚さの40%以上を圧下することを特徴とする耐水素誘起割れ鋼板用の低炭素鋼の連続鋳造方法。
When continuously casting low carbon steel for hydrogen-resistant cracked steel sheets with a carbon content of less than 0.1% by mass, the unsolidified molten steel is stirred by electromagnetic force, and the unsolidified downstream of the electromagnetic stirring position A continuous casting method of rolling down a slab including a portion using a pair of rolling rolls,
An electromagnetic stirrer is placed at a position 3 to 7m upstream of the pair of rolling rolls on the most upstream side, and electromagnetic force is applied to the unsolidified molten steel so that the equiaxed crystal ratio is 6% or less without increasing the equiaxed crystals. And
A continuous casting method for low carbon steel for hydrogen-resistant cracked steel sheets, wherein a reduction roll pair is used to reduce 40% or more of the thickness of an unsolidified portion of a slab including an unsolidified portion.
請求項1に記載の連続鋳造方法により鋳造された、板厚方向の中心部20%以内の領域において粒状または線状のセミマクロ偏析またはマクロ偏析の合計面積率が5%以下である耐水素誘起割れ性能に優れた鋼板製造用の連続鋳造鋳片。   The hydrogen-induced cracking, which is cast by the continuous casting method according to claim 1 and has a total area ratio of granular or linear semi-macrosegregation or macrosegregation of 5% or less in a region within 20% of the center in the thickness direction. Continuous cast slab for steel sheet production with excellent performance.
JP2004127235A 2004-04-22 2004-04-22 Continuous casting method and continuous cast slab Expired - Lifetime JP4289205B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004127235A JP4289205B2 (en) 2004-04-22 2004-04-22 Continuous casting method and continuous cast slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004127235A JP4289205B2 (en) 2004-04-22 2004-04-22 Continuous casting method and continuous cast slab

Publications (2)

Publication Number Publication Date
JP2005305517A JP2005305517A (en) 2005-11-04
JP4289205B2 true JP4289205B2 (en) 2009-07-01

Family

ID=35434871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004127235A Expired - Lifetime JP4289205B2 (en) 2004-04-22 2004-04-22 Continuous casting method and continuous cast slab

Country Status (1)

Country Link
JP (1) JP4289205B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009133739A1 (en) 2008-04-28 2009-11-05 住友金属工業株式会社 Method for continuous casting of steel and electromagnetic stirrer usable therefor
JP5083241B2 (en) * 2009-02-06 2012-11-28 住友金属工業株式会社 Steel continuous casting method and slab manufactured by this method
US20170274446A1 (en) * 2016-03-25 2017-09-28 Novelis Inc. Liquid metal jet optimization in direct chill casting
US11491534B2 (en) 2018-03-08 2022-11-08 Nippon Steel Corporation Continuous casting method, cast slab, and continuous casting apparatus
CN112548056A (en) * 2019-09-25 2021-03-26 上海梅山钢铁股份有限公司 Method for controlling hydrogen in low-carbon boron-containing steel continuous casting billet
CN111283156B (en) * 2020-03-23 2021-11-02 江苏利淮钢铁有限公司 Method for reducing segregation in casting process of continuous casting square billet for gear

Also Published As

Publication number Publication date
JP2005305517A (en) 2005-11-04

Similar Documents

Publication Publication Date Title
JP6115735B2 (en) Steel continuous casting method
CN110709188B (en) Method for manufacturing austenitic stainless steel slab
JP4055689B2 (en) Continuous casting method
JP4289205B2 (en) Continuous casting method and continuous cast slab
JP6384679B2 (en) Manufacturing method of hot-rolled steel sheet
JP4508087B2 (en) Continuous casting method and continuous cast slab
JP6645214B2 (en) Method for producing low carbon steel thin cast slab, low carbon steel thin cast slab, and method for producing low carbon steel thin steel plate
JPWO2018056322A1 (en) Steel continuous casting method
JP5942712B2 (en) Scum weir, thin slab manufacturing method, thin slab manufacturing equipment
JP6821993B2 (en) Manufacturing method of low carbon steel thin wall slab
JP4303578B2 (en) Method for reducing center defects in continuous cast slabs of steel
WO2018056322A1 (en) Continuous steel casting method
JP2004216411A (en) Continuous casting method for special molten steel
JP3374761B2 (en) Continuous cast slab, continuous casting method thereof, and method of manufacturing thick steel plate
JP3402291B2 (en) Continuously cast slab, method for continuously casting the same, and method for producing a thick steel plate
JP3259270B2 (en) Continuous casting method
JP3885627B2 (en) Secondary cooling method for continuous cast slabs
JP2004307931A (en) Continuously cast piece, and casting method therefor
JP2019018238A (en) Method for producing low carbon steel thin slab, low carbon steel thin slab, and method for producing low carbon thin steel sheet
KR20090066838A (en) A method of manufacturing a ferrite stainless steel
JP3283746B2 (en) Continuous casting mold
JP2004276042A (en) Method for continuously casting molten steel for non-oriented magnetic steel sheet and its cast slab
JP2020146735A (en) Continuous casting method of steel
JP2001347349A (en) Cast slab provided with fine solidification structure and steel material processed from the cast slab
JP2006136901A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4289205

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350