JP4288931B2 - Light emitting device and manufacturing method thereof - Google Patents

Light emitting device and manufacturing method thereof Download PDF

Info

Publication number
JP4288931B2
JP4288931B2 JP2002327634A JP2002327634A JP4288931B2 JP 4288931 B2 JP4288931 B2 JP 4288931B2 JP 2002327634 A JP2002327634 A JP 2002327634A JP 2002327634 A JP2002327634 A JP 2002327634A JP 4288931 B2 JP4288931 B2 JP 4288931B2
Authority
JP
Japan
Prior art keywords
light emitting
emitting element
submount
light
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002327634A
Other languages
Japanese (ja)
Other versions
JP2004165308A (en
Inventor
英夫 朝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Corp
Original Assignee
Nichia Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Corp filed Critical Nichia Corp
Priority to JP2002327634A priority Critical patent/JP4288931B2/en
Publication of JP2004165308A publication Critical patent/JP2004165308A/en
Application granted granted Critical
Publication of JP4288931B2 publication Critical patent/JP4288931B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/48463Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond
    • H01L2224/48465Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a ball bond the other connecting portion not on the bonding area being a wedge bond, i.e. ball-to-wedge, regular stitch

Landscapes

  • Led Device Packages (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a light emitting device wherein a light emitting element formed with electrodes on one and the same surface can be stably mounted by flip chip bonding technology with respect to lead electrodes located in a concave portion of a package. <P>SOLUTION: The light emitting device comprises the package 7 which has the concvave portion and is formed by insert molding so that the pair of positive and negative lead electrodes 4 may be exposed on the bottom of the concave portion, and the light emitting element 1 mounted face down on the lead electrodes 4. Between the lead electrodes and the light emitting element 1, there is a sub-mount 2 whereon the light emitting element can be mounted. The sub-mount 2 is provided with a conductive member at least on the front surface, and the conductive member is electrically connected to the light emitting element 1 and the lead electrodes 4 via a conductive joint member 3. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の技術分野】
本発明は、ディスプレイ・光通信やO A 機器又は携帯機器の光源に最適な紫外域光から赤色光を発光する発光ダイオードに係わり、特に優れた放熱経路を有し且つ外部からの機械的応力等の耐久性に優れた発光装置及びその発光装置の製造方法に関する。
【0002】
【従来の技術】
今日、発光装置としてRGB(赤、緑、青色)がそれぞれ高輝度に発光可能な発光ダイオードに加え紫外線が発光可能な発光ダイオード、白色発光が可能な発光ダイオードやレーザダイオードが開発された。これらの半導体発光素子は高輝度、低消費電力かつ長寿命という優れた特性を有している。そのため、屋外や屋内の各種ディスプレイ、交通や鉄道などの信号機、各種インジケータや標示や液晶装置のバックライトだけでなく、照明自体として利用されはじめている。
【0003】
このような発光装置として、図14および15に示す表面実装型発光装置が用いられている。図14および15の表面実装型発光装置は、フレームインサートタイプと呼ばれ、発光素子が電気的に接続される正負一対のリード電極が、樹脂によって上下方向から挟み込まれるように、射出成形によってリード電極が樹脂パッケージと一体化される。リード電極の端部は外部へ突出しており、後に端部が折り曲げられることによって配線パターン等と接続される。この樹脂パッケージは開口部が形成され、リード電極上に発光素子が載置されるようにリード電極が露出している。この開口部はテーパー形状を有しており、内壁が傾斜されることで発光素子からの光を効率よく反射させることができる。また、発光素子は、対向面に正負一対の電極が形成されており、上記の樹脂パッケージのリード電極上に、発光素子の一方の電極が接続され、もう一方の電極は、導電性ワイヤーによって他のリード電極に接続されている。
【0004】
【特許文献1】
特開平11−87780号
【0005】
【発明が解決しようとする課題】
しかしながら、窒化ガリウム系化合物半導体など、両面に電極を形成することが困難である発光素子を用い、フレームインサートタイプの樹脂パッケージに載置する場合、フェイスアップによる実装形態であると同一面に電極を形成し2本のワイヤによって電気的に接続する必要がある。このように、ワイヤを2本形成すると、ワイヤが陰となり光の取りだし効率が悪くなるばかりか、ワイヤの断線等による不良が生じ歩留まりが低くなる。そのため、フェイスダウンによる発光素子の実装が好ましいものとなる。しかしながら、フレームインサートタイプでは、0.15mm厚の銅合金属を用いる場合、正負のリード電極の間隔は約0.15mmとするのが限度であり、正負の電極間が0.1mm以下である発光素子をフェイスダウンで安定性良く載置可能な距離とすることは難しい。また、リード電極は樹脂パッケージとの密着性は、必ずしも良好なものとは言えず、発光素子とリード電極との接合時に与えられる熱、加重および超音波による影響を受け、対向する双方のリード電極がそれぞれ微振動してしまうことで充分に合金化することができない。そこで、本発明は、フリップチップ方式による発光素子を用いて、安定性がよく、極めて信頼性に富んだ表面実装型発光装置を提供することを目的とする。
【0006】
【課題を解決するための手段】
本発明の請求項1に関わる半導体発光装置は、凹部を有し、その凹部の底面に正負一対のリード電極が配置されたパッケージと、前記リード電極上にフェイスダウン実装されてなる発光素子と、を有する発光装置であって、前記リード電極と前記発光素子との間に、該発光素子を実装可能なサブマウントを有し、該サブマウントは厚さ方向に貫通する貫通孔を有し、前記貫通孔は、前記サブマウントの上面から下面に向かって傾斜して形成されており、その内壁に導電性部材を有し、前記貫通孔内部に導電性接合部材が設けられており、前記導電性部材と前記導電性接合部材とが接して固着されていることを特徴とする。このような構成からなると、フェイスダウンによる実装で、発光素子とリード電極とを安定性良く電気的に接続することができるため、信頼性に富んだ表面実装型発光装置とする事ができる。
前記貫通孔は、前記サブマウントの前記下面に近づくにつれて小さく形成されていることが好ましい。
また、本発明の発光装置の製造方法は、凹部を有し、その凹部の底面に正負一対のリード電極が配置されるパッケージと、前記リード電極上に、サブマウントを介してフェイスダウン実装されてなる発光素子と、を有する発光装置の製造方法であって、前記サブマウントの上面及び下面に導電性部材を形成する工程と、前記サブマウントの前記上面から前記下面に向かって傾斜する貫通孔を形成する工程と、前記貫通孔の内壁に、前記サブマウントの前記上面から前記下面まで連続するように前記導電性部材を形成する工程と、前記貫通孔の前記導電性部材と導電性接合部材とが接するように固着する工程と、前記導電性接合部材を硬化して前記貫通孔に引っかけて硬化させる工程と、を含むことを特徴とする。
【0007】
また、サブマウントは、リード電極間方向へ延長された矩形形状からなることが好ましい。このような構成からなると、サブマウントが正電極上から負電極上を渡って配され、発光素子をリード電極と電気的に接続することができる。
【0008】
また、サブマウントは、短辺の長さが発光素子の対角線より長い事が好ましい。このような構成からなると、導電性接合部材によってサブマウント表面上に形成された導電性部材と発光素子との密着性を高め、安定性良く用いることができる。
【0009】
また、サブマウントは、発光素子の少なくとも2倍以上の面積を有することが好ましい。このような構成からなると、放熱性が向上し、リード電極上に載置する際などにおいて取り扱いもしやすくなる。
【0010】
また、サブマウントは、厚さ方向に貫通する貫通孔を有し、該貫通孔は内壁に導電性部材を有し、該貫通孔を介して該サブマウントの上面と下面は導通されていることが好ましい。このような構成からなると、発光素子と近い位置に放熱経路をさらに設けることができ、放熱効率を高めることができる。
【0011】
また、貫通孔が複数形成される事が好ましい。このような構成からなると、上記した放熱効率をさらに高めることができる。
【0012】
また、発光素子の中心軸がサブマウントの中心軸と一致し、貫通孔は、発光素子の外周部において、中心軸に対して対称な位置に形成されている事が好ましい。このような構成からなると、発光素子の載置部の安定性が増し、密着性や放熱経路などにおいても偏りがない。
【0013】
また、貫通孔が、円柱形状からなる事が好ましい。このような構成からなると、発光素子が載置されているサブマウントの上面および下面に形成されている導電性部材の導通を取りやすく、熱の流れもよりスムーズなものとなる。
【0015】
また、サブマウントが、ガラスエポキシ樹脂或いはB T レジンからなる事が好ましい。このような構成からなると比較的容易にサブマウントを形成することができる。
【0016】
【発明の実施の形態】
以下、図面を参照して、本発明に関わる実施の形態について説明する。
【0017】
図1および2に本発明の実施の形態に関わる発光装置を示す。
リード電極が一体成形されたパッケージの内部に、リード電極の正負の両電極間を跨るようにサブマウントが配置されている。サブマウントの上面および下面には、導電性部材が形成されいる。サブマウント下面の導電性部材は、リード電極と導通された状態となっている。また、サブマウント上面の導電性部材は、発光素子が電極形成面側を対向させて載置され電気的に接続可能となるように、離間して形成されている。
【0018】
このような構成とすることで、発光素子をフェイスダウンで安定性良く載置することが可能となる。発光素子からの光は、基板側から外部へ出射されることで、外部への光のとりだし効率が良くなり、また、導通させるためのワイヤーを必要としないことから、断線等による不良を出さず、歩留まりを上げることもできる。さらに、サブマウントは比較的硬質な絶縁性基板などに薄い金属薄膜からなる導電性部材が形成されているため、発光素子の電極と導電性部材とを接合させる際に起こる微振動の影響を受けることなく合金化することができる。そのため、発光素子の剥離やずれ等を防ぐことができるため、極めて信頼性の良好な発光装置を提供することが可能となる。
【0019】
また、図3のようにサブマウントに、貫通孔が形成されていると、貫通孔内部にも導電性材料を設けることが可能となり、放熱性を高めることもでき、さらにリード電極上に配される際に用いられる導電性接合部材を貫通孔内部にまで設けることができるため、密着性もよくなる。
【0020】
また、図4の断面図に示されるパッケージ凹部を発光素子が載置されたサブマウントが、リード電極の両電極間を渡るように設置された後、エポキシ樹脂或いはシリコーン樹脂などの透光性樹脂で封止することもできる。このようにすると、発光素子およびサブマウントを保護することができ、また、ガラスフィラーなどを混入させることで光の輝度を高めることもできる。
【0021】
また、図7のようにパッケージ凹部に配する前に、予め発光素子とサブマウントとを封止樹脂によって一体化しておくことも可能である。このようにすると、発光素子とサブマウントの密着性はさらに向上し剥離などを防ぐことができるため、取り扱いやすくなり、蛍光物質や拡散剤などを封止樹脂内部に含有させることで、さらに発光特性を高めることもできる。以下、本発明の実施の形態における各構成について詳述する。
【0022】
(発光素子)
本発明において、発光素子 は特に限定されないが、正負一対の電極を同一面に有するものであり、蛍光物質を用いた場合、前記蛍光物質を励起可能な発光波長を発光することのできる発光層を有する半導体発光素子が好ましい。このような半導体発光素子としてAlInGaPやGaNなど種々の半導体を挙げることができるが、蛍光物質を効率よく励起できる短波長が発光可能な窒化物半導体(InAlGa1−X−YN、0≦X、0≦Y、X+Y≦1)が好適に挙げられる。半導体の構造としては、MIS接合、PIN接合やpn接合などを有するホモ構造、ヘテロ構造、あるいはダブルヘテロ構造のものが挙げられる。半導体層の材料やその混晶度によって発光波長を種々選択することができる。また、半導体活性層を量子効果が生ずる薄膜に形成させた単一量子井戸構造や多重量子井戸構造とすることもできる。
【0023】
窒化物半導体を使用した場合、半導体基板にはサファイア、スピネル、SiC、Si、ZnO等の材料が好適に用いられる。結晶性の良い窒化物半導体を量産性良く形成させるためにはサファイア基板を用いることが好ましい。このサファイア基板上にGaN、AlN、GaAlN等のバッファー層を形成しその上にpn接合を有する窒化物半導体を形成させる。
【0024】
窒化物半導体を使用したpn接合を有する発光素子の例として、バッファ層上に、n型窒化ガリウムで形成した第1のコンタクト層、n型窒化アルミニウム・ガリウムで形成させた第1のクラッド層、窒化インジウム・ガリウムで形成した活性層、p型窒化アルミニウム・ガリウムで形成した第2のクラッド層、p型窒化ガリウムで形成した第2のコンタクト層を順に積層させたダブルヘテロ構造などが挙げられる。
【0025】
窒化物半導体は、不純物をドープしない状態でn型導電性を示す。発光効率を向上させるなど所望のn型窒化物半導体を形成させる場合は、n型ドーパントとしてSi、Ge、Se、Te、C等を適宜導入することが好ましい。一方、p型窒化物半導体を形成させる場合は、p型ドーパントであるZn、Mg、Be、Ca、Sr、Ba等をドープさせる。窒化物半導体は、p型ドーパントをドープしただけではp型化しにくいためp型ドーパント導入後に、炉による加熱やプラズマ照射等により低抵抗化させることが好ましい。電極形成後、半導体ウエハーからチップ状にカットさせることで窒化物半導体からなる発光素子を形成させることができる。
【0026】
本発明の発光ダイオードにおいて、白色系を発光させるには、蛍光物質からの発光波長との補色関係や透光性樹脂の劣化等を考慮して、発光素子の発光波長は400nm以上530nm以下が好ましく、420nm以上490nm以下がより好ましい。発光素子と蛍光物質との励起、発光効率をそれぞれ向上させるためには、450nm以上475nm以下がさらに好ましい。
【0027】
(サブマウント)
図2に示すように本発明の実施の形態のサブマントは、上面に形成された導電性部材上に発光素子が載置され、下面に形成された導電性部材は、パッケージと一体化されたリード電極と接合される。導電性部材は、サブマウントの表面に形成された銅などの薄膜をエッチングによってパターン形成されるため、パッケージ内の正負のリード電極間と比較すると、より間隔を狭くして設けることができる。このような構成からなると、発光素子とリード電極とを、安定性良く電気的に接続することができる。サブマントの材料については、加工が容易で耐久性のある材料であれば任意のものを用いることができる。具体例としては、後述するガラスエポキシ樹脂や、或いは銅、アルミニウムや各種合金、セラミックなど種々のものを利用することができる。
【0028】
サブマウントが金属材料などの導電性材料から成るものであると、絶縁性のものと比較して、熱伝導率が高いため、発光素子に生じた熱を効率的に外部へ導くことができる。導電性部材に用いる材料としては、発光素子からの熱を効率よく外部へ取り出すため、熱伝導性の良い材料が好ましく、Au、Cu、Alやこれらの合金などを好適に利用することもできる。特に、銅やアルミニウムは加工のしやすさなどから好適に利用することができる。このようにサブマウントとして導電性材料を用いる場合は、電気的に絶縁すべくSiOやSiNなどの絶縁膜を形成後、銅、金、銀などの薄膜パターンやこれらの金属を含む合金、これらの金属を含む積層膜などCVDやスパッタ或いはメッキによって形成させたものを好適に利用することができる。また反射率の高い金属や合金を発光波長に応じて適宜利用することができる。
【0029】
サブマウントが半導体材料から成るものであると、サブマウント内部に保護素子を備えることも可能であり、静電耐圧を高めることができる。
【0030】
また、絶縁性材料からなるものであると、取り扱いやすくなるため好ましい。例えば上述したガラスエポキシ樹脂の平板に導電性部材を形成することでサブマウントとすることができる。このような導電性部材は、発光素子に設けられた電極と、パッケージのリード電極とを導通させるために、サブマウントの上面から下面まで、連続するように設けられている。導電性部材は、サブマウントの側面に露出するように設けてもよく、図5のように貫通孔を設ける場合、貫通孔内部に設けてもよい。貫通孔を介して設ける場合、図6のように発光素子が配置される側にだけ設けてもよいが、貫通孔の内壁全てを覆うことでより放熱効果を得ることができる。サブマウント上面の導電性部材は、発光素子の正および負の電極間が0.1mmである場合、これら電極と接合できるように約0.05から0.08mm程度の間隔を設けることも可能であるため、フェイスダウンでの実装も可能となる。
【0031】
上述した貫通孔は、あらかじめ導電性部材を形成するための銅薄膜が表面に形成されたガラスエポキシ樹脂からなる平板をドリルやレーザ、打ち抜き加工によってなどを用いて形成することができる。貫通孔を設けることで、より放熱性を高め、貫通孔内壁と導電性接合部材とが接して固着することでリード電極との接合をより強固なものとすることができる。
【0032】
このような貫通孔は、発光素子を載置するサブマウントの上面と下面とに開口部を有するように形成されている。サブマウントが発光素子と電気的に接続されるのであれば、発光素子の載置部近傍に貫通孔を設けることもできるが、貫通孔が発光素子と離間して形成されていると、安定性良く発光素子をサブマウント上に載置することができるため好ましい。
【0033】
また、貫通孔の個数や大きさは限定されない。貫通孔を1つのみ設けることもできるが、複数の貫通孔を設けると、導電性材料によって覆われる部分が多くなり、放熱経路が拡大されるため、放熱性が向上する。またリード電極と接合されるために設けられる接合部材と、貫通孔の内壁との接触面積が増加するため、密着性が良くなる。貫通孔の位置は、偶数個設けられる場合などは、サブマウントの中心部、あるいはサブマウントの中心部に載置される発光素子の中心軸に対して対称に設けられると、安定性や放熱性において好ましい。図5では貫通孔は上面から下面に向かって同じ形状でほぼ直下方向に形成されているが、上面から下面まで傾斜して形成されてもよい。また、貫通孔が円柱形状からなると、応力が部分的に集中しにくいため不具合の起因とならず、均一に放熱させることができるため好ましい。しかし、このような形状に限らず、楕円や四角形、三角形など選択することができ、開口部の形状や貫通孔の側面の角度等は特に限定されない。また、図9のように下面に近づくにつれて小さくなるように形成させると、導電性接合部材が、硬化した際に貫通孔内部に引っかかるようになるため、より安定し、剥がれ難くなる。
【0034】
サブマウントの大きさ等は、発光素子やパッケージに合わせて、適宜決定することができる。リード電極間を渡って設置することができ、発光素子の載置且つ導通が可能であれば、サブマウントの幅は発光素子より狭いものであってもかまわない。発光素子と同等かそれ以上で、またサブマウントが略矩形から成る場合、短辺の長さが発光素子の対角線よりも長いものであると、扱いやすく、また安定性良くリード電極上に配することができる。サブマウントの面積は、2倍以上或いは、パッケージの凹部底面の面積に対して5〜100%、であると放熱性が良好となる。図10のようにサブマウントをパッケージの凹部を覆うように全面に配することもできる。サブマウントがリード電極間において露出されるパッケージの一部分或いは全部分を覆い、サブマウント表面の導電性部材が、反射率の高いものとすることで、パッケージによる光の吸収を抑えて反射させることができるため、効率よく外部へ光を取り出すことが可能である。また、リード電極の間のパッケージ露出部が、サブマウントによって5〜100%好ましくは50%以上覆われることで前述したように反射率を高めることができる。
【0035】
サブマウントの厚さは、パッケージ内に納まり、発光装置の指向性に影響を与えない範囲であれば特に限定されないが、0.2〜0.3mmであると、放熱性が良好なものとなり、パッケージの深さに対して中間部に発光素子が位置するため、発光素子に対するパッケージを封止する樹脂の熱応力の影響が小さくなり好ましい。
【0036】
(パッケージ)
本発明のパッケージは、凹部形状を有し、凹部の底面に正負一対のリード電極が露出されてなるものである。このようなパッケージが樹脂からなるものであると、リード電極を形成金型により挟み込み、閉じられた前記金型内にゲートから溶融させた樹脂を注入し、硬化させるインサート成形によって比較的容易に形成することができる。
【0037】
リード電極は、鉄入り銅等の高熱伝導体を用いて構成することができる。また、発光素子からの光の反射率の向上や、リード基材の酸化防止等のために、リード電極の表面に銀、アルミニウム、銅や金等の金属メッキを施すこともできる。また、リード電極の表面の反射率を向上させるため平滑にすることが好ましい。また、リード電極の面積は大きくすることが好ましく、このようにすることで、放熱性を高めることができ、サブマウントを介して配置される発光素子の温度上昇を効果的に抑制することができる。これによって、発光素子に比較的多くの電力を投入することが可能となり光出力を向上させることができる。
【0038】
リード電極は、長尺金属板をプレスを用いた打ち抜き加工により各パッケージ成形体の正負のリード電極となる部分を形成する。プレス加工後の長尺金属板の各パッケージ成形体に対応する部分において、正のリード電極は、成形後のパッケージ凹部の底面でその一端面が負のリード電極の一端面と対向するように負のリード電極とは分離されている。
【0039】
上記のリード電極がインサート成形されるパッケージに用いられる材料は、液晶ポリマー、ポリフタルアミド、ポリブチレンテレフタレート等が用いられる、好ましくは、ポリフタルアミドであり、このような樹脂からなるパッケージは、発光素子からの熱や光に対して劣化しにくく、リードフレームを曲げる際などの応力にも耐えるものとなる。
【0040】
また、パッケージ凹部の内部は、発光素子を載置したサブマウントをリード電極と接合後、モールド樹脂によって封止することもできる。
【0041】
(導電性接合部材)
本発明の発光装置の実施の形態に関わる導電性接合部材は、発光素子とサブマウント上面の導電性部材とを接合する第1の接合部材と、サブマウントの下面の導電性部材とパッケージと一体成形されたリード電極とを接合する第2の接合部材とがある。
【0042】
第1の接合部材は、アルミニウムや金、はんだ等によるバンプによって形成される。このようなバンプを発光素子の電極上に置き、サブマウントの発光素子載置面の配線パターンと対向させて置き、約50〜150℃の温度下において、0.5〜2Wの超音波を与えながら発光素子に荷重をかけ、発光素子およびサブマウントの間の導電性接合部材の合金化によって接合される。
【0043】
第2の接着部材は、銀や金、銅の導電性ペーストによって接合される。このような導電性ペーストをサブマウント載置部の2箇所に適量を塗布した後、サブマウントを実装し、150℃で1時間熱硬化を行うことで接合が可能となる。
【0044】
また、サブマウントとリード電極との間の、第2の接着部材が設けられている部分以外に絶縁性接着材などからなる固定部を設けることも可能である。この際、リード電極間に露出したパッケージ部に絶縁性材料による固定部を設けると、両リード電極上に置かれた導電性接着材が流れ出したりすることによる短絡などを防ぐことができる。
【0045】
(封止部材)
本発明の実施の形態においては、発光素子をサブマウント上に載置した後、図7に示すように封止部材によって発光素子を少なくとも一部を被覆しておくこともできる。このような封止部材は、発光素子を保護すると共に、サブマウントと発光素子とを固着させるための接着剤としての機能も有している。第1の接合部材のみでも発光素子とサブマウントを接着させることは出来るが、より強力な接着性が必要な場合は、封止部材を発光素子とその周辺を覆うように設けることで、接着性を向上させることができる。本発明では貫通孔を設け、内部にまで連続するように形成させると、サブマウントと接触する面積が大きくなり、しかも、立体的に接することが出来るので、強固な接着力が得られるため好ましい。
【0046】
封止部材として用いる材料は、発光素子からの光を反射させる光反射部材を含むものや、その逆に光を透過させることができる透光性部材を用いることができ、熱又は光などで硬化可能な樹脂を用いることができる。光反射部材を含む封止部材を用いる場合は、発光素子の上面には設けないようにすればよく、素子の側面から貫通孔に連続するように設ける。光反射部材を含む封止部材を発光素子の側面に設けることで、発光素子の上面からのみ光を放出させることができる。封止部材として用いられる樹脂は、発光素子から放出される光の波長によっては劣化し易い場合があるので、側面だけでも光反射部材含む封止部材を用いることで、劣化を抑制することができる。樹脂が劣化して黄変してしまうと、光を吸収してしまうので、発光効率が低下するが、劣化を抑制することでそのような問題も回避することができる。
【0047】
また、図8のように、光反射部材を含む封止部材を用いる場合は、発光素子の側面だけではなく底面にも設けることで、サブマウント側へ光が放出されるのを防ぐこともできる。サブマウントと発光素子の間には、第1の導電性部材が設けられているが、隙間が有る場合にはその隙間を埋めるように光反射部材を設けるのが好ましい。発光素子の底面とサブマウントとの距離は短いので、光が発光素子の底部から放出されると、反射を繰り返して樹脂が劣化し易くなるので、光反射部材を含む封止部材を用いることでそのような劣化を防ぐことができる。この場合、発光素子の側面から連続するように光反射部材を含む封止部材を設け、更に貫通孔まで連続するように設けることで、サブマウントとの接着性を有すると共に光の取り出し効率も向上させることができる。また、発光素子の底部から貫通孔まで連続するように設けても光の取り出し効率を向上させることができる。
【0048】
光反射部材としては、酸化ケイ素、チタン酸バリウム、酸化チタン、酸化アルミニウムからなる群から選択される少なくとも1つを用いるのが好ましい。これらの部材からなる粒子を光反射部材として封止部材に混入させて用いることができる。
【0049】
また、透光性部材を用いる場合は、発光素子の上面から貫通孔まで連続して設けることが出来るので、より強固な接着力が得られる。そして、上記のような光反射部材と透光性部材の両方を有する封止部材を用い、例えば、図11、12のように発光素子の側面にのみ光反射部材を設けて、透光性部材を発光素子の上面から貫通孔に達するように形成させてもよい。このように、貫通孔に充填されるのは、透光性部材でも光反射部材を含むものであってもよく、発光素子の少なくとも側面から連続して設けられていれば接着力を向上させる効果は得られる。
【0050】
図7に示すように透光性部材を用いる場合は、光を拡散させる光拡散材を混入させてもよい。これにより、光の分散性が向上し、均一な発光装置とすることができる。また、発光素子からの光によって励起されてその波長よりも長波長の光が発光可能な蛍光物質を混入させてもよい。これにより、発光素子からの光と蛍光物質からの光との混色光を発することができるので、様々な発光波長を有する発光装置とすることができる。蛍光物質は、発光素子が載置されたサブマウントをパッケージ凹部内に配した後、凹部を封止する樹脂に含有させることもできるが、このようにすることで、蛍光物質の使用量を減らし、また均一に混入させることができるため、輝度ムラ等を防ぐこともできる。
【0051】
封止部材は、発光素子の少なくとも側面から貫通孔まで連続していればよく、更に下面まで連続している場合でも、貫通孔の一部の側面を介して連続するように形成されていればよい。また、第2の接合部材を貫通孔内部にまで設けることができるように、第2の接合部材のためのスペースを設けて封止することもできる。このような封止部材は、ポッティングによって設けることもできるし、発光素子の上面をマスク等で保護してから印刷塗布などの方法で設けることもできる。
【0052】
(蛍光物質)
本発明に利用可能な蛍光物質は、発光素子から発せられる発光波長によって励起され、その光よりも長波長の可視光を発光可能な蛍光物質ならば無機蛍光体でも有機蛍光体でもよく、また、発光色は紫色〜赤色までの全ての可視光のものが適用できる。具体的には、無機蛍光体としてはケイ酸塩系蛍光体、リン酸塩系蛍光体、アルミン酸系蛍光体、希土類系蛍光体、酸希土類系蛍光体、硫化亜鉛系蛍光体などが挙げられる。具体的には緑色系発光蛍光体では、YSiO:Ce,Tb、MgAl1119:Ce,Tb、BaMgAl1627:Mn、(Zn,Cd)S:Ag、ZnS:Au,Cu,Al、ZnS:Cu,Al、SrAl:Eu、青色系発光蛍光体では(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、BaMgAl1627:Eu、Sr(POCl:Eu、Sr:Eu、ZnS:Ag、Al、ZnS:Ag,Al(pigmented)、ZnS:AgCl、ZnS:AgCl(pigmented)、赤色系発光蛍光体ではYS:Eu、YS:Eu(pigmented)、Y:Eu、3.5MgO・0.5MgF・GeO:Mn、Y(PV)O:Eu、5MgO・3LiO・Sb:Mn、MgTiO:Mn等が挙げられる。比較的発光効率が高いものとしては、緑色系発光蛍光体ではSrAl:Eu、青色系発光蛍光体ではSr(POCl:Eu、赤色系発光蛍光体ではYS:Euが挙げられる。
【0053】
【実施例】
(実施例1)
サブマウントとして、ガラスエポキシからなる平板を用いる。この平板の上面および下面に導電性部材として銅薄膜を接着或いは積層などの方法で形成させる。次いで、平板にネガフィルムを貼り付けて露光し、ケミカルエッチング等によって除去することで図13(a)の斜線部のような銅薄膜パターンを形成する。この銅薄膜形成板にドリル、エッチングやレーザなどを用いて図13(b)のようにX方向およびY方向に複数の貫通孔が並ぶように形成させる。次に、これら貫通孔を介して図13(c)に示す断面図のように、銅薄膜が貫通孔を介して上面から下面まで連続するように形成する。これにより、X方向に並ぶ貫通孔同士は連続するよう設けられているが、上面および下面で互いに離れてガラスエポキシ樹脂が露出するような銅薄膜が形成される。すなわち、X方向に並んだ4つの貫通孔の銅薄膜は連続しており、Y方向に並んだ2つの貫通孔の銅薄膜は、接することなく形成されている。
【0054】
次いで、図13(d)のように、Y方向に並んだ貫通孔の間で、且つ離れて形成された銅薄膜の両方と接するように発光素子が銅薄膜上に配される。この時、100℃に加熱されたヒーター上にガラスエポキシの平板を置き、バンプボンダーによって、1Wの超音波と60gfの荷重とを加えながら、ガラスエポキシ平板の発光素子の載置部に金バンプを形成する。その後、ガラスエポキシ平板上に発光素子をマウンターによって熱、荷重および超音波を印可しながら合金化する。
【0055】
次いで、光反射部材としてTiOを含む樹脂を図13(f)のように貫通孔上にポッティングする。この時、TiO含有樹脂が発光素子の上面を覆わないように、樹脂の量を制御しておく必要がある。TiO含有樹脂を硬化させた後、図13(f)の破線部で平板を切断することで、図13(g)のような、発光素子が載置された個々のサブマウントとすることができる。このようにして形成されたサブマウントは、短辺が0.6mm、長辺が1.4mm、厚さが0.3mmの形状を有し、サブマウント上面の銅薄膜の間隔は0.08mmである。また載置されている発光素子の電極間は0.1mmである。
【0056】
次に、リード電極がインサート成形された樹脂パッケージ内に載置する。樹脂パッケージは、0.15mm厚の銅合金属からなる金属板をプレスを用いた打ち抜き加工によってリード電極となる部分を形成し、このように形成された正負一対のリード電極部を金型内にインサートして閉じ、金型内に樹脂を流し込み、硬化させて形成する。樹脂パッケージは凹部形状を有しており、正負一対のリード電極と、0.15mmのリード間には、パッケージの一部が露出されている。このようなパッケージ内の正負のリード電極を渡るように、前述の発光素子が載置されたサブマウント下面の銅薄膜と各リード電極とを、銀ペーストによって接合した後、パッケージ凹部内をエポキシ樹脂によって封止することで、本発明の発光装置とすることができる。
【0057】
(実施例2)
実施例1において、銅薄膜からなる導電性部材が形成されたガラスエポキシ樹脂の平板上に金バンプによって発光素子が載置されたものを、切断することによって発光素子が載置された個々のサブマウントとして分割した。次に、導電性接合部材として銀ペーストを用いて、サブマウントと樹脂パッケージのリード電極との接合を行った。導電性接合部材は、貫通孔内部に入り込んだ後に硬化するため、サブマウントとリード電極との接合は強固なものとすることができる。次に、パッケージの凹部内をエポキシ樹脂により封止する。エポキシ樹脂には重量比に対して5%のYAGが含有されている。このような構成とすることで本発明の発光装置とすることができる。
【0058】
【発明の効果】
本発明は、リード電極間に対し、載置するのに十分な長さを有するサブマウントを用いることによって、発光素子をフェイスダウン実装により安定性良く電気的に接続することができるため、信頼性に富んだ表面実装型発光装置とすることができる。
【図面の簡単な説明】
【図1】本発明の発光装置を示す模式的斜視図
【図2】本発明の発光装置を示す模式的平面図
【図3】本発明の他の発光装置を示す模式的平面図
【図4】図3のA−Aを示す模式的断面図
【図5】本発明の他の発光装置を示す模式的断面図
【図6】本発明の他の発光装置を示す模式的断面図
【図7】本発明の他の発光装置を示す模式的断面図
【図8】本発明の他の発光装置を示す模式的断面図
【図9】本発明の他の発光装置を示す模式的断面図
【図10】本発明の他の発光装置を示す模式的平面図
【図11】本発明の他の発光装置を示す模式的断面図
【図12】本発明の他の発光装置を示す模式的断面図
【図13】本発明の発光装置の形成工程を示す工程図。
(a)導電性部材が形成された平板の模式図
(b)貫通孔が形成された平板の模式図
(c)図13(b)の断面図
(d)発光素子が配された平板の模式図
(e)図13(d)の断面図
(f)光反射部材が形成された基板の模式図
(g)図13(f)の断面図
【図14】本発明と比較のために示す発光装置を示す模式的平面図
【図15】図14のA−Aを示す模式的断面図
【符号の説明】
1.発光素子
2.サブマウント
3.導電性部材
4.リード電極
5.第1の接合部材
6.第2の接合部材
7.パッケージ
8.ワイヤ
9.貫通孔
10.透光性部材
11.光反射部材を含む封止部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a light emitting diode that emits red light from ultraviolet light that is optimal for light sources of displays, optical communications, O A equipment, and portable equipment, and has a particularly excellent heat dissipation path and mechanical stress from the outside. The present invention relates to a light emitting device having excellent durability and a method for manufacturing the light emitting device .
[0002]
[Prior art]
Nowadays, light emitting diodes capable of emitting ultraviolet light, light emitting diodes capable of emitting white light, and laser diodes have been developed as light emitting devices in addition to light emitting diodes capable of emitting RGB (red, green, and blue) with high luminance. These semiconductor light emitting devices have excellent characteristics such as high luminance, low power consumption and long life. For this reason, it has begun to be used not only as a backlight for various types of outdoor and indoor displays, traffic signals such as traffic and railways, various indicators, signs, and liquid crystal devices, but also as illumination itself.
[0003]
As such a light emitting device, a surface mount type light emitting device shown in FIGS. 14 and 15 is used. The surface-mounted light emitting device of FIGS. 14 and 15 is called a frame insert type, and lead electrodes are formed by injection molding so that a pair of positive and negative lead electrodes to which light emitting elements are electrically connected are sandwiched from above and below by resin. Is integrated with the resin package. The end portion of the lead electrode protrudes to the outside, and is connected to a wiring pattern or the like by bending the end portion later. The resin package has an opening, and the lead electrode is exposed so that the light emitting element is mounted on the lead electrode. The opening has a tapered shape, and the light from the light emitting element can be efficiently reflected by inclining the inner wall. In addition, the light emitting element has a pair of positive and negative electrodes formed on opposite surfaces, and one electrode of the light emitting element is connected to the lead electrode of the resin package, and the other electrode is connected by a conductive wire. Connected to the lead electrode.
[0004]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 11-87780
[Problems to be solved by the invention]
However, when a light-emitting element such as a gallium nitride compound semiconductor, which is difficult to form electrodes on both sides, is mounted on a frame insert type resin package, the electrodes are placed on the same surface as in the face-up mounting form. It must be formed and electrically connected by two wires. As described above, when two wires are formed, the wire is shaded and light extraction efficiency is deteriorated, and a defect due to wire breakage or the like occurs, resulting in a low yield. Therefore, mounting of the light emitting element by face down is preferable. However, in the frame insert type, when using a 0.15 mm thick copper alloy, the distance between the positive and negative lead electrodes is limited to about 0.15 mm, and the light emission between the positive and negative electrodes is 0.1 mm or less. It is difficult to make the distance at which the element can be placed stably face-down. In addition, the lead electrode does not necessarily have good adhesion to the resin package, and both the lead electrodes facing each other are affected by heat, weight, and ultrasonic waves applied when the light emitting element and the lead electrode are joined. Can not be alloyed sufficiently because they vibrate slightly. SUMMARY OF THE INVENTION An object of the present invention is to provide a surface-mount light-emitting device that uses a flip-chip light-emitting element and has excellent stability and high reliability.
[0006]
[Means for Solving the Problems]
A semiconductor light emitting device according to claim 1 of the present invention has a recess, a package in which a pair of positive and negative lead electrodes is disposed on the bottom surface of the recess, a light emitting element that is face-down mounted on the lead electrode, A light emitting device having a submount on which the light emitting element can be mounted between the lead electrode and the light emitting element, the submount having a through hole penetrating in a thickness direction, The through hole is formed to be inclined from the upper surface to the lower surface of the submount, and has a conductive member on its inner wall, and a conductive bonding member is provided inside the through hole. The member and the conductive bonding member are fixed in contact with each other . With such a configuration, the light-emitting element and the lead electrode can be electrically connected with high stability by face-down mounting, so that a highly reliable surface-mounted light-emitting device can be obtained.
It is preferable that the through hole is formed smaller as it approaches the lower surface of the submount.
The method for manufacturing a light emitting device of the present invention includes a package having a recess, and a pair of positive and negative lead electrodes disposed on the bottom surface of the recess, and face-down mounting on the lead electrode via a submount. A step of forming a conductive member on the upper surface and the lower surface of the submount, and a through hole inclined from the upper surface to the lower surface of the submount. Forming the conductive member on the inner wall of the through hole so as to be continuous from the upper surface to the lower surface of the submount; and the conductive member and the conductive bonding member of the through hole; And a step of fixing the conductive joining member so as to be in contact therewith, and a step of curing the conductive bonding member by hooking the through-hole.
[0007]
The submount preferably has a rectangular shape extending in the direction between the lead electrodes . With such a configuration, the submount is arranged from the positive electrode to the negative electrode, and the light emitting element can be electrically connected to the lead electrode.
[0008]
The submount preferably has a short side length longer than the diagonal line of the light emitting element . If comprised in this way, the adhesiveness of the electroconductive member and light emitting element which were formed on the submount surface with the electroconductive joining member can be improved, and it can be used with sufficient stability.
[0009]
The submount preferably has an area at least twice that of the light emitting element . With such a configuration, heat dissipation is improved, and handling is facilitated when placing on the lead electrode.
[0010]
The sub-mount has a through hole penetrating in the thickness direction, the through hole has a conductive member on the inner wall, the upper surface and the lower surface of the submount is conducted through the through hole Is preferred . With such a configuration, a heat dissipation path can be further provided at a position close to the light emitting element, and heat dissipation efficiency can be improved.
[0011]
Moreover, it is preferable that a plurality of through holes are formed. With such a configuration, the heat dissipation efficiency described above can be further increased.
[0012]
Further, it is preferable that the central axis of the light emitting element coincides with the central axis of the submount, and the through hole is formed at a position symmetrical to the central axis in the outer peripheral portion of the light emitting element. With such a configuration, the stability of the mounting portion of the light emitting element is increased, and there is no bias in the adhesiveness and the heat dissipation path.
[0013]
Moreover, it is preferable that a through-hole consists of a column shape. With such a configuration, the conductive members formed on the upper surface and the lower surface of the submount on which the light emitting element is placed can be easily connected, and the heat flow is smoother.
[0015]
Moreover, it is preferable that a submount consists of glass epoxy resin or BT resin. With such a configuration, the submount can be formed relatively easily.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0017]
1 and 2 show a light-emitting device according to an embodiment of the present invention.
A submount is disposed in the package in which the lead electrodes are integrally formed so as to straddle between the positive and negative electrodes of the lead electrodes. Conductive members are formed on the upper and lower surfaces of the submount. The conductive member on the lower surface of the submount is in a state of being electrically connected to the lead electrode. In addition, the conductive member on the upper surface of the submount is formed so as to be separated so that the light emitting element is placed with the electrode formation surface side facing and can be electrically connected.
[0018]
With such a configuration, the light-emitting element can be placed face-down with good stability. The light from the light emitting element is emitted from the substrate side to the outside, so that the efficiency of extracting the light to the outside is improved, and no wire for conducting is required, so there is no defect due to disconnection or the like. , You can also increase the yield. Furthermore, since the submount is formed with a conductive member made of a thin metal thin film on a relatively hard insulating substrate or the like, the submount is affected by slight vibration that occurs when the electrode of the light emitting element and the conductive member are joined. It can be alloyed without any problems. Therefore, the light-emitting element can be prevented from being peeled off or displaced, so that a highly reliable light-emitting device can be provided.
[0019]
In addition, when a through-hole is formed in the submount as shown in FIG. 3, it is possible to provide a conductive material also inside the through-hole, and it is possible to improve heat dissipation, and further, it is disposed on the lead electrode. Since the conductive joining member used in the process can be provided up to the inside of the through hole, the adhesion is improved.
[0020]
In addition, after the submount on which the light emitting element is placed in the package recess shown in the sectional view of FIG. 4 is installed so as to cross between the two electrodes of the lead electrode, a translucent resin such as epoxy resin or silicone resin is used. It can also be sealed with. If it does in this way, a light emitting element and a submount can be protected, and the brightness of light can also be raised by mixing a glass filler etc.
[0021]
Further, as shown in FIG. 7, the light emitting element and the submount can be integrated with the sealing resin in advance before being arranged in the package recess. In this way, the adhesion between the light emitting element and the submount can be further improved and peeling can be prevented, so that it becomes easier to handle, and by adding a fluorescent substance or a diffusing agent inside the sealing resin, further emission characteristics can be obtained. Can also be increased. Hereafter, each structure in embodiment of this invention is explained in full detail.
[0022]
(Light emitting element)
In the present invention, the light emitting element is not particularly limited, but has a pair of positive and negative electrodes on the same surface, and when a fluorescent material is used, a light emitting layer capable of emitting an emission wavelength capable of exciting the fluorescent material. A semiconductor light-emitting element having is preferable. Examples of such semiconductor light emitting devices include various semiconductors such as AlInGaP and GaN, but nitride semiconductors (In X Al Y Ga 1- XYN, Preferred examples include 0 ≦ X, 0 ≦ Y, and X + Y ≦ 1). Examples of the semiconductor structure include a homostructure, a heterostructure, or a double heterostructure having a MIS junction, a PIN junction, a pn junction, or the like. Various emission wavelengths can be selected depending on the material of the semiconductor layer and the degree of mixed crystal. In addition, a single quantum well structure or a multiple quantum well structure in which the semiconductor active layer is formed in a thin film in which a quantum effect is generated can be used.
[0023]
When a nitride semiconductor is used, a material such as sapphire, spinel, SiC, Si, ZnO or the like is preferably used for the semiconductor substrate. In order to form a nitride semiconductor with good crystallinity with high productivity, it is preferable to use a sapphire substrate. A buffer layer of GaN, AlN, GaAlN or the like is formed on the sapphire substrate, and a nitride semiconductor having a pn junction is formed thereon.
[0024]
As an example of a light emitting device having a pn junction using a nitride semiconductor, a first contact layer formed of n-type gallium nitride, a first clad layer formed of n-type aluminum nitride / gallium on a buffer layer, An active layer formed of indium gallium nitride, a second cladding layer formed of p-type aluminum nitride / gallium, and a double hetero structure in which a second contact layer formed of p-type gallium nitride are sequentially stacked.
[0025]
Nitride semiconductors exhibit n-type conductivity without being doped with impurities. When forming a desired n-type nitride semiconductor, for example, to improve luminous efficiency, it is preferable to appropriately introduce Si, Ge, Se, Te, C, etc. as an n-type dopant. On the other hand, when forming a p-type nitride semiconductor, the p-type dopants such as Zn, Mg, Be, Ca, Sr, and Ba are doped. Since nitride semiconductors are not easily converted to p-type by simply doping with a p-type dopant, it is preferable to reduce resistance by heating in a furnace or plasma irradiation after introducing the p-type dopant. After the electrodes are formed, a light emitting element made of a nitride semiconductor can be formed by cutting the semiconductor wafer into chips.
[0026]
In the light emitting diode of the present invention, in order to emit white light, the emission wavelength of the light emitting element is preferably 400 nm or more and 530 nm or less in consideration of the complementary color relationship with the emission wavelength from the fluorescent material, deterioration of the translucent resin, and the like. 420 nm or more and 490 nm or less is more preferable. In order to improve excitation and light emission efficiency of the light emitting element and the fluorescent material, respectively, 450 nm or more and 475 nm or less are more preferable.
[0027]
(Submount)
As shown in FIG. 2, the submant according to the embodiment of the present invention has a light emitting element mounted on a conductive member formed on the upper surface, and the conductive member formed on the lower surface is a lead integrated with the package. Bonded with electrodes. Since the conductive member is patterned by etching a thin film such as copper formed on the surface of the submount, the conductive member can be provided with a smaller interval than between the positive and negative lead electrodes in the package. With such a configuration, the light emitting element and the lead electrode can be electrically connected with high stability. Any material can be used as the material for the submount as long as it can be easily processed and is durable. As specific examples, glass epoxy resins described later, or various materials such as copper, aluminum, various alloys, and ceramics can be used.
[0028]
When the submount is made of a conductive material such as a metal material, the heat conductivity is higher than that of the insulating material, and thus heat generated in the light emitting element can be efficiently guided to the outside. As a material used for the conductive member, in order to efficiently extract heat from the light emitting element to the outside, a material having good thermal conductivity is preferable, and Au, Cu, Al, or an alloy thereof can be suitably used. In particular, copper and aluminum can be suitably used from the viewpoint of ease of processing. Thus, when using a conductive material as a submount, after forming an insulating film such as SiO 2 or SiN X to be electrically insulated, a thin film pattern such as copper, gold, silver, or an alloy containing these metals, A film formed by CVD, sputtering or plating such as a laminated film containing these metals can be suitably used. A metal or alloy having a high reflectance can be used as appropriate according to the emission wavelength.
[0029]
When the submount is made of a semiconductor material, a protective element can be provided inside the submount, and the electrostatic withstand voltage can be increased.
[0030]
Moreover, since it becomes easy to handle that it consists of an insulating material, it is preferable. For example, a submount can be formed by forming a conductive member on the flat plate of the glass epoxy resin described above. Such a conductive member is provided so as to be continuous from the upper surface to the lower surface of the submount in order to electrically connect the electrode provided on the light emitting element and the lead electrode of the package. The conductive member may be provided so as to be exposed on the side surface of the submount. When the through hole is provided as shown in FIG. 5, the conductive member may be provided inside the through hole. When providing through a through-hole, you may provide only in the side by which a light emitting element is arrange | positioned like FIG. 6, but the heat dissipation effect can be acquired more by covering all the inner walls of a through-hole. When the space between the positive and negative electrodes of the light emitting element is 0.1 mm, the conductive member on the upper surface of the submount can be provided with an interval of about 0.05 to 0.08 mm so that it can be joined to these electrodes. Therefore, it can be mounted face down.
[0031]
The above-mentioned through-hole can be formed by using a drill, a laser, a punching process or the like on a flat plate made of a glass epoxy resin on which a copper thin film for forming a conductive member is previously formed. By providing the through hole, the heat dissipation can be further improved, and the inner wall of the through hole and the conductive bonding member can be brought into contact with each other to be firmly bonded to the lead electrode.
[0032]
Such a through hole is formed to have openings on the upper surface and the lower surface of the submount on which the light emitting element is placed. If the submount is electrically connected to the light emitting element, a through hole can be provided in the vicinity of the mounting portion of the light emitting element. However, if the through hole is formed apart from the light emitting element, the stability is improved. It is preferable because the light emitting element can be mounted on the submount well.
[0033]
Further, the number and size of the through holes are not limited. Although only one through-hole can be provided, providing a plurality of through-holes increases the portion covered with the conductive material and enlarges the heat dissipation path, thereby improving the heat dissipation. In addition, since the contact area between the bonding member provided for bonding to the lead electrode and the inner wall of the through hole is increased, the adhesion is improved. When an even number of through-holes are provided, stability and heat dissipation can be achieved if they are provided symmetrically with respect to the center of the submount or the center axis of the light emitting element mounted on the center of the submount. Is preferable. In FIG. 5, the through-hole is formed in the same shape from the upper surface to the lower surface in a substantially directly downward direction, but may be formed to be inclined from the upper surface to the lower surface. In addition, it is preferable that the through-hole has a cylindrical shape because stress is less likely to be partially concentrated, which does not cause a problem and can dissipate heat uniformly. However, the shape is not limited to this, and an ellipse, a quadrangle, a triangle, and the like can be selected, and the shape of the opening, the angle of the side surface of the through hole, and the like are not particularly limited. Moreover, when it forms so that it may become small as it approaches a lower surface like FIG. 9, since an electroconductive joining member will be caught in a through-hole inside when it hardens | cures, it will become more stable and will not peel easily.
[0034]
The size and the like of the submount can be appropriately determined according to the light emitting element and the package. The width of the submount may be narrower than that of the light-emitting element as long as the light-emitting element can be placed and conducted between the lead electrodes. If the submount is substantially rectangular or longer than the light emitting element, and the length of the short side is longer than the diagonal of the light emitting element, it should be easy to handle and be placed on the lead electrode with good stability. Can do. When the area of the submount is 2 times or more or 5 to 100% of the area of the bottom surface of the recess of the package, the heat dissipation becomes good. As shown in FIG. 10, the submount can be disposed on the entire surface so as to cover the concave portion of the package. The submount covers part or all of the package exposed between the lead electrodes, and the conductive member on the surface of the submount has a high reflectivity, so that light absorption by the package can be suppressed and reflected. Therefore, it is possible to efficiently extract light to the outside. Further, as described above, the exposed portion of the package between the lead electrodes is covered by the submount by 5 to 100%, preferably 50% or more, so that the reflectance can be increased.
[0035]
The thickness of the submount is not particularly limited as long as it is within the package and does not affect the directivity of the light emitting device, but if it is 0.2 to 0.3 mm, the heat dissipation becomes good. Since the light emitting element is positioned in the middle with respect to the depth of the package, the influence of the thermal stress of the resin that seals the package on the light emitting element is preferably reduced.
[0036]
(package)
The package of the present invention has a concave shape, and a pair of positive and negative lead electrodes are exposed on the bottom surface of the concave portion. When such a package is made of a resin, it is formed relatively easily by insert molding in which the lead electrode is sandwiched between the forming molds, the molten resin is injected from the gate into the closed mold and cured. can do.
[0037]
The lead electrode can be configured using a high thermal conductor such as iron-containing copper. In addition, in order to improve the reflectance of light from the light emitting element and prevent the lead base material from being oxidized, the surface of the lead electrode can be plated with metal such as silver, aluminum, copper or gold. Further, it is preferable to make the surface smooth in order to improve the reflectance of the surface of the lead electrode. In addition, it is preferable to increase the area of the lead electrode. By doing so, heat dissipation can be improved, and the temperature rise of the light emitting element disposed via the submount can be effectively suppressed. . Accordingly, a relatively large amount of power can be input to the light emitting element, and the light output can be improved.
[0038]
A lead electrode forms the part used as the positive / negative lead electrode of each package molded object by punching a long metal plate using a press. In the portion corresponding to each package molded body of the long metal plate after press working, the positive lead electrode is negative so that one end surface thereof faces the one end surface of the negative lead electrode at the bottom surface of the package recess after molding. These lead electrodes are separated from each other.
[0039]
The material used for the package in which the lead electrode is insert-molded is a liquid crystal polymer, polyphthalamide, polybutylene terephthalate, or the like, preferably polyphthalamide. A package made of such a resin emits light. It is resistant to heat and light from the element, and can withstand stresses such as bending the lead frame.
[0040]
Further, the inside of the package recess can be sealed with a mold resin after the submount on which the light emitting element is mounted is joined to the lead electrode.
[0041]
(Conductive bonding member)
The conductive bonding member according to the embodiment of the light emitting device of the present invention includes a first bonding member for bonding the light emitting element and the conductive member on the upper surface of the submount, and the conductive member and the package on the lower surface of the submount. There is a second joining member that joins the molded lead electrode.
[0042]
The first joining member is formed by bumps made of aluminum, gold, solder, or the like. Such a bump is placed on the electrode of the light emitting element, placed opposite to the wiring pattern on the light emitting element mounting surface of the submount, and an ultrasonic wave of 0.5 to 2 W is applied at a temperature of about 50 to 150 ° C. However, a load is applied to the light emitting element, and bonding is performed by alloying the conductive bonding member between the light emitting element and the submount.
[0043]
The second adhesive member is joined with a conductive paste of silver, gold, or copper. After an appropriate amount of such a conductive paste is applied to two locations on the submount mounting portion, the submount is mounted, and thermosetting is performed at 150 ° C. for 1 hour to enable bonding.
[0044]
In addition to the portion where the second adhesive member is provided between the submount and the lead electrode, it is also possible to provide a fixing portion made of an insulating adhesive or the like. At this time, if a fixing portion made of an insulating material is provided in the package portion exposed between the lead electrodes, it is possible to prevent a short circuit due to the conductive adhesive placed on both the lead electrodes flowing out.
[0045]
(Sealing member)
In the embodiment of the present invention, after the light emitting element is placed on the submount, at least a part of the light emitting element can be covered with a sealing member as shown in FIG. Such a sealing member protects the light emitting element and also has a function as an adhesive for fixing the submount and the light emitting element. The light emitting element and the submount can be bonded only with the first bonding member, but when stronger adhesiveness is required, the sealing member is provided so as to cover the light emitting element and its periphery, thereby providing adhesion. Can be improved. In the present invention, it is preferable to provide a through-hole so as to be continuous to the inside because an area in contact with the submount is increased and a three-dimensional contact can be obtained, thereby obtaining a strong adhesive force.
[0046]
As a material used as the sealing member, a material including a light reflecting member that reflects light from the light emitting element or a light transmitting member that can transmit light can be used, and cured by heat or light. Possible resins can be used. In the case of using a sealing member including a light reflecting member, the sealing member is not provided on the upper surface of the light emitting element, and is provided so as to be continuous with the through hole from the side surface of the element. By providing the sealing member including the light reflecting member on the side surface of the light emitting element, light can be emitted only from the upper surface of the light emitting element. Since the resin used as the sealing member may be easily deteriorated depending on the wavelength of light emitted from the light emitting element, the deterioration can be suppressed by using the sealing member including the light reflecting member only on the side surface. . If the resin deteriorates and yellows, it absorbs light and the light emission efficiency decreases. However, such problems can also be avoided by suppressing the deterioration.
[0047]
Further, when a sealing member including a light reflecting member is used as shown in FIG. 8, it is possible to prevent light from being emitted to the submount side by providing not only on the side surface of the light emitting element but also on the bottom surface. . A first conductive member is provided between the submount and the light emitting element. When there is a gap, it is preferable to provide a light reflecting member so as to fill the gap. Since the distance between the bottom surface of the light emitting element and the submount is short, when light is emitted from the bottom of the light emitting element, the resin is likely to deteriorate due to repeated reflection, so a sealing member including a light reflecting member is used. Such deterioration can be prevented. In this case, a sealing member including a light reflecting member is provided so as to be continuous from the side surface of the light emitting element, and further provided so as to be continuous to the through hole, thereby improving adhesiveness with the submount and improving light extraction efficiency. Can be made. In addition, the light extraction efficiency can be improved by providing the light emitting element so as to continue from the bottom to the through hole.
[0048]
As the light reflecting member, it is preferable to use at least one selected from the group consisting of silicon oxide, barium titanate, titanium oxide, and aluminum oxide. Particles made of these members can be used as a light reflecting member mixed in a sealing member.
[0049]
In the case of using a translucent member, since it can be continuously provided from the upper surface of the light emitting element to the through hole, a stronger adhesive force can be obtained. And the sealing member which has both the above light reflection members and a translucent member is used, for example, a light reflection member is provided only in the side surface of a light emitting element like FIG. May be formed so as to reach the through hole from the upper surface of the light emitting element. As described above, the through hole may be filled with a translucent member or a light reflecting member, and if it is provided continuously from at least the side surface of the light emitting element, the effect of improving the adhesive force. Is obtained.
[0050]
When using a translucent member as shown in FIG. 7, you may mix the light-diffusion material which diffuses light. Thereby, the dispersibility of light improves and it can be set as a uniform light-emitting device. Further, a fluorescent material that is excited by light from the light emitting element and can emit light having a wavelength longer than that wavelength may be mixed. Thereby, since mixed color light of light from the light emitting element and light from the fluorescent material can be emitted, a light emitting device having various emission wavelengths can be obtained. The fluorescent material can be contained in a resin that seals the concave portion after the submount on which the light emitting element is placed is arranged in the concave portion of the package, but this reduces the amount of the fluorescent material used. Further, since it can be mixed uniformly, luminance unevenness and the like can be prevented.
[0051]
The sealing member only needs to be continuous from at least the side surface of the light emitting element to the through hole, and even if it is continuous to the lower surface, the sealing member is formed so as to be continuous through a part of the side surface of the through hole. Good. Further, a space for the second bonding member can be provided and sealed so that the second bonding member can be provided up to the inside of the through hole. Such a sealing member can be provided by potting, or can be provided by a method such as printing application after the upper surface of the light emitting element is protected with a mask or the like.
[0052]
(Fluorescent substance)
The fluorescent substance that can be used in the present invention may be an inorganic fluorescent substance or an organic fluorescent substance as long as it is excited by the emission wavelength emitted from the light emitting element and can emit visible light having a longer wavelength than the light. The emission color of all visible light from purple to red can be applied. Specifically, examples of inorganic phosphors include silicate phosphors, phosphate phosphors, aluminate phosphors, rare earth phosphors, rare earth acid phosphors, and zinc sulfide phosphors. . Specifically, in a green light emitting phosphor, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, BaMg 2 Al 16 O 27 : Mn, (Zn, Cd) S: Ag, ZnS: Au , Cu, Al, ZnS: Cu, Al, SrAl 2 O 4 : Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu for blue light emitting phosphors BaMg 2 Al 16 O 27 : Eu, Sr 5 (PO 4 ) 3 Cl: Eu, Sr 2 P 2 O 7 : Eu, ZnS: Ag, Al, ZnS: Ag, Al (pigmented), ZnS: AgCl, ZnS: AgCl (pigmented), the red-emitting phosphor Y 2 O 2 S: Eu, Y 2 O 2 S: Eu (pigmented), Y 2 O 3: Eu, 3.5MgO · .5MgF 2 · GeO 2: Mn, Y (PV) O 4: Eu, 5MgO · 3Li 2 O · Sb 2 O 5: Mn, Mg 2 TiO 4: Mn , and the like. As for those having relatively high luminous efficiency, SrAl 2 O 4 : Eu is used for green light emitting phosphors, Sr 5 (PO 4 ) 3 Cl: Eu is used for blue light emitting phosphors, and Y 2 O 2 is used for red light emitting phosphors. S: Eu.
[0053]
【Example】
Example 1
A flat plate made of glass epoxy is used as the submount. A copper thin film is formed as a conductive member on the upper and lower surfaces of the flat plate by a method such as adhesion or lamination. Next, a negative film is attached to the flat plate, exposed, and removed by chemical etching or the like to form a copper thin film pattern as shown by the hatched portion in FIG. This copper thin film forming plate is formed using a drill, etching, laser, or the like so that a plurality of through holes are arranged in the X direction and the Y direction as shown in FIG. Next, as shown in the cross-sectional view of FIG. 13C, the copper thin film is formed so as to continue from the upper surface to the lower surface through the through-holes. Thereby, although the through holes arranged in the X direction are provided to be continuous, a copper thin film is formed such that the glass epoxy resin is exposed away from each other on the upper surface and the lower surface. That is, the copper thin films with four through holes arranged in the X direction are continuous, and the copper thin films with two through holes arranged in the Y direction are formed without contact.
[0054]
Next, as shown in FIG. 13D, the light emitting elements are arranged on the copper thin film so as to be in contact with both of the copper thin films formed between the through holes arranged in the Y direction and apart from each other. At this time, a glass epoxy flat plate is placed on a heater heated to 100 ° C., and a gold bump is applied to the mounting portion of the light emitting element of the glass epoxy flat plate while applying a 1 W ultrasonic wave and a load of 60 gf by a bump bonder. Form. Thereafter, the light emitting element is alloyed on the glass epoxy flat plate while applying heat, load and ultrasonic waves by a mounter.
[0055]
Then potted on into the through hole as shown in FIG. 13 (f) a resin containing TiO 2 as a light reflecting member. At this time, it is necessary to control the amount of the resin so that the TiO 2 -containing resin does not cover the upper surface of the light emitting element. After the TiO 2 -containing resin is cured, the flat plate is cut at the broken line portion of FIG. 13 (f) to form individual submounts on which the light emitting elements are mounted as shown in FIG. 13 (g). it can. The submount thus formed has a shape with a short side of 0.6 mm, a long side of 1.4 mm, and a thickness of 0.3 mm. The distance between the copper thin films on the top surface of the submount is 0.08 mm. is there. The distance between the electrodes of the mounted light emitting element is 0.1 mm.
[0056]
Next, the lead electrode is placed in the insert-molded resin package. In the resin package, a metal plate made of a copper alloy metal with a thickness of 0.15 mm is formed by punching using a press to form a portion serving as a lead electrode, and a pair of positive and negative lead electrode portions formed in this way are placed in a mold. It is inserted and closed, and a resin is poured into the mold and cured. The resin package has a concave shape, and a part of the package is exposed between a pair of positive and negative lead electrodes and a lead of 0.15 mm. The copper thin film on the lower surface of the submount on which the light emitting element is mounted and each lead electrode are joined with silver paste so as to cross the positive and negative lead electrodes in such a package, and then the inside of the package recess is epoxy resin By sealing with, it can be set as the light-emitting device of this invention.
[0057]
(Example 2)
In Example 1, the individual sub-units on which the light-emitting elements are mounted by cutting the light-emitting elements mounted by gold bumps on the glass epoxy resin flat plate on which the conductive member made of a copper thin film is formed. Split as a mount. Next, using a silver paste as the conductive bonding member, the submount was bonded to the lead electrode of the resin package. Since the conductive bonding member is cured after entering the inside of the through hole, the bonding between the submount and the lead electrode can be made strong. Next, the inside of the recess of the package is sealed with an epoxy resin. The epoxy resin contains 5% YAG with respect to the weight ratio. With such a structure, the light-emitting device of the present invention can be obtained.
[0058]
【The invention's effect】
According to the present invention, since a submount having a sufficient length for mounting between lead electrodes can be used, a light emitting element can be electrically connected with good stability by face-down mounting. It is possible to provide a surface-mount light-emitting device that is rich in surface light.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a light emitting device of the present invention. FIG. 2 is a schematic plan view showing a light emitting device of the present invention. FIG. 3 is a schematic plan view showing another light emitting device of the present invention. FIG. 5 is a schematic cross-sectional view showing another light-emitting device of the present invention. FIG. 6 is a schematic cross-sectional view showing another light-emitting device of the present invention. FIG. 8 is a schematic sectional view showing another light emitting device of the present invention. FIG. 8 is a schematic sectional view showing another light emitting device of the present invention. FIG. 9 is a schematic sectional view showing another light emitting device of the present invention. 10 is a schematic plan view showing another light emitting device of the present invention. FIG. 11 is a schematic sectional view showing another light emitting device of the present invention. FIG. 12 is a schematic sectional view showing another light emitting device of the present invention. FIG. 13 is a process diagram showing a formation process of a light-emitting device of the present invention.
(A) Schematic diagram of a flat plate on which a conductive member is formed (b) Schematic diagram of a flat plate on which a through hole is formed (c) Cross-sectional view of FIG. 13 (b) (d) Schematic of a flat plate on which light emitting elements are arranged FIG. 13E is a cross-sectional view of FIG. 13D. FIG. 14F is a schematic view of a substrate on which a light reflecting member is formed. FIG. 14F is a cross-sectional view of FIG. FIG. 15 is a schematic plan view showing the apparatus. FIG. 15 is a schematic cross-sectional view showing AA in FIG.
1. 1. Light emitting element 2. Submount 3. Conductive member 4. Lead electrode First joining member 6. Second joining member 7. Package 8 Wire 9. Through hole 10. Translucent member 11. Sealing member including light reflecting member

Claims (3)

凹部を有し、その凹部の底面に正負一対のリード電極が配置されたパッケージと、前記リード電極上にフェイスダウン実装されてなる発光素子と、を有する発光装置であって、
前記リード電極と前記発光素子との間に、該発光素子を実装可能なサブマウントを有し、該サブマウントは厚さ方向に貫通する貫通孔を有し、
前記貫通孔は、前記サブマウントの上面から下面に向かって傾斜して形成されており、その内壁に導電性部材を有し、
前記貫通孔内部に導電性接合部材が設けられており、前記導電性部材と前記導電性接合部材とが接して固着されていることを特徴とする発光装置。
A light-emitting device having a recess, a package in which a pair of positive and negative lead electrodes is disposed on the bottom surface of the recess, and a light-emitting element that is mounted face-down on the lead electrode,
Between the lead electrode and the light emitting element, has a submount capable of mounting the light emitting element, the submount has a through hole penetrating in the thickness direction,
The through hole is formed to be inclined from the upper surface to the lower surface of the submount, and has a conductive member on the inner wall thereof.
A light-emitting device , wherein a conductive bonding member is provided inside the through hole, and the conductive member and the conductive bonding member are in contact and fixed .
前記貫通孔は、前記サブマウントの前記下面に近づくにつれて小さく形成されている請求項1に記載の発光装置。  The light-emitting device according to claim 1, wherein the through hole is formed smaller as it approaches the lower surface of the submount. 凹部を有し、その凹部の底面に正負一対のリード電極が配置されるパッケージと、前記リード電極上に、サブマウントを介してフェイスダウン実装されてなる発光素子と、を有する発光装置の製造方法であって、
前記サブマウントの上面及び下面に導電性部材を形成する工程と、
前記サブマウントの前記上面から前記下面に向かって傾斜する貫通孔を形成する工程と、
前記貫通孔の内壁に、前記サブマウントの前記上面から前記下面まで連続するように前記導電性部材を形成する工程と、
前記貫通孔の前記導電性部材と導電性接合部材とが接するように固着する工程と、
前記導電性接合部材を硬化して前記貫通孔に引っかけて硬化させる工程と、
を含むことを特徴とする発光装置の製造方法。
A method of manufacturing a light emitting device, comprising: a package having a recess, and a pair of positive and negative lead electrodes disposed on the bottom surface of the recess; and a light emitting element mounted face-down on the lead electrode through a submount. Because
Forming a conductive member on the upper and lower surfaces of the submount;
Forming a through hole inclined from the upper surface of the submount toward the lower surface;
Forming the conductive member on the inner wall of the through hole so as to be continuous from the upper surface to the lower surface of the submount;
A step of fixing the conductive member and the conductive bonding member of the through hole so as to contact each other;
Curing the conductive joining member by hooking it to the through hole; and
A method for manufacturing a light-emitting device, comprising:
JP2002327634A 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof Expired - Lifetime JP4288931B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002327634A JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002327634A JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2008300963A Division JP4544361B2 (en) 2008-11-26 2008-11-26 Light emitting device

Publications (2)

Publication Number Publication Date
JP2004165308A JP2004165308A (en) 2004-06-10
JP4288931B2 true JP4288931B2 (en) 2009-07-01

Family

ID=32806160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002327634A Expired - Lifetime JP4288931B2 (en) 2002-11-11 2002-11-11 Light emitting device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4288931B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007018098A1 (en) * 2005-08-05 2007-02-15 Olympus Medical Systems Corp. Light emitting unit
US7715957B2 (en) 2006-02-22 2010-05-11 Toyota Jidosha Kabushiki Kaisha Control device of vehicle
KR100947454B1 (en) 2006-12-19 2010-03-11 서울반도체 주식회사 Heat conducting slug having multi-step structure and the light emitting diode package using the same
JP5731731B2 (en) * 2007-04-18 2015-06-10 日亜化学工業株式会社 Light emitting device
JP2008292660A (en) * 2007-05-23 2008-12-04 Fujikura Ltd Optical fiber and optical communication module
KR101361575B1 (en) 2007-09-17 2014-02-13 삼성전자주식회사 Light Emitting Diode package and method of manufacturing the same
JP4720943B1 (en) * 2010-01-28 2011-07-13 パナソニック株式会社 Package for semiconductor device and light emitting device using the same
JP2011176234A (en) * 2010-02-25 2011-09-08 Citizen Electronics Co Ltd Semiconductor light emitting device
DE102010028407B4 (en) 2010-04-30 2021-01-14 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic component and method for producing an optoelectronic component
DE102010027253B4 (en) 2010-07-15 2022-05-12 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Optoelectronic semiconductor component
JP5703522B2 (en) * 2010-09-30 2015-04-22 セイコーインスツル株式会社 Package, package manufacturing method, piezoelectric vibrator
EP2448028B1 (en) 2010-10-29 2017-05-31 Nichia Corporation Light emitting apparatus and production method thereof
KR101640384B1 (en) * 2014-12-22 2016-07-18 주식회사 루멘스 Light emitting device package, Method for manufacturing light emitting device package and backlight unit
WO2020210945A1 (en) * 2019-04-15 2020-10-22 厦门市三安光电科技有限公司 Light-emitting device and manufacture method therefor

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2829567B2 (en) * 1994-11-21 1998-11-25 スタンレー電気株式会社 Chip mounted LED
JP3704941B2 (en) * 1998-03-30 2005-10-12 日亜化学工業株式会社 Light emitting device
JP2000156527A (en) * 1998-11-19 2000-06-06 Matsushita Electronics Industry Corp Semiconductor light emitting device
JP3784976B2 (en) * 1998-12-22 2006-06-14 ローム株式会社 Semiconductor device
JP3632507B2 (en) * 1999-07-06 2005-03-23 日亜化学工業株式会社 Light emitting device
JP2001168398A (en) * 1999-12-13 2001-06-22 Nichia Chem Ind Ltd Light emitting diode and its manufacturing method
JP4601128B2 (en) * 2000-06-26 2010-12-22 株式会社光波 LED light source and manufacturing method thereof
JP5110744B2 (en) * 2000-12-21 2012-12-26 フィリップス ルミレッズ ライティング カンパニー リミテッド ライアビリティ カンパニー Light emitting device and manufacturing method thereof
JP3707688B2 (en) * 2002-05-31 2005-10-19 スタンレー電気株式会社 Light emitting device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004165308A (en) 2004-06-10

Similar Documents

Publication Publication Date Title
US7842526B2 (en) Light emitting device and method of producing same
CN102113139B (en) Light-emitting device
US7291866B2 (en) Semiconductor light emitting device and semiconductor light emitting unit
US8735934B2 (en) Semiconductor light-emitting apparatus and method of fabricating the same
US8686464B2 (en) LED module
JP5262054B2 (en) Method for manufacturing light emitting device
JP4773755B2 (en) Chip-type semiconductor light emitting device
US20040164311A1 (en) Light emitting apparatus
JP4952215B2 (en) Light emitting device
US20090072250A1 (en) Chip type semiconductor light emitting device
JP2004363537A (en) Semiconductor equipment, manufacturing method therefor and optical device using the same
CN104716247A (en) Light emitting device
JP2006108640A (en) Light emitting device
CN102479908A (en) Led package
TW201349599A (en) Light emitting apparatus and light emitting module thereof
JP4288931B2 (en) Light emitting device and manufacturing method thereof
JP2013062416A (en) Semiconductor light-emitting device and manufacturing method of the same
JP5256591B2 (en) Light emitting device
JP5077282B2 (en) Light emitting element mounting package and light emitting device
JP4544361B2 (en) Light emitting device
JP2004186309A (en) Semiconductor light emitting device equipped with metal package
JP5233478B2 (en) Light emitting device
JP2003037293A (en) Chip component type light-emitting element and manufacturing method therefor
JP7189413B2 (en) light emitting device
JP2004172636A (en) Light emitting diode and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080526

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4288931

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120410

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130410

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140410

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term