JP4286096B2 - Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance - Google Patents

Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance Download PDF

Info

Publication number
JP4286096B2
JP4286096B2 JP2003335482A JP2003335482A JP4286096B2 JP 4286096 B2 JP4286096 B2 JP 4286096B2 JP 2003335482 A JP2003335482 A JP 2003335482A JP 2003335482 A JP2003335482 A JP 2003335482A JP 4286096 B2 JP4286096 B2 JP 4286096B2
Authority
JP
Japan
Prior art keywords
coating layer
resin coating
heat transfer
shape
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003335482A
Other languages
Japanese (ja)
Other versions
JP2005096363A (en
Inventor
正一郎 臼井
康明 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Usui Co Ltd
Original Assignee
Usui Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Usui Co Ltd filed Critical Usui Co Ltd
Priority to JP2003335482A priority Critical patent/JP4286096B2/en
Publication of JP2005096363A publication Critical patent/JP2005096363A/en
Application granted granted Critical
Publication of JP4286096B2 publication Critical patent/JP4286096B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/919Thermal treatment of the stream of extruded material, e.g. cooling using a bath, e.g. extruding into an open bath to coagulate or cool the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/04Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of rubber; of plastics material; of varnish
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/906Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article using roller calibration

Description

本発明は、自動車や建設機械の油冷却管、居住用空間の温湿度を調整する空調機、その他に於いて、腐食環境下で使用される耐食性を有する伝熱管に係るもので、耐食性に優れるだけでなく、高い放熱特性や吸熱特性による効率的な熱交換が可能な伝熱管を得ようとするものである。   The present invention relates to an oil cooling pipe for automobiles and construction machines, an air conditioner for adjusting the temperature and humidity of a living space, and the like, and relates to a heat transfer pipe having corrosion resistance used in a corrosive environment, and is excellent in corrosion resistance. It is intended to obtain a heat transfer tube capable of efficient heat exchange not only with high heat dissipation characteristics and heat absorption characteristics.

従来、耐食性を有する伝熱管として、下記特許文献1、2に記載の発明の如く、亜鉛メッキやクロメート被膜等の耐食メッキを施した鋼管やアルミ管等の細径金属管の外周面に、押出成形法によりポリアミド(PA)、ポリプロピレン(PP)、ポリエチレン(PE)等の熱可塑性の樹脂被膜層を設けたものが存在する。この樹脂被膜層が持つ衝撃吸収力や耐水性、耐薬品性等を利用して、飛び石等による耐食メッキ層、細径金属管の破損を防ぐとともに、泥はねや薬品等による細径金属管の酸化を防止して、伝熱管の耐食性を高めようとしていた。   Conventionally, as a heat transfer tube having corrosion resistance, as shown in the following Patent Documents 1 and 2, extrusion is applied to the outer peripheral surface of a small diameter metal tube such as a steel tube or aluminum tube subjected to corrosion plating such as galvanization or chromate coating. There are those provided with a thermoplastic resin coating layer such as polyamide (PA), polypropylene (PP), polyethylene (PE), etc. by a molding method. By utilizing the impact absorption ability, water resistance, chemical resistance, etc. of this resin coating layer, it is possible to prevent damage to the corrosion-resistant plating layer and thin metal pipes due to stepping stones, etc. In this way, the corrosion resistance of the heat transfer tube was improved.

他方、伝熱管の内外を流動する流体相互の高い熱交換性能を得るため、下記特許文献3、4、5に記載の発明の如く、鋼管、銅管等の細径金属管の外周に長尺な金属材製の平板を螺旋状に巻回して、該細径金属管の外周にフィン部材を突設する事で放熱特性や吸熱特性を高めた伝熱管が存在する。
特開平8−188884号公報 特開平10−315295号公報 特開平9−42573号公報 特開平9−136111号公報 特開平11−325778号公報 特許第2750710号公報 特許第2954555号公報 特開平3−47987号公報
On the other hand, in order to obtain high heat exchange performance between fluids flowing in and out of the heat transfer tube, as shown in the following Patent Documents 3, 4, and 5, the outer circumference of a thin metal tube such as a steel tube or a copper tube is long. There is a heat transfer tube with improved heat dissipation characteristics and heat absorption characteristics by spirally winding a flat plate made of a metal material and projecting a fin member on the outer periphery of the small diameter metal tube.
Japanese Patent Laid-Open No. 8-188844 Japanese Patent Laid-Open No. 10-315295 Japanese Patent Laid-Open No. 9-42573 JP-A-9-136111 JP-A-11-325778 Japanese Patent No. 2750710 Japanese Patent No. 2945555 JP-A-3-47987

しかしながら、特許文献1、2の樹脂被膜層を設けた伝熱管は、耐衝撃性や耐食性を高めるために樹脂被膜層を肉厚に形成しているので、放熱特性や吸熱特性の点で問題があり、伝熱管の内外を流通する流体相互の熱交換効率を向上させるのは困難であった。他方、特許文献3〜5の細径金属管の外周に金属材製フィン部材を突設した伝熱管では、伝熱面積が増大し高い熱交換性能が得られるが、飛び石等により細径金属管の表面の耐食メッキ層が破損され易く、耐食性に問題があるとともに、伝熱管やこの伝熱管を使用した熱交換器の重量が増大して、車輌等への設置が制限される事があった。   However, the heat transfer tube provided with the resin coating layer of Patent Documents 1 and 2 has a thick resin coating layer in order to improve impact resistance and corrosion resistance, so there is a problem in terms of heat dissipation characteristics and heat absorption characteristics. In addition, it has been difficult to improve the heat exchange efficiency between the fluids flowing inside and outside the heat transfer tube. On the other hand, in the heat transfer tube in which a metal fin member is protruded from the outer periphery of the thin metal tube in Patent Documents 3 to 5, the heat transfer area is increased and high heat exchange performance is obtained. Corrosion-resistant plating layer on the surface of the steel plate is easily damaged, and there is a problem with corrosion resistance. Also, the weight of the heat transfer tube and the heat exchanger using this heat transfer tube increases, which may restrict the installation to vehicles, etc. .

本発明は上述の如き問題を解決するため、細径金属管を樹脂被覆層で被覆して、高い耐食性及び耐衝撃性を得るとともに、この樹脂被膜被覆層の表面積を増大させる事により、樹脂材を用いていても金属材のみで形成した伝熱管と同等若しくはそれ以上の熱伝導性を有する伝熱管を得る事が可能な製造装置と製造方法を得る事を目的とするものである。また、このような製造装置をより簡易な構成で廉価に得るとともに、高度な製作技術を必要としない製造方法を得て、熱交換性能に優れる伝熱管の生産性を高めるものである。   In order to solve the above-mentioned problems, the present invention covers a thin metal tube with a resin coating layer to obtain high corrosion resistance and impact resistance, and increases the surface area of the resin coating layer, thereby increasing the resin material. It is an object of the present invention to provide a manufacturing apparatus and a manufacturing method capable of obtaining a heat transfer tube having a thermal conductivity equal to or higher than that of a heat transfer tube formed of only a metal material even when using a metal material. In addition, such a manufacturing apparatus can be obtained at a low cost with a simpler structure, and a manufacturing method that does not require advanced manufacturing techniques can be obtained to increase the productivity of heat transfer tubes that are excellent in heat exchange performance.

本発明は、上述の如き課題を解決するため、第1の発明は、細径金属管の外周に溶融樹脂材を押し出して、放射方向に複数本の外周フィンを一体に突設した樹脂被覆層を細径金属管の外周に配設して伝熱管を形成する装置であって、細径金属管の外周に、予備成形外周フィンを有するか又は有しない溶融樹脂材から成る樹脂被覆層を押し出すダイスと、このダイスから押し出された細径金属管外周の樹脂被覆層を導入して冷却固化するための冷却水槽と、この冷却水槽内に配設し、管軸方向に回転しロール面を樹脂被覆層に押し当てる事により樹脂被覆層に外周フィンを成形する少なくとも一組の成形ロールユニットとで構成した、耐食性を有する伝熱管の製造装置である。 In order to solve the above-described problems, the present invention provides a resin coating layer in which a molten resin material is extruded on the outer periphery of a thin metal tube, and a plurality of outer peripheral fins are integrally projected in the radial direction. Is a device for forming a heat transfer tube by arranging a resin coating layer made of a molten resin material with or without a preformed outer peripheral fin on the outer periphery of the thin metal tube. A die, a cooling water tank for introducing and cooling the resin coating layer on the outer periphery of the thin metal tube extruded from the die, and cooling and solidifying the resin are disposed in the cooling water tank and rotated in the direction of the pipe axis so that the roll surface is a resin. It is a heat transfer tube manufacturing apparatus having corrosion resistance, which is composed of at least one set of forming roll units for forming outer peripheral fins on a resin coating layer by pressing against the coating layer.

また、第2の発明は、ダイスを介して予備成形外周フィンを有するか又は有しない溶融樹脂材を細径金属管の外周に押し出して、樹脂被覆層を細径金属管の外周に配設し、この樹脂被覆層で被覆した細径金属管を冷却水と接触させて樹脂被覆層を冷却固化させるとともに、この細径金属管と樹脂被覆層の移送方向に少なくとも一組配設した成形ロールユニットのロール面を、樹脂被覆層の外周に押し当てる事で、細径金属管の外周管軸方向に長尺な連続した樹脂材製の外周フィンを複数一体に突設した樹脂被覆層を配設する、耐食性を有する伝熱管の製造方法である。 In the second invention, a molten resin material with or without a preformed outer peripheral fin is extruded through the die to the outer periphery of the thin metal tube, and the resin coating layer is disposed on the outer periphery of the thin metal tube. A forming roll unit in which the thin metal tube coated with the resin coating layer is brought into contact with cooling water to cool and solidify the resin coating layer, and at least one set is arranged in the transfer direction of the thin metal tube and the resin coating layer. By placing the roll surface against the outer periphery of the resin coating layer, a resin coating layer is provided in which a plurality of continuous outer peripheral fins made of resin material that are long in the direction of the outer tube axis of the thin metal pipe are integrally projected. This is a method of manufacturing a heat transfer tube having corrosion resistance.

また、ダイスは、キャビディー出口の断面形状を略円形とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けても良い。   In addition, the die has a substantially circular cross-sectional shape at the cavity outlet, and at least the roll surface of the finally formed molding roll unit of the plurality of molding roll units sequentially arranged in the transfer direction of the resin coating layer. In addition, a molded part having the same shape as the final shape of the resin coating layer may be provided.

また、ダイスは、キャビディー出口の断面形状を樹脂被覆層の最終形状よりも凹凸の小さい形状とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けても良い。   Further, the die has a cross-sectional shape at the cavity outlet having a shape with less irregularities than the final shape of the resin coating layer, and at least the final of a plurality of sets of molding roll units sequentially arranged in the transfer direction of the resin coating layer of this die. A molding part having the same shape as the final shape of the resin coating layer may be provided on the roll surface of the molding roll unit arranged in the above.

また、ダイスは、キャビディー出口の断面形状を樹脂被覆層の冷却固化の際に不可避的に生じる収縮を考慮した最終形状と近似する形状とするとともに、成形ロールのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けても良い。 In addition, the die has a shape that approximates the final shape in consideration of the shrinkage that is unavoidably caused when the resin coating layer is cooled and solidified, and the resin coating layer has a cross-sectional shape on the roll surface of the molding roll. A molded part having the same shape as the final shape may be provided.

本発明は上述の如く構成したもので、鋼管、アルミ管、銅管、ステンレス鋼管その他の細径金属管を樹脂被覆層で被覆する事により、耐衝撃性や耐水性、耐薬品性等の耐食性に優れる伝熱管を得る事ができる。また、長尺な連続した樹脂材製の外周フィンを複数個突設する事により、伝熱管の伝熱面積を増大させる事が可能となり、金属材のみの伝熱管と同等若しくはそれ以上の熱伝導性を得て、伝熱管の内外を流動する流体相互の効率的な熱交換が可能となる。このような熱交換性能に優れる伝熱管を、ダイスを介して細径金属管の外周に、予備成形外周フィンを有するか又は有しない樹脂被覆層を配設し、成形ロールユニットで成形するだけで形成できるから、高度な製作技術を必要とせず、製造方法が容易となるとともに、その製造装置も簡易で廉価なものとなり、伝熱管の生産性を向上させる事が可能となる。また、樹脂材の使用により、軽量な伝熱管を得る事ができ、車輌等への設置の際に重量による制限等の少ない製品を得る事ができる。   The present invention is configured as described above. By coating a steel pipe, aluminum pipe, copper pipe, stainless steel pipe or other small-diameter metal pipe with a resin coating layer, corrosion resistance such as impact resistance, water resistance, and chemical resistance is provided. Heat transfer tubes that are superior to the above can be obtained. In addition, it is possible to increase the heat transfer area of the heat transfer tube by projecting a plurality of long continuous fins made of resin material, and the heat conduction is equal to or higher than that of a metal-only heat transfer tube. Thus, efficient heat exchange between the fluids flowing inside and outside the heat transfer tube becomes possible. A heat transfer tube having excellent heat exchange performance can be formed by simply forming a resin coating layer with or without a pre-formed outer peripheral fin on the outer periphery of a small-diameter metal tube via a die, and forming it with a forming roll unit. Since it can be formed, an advanced manufacturing technique is not required, the manufacturing method becomes easy, the manufacturing apparatus becomes simple and inexpensive, and the productivity of the heat transfer tube can be improved. Further, by using a resin material, a light heat transfer tube can be obtained, and a product with less restrictions due to weight when installed in a vehicle or the like can be obtained.

また、このような伝熱管を使用する事で、自動車や建設機械の油冷却管、居住用空間の温湿度を調整する空調機、各種配管による吸放熱、一般産業用、暖房用、給湯用、ガス冷却装置、その他の多管式熱交換器の熱交換性能、耐食性、耐熱性、耐久性等を高める事ができるとともに、製品の軽量化が可能となる。   In addition, by using such heat transfer pipes, oil cooling pipes for automobiles and construction machinery, air conditioners that adjust the temperature and humidity of residential spaces, heat absorption and radiation by various pipes, general industrial, heating, hot water supply, The heat exchange performance, corrosion resistance, heat resistance, durability and the like of the gas cooling device and other multi-tube heat exchangers can be improved, and the product can be reduced in weight.

以下、本発明の実施例を図面に於て詳細に説明すれば、図1は伝熱管の製造装置の概略図で、溶融樹脂材を押し出すダイス等を設けた押し出し機と、このダイスから押し出された樹脂被覆層を冷却固化するための冷却水槽と、少なくとも一組の成形ロールユニット等から構成されている。図2は図1の製造装置で形成した本発明の伝熱管の斜視図で、細径金属管を被覆する樹脂被覆層の外周に一体に、管軸方向に長尺な連続した外周フィンを複数本、放射状に突設している。また、図3は図1のA−A線拡大断面図で、成形ロールユニットの断面形状と、この成形ロールユニットで成形した樹脂被覆層を示している。   DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will now be described in detail with reference to the drawings. FIG. 1 is a schematic view of a heat transfer tube manufacturing apparatus, an extruder provided with a die for extruding a molten resin material, and the like. It comprises a cooling water tank for cooling and solidifying the resin coating layer and at least one set of forming roll units. FIG. 2 is a perspective view of the heat transfer tube of the present invention formed by the manufacturing apparatus of FIG. 1, in which a plurality of continuous outer peripheral fins elongated in the tube axis direction are integrally formed on the outer periphery of the resin coating layer covering the thin metal tube. The book protrudes radially. FIG. 3 is an enlarged cross-sectional view taken along line AA of FIG. 1 and shows a cross-sectional shape of the forming roll unit and a resin coating layer formed by the forming roll unit.

また、図4〜図7は、樹脂被覆層の成形過程を示すもので、図4は外周フィンの成形前の凹凸のない樹脂被覆層を配設した伝熱管の断面図である。図5は、樹脂被覆層の最終形状よりも凹凸の起伏が小さい予備成形フィンを樹脂被覆層に配設した伝熱管の断面図である。また、図6は樹脂被覆層の最終形状よりも凹凸が小さいが、図5よりも凹凸が大きな樹脂被覆層を配設した伝熱管の断面図である。図7は、外周フィンが完成された最終形状の樹脂被覆層を配設した伝熱管の断面図である。図8は、本発明の伝熱管を使用した多管円筒式熱交換器の概略図である。   FIGS. 4 to 7 show the molding process of the resin coating layer, and FIG. 4 is a cross-sectional view of the heat transfer tube in which the resin coating layer without unevenness is formed before molding of the outer peripheral fins. FIG. 5 is a cross-sectional view of a heat transfer tube in which preformed fins having unevenness that are smaller than the final shape of the resin coating layer are arranged on the resin coating layer. FIG. 6 is a cross-sectional view of a heat transfer tube provided with a resin coating layer having irregularities smaller than the final shape of the resin coating layer but larger irregularities than FIG. FIG. 7 is a cross-sectional view of a heat transfer tube provided with a resin coating layer having a final shape in which outer peripheral fins are completed. FIG. 8 is a schematic view of a multi-tube cylindrical heat exchanger using the heat transfer tube of the present invention.

尚、樹脂被覆層の材料として、PA、PP、PE等の樹脂材を使用する事により、耐食性や耐衝撃性に優れるとともに廉価な伝熱管を得る事ができる。また、モノマーキャストナイロン、ポリアミドイミド、ポリペンズイミダゾール、ポリエーテルエーテルケトン、ポリエーテルイミド、ポリエーテルサルホン、ポリイミド、ポリフェニレンサルファイド、ポリサルフォン、ポリテトラフルオロエチレン、テトラフルオロエチレン−パーフルオロアルコキシアルカン、フルオロエチレン−プロピレン、ポリクロロトリフルオロエチレン、テトラフルオロエチレン−エチレン、エチレンクロロトリフルオロエチレン等の樹脂材を使用する事により、熱交換性能や耐食性が優れるだけでなく、耐熱性にも優れる樹脂管を得る事ができる。また、これらの樹脂材には、銅、アルミ、ステンレス等の金属材やカーボン材、或いはガラス材等で形成した粒子や繊維を含有させても良く、樹脂材の熱伝導性を高めて、伝熱管の熱交換性能をより向上させる事ができる。また、黒色で黒体輻射効果のある樹脂材を使用したり、この黒色で黒体輻射効果のある樹脂材に更に前記粒子や繊維等を含有させても良く、放熱の場合は輻射熱の放射特性に優れ、吸熱の場合は熱吸収に優れたものとなり、伝熱管の熱交換効率の更なる向上が可能となる。   In addition, by using resin materials such as PA, PP, and PE as the material of the resin coating layer, it is possible to obtain an inexpensive heat transfer tube that is excellent in corrosion resistance and impact resistance. Also, monomer cast nylon, polyamide imide, poly benzimidazole, polyether ether ketone, polyether imide, polyether sulfone, polyimide, polyphenylene sulfide, polysulfone, polytetrafluoroethylene, tetrafluoroethylene-perfluoroalkoxyalkane, fluoroethylene -By using resin materials such as propylene, polychlorotrifluoroethylene, tetrafluoroethylene-ethylene, and ethylene chlorotrifluoroethylene, a resin tube that not only has excellent heat exchange performance and corrosion resistance, but also has excellent heat resistance is obtained. I can do things. In addition, these resin materials may contain particles and fibers formed of metal materials such as copper, aluminum, and stainless steel, carbon materials, glass materials, and the like. The heat exchange performance of the heat pipe can be further improved. Also, a black resin material with black body radiation effect may be used, or the resin material with black body black body radiation effect may further contain the above particles, fibers, etc. In the case of heat absorption, heat absorption is excellent, and the heat exchange efficiency of the heat transfer tube can be further improved.

また、上記樹脂材に、カーボンナノチューブ、カーボンナノホーン等のカーボンナノファイバーを含有させる事により、樹脂材の熱伝導性を高めて、伝熱管の放熱特性や吸熱特性を更に向上させる事ができる。また、このようなカーボンナノファイバーを、5wt%より多く30wt%より少ない含有量で含有させるのが好ましく、より良好な伝熱効果が得られるとともに伝熱管の生産も容易である。   In addition, by adding carbon nanofibers such as carbon nanotubes and carbon nanohorns to the resin material, the heat conductivity of the resin material can be increased, and the heat dissipation characteristics and heat absorption characteristics of the heat transfer tube can be further improved. Moreover, it is preferable to contain such carbon nanofibers in a content of more than 5 wt% and less than 30 wt%, so that a better heat transfer effect can be obtained and the production of heat transfer tubes is easy.

上記カーボンナノファイバーの含有量を5wt%以下とすると、伝熱効果の向上作用に乏しく、30wt%以上を樹脂材に含有させるのは困難で、生産性が低下するとともに高価で、伝熱効果に大きな差を生じない。尚、本明細書で言うカーボンナノファイバーとは、ナノテクノロジー分野に於いて、カーボンナノチューブ、カーボンナノホーン、その他ナノ単位のカーボン繊維を含んだ総称を示すものである。また、カーボンナノチューブ、カーボンナノホーン、その他を混在させて樹脂材に含有させても良いし、単体で含有させても良い。また、カーボンナノチューブを樹脂材に含有させる場合は、カーボンナノチューブが単層であっても良いし、複層であっても良い。更に、このカーボンナノチューブのアスペクト比は問わないものである。また、カーボンナノチューブの太さ、長さ等も問わないものである。   If the content of the carbon nanofiber is 5 wt% or less, the heat transfer effect is poor, and it is difficult to contain 30 wt% or more in the resin material. There is no big difference. The carbon nanofiber referred to in the present specification is a generic term including carbon nanotubes, carbon nanohorns, and other nano unit carbon fibers in the nanotechnology field. Also, carbon nanotubes, carbon nanohorns, etc. may be mixed and contained in the resin material, or may be contained alone. In addition, when carbon nanotubes are contained in the resin material, the carbon nanotubes may be a single layer or multiple layers. Further, the aspect ratio of the carbon nanotube is not limited. Moreover, the thickness, length, etc. of a carbon nanotube are not ask | required.

まず、実施例1で得られる伝熱管の構造を図2を用いて説明すれば、(1)は伝熱管で、細径金属管(2)の外周に、放射方向に8本の外周フィン(4)を一体に突設した樹脂被覆層(3)を配設している。前記細径金属管(2)は、管径30mm以下の比較的細径で、外表面に銅メッキの無い一重巻鋼管、外表面に銅メッキの有る二重巻鋼管、アルミ管、銅管、ステンレス鋼管等を用いている。このような細径金属管(2)の外表面に、本実施例では犠牲腐食性の耐食メッキ層(図示せず)を配設している。この耐食メッキ層は、亜鉛、錫、錫−亜鉛合金、ニッケル、亜鉛−ニッケル合金等をメッキして1層で形成しても良いし、細径金属管(2)の外表面にニッケルをメッキし、このニッケルの外周面に亜鉛−ニッケル合金をメッキして2層構造とする等、複数層としても良い。また、複数層の耐食メッキ層を施す場合は、例えば前記特許文献6〜8に記載の如き手法で行っても良い。また、細径金属管(2)に亜鉛系メッキ及びクロメート被膜を施して耐食性を持たせても良い。   First, the structure of the heat transfer tube obtained in Example 1 will be described with reference to FIG. 2. (1) is a heat transfer tube, and on the outer periphery of the thin metal tube (2), eight outer peripheral fins ( 4) is provided with a resin coating layer (3) projecting integrally. The thin metal pipe (2) has a relatively small diameter of 30 mm or less, a single wound steel pipe having no copper plating on the outer surface, a double wound steel pipe having a copper plating on the outer surface, an aluminum pipe, a copper pipe, Stainless steel pipes are used. In this embodiment, a sacrificial corrosion-resistant corrosion-resistant plating layer (not shown) is provided on the outer surface of such a small-diameter metal tube (2). This corrosion-resistant plating layer may be formed as a single layer by plating zinc, tin, tin-zinc alloy, nickel, zinc-nickel alloy or the like, or nickel is plated on the outer surface of the thin metal tube (2). The outer peripheral surface of the nickel may be plated with a zinc-nickel alloy to form a two-layer structure. Further, when a plurality of corrosion-resistant plating layers are applied, for example, the methods described in Patent Documents 6 to 8 may be used. Moreover, you may give corrosion resistance by giving a zinc-type plating and a chromate film to a thin metal pipe (2).

また、樹脂被覆層(3)は、PP、PA等の樹脂材で形成している。また、使用する樹脂材に、必要に応じて金属材やカーボン材、或いはガラス材等で形成した粒子や繊維を含有させたり、カーボンナノファイバーを含有させたり、黒色で黒体輻射効果のある樹脂材を使用したりする事により、樹脂材の熱伝導性を向上させて、伝熱管(1)の熱伝導性を更に高める事も可能である。   The resin coating layer (3) is formed of a resin material such as PP or PA. In addition, the resin material to be used may contain particles or fibers formed of a metal material, a carbon material, or a glass material as necessary, or carbon nanofibers, or a black resin that has a black body radiation effect. By using a material, it is possible to improve the thermal conductivity of the resin material and further increase the thermal conductivity of the heat transfer tube (1).

上述の如き伝熱管(1)では、衝撃吸収性や耐水性、耐薬品性等を有する樹脂被覆層(3)の配設により、細径金属管(2)及び耐食メッキ層が被覆保護され、鋼管やアルミ管等を用いた細径金属管(2)及び耐食メッキ層の、飛び石等による破損や泥はね等による酸化等の防止効果が高まり、耐食性に優れた製品を得る事ができる。また、樹脂被覆層(3)の外周面に放射状に外周フィン(4)を突設する事で、伝熱面積を増大させる事ができ、金属材製のみの製品と同等若しくはそれ以上の熱伝導性を得る事が可能となる。従って、伝熱管(1)の放熱特性又は吸熱特性を高める事ができ、該伝熱管(1)の内部を流通する流体と外部を流通する流体との熱交換を効率的に行う事ができる。また、必要に応じて樹脂材にカーボンナノファイバーを含有させたり、金属材やカーボン材或いはガラス材等の粒子、繊維を含有させたり、黒色で黒体輻射効果のある樹脂材を使用した場合等には、熱伝導性を効率的に向上させて、伝熱管(1)の熱交換性能をより促進させる事ができる。   In the heat transfer tube (1) as described above, the thin metal tube (2) and the corrosion-resistant plating layer are covered and protected by the arrangement of the resin coating layer (3) having shock absorption, water resistance, chemical resistance, and the like. It is possible to obtain a product excellent in corrosion resistance by preventing damage to the fine metal pipe (2) and the corrosion-resistant plating layer using a steel pipe, an aluminum pipe or the like due to stepping stones or oxidation due to mud splashing. In addition, by providing radially outer fins (4) on the outer peripheral surface of the resin coating layer (3), the heat transfer area can be increased, and the heat conduction is equal to or greater than that of products made of metal materials only. It becomes possible to get sex. Therefore, it is possible to improve the heat dissipation characteristics or heat absorption characteristics of the heat transfer tube (1), and to efficiently exchange heat between the fluid flowing inside the heat transfer tube (1) and the fluid flowing outside. In addition, when carbon nanofibers are included in the resin material as required, particles or fibers such as metal materials, carbon materials, or glass materials are included, or a black resin material that has a black body radiation effect is used. Therefore, it is possible to efficiently improve the heat conductivity and further promote the heat exchange performance of the heat transfer tube (1).

また、樹脂被覆層(3)は、外周フィン(4)の非形成部(33)の肉厚を0.5〜1.5mmとするのが好ましく、本実施例では1mmで形成している。このような肉厚とすると、耐食性に優れる伝熱管(1)が得られるだけでなく、伝熱管(1)の熱伝導性をも殆ど損なう事のないものとなる。また、外周フィン(4)に飛び石等の衝撃や外周を流動する流体の流動圧力等が作用した場合でも、外周フィン(4)が樹脂被覆層(3)との境目から折れたり、外周フィン(4)ごと樹脂被覆層(3)が破断されたりする事のない耐久性が得られ、外周フィン(4)と樹脂被覆層(3)との接続安定性にも優れるものとなる。   The resin coating layer (3) preferably has a thickness of the non-formed part (33) of the outer peripheral fin (4) of 0.5 to 1.5 mm, and is 1 mm in this embodiment. With such a thickness, not only the heat transfer tube (1) having excellent corrosion resistance is obtained, but also the heat conductivity of the heat transfer tube (1) is hardly impaired. Even when an impact such as a stepping stone or a flow pressure of a fluid flowing on the outer periphery acts on the outer peripheral fin (4), the outer peripheral fin (4) breaks from the boundary with the resin coating layer (3) or the outer peripheral fin (4 4) Durability that the resin coating layer (3) is not broken is obtained, and the connection stability between the outer peripheral fin (4) and the resin coating layer (3) is excellent.

上述の如き伝熱管(1)の製造装置は、図1に示す如く、ダイス(5)を介して細径金属管(2)の外周に溶融樹脂材から成る樹脂被覆層(3)を押し出す押出装置(6)と、この押出装置(6)の、樹脂被覆層(3)の最終形状に近似するキャビディー出口の断面形状を有したダイス(5)から押し出された樹脂被覆層(3)を外周に配設した細径金属管(2)を導入して、樹脂被覆層(3)を冷却固化するための冷却水槽(7)と、この冷却水槽(7)内に配設し、管軸方向に回転しロール面(8)を樹脂被覆層(3)に押し当てる事により樹脂被覆層(3)に外周フィン(4)を成形する第1〜第4成形ロールユニット(10)(11)(12)(13)とから構成している。   As shown in FIG. 1, the apparatus for producing a heat transfer tube (1) as described above is an extrusion for extruding a resin coating layer (3) made of a molten resin material on the outer periphery of a thin metal tube (2) through a die (5). An apparatus (6) and a resin coating layer (3) extruded from a die (5) having a cross-sectional shape of a cavity outlet that approximates the final shape of the resin coating layer (3) of the extrusion apparatus (6). A thin metal pipe (2) disposed on the outer periphery is introduced, a cooling water tank (7) for cooling and solidifying the resin coating layer (3), and a cooling water tank (7) disposed within the cooling water tank (7). 1st to 4th forming roll units (10), (11) for forming outer peripheral fins (4) on the resin coating layer (3) by rotating in the direction and pressing the roll surface (8) against the resin coating layer (3) (12) and (13).

尚、上記実施例1でダイス(5)のキャビディー出口の断面形状を樹脂被覆層(3)の最終形状と近似する形状としているが、樹脂被覆層(3)の最終形状と同一形状とする事も可能である。しかし、樹脂材の性質上、冷却固化の際に不可避的な収縮を生じる事があるため、これを考慮して、ダイス(5)のキャビディー出口の断面形状を最終形状に近似した形状としている。このダイス(5)により最終形状に近似する形状で樹脂被覆層(3)を押し出し、予備成形外周フィンを設けた後、後述の成形ロールユニット(10)(11)(12)(13)での樹脂被覆層(3)の成形と冷却工程により、外周フィン(4)を突設した最終形状での樹脂被覆層(3)の成形を行うものである。また、樹脂被覆層(3)の押し出し成形時に、最終形状に近似するが多少厚肉とした形状で樹脂被覆層(3)を押し出した後、成形ロールユニット(10)(11)(12)(13)にて、樹脂被覆層(3)を延伸しながら最終形状の肉厚に成形するほうが、押し出し直後の柔らかい外周フィン(4)の折れ曲がり等を良好に防止する事ができる。 In addition, although the cross-sectional shape of the cavity outlet of the die (5) in the first embodiment is similar to the final shape of the resin coating layer (3), it is the same shape as the final shape of the resin coating layer (3). Things are also possible. However, due to the nature of the resin material, inevitable shrinkage may occur during cooling and solidification, and in consideration of this, the cross-sectional shape of the die (5) cabydy outlet is made to be a shape that approximates the final shape. . After the resin coating layer (3) is extruded in a shape approximating the final shape by the die (5) and preliminarily formed outer peripheral fins are provided , the molding roll units (10) (11) (12) (13) described later are used. The resin coating layer (3) is molded in the final shape in which the outer peripheral fins (4) are protruded by molding and cooling the resin coating layer (3). Also, during extrusion molding of the resin coating layer (3), after the resin coating layer (3) is extruded in a shape that is somewhat thicker than the final shape, the molding roll unit (10) (11) (12) ( In 13), when the resin coating layer (3) is stretched and formed into a final thickness, bending of the soft outer peripheral fin (4) immediately after extrusion can be better prevented.

また、ダイス(5)の外周には、樹脂材の溶融のためのヒーター(14)を配設している。一方、冷却水槽(7)には、樹脂被覆層(3)の冷却のための冷却水(15)が導入され、ダイス(5)から樹脂被覆層(3)が外周に押し出された細径金属管(2)を、内部に導入するため開口部(16)が側面に設けられている。また、ダイス(5)から押し出された溶融樹脂材が自重等により流下して、細径金属管(2)の上面と下面とで樹脂被覆層(3)の肉厚が不均一となる等の不具合を防ぐため、冷却水槽(7)とダイス(5)とを近接して、樹脂被覆層(3)を直ちに冷却するのが好ましい。そこで、本実施例では、図1に示す如く、開口部(16)とダイス(5)とをシールリング部材(17)で連結し、このシールリング部材(17)内にも冷却水(15)を導入する事により、ダイス(5)から押し出された外周フィン(4)を有する樹脂被覆層(3)を直ちに冷却可能としている。   A heater (14) for melting the resin material is disposed on the outer periphery of the die (5). On the other hand, cooling water (15) for cooling the resin coating layer (3) is introduced into the cooling water tank (7), and the resin coating layer (3) is extruded from the die (5) to the outer periphery. An opening (16) is provided on the side for introducing the tube (2) into the interior. Further, the molten resin material extruded from the die (5) flows down due to its own weight and the like, and the thickness of the resin coating layer (3) becomes uneven between the upper surface and the lower surface of the thin metal tube (2). In order to prevent problems, it is preferable to immediately cool the resin coating layer (3) by bringing the cooling water tank (7) and the die (5) close to each other. Therefore, in this embodiment, as shown in FIG. 1, the opening (16) and the die (5) are connected by the seal ring member (17), and the cooling water (15) is also contained in the seal ring member (17). The resin coating layer (3) having the peripheral fin (4) extruded from the die (5) can be immediately cooled.

また、このシールリング部材(17)の配設により、ダイス(5)と冷却水槽(7)との接続部からの冷却水(15)の漏れを防ぎ、冷却水(15)からヒーター(14)を保護する事ができる。尚、シールリング部材(17)の形成長さは、4〜5cm程度とするのが好ましく、且つ冷却水(15)の循環を緩慢として、樹脂被覆層(3)の過冷却を防止し、後工程の成形ロールユニット(10)(11)(12)(13)での樹脂被覆層(3)の成形が可能な程度の樹脂材の固化状態に保持しておく。但し、シールリング部材(17)の長さ、即ちダイス(5)と冷却水槽(7)との距離を必ずしも4〜5cmとする必要はなく、ダイス(5)から押し出される樹脂被覆層(3)が最終形状に近く、凹凸が大きくて変形し易い場合等は、冷却水槽(7)との距離を短くして、樹脂被覆層(3)を迅速に冷却するようにしても良い。また、ダイス(5)での成形が大まかで外周フィン(4)を有さず、自重等による変形を生じにくく、且つ成形ロールユニット(10)(11)(12)(13)での樹脂被覆層(3)の成形を行い易いものとするためには、冷却水槽(7)との距離を長くして所望温度まで冷却する等、製作目的や樹脂材のコンディション等により、適宜変化させて装置を設計するのが好ましい。   Further, the arrangement of the seal ring member (17) prevents the leakage of the cooling water (15) from the connecting portion between the die (5) and the cooling water tank (7), and the cooling water (15) to the heater (14). Can be protected. The formation length of the seal ring member (17) is preferably about 4 to 5 cm and the circulation of the cooling water (15) is slowed to prevent overcooling of the resin coating layer (3). The solidified state of the resin material is maintained so that the resin coating layer (3) can be molded by the molding roll units (10), (11), (12), and (13) in the process. However, the length of the seal ring member (17), that is, the distance between the die (5) and the cooling water tank (7) is not necessarily 4 to 5 cm, and the resin coating layer (3) extruded from the die (5). However, when the surface is close to the final shape and has large irregularities and is easily deformed, the distance from the cooling water tank (7) may be shortened to quickly cool the resin coating layer (3). In addition, the die (5) is roughly molded and does not have outer fins (4), is not easily deformed by its own weight, etc., and is covered with resin in the forming roll units (10) (11) (12) (13) In order to make it easy to form the layer (3), the distance between the cooling water tank (7) is increased to cool to a desired temperature, etc. Is preferably designed.

また、成形ロールユニット(10)(11)(12)(13)の構成を、図3に示す第4成形ロールユニット(13)の断面図を用いて説明する。本実施例では、成形ロールユニット(10)(11)(12)(13)は、放射状に配設し、伝熱管(1)の移送方向に平行に回転可能とした4つのロール(18)で構成している。そして、この4つのロール(18)のロール面(8)に、樹脂被覆層(3)の最終形状と同一形状の成形部(31)を設けている。各成形部(31)は、樹脂被覆層(3)の外周形状を4分割した形状となっており、この成形部(31)を設けたロール面(8)を樹脂被覆層(3)に押し当てながら4つのロール(18)が管軸方向に回転する事により、樹脂被覆層(3)の外周フィン(4)の成形が行われるものである。これら成形ロールユニット(10)(11)(12)(13)は、少なくとも最終に配置された第4成形ロールユニット(13)の各ロール面(8)の形状を、図3に示す如く、樹脂被覆層(3)の最終形状と同一とする事で、細径金属管(2)の外周に、軸方向に長尺な外周フィン(4)を一体に8本突設した樹脂被覆層(3)を完成させる事ができる。   The structure of the forming roll units (10), (11), (12), and (13) will be described with reference to a sectional view of the fourth forming roll unit (13) shown in FIG. In this embodiment, the forming roll units (10), (11), (12), and (13) are arranged in a radial manner and are composed of four rolls (18) that can be rotated in parallel with the transfer direction of the heat transfer tube (1). It is composed. And the molding part (31) of the same shape as the final shape of the resin coating layer (3) is provided in the roll surface (8) of these four rolls (18). Each molding part (31) has a shape obtained by dividing the outer peripheral shape of the resin coating layer (3) into four parts, and the roll surface (8) provided with this molding part (31) is pushed onto the resin coating layer (3). When the four rolls (18) rotate in the tube axis direction while being applied, the outer peripheral fins (4) of the resin coating layer (3) are molded. These forming roll units (10), (11), (12), and (13) are made of resin as shown in FIG. 3 at least in the shape of each roll surface (8) of the fourth forming roll unit (13) that is finally arranged. By making it the same as the final shape of the coating layer (3), a resin coating layer (3) is formed by integrally projecting eight outer peripheral fins (4) elongated in the axial direction on the outer periphery of the thin metal tube (2). ) Can be completed.

尚、実施例1では、ダイス(5)での樹脂被覆層(3)の押し出し形状をも、図7に示す如く、最終形状と同一としている。従って、図3に示す第4成形ロールユニット(13)と同様に、第1〜第3成形ロールユニット(10)(11)(12)においても、各ロール(18)のロール面(8)に形成した成形部(31)の形状を、全て樹脂被覆層(3)の最終形状と同一形状としている。このようなダイス(5)と成形ロールユニット(10)(11)(12)(13)を使用する事で、初期段階での樹脂被覆層(3)の完成を可能としている。また、成形完了後の伝熱管(1)は、図1に示す如く、一個又は複数個の支持ロール(32)によって支持されながら移送先に移送されるようにしている。   In Example 1, the extrusion shape of the resin coating layer (3) with the die (5) is also the same as the final shape as shown in FIG. Accordingly, similarly to the fourth forming roll unit (13) shown in FIG. 3, in the first to third forming roll units (10), (11), and (12), on the roll surface (8) of each roll (18). The formed part (31) has the same shape as the final shape of the resin coating layer (3). By using such a die (5) and forming roll units (10), (11), (12), and (13), the resin coating layer (3) can be completed in the initial stage. Further, as shown in FIG. 1, the heat transfer tube (1) after completion of molding is transferred to a transfer destination while being supported by one or a plurality of support rolls (32).

上記製造装置を使用した伝熱管(1)の製造方法は、まず押出装置(6)のダイス(5)内に細径金属管(2)を挿通させ、この細径金属管(2)を適宜の移送手段で移送方向に移送しながら、その外周にダイス(5)を介して溶融樹脂材を押し出すと、細径金属管(2)の外周に、放射方向に8本の外周フィン(4)を突設した、ほぼ完成状態の樹脂被覆層(3)が配設される。この樹脂被覆層(3)は、押し出し後、直ちにシールリング部材(17)内の冷却水(15)と接触して冷却固化する事で、自重等による変形が防止される。尚、この時点での樹脂被覆層(3)の硬さは、自重等による変形は完全には防止できず、後工程の成形ロールユニット(10)(11)(12)(13)での仕上げが必要な程度である。   In the manufacturing method of the heat transfer tube (1) using the above manufacturing apparatus, first, the thin metal tube (2) is inserted into the die (5) of the extrusion device (6), and the thin metal tube (2) is appropriately used. When the molten resin material is pushed out to the outer periphery through a die (5) while being transferred in the transfer direction by the transfer means, eight outer fins (4) in the radial direction are provided on the outer periphery of the thin metal tube (2). A resin coating layer (3) in an almost completed state is provided. This resin coating layer (3) is brought into contact with the cooling water (15) in the seal ring member (17) immediately after being extruded and solidified by cooling, thereby preventing deformation due to its own weight or the like. In addition, the hardness of the resin coating layer (3) at this time cannot be completely prevented from being deformed by its own weight, etc., and is finished by the forming roll unit (10) (11) (12) (13) in the subsequent process. Is a necessary degree.

そして、樹脂被覆層(3)を配設した細径金属管(2)が冷却水槽(7)内に導入され、該冷却水槽(7)内の冷却水(15)により樹脂被覆層(3)が冷却されて徐々に固化するとともに、成形ロールユニット(10)(11)(12)(13)によって成形される樹脂被覆層(3)の形状が、ダイス(5)からの押し出し時の形状に保持されたまま成形される事により、細径金属管(2)の上下左右ともに肉厚や形状のバランスが良い樹脂被覆層(3)が形成される。また、ロール面(8)により樹脂被覆層(3)が細径金属管(2)に強く押し付けられるので、細径金属管(2)と樹脂被覆層(3)との接続強度も高まるものとなる。   Then, the thin metal pipe (2) provided with the resin coating layer (3) is introduced into the cooling water tank (7), and the resin coating layer (3) is cooled by the cooling water (15) in the cooling water tank (7). Is cooled and solidifies gradually, and the shape of the resin coating layer (3) formed by the forming roll unit (10), (11), (12), and (13) changes to the shape when extruded from the die (5). By molding while being held, a resin coating layer (3) having a good balance of thickness and shape is formed on the upper and lower sides and the left and right sides of the thin metal tube (2). In addition, since the resin coating layer (3) is strongly pressed against the thin metal pipe (2) by the roll surface (8), the connection strength between the thin metal pipe (2) and the resin coating layer (3) is also increased. Become.

尚、本実施例では、ダイス(5)から最終形状で押し出された樹脂被覆層(3)を、更に4組の成形ロールユニット(10)(11)(12)(13)で成形する事により、外周フィン(4)を突設した樹脂被覆層(3)の成形の仕上がり具合を向上させる事ができる。しかし、このようにダイス(5)での樹脂被覆層(3)の押し出し形状を最終形状としているので、成形ロールユニット(10)(11)(12)(13)を3組以下としても、外周フィン(4)を突設した最終形状の樹脂被覆層(3)が得られ、製造装置の更なる低コスト化が可能となる。   In this embodiment, the resin coating layer (3) extruded in the final shape from the die (5) is further molded by four sets of molding roll units (10), (11), (12), and (13). Further, it is possible to improve the finish of the molding of the resin coating layer (3) provided with the outer peripheral fin (4). However, since the extrusion shape of the resin coating layer (3) with the die (5) is the final shape in this way, even if the number of forming roll units (10), (11), (12), and (13) is three or less, The final-shaped resin coating layer (3) provided with the fins (4) is obtained, and the manufacturing apparatus can be further reduced in cost.

また、本実施例の伝熱管(1)は、ゴムホース等への接続のため、先端側には樹脂被覆層(3)を配設しないか又は、先端側の樹脂被覆層(3)を外周フィン(4)ごと剥離した後、図2に示す如く、先端側の外周にスプール加工やバルヂ加工等により環状膨出部(9)を突設している。   In addition, the heat transfer tube (1) of this embodiment is not provided with a resin coating layer (3) on the tip side or connected to a rubber hose or the like, or the resin coating layer (3) on the tip side is provided with an outer peripheral fin. After peeling off together with (4), as shown in FIG. 2, an annular bulging portion (9) is projected from the outer periphery on the tip side by spooling or bulging.

そして、上述の如き伝熱管(1)を使用した多管円筒式熱交換器(20)は、図8に示す如く、円筒状の胴管(21)の両端にチューブシート(22)を一対接続し、内部を密閉可能としている。そして、一対のチューブシート(22)間に、本実施例の伝熱管(1)を複数本、チューブシート(22)を貫通して接続配置している。また、胴管(21)の両端には、高温熱媒体流体の流入口(24)と流出口(25)とを設けたボンネット(26)を各々接続している。   The multi-tube cylindrical heat exchanger (20) using the heat transfer tube (1) as described above has a pair of tube sheets (22) connected to both ends of a cylindrical body tube (21) as shown in FIG. The inside can be sealed. And between the pair of tube sheets (22), a plurality of heat transfer tubes (1) of the present embodiment are connected and arranged through the tube sheet (22). A bonnet (26) provided with an inlet (24) and an outlet (25) for the high-temperature heat medium fluid is connected to both ends of the trunk pipe (21).

また、胴管(21)には、低温熱媒体流体を熱交換部(23)に供給する導入路(27)と熱交換後の低温熱媒体流体を排出する導出路(28)を設け、熱交換部(23)内を低温熱媒体流体が流動可能としている。また、前記熱交換部(23)は、内部に複数の支持板(29)を接合配置し、この支持板(29)に設けた挿通孔(30)に伝熱管(1)を挿通する事により、バッフルプレートとして伝熱管(1)を安定的に支持するとともに、熱交換部(23)内を流動する低温熱媒体流体の流れを蛇行化し、伝熱管(1)の外表面に対する相対速度を速めている。   In addition, the trunk pipe (21) is provided with an introduction path (27) for supplying the low-temperature heat medium fluid to the heat exchange section (23) and a lead-out path (28) for discharging the low-temperature heat medium fluid after heat exchange. The low-temperature heat medium fluid can flow in the exchange part (23). The heat exchanging section (23) has a plurality of support plates (29) joined and arranged therein, and the heat transfer tube (1) is inserted into the insertion hole (30) provided in the support plate (29). In addition to stably supporting the heat transfer tube (1) as a baffle plate, the flow of the low-temperature heat medium fluid flowing in the heat exchanging section (23) is meandered to increase the relative speed with respect to the outer surface of the heat transfer tube (1). ing.

上記の多管円筒式熱交換器(20)では、伝熱管(1)の熱伝導性に優れた伝熱面を介して、高温熱媒体流体と低温熱媒体流体との熱交換が効率的に行われ、伝熱効果を高める事ができる。また、この優れた伝熱効果により、多管円筒式熱交換器(20)の小型化が可能となるし、軽量で廉価な本発明の伝熱管(1)を用いる事により、多管円筒式熱交換器(20)の軽量化と低コスト化も可能となる。また、この小型で軽量な多管円筒式熱交換器(20)では、狭い場所への設置も可能で、レイアウトの自由度が増すものとなる。   In the above-described multi-tubular heat exchanger (20), heat exchange between the high-temperature heat medium fluid and the low-temperature heat medium fluid is efficiently performed through the heat transfer surface having excellent heat conductivity of the heat transfer tube (1). This is done to increase the heat transfer effect. In addition, this excellent heat transfer effect makes it possible to reduce the size of the multi-tube cylindrical heat exchanger (20), and by using the heat transfer tube (1) of the present invention that is lightweight and inexpensive, a multi-tube cylindrical type. It is possible to reduce the weight and cost of the heat exchanger (20). In addition, this small and lightweight multi-tube cylindrical heat exchanger (20) can be installed in a narrow place, increasing the degree of freedom in layout.

また、実施例1では、細径金属管(2)の外周に耐食メッキ層を配設しているが、メッキ処理に限らず、細径金属管(2)に、陽極酸化処理等の他の表面処理を施して耐食性を高めても良い。また、上記メッキ処理や陽極酸化処理等の表面処理作業は、伝熱管(1)の製作工程に組み込んでも良いが、予めこれらの表面処理の施された細径金属管(2)を使用しても良く、表面処理の手間を省いて伝熱管(1)の生産性を高める事ができる。また、樹脂被覆層(3)を設ける事で、十分な耐食性が得られるので、細径金属管(2)にメッキ処理や陽極酸化処理、その他の表面処理を何等施さなくても、伝熱管(1)の耐食性が損なわれる事がなく、製作工程や生産コストを少なくする事ができる。   Further, in Example 1, the corrosion-resistant plating layer is disposed on the outer periphery of the small-diameter metal tube (2). However, the present invention is not limited to the plating process. A surface treatment may be applied to increase the corrosion resistance. Moreover, surface treatment operations such as plating and anodizing may be incorporated in the manufacturing process of the heat transfer tube (1), but using a thin metal tube (2) that has been subjected to these surface treatments in advance. It is possible to improve the productivity of the heat transfer tube (1) by omitting the surface treatment. Moreover, since sufficient corrosion resistance can be obtained by providing the resin coating layer (3), the heat transfer tube (2) can be treated without any plating treatment, anodizing treatment, or other surface treatment. The corrosion resistance of 1) is not impaired, and the manufacturing process and production cost can be reduced.

また、細径金属管(2)の外周面に、PA等を密着コーティングするとともに接着剤を塗布して接着層を設ける事で、細径金属管(2)と後述の樹脂被覆層(3)との互いの密着固定性を高める事が可能となる。また、このように樹脂被覆層(3)の配設前に、細径金属管(2)の外周に樹脂材による接着層を配設する場合、例えばこの接着層は金属材との密着性に優れたエポキシプライマーやPAを使用し、その外周面に配設する樹脂被覆層(3)は耐水性や耐薬品性に優れたPPを使用する事ができる。このような構成とする事で、PAとPPが各々持つ特性の相乗効果により、伝熱管(1)の耐食性等を更に高める事ができる。また、この場合も、予めPA等の樹脂材が密着コーティングされた量産品の細径金属管(2)を使用しても良く、より低コストな実施が可能となる。   Further, by coating PA or the like on the outer peripheral surface of the thin metal pipe (2) and applying an adhesive to provide an adhesive layer, the thin metal pipe (2) and a resin coating layer (3) described later are provided. It is possible to improve the close contact fixation with each other. Further, when an adhesive layer made of a resin material is provided on the outer periphery of the thin metal tube (2) before the resin coating layer (3) is provided in this way, for example, the adhesive layer has an adhesive property with the metal material. PP, which is excellent in water resistance and chemical resistance, can be used for the resin coating layer (3) disposed on the outer peripheral surface using an excellent epoxy primer or PA. With such a configuration, the corrosion resistance and the like of the heat transfer tube (1) can be further enhanced by the synergistic effect of the characteristics of PA and PP. In this case as well, a mass-produced thin metal tube (2) that is preliminarily coated with a resin material such as PA may be used, which enables implementation at a lower cost.

また、本実施例では、第1〜第4成形ロールユニット(10)(11)(12)(13)を、各々4つのロール(18)で構成し、4分割方式としているが、2〜3のロール(18)にて構成し、2、3分割方式の成形ロールユニット(10)(11)(12)(13)としても良い。   In the present embodiment, the first to fourth forming roll units (10), (11), (12), and (13) are each composed of four rolls (18), and a four-split method is used. It is good also as a forming roll unit (10) (11) (12) (13) of a 2 or 3 division system.

上記実施例1では、ダイス(5)により樹脂被覆層(3)を最終形状で押し出し成形し、その後の成形を行う成形ロールユニット(10)(11)(12)(13)は全て、ロール面(8)の成形部(31)を樹脂被覆層(3)の最終形状と同一に形成している。これに対して、実施例2では、樹脂被覆層(3)の最終形状より凹凸の小さいキャビディー出口の断面形状を有したダイス(5)を使用し、このダイス(5)での樹脂被覆層(3)の押し出し形状を、図5に示す如く、樹脂被覆層(3)の最終形状よりも凹凸の小さいものとしている。そして、樹脂被覆層(3)の成形ロールユニット(10)(11)(12)(13)の成形部(31)の凹凸を、移送方向に従って順次大きくして、樹脂被覆層(3)の成形を段階的に行っている。   In Example 1 above, all of the forming roll units (10), (11), (12), and (13) that extrude the resin coating layer (3) with a die (5) in the final shape and perform subsequent forming are all roll surfaces. The molded part (31) of (8) is formed in the same shape as the final shape of the resin coating layer (3). On the other hand, in Example 2, the die (5) having a cross-sectional shape of the cavity outlet having a smaller unevenness than the final shape of the resin coating layer (3) is used, and the resin coating layer on the die (5) is used. As shown in FIG. 5, the extrusion shape of (3) is made to have smaller irregularities than the final shape of the resin coating layer (3). And the unevenness | corrugation of the shaping | molding part (31) of the shaping | molding roll unit (10) (11) (12) (13) of the resin coating layer (3) is enlarged sequentially according to a transfer direction, and molding of the resin coating layer (3) is carried out. Is done step by step.

まず、ダイス(5)から押し出された柔らかい樹脂被覆層(3)を冷却水(15)で冷却して、樹脂材の液だれを生じない程度に固化させた後、第1成形ロールユニット(10)で成形を行うが、この第1成形ロールユニット(10)の成形部(31)は、ダイス(5)のキャビディー出口の断面形状よりも凹凸の起伏の大きく、最終形状より凹凸を小さく形成している。この第1成形ロールユニット(10)での成形後の伝熱管(1)の断面形状を図6に示す。そして、この形状で樹脂被覆層(3)を冷却して更に固化させ、次に成形部(31)を最終形状と同一形状とした第2成形ロールユニット(11)により、樹脂被覆層(3)の成形を行う事により、図7に示す如く、細径金属管(2)の外周に、外周フィン(4)を突設した最終形状の樹脂被覆層(3)が配設された伝熱管(1)が得られる。このように、樹脂被覆層(3)を冷却固化しながら、移送方向に従って順次凹凸を大きくして段階的に成形する事により、例えば粘度の低い溶融樹脂材を使用したり、最終形状が複雑な樹脂被覆層(3)を形成する等の場合には、成形途中で自重等により樹脂材が流下して、肉厚に偏りを生じる等の不具合が生じにくいものとなり、外周フィン(4)の肉厚や形状が均一で、仕上がり具合の良好な樹脂被覆層(3)を得る事ができる。   First, the soft resin coating layer (3) extruded from the die (5) is cooled with cooling water (15) and solidified to such an extent that no dripping of the resin material occurs, and then the first molding roll unit (10 ), The forming part (31) of the first forming roll unit (10) is more uneven than the cavity shape of the die (5), and smaller than the final shape. is doing. FIG. 6 shows a cross-sectional shape of the heat transfer tube (1) after being formed by the first forming roll unit (10). Then, the resin coating layer (3) is cooled and solidified in this shape, and then the resin coating layer (3) is formed by the second molding roll unit (11) in which the molding part (31) has the same shape as the final shape. As shown in FIG. 7, the heat transfer tube (3) having the final shape resin coating layer (3) projecting the outer peripheral fin (4) is disposed on the outer periphery of the thin metal tube (2). 1) is obtained. Thus, by cooling and solidifying the resin coating layer (3), the unevenness is gradually increased in accordance with the transfer direction, and stepwise molding is performed. In the case of forming the resin coating layer (3), the resin material flows down due to its own weight or the like during the molding, and it is difficult for problems such as deviation in thickness to occur. A resin coating layer (3) having a uniform thickness and shape and good finish can be obtained.

また、実施例2でも、上記第1、第2成形ロールユニット(10)(11)のみを冷却水槽(7)内に配設するものであっても良いし、第2成形ロールユニット(11)の後方に、樹脂被覆層(3)の最終形状と同一形状の成形部(31)を有する第3成形ロールユニット(12)、更には第4成形ロールユニット(13)を配設しても良い。また、これら第1〜第4成形ロールユニット(10)(11)(12)(13)は、実施例1と同様に、4つのロール(18)により構成された4分割形式としても良いし、2〜3のロール(18)にて構成された2、3分割方式としても良い。   In Example 2, only the first and second forming roll units (10) and (11) may be disposed in the cooling water tank (7), or the second forming roll unit (11). A third molding roll unit (12) having a molding part (31) having the same shape as the final shape of the resin coating layer (3), and further a fourth molding roll unit (13) may be provided behind the resin coating layer (3). . Moreover, these 1st-4th shaping | molding roll units (10) (11) (12) (13) are good also as Example 1, and it is good also as a 4 division type comprised by four rolls (18), It is good also as a 2/3 division system comprised by 2-3 rolls (18).

実施例3では、樹脂被覆層(3)の押し出し直後の変形を防ぎ、且つ成形の安定性と形状バランスを高めるため、予備成形外周フィン(4)を有しない略円形の断面形状を有したキャビディー出口を設けたダイス(5)での樹脂被覆層(3)の押し出し形状を、実施例2よりも更に大まかなものとし、第1、第2成形ロールユニット(10)(11)で徐々に凹凸を大きくして、第3成形ロールユニット(12)にて樹脂被覆層(3)を最終形状に成形可能とする。実施例3でも、実施例1、2と同様に、前記第1〜第3成形ロールユニット(10)(11)(12)を、樹脂被覆層(3)に押し付けるロール面(8)に成形部(31)を設けた4つのロール(18)により構成しても良いし、4分割形式としても良いし、2〜3のロール(18)にて構成された2、3分割方式としても良い。   In Example 3, in order to prevent the deformation immediately after extrusion of the resin coating layer (3) and to improve the molding stability and shape balance, the mold having a substantially circular cross-sectional shape without the preformed outer peripheral fin (4). The extrusion shape of the resin coating layer (3) in the die (5) provided with the D outlet is made rougher than in the second embodiment, and is gradually increased by the first and second molding roll units (10) and (11). The unevenness is enlarged, and the resin coating layer (3) can be formed into a final shape by the third forming roll unit (12). In Example 3, as in Examples 1 and 2, the first to third forming roll units (10), (11), and (12) are formed on the roll surface (8) that presses the resin coating layer (3). It may be constituted by four rolls (18) provided with (31), may be divided into four divisions, or may be a two or three division system constituted by two or three rolls (18).

実施例3では、ダイス(5)での樹脂被覆層(3)の押し出し形状を、図4に示す如く、何等凹凸を設けていない略円形で平滑なものとしている。尚、この押し出し時には、後工程の成形ロールユニット(10)(11)(12)(13)での成形により、8本の外周フィン(4)を突出可能な十分な肉厚で細径金属管(2)の外周に配設する。そして、この肉厚に押し出された樹脂被覆層(3)を、冷却水(15)にて液だれ等を生じない程度に固化させた状態で、第1成形ロールユニット(10)にて、図5に示す如く、最終形状の樹脂被覆層(3)よりも凹凸の小さい樹脂被覆層(3)に成形する。次に、第2成形ロールユニット(11)にて樹脂被覆層(3)を成形する事により、図6に示す如く、前記第1成形ロールユニット(10)での成形時よりも凹凸が大きく、最終形状よりも凹凸が小さく外周フィン(4)が未完成の樹脂被覆層(3)が、細径金属管(2)の外周に形成される。   In Example 3, the extrusion shape of the resin coating layer (3) with the dice (5) is substantially circular and smooth with no irregularities as shown in FIG. At the time of extrusion, a thin metal tube with a sufficient thickness capable of projecting the eight outer peripheral fins (4) by forming in the forming roll unit (10) (11) (12) (13) in the subsequent process. It arrange | positions on the outer periphery of (2). Then, the resin coating layer (3) extruded to be thick is solidified to the extent that no dripping or the like occurs with the cooling water (15). As shown in FIG. 5, it is formed into a resin coating layer (3) having smaller irregularities than the final-shaped resin coating layer (3). Next, by forming the resin coating layer (3) with the second forming roll unit (11), as shown in FIG. 6, the unevenness is larger than when forming with the first forming roll unit (10). A resin coating layer (3) that has smaller irregularities than the final shape and an incomplete outer peripheral fin (4) is formed on the outer periphery of the thin metal tube (2).

そして、第3成形ロールユニット(12)にて樹脂被覆層(3)を成形する事により、図7に示す如く、細径金属管(2)の外周に、外周フィン(4)が完成した最終形状の樹脂被覆層(3)が配設された伝熱管(1)が得られるものとなる。また、実施例3でも、第3成形ロールユニット(12)の後方に、樹脂被覆層(3)の最終形状と同一形状の成形部(31)を有する第4成形ロールユニット(13)を配設し、この第4成形ロールユニット(13)による樹脂被覆層(3)の成形を行うようにしても良い。   Then, by forming the resin coating layer (3) with the third forming roll unit (12), as shown in FIG. 7, the final outer fin (4) is completed on the outer periphery of the thin metal pipe (2). Thus, the heat transfer tube (1) provided with the resin coating layer (3) having the shape is obtained. Also in Example 3, a fourth molding roll unit (13) having a molding part (31) having the same shape as the final shape of the resin coating layer (3) is disposed behind the third molding roll unit (12). And you may make it shape | mold the resin coating layer (3) by this 4th shaping | molding roll unit (13).

上記実施例2、3の如く、ダイス(5)からの樹脂被覆層(3)の押し出し形状を、最終形状よりも凹凸の小さい形状や略円形とする厚肉なものとし、樹脂被覆層(3)を冷却固化しながら、成形部(31)の凹凸を徐々に大きくした複数組の成形ロールユニット(10)(11)(12)(13)で、樹脂被覆層(3)を延伸しながら外周フィン(4)を突設した樹脂被覆層(3)の最終形状に成形する事により、外周フィン(4)の折れ曲がりや樹脂材の偏り等を防止して、仕上がり具合の良好な成形が可能となる。そして、樹脂材の性質や製造目的等に応じて、実施例1〜実施例3の適宜の手段を実施するのが好ましい。   As in Examples 2 and 3 above, the extrusion shape of the resin coating layer (3) from the die (5) is thicker than the final shape, with a shape with less irregularities or a substantially circular shape, and the resin coating layer (3 ) With multiple sets of molding roll units (10), (11), (12), and (13) with gradually increasing irregularities in the molding part (31) while cooling and solidifying the outer periphery while stretching the resin coating layer (3) By forming the final shape of the resin coating layer (3) with the fins (4) protruding, it is possible to prevent bending of the outer peripheral fins (4), unevenness of the resin material, etc., and to achieve a good finish. Become. And according to the property of the resin material, the manufacturing purpose, etc., it is preferable to implement the appropriate means of Examples 1 to 3.

また、上記実施例1〜3の冷却水槽(7)は、クーラーや温度監視装置等により温度コントロールを行い、上記実施例1〜3の如く、ダイス(5)からの押し出し時の樹脂被覆層(3)の形状や樹脂材の粘度その他のコンディション、成形ロールユニット(10)(11)(12)(13)での樹脂被覆層(3)の成形工程に応じて、冷却水槽(7)を分割したり、冷却温度や冷却速度等を適宜調整する事で、より効率的に伝熱管(1)を形成する事が可能となるとともに、樹脂被覆層(3)の仕上がりが良く、外周フィン(4)等の接続安定性も良好な製品が得られ、伝熱管(1)の品質を高める事ができる。   Moreover, the cooling water tank (7) of the above Examples 1 to 3 is temperature-controlled by a cooler, a temperature monitoring device or the like, and as in the above Examples 1 to 3, the resin coating layer (at the time of extrusion from the die (5)) ( Dividing the cooling water tank (7) according to the shape of the 3), the viscosity of the resin material and other conditions, and the molding process of the resin coating layer (3) in the molding roll unit (10) (11) (12) (13) It is possible to form the heat transfer tube (1) more efficiently by adjusting the cooling temperature, cooling rate, etc., and the finish of the resin coating layer (3) is good, and the peripheral fin (4 ) And other products with good connection stability can be obtained, and the quality of the heat transfer tube (1) can be improved.

本発明の伝熱管の製造装置の概略図。The schematic of the manufacturing apparatus of the heat exchanger tube of this invention. 本発明の伝熱管の斜視図。The perspective view of the heat exchanger tube of this invention. 図1のA−A線拡大断面図。The AA line expanded sectional view of FIG. 何等凹凸のない樹脂被覆層を配設した伝熱管の断面図。Sectional drawing of the heat exchanger tube which arrange | positioned the resin coating layer without any unevenness | corrugation. 凹凸の小さい樹脂被覆層を配設した伝熱管の断面図。Sectional drawing of the heat exchanger tube which arrange | positioned the resin coating layer with small unevenness | corrugation. 凹凸の起伏が最終形状より小さい樹脂被覆層を配設した伝熱管の断面図。Sectional drawing of the heat exchanger tube which arrange | positioned the resin coating layer with the unevenness | corrugation unevenness smaller than the final shape. 最終形状の樹脂被覆層を配設した伝熱管の断面図。Sectional drawing of the heat exchanger tube which arrange | positioned the resin coating layer of the last shape. 本発明の製造装置と製造方法で形成された伝熱管を使用した多管円筒式熱交換器の概略図。The schematic of the multi-tube cylindrical heat exchanger using the heat exchanger tube formed with the manufacturing apparatus and manufacturing method of this invention.

2 細径金属管
3 樹脂被覆層
4 外周フィン
5 ダイス
7 冷却水槽
8 ロール面
10 第1成形ロールユニット
11 第2成形ロールユニット
12 第3成形ロールユニット
13 第4成形ロールユニット
2 Thin metal pipe 3 Resin coating layer 4 Outer peripheral fin 5 Die 7 Cooling water tank 8 Roll surface 10 First forming roll unit 11 Second forming roll unit 12 Third forming roll unit 13 Fourth forming roll unit

Claims (8)

細径金属管の外周に溶融樹脂材を押し出して、放射方向に複数本の外周フィンを一体に突設した樹脂被覆層を細径金属管の外周に配設して伝熱管を形成する装置であって、細径金属管の外周に、予備成形外周フィンを有するか又は有しない溶融樹脂材から成る樹脂被覆層を押し出すダイスと、このダイスから押し出された細径金属管外周の樹脂被覆層を導入して冷却固化するための冷却水槽と、この冷却水槽内に配設し、管軸方向に回転しロール面を樹脂被覆層に押し当てる事により樹脂被覆層に外周フィンを成形する少なくとも一組の成形ロールユニットとで構成した事を特徴とする耐食性を有する伝熱管の製造装置。 A device that forms a heat transfer tube by extruding a molten resin material to the outer periphery of a thin metal tube and arranging a resin coating layer integrally projecting a plurality of outer peripheral fins in the radial direction on the outer periphery of the thin metal tube A die for extruding a resin coating layer made of a molten resin material with or without a preformed outer peripheral fin on the outer periphery of the thin metal tube, and a resin coating layer on the outer periphery of the thin metal tube extruded from the die. A cooling water tank for introducing and cooling and solidifying, and at least one set of outer fins formed on the resin coating layer by rotating in the tube axis direction and pressing the roll surface against the resin coating layer. An apparatus for producing a heat transfer tube having corrosion resistance, characterized by comprising a forming roll unit. ダイスを介して予備成形外周フィンを有するか又は有しない溶融樹脂材を細径金属管の外周に押し出して、樹脂被覆層を細径金属管の外周に配設し、この樹脂被覆層で被覆した細径金属管を冷却水と接触させて樹脂被覆層を冷却固化させるとともに、この細径金属管と樹脂被覆層の移送方向に少なくとも一組配設した成形ロールユニットのロール面を、樹脂被覆層の外周に押し当てる事で、細径金属管の外周管軸方向に長尺な連続した樹脂材製の外周フィンを複数一体に突設した樹脂被覆層を配設する事を特徴とする耐食性を有する伝熱管の製造方法。 A molten resin material with or without preformed outer peripheral fins is extruded to the outer periphery of the thin metal tube through a die, and the resin coating layer is disposed on the outer periphery of the thin metal tube and covered with the resin coating layer. The resin coating layer is cooled and solidified by bringing the thin metal tube into contact with cooling water, and the roll surface of the forming roll unit disposed at least one set in the transfer direction of the thin metal tube and the resin coating layer is used as the resin coating layer. Corrosion resistance is characterized by the fact that a resin coating layer is provided in which a plurality of continuous resin-made outer peripheral fins that are long in the direction of the outer peripheral tube axis of a thin metal tube are pressed against the outer periphery of the thin metal tube. A method for manufacturing a heat transfer tube. ダイスは、キャビディー出口の断面形状を略円形とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項1の耐食性を有する伝熱管の製造装置。 The die has a substantially circular cross-sectional shape at the cavity outlet, and a plurality of sets of forming roll units sequentially arranged in the transfer direction of the resin coating layer, at least on the roll surface of the forming roll unit finally arranged, The apparatus for producing a heat transfer tube having corrosion resistance according to claim 1, wherein a molded part having the same shape as the final shape of the resin coating layer is provided. ダイスは、キャビディー出口の断面形状を略円形とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項2の耐食性を有する伝熱管の製造方法。 The die has a substantially circular cross-sectional shape at the cavity outlet, and a plurality of sets of forming roll units sequentially arranged in the transfer direction of the resin coating layer, at least on the roll surface of the forming roll unit finally arranged, 3. The method for producing a heat transfer tube having corrosion resistance according to claim 2, wherein a molded part having the same shape as the final shape of the resin coating layer is provided. ダイスは、キャビディー出口の断面形状を樹脂被覆層の最終形状よりも凹凸の小さい形状とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項1の耐食性を有する伝熱管の製造装置。 The die has a cross-sectional shape at the cavity outlet that has less irregularities than the final shape of the resin coating layer, and at least the final set of a plurality of sets of molding roll units that are sequentially arranged in the transfer direction of the resin coating layer. 2. The apparatus for producing a heat transfer tube having corrosion resistance according to claim 1, wherein a molded part having the same shape as the final shape of the resin coating layer is provided on the roll surface of the molded roll unit. ダイスは、キャビディー出口の断面形状を樹脂被覆層の最終形状よりも凹凸の小さい形状とし、このダイスの、樹脂被覆層の移送方向に順次配置した複数組の成形ロールユニットの、少なくとも最終に配置された成形ロールユニットのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項2の耐食性を有する伝熱管の製造方法。 The die has a cross-sectional shape at the cavity outlet that has less irregularities than the final shape of the resin coating layer, and at least the final set of a plurality of sets of molding roll units that are sequentially arranged in the transfer direction of the resin coating layer. The method for producing a heat transfer tube having corrosion resistance according to claim 2, wherein a molded part having the same shape as the final shape of the resin coating layer is provided on the roll surface of the formed roll unit. ダイスは、キャビディー出口の断面形状を樹脂被覆層の冷却固化の際に不可避的に生じる収縮を考慮した最終形状と近似する形状とするとともに、成形ロールのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項1の耐食性を有する伝熱管の製造装置。 The die has a shape that approximates the cross-sectional shape of the Cavidy outlet to the final shape that takes into account the shrinkage that inevitably occurs during cooling and solidification of the resin coating layer, and the final shape of the resin coating layer on the roll surface of the molding roll. The apparatus for producing a heat transfer tube having corrosion resistance according to claim 1, wherein a molded portion having the same shape as that of the first embodiment is provided. ダイスは、キャビディー出口の断面形状を樹脂被覆層の冷却固化の際に不可避的に生じる収縮を考慮した最終形状と近似する形状とするとともに、成形ロールのロール面に、樹脂被覆層の最終形状と同一形状の成形部を設けた事を特徴とする請求項2の耐食性を有する伝熱管の製造方法。 The die has a shape that approximates the cross-sectional shape of the Cavidy outlet to the final shape that takes into account the shrinkage that inevitably occurs during cooling and solidification of the resin coating layer, and the final shape of the resin coating layer on the roll surface of the molding roll. The method for manufacturing a heat transfer tube having corrosion resistance according to claim 2, wherein a molded portion having the same shape as that of the first embodiment is provided.
JP2003335482A 2003-09-26 2003-09-26 Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance Expired - Fee Related JP4286096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003335482A JP4286096B2 (en) 2003-09-26 2003-09-26 Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003335482A JP4286096B2 (en) 2003-09-26 2003-09-26 Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance

Publications (2)

Publication Number Publication Date
JP2005096363A JP2005096363A (en) 2005-04-14
JP4286096B2 true JP4286096B2 (en) 2009-06-24

Family

ID=34462850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003335482A Expired - Fee Related JP4286096B2 (en) 2003-09-26 2003-09-26 Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance

Country Status (1)

Country Link
JP (1) JP4286096B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108274721A (en) * 2018-03-30 2018-07-13 漳州杰安塑料有限公司 A kind of three hole stirring rod molding dies

Also Published As

Publication number Publication date
JP2005096363A (en) 2005-04-14

Similar Documents

Publication Publication Date Title
JP2005098666A (en) Heat transfer tube with fin member
US4955435A (en) Heat exchanger fabricated from polymer compositions
KR960007986B1 (en) Comfort heat exchanger
US8584742B2 (en) Heat exchanger
US9561563B2 (en) Method for producing a heat exchanger for a motor vehicle and a heat exchanger for a motor vehicle
US4926933A (en) Method and apparatus relating to heat exchangers
JP4286096B2 (en) Manufacturing apparatus and manufacturing method of heat transfer tube having corrosion resistance
CN103998890B (en) The method and apparatus for forming heat-exchange tube
JP4703383B2 (en) Fin tube
JP2005077035A (en) Corrosion resisting heat transfer tube
US20220196330A1 (en) Hybrid heat exchanger
CN108500217A (en) A kind of automotive hub casting water cold mold
BRPI0715650A2 (en) manufacturing process of a heat exchanger tube, heat exchanger tube and heat exchanger
JP3937990B2 (en) Heat exchanger
US20100083501A1 (en) Continuous manufacturing process for metal-plastic hybrid heat exchanger
JP2005074908A (en) Device for manufacturing resin pipe having radial fin and its manufacturing method
JP4455912B2 (en) Fixing method for fin member of heat transfer tube with spiral fin
CN216100054U (en) Anti-sticking roller for processing biodegradable polyester material melt into sheet
KR20050018867A (en) the manufacturing equipment for molding of plastic multi-wall pipe
CA2063718C (en) Panel heat exchanger
JP2005147601A (en) Heat transfer tube having radial fin
JP4287713B2 (en) Cooling device using plate fin tube
JP2011252619A (en) Pipe for heat exchange
JPH0221198A (en) Heat exchanger
JP3723188B2 (en) Tube structure for hot water distribution in heating mat

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060919

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060921

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4286096

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees