JP4285900B2 - Cylinder head structure of internal combustion engine - Google Patents

Cylinder head structure of internal combustion engine Download PDF

Info

Publication number
JP4285900B2
JP4285900B2 JP2000325364A JP2000325364A JP4285900B2 JP 4285900 B2 JP4285900 B2 JP 4285900B2 JP 2000325364 A JP2000325364 A JP 2000325364A JP 2000325364 A JP2000325364 A JP 2000325364A JP 4285900 B2 JP4285900 B2 JP 4285900B2
Authority
JP
Japan
Prior art keywords
cylinder
passage side
head
cylinder head
side wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000325364A
Other languages
Japanese (ja)
Other versions
JP2002130047A (en
Inventor
淳郎 伊賀
哲雄 浦谷
良一 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yanmar Co Ltd
Original Assignee
Yanmar Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanmar Co Ltd filed Critical Yanmar Co Ltd
Priority to JP2000325364A priority Critical patent/JP4285900B2/en
Publication of JP2002130047A publication Critical patent/JP2002130047A/en
Application granted granted Critical
Publication of JP4285900B2 publication Critical patent/JP4285900B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4285Shape or arrangement of intake or exhaust channels in cylinder heads of both intake and exhaust channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F7/00Casings, e.g. crankcases or frames
    • F02F7/006Camshaft or pushrod housings
    • F02F2007/0063Head bolts; Arrangements of cylinder head bolts

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、シリンダヘッドとシリンダブロックの間からのガス漏れを防止することができる複数気筒を備えた内燃機関のシリンダヘッドの構造に関するものである。
【0002】
【従来の技術】
図12は、従来の内燃機関のシリンダヘッド200の縦断平面図である。また、図13は、図12のXIII−XIII断面図である。シリンダヘッド200とシリンダブロック94とは、1つの気筒の周りに6本のヘッドボルトが配置されて締結されている。例えば、図12の第1気筒では、ヘッドボルト86〜91によりシリンダヘッド200とシリンダブロック94とは締結されている。
【0003】
シリンダブロック94内の冷却水はシリンダヘッド200の水室93内へ流入する。水室93は、第1気筒側から第2気筒を経て第3気筒側まで連通している。冷却水は水室93内を第1気筒側から第3気筒側へと流れる。
【0004】
ヘッドボルト87と88の間隔は、ヘッドボルト86と87又は87と88の間隔よりも広い。したがって、ヘッドボルト87と88の中間付近のシリンダブロック94とシリンダヘッド200の間の面圧は、ヘッドボルト86と87の間の面圧よりも弱くなる。その結果、シリンダブロック94とシリンダヘッド200の間に形成された燃焼室(図示せず)内の高圧の燃焼ガスが漏れ易くなる。そこで、従来は、図12,13に示すように、シリンダヘッド200の水室93内のヘッドボルト87と88の間の下壁96に沿ってリブ92を配置し、シリンダヘッド200の下壁96を補強し、下壁96がたわみにくくなるようにして燃焼ガスの漏れを防止していた。
【0005】
【発明が解決しようとする課題】
しかし、ヘッドボルト87と88の距離が大きくなると、シリンダヘッド200とシリンダブロック94の間に所定以上の面圧を発生させることは困難であり、下壁96を補強して燃焼ガスの漏れに対応するにも限度がある。したがって、本発明では、シリンダヘッドとシリンダブロックとの間に燃焼ガスの漏れを防止することができる面圧を発生させることができる内燃機関のシリンダヘッド構造を提供することを課題としている。
【0006】
【課題を解決するための手段】
上記課題を解決するため、請求項1の発明では、複数気筒を備えた内燃機関において、シリンダヘッドに設けた水室内の隣接する気筒間の対向する一方の気筒の吸気通路側壁と他方の気筒の排気通路側壁の間に、前記水室の上壁と下壁のいずれにも当接してシリンダヘッドとシリンダブロックとを締結するヘッドボルトの締結力を分散させるリブを、隣接する気筒間の、一方の気筒の吸気通路側壁に設けた吸気通路側ボルトボス部、及び、前記一方の気筒の吸気通路側壁に対向する他方の気筒の排気通路側壁に設けた排気通路側ボルトボス部、に沿って、各々、設け、吸気通路側ボルトボス部と排気通路側壁側ボルトボス部に沿ってそれぞれ配置した前記各リブを、隣接する気筒の境界面と平行かつ異なる平面上に配置した。
請求項2の発明では、複数気筒を備えた内燃機関において、シリンダヘッドに設けた水室内の隣接する気筒間の対向する一方の気筒の吸気通路側壁と他方の気筒の排気通路側壁の間に、前記水室の上壁と下壁のいずれにも当接してシリンダヘッドとシリンダブロックとを締結するヘッドボルトの締結力を分散させるリブを、隣接する気筒間の、前記吸気通路側ボルトボス部及び排気通路側ボルトボス部の水室内における上端と、前記吸気通路側ボルトボス部と排気通路側ボルトボス部との間の水室下壁と、に当接するよう、V字形又は略V字形に設け、前記V字形又は略V字形のリブを、隣接する気筒間の対向する吸気通路側壁及び排気通路側壁に沿って配置し、隣接する気筒の境界面に直角な方向に前記V字形又は略V字形のリブに段差を設けることにより、冷却水が前記V字形又は略V字形のリブを通過し易くした。
【0007】
【発明の実施の形態】
図1は、本発明(請求項1、2の発明)を実施することができる複数気筒(ここでは3気筒)を備えた内燃機関のシリンダヘッド100の縦断斜視図である。また、図2はシリンダヘッド100の縦断平面図である。さらに、図3は図2のIII−III断面図である。
【0008】
図2に示すようにシリンダヘッド100の第1気筒部分には、第1気筒吸気ポート9と第1気筒排気ポート6とを備えている。第1気筒吸気ポート9には吸気バルブ通し孔18が設けてあり、この吸気バルブ通し孔18に図示しない吸気バルブを設置し、この吸気バルブを操作することにより第1気筒の吸気を司る。また、第1気筒排気ポート6には排気バルブ通し孔19が設けてあり、この排気バルブ通し孔19に図示しない排気バルブを配置し、この排気バルブを操作することにより第1気筒の排気を司る。
【0009】
空気は、第1気筒吸気通路20を通って第1気筒吸気ポート9から第1気筒へ供給される。また、燃焼室(図示せず)における燃焼後の排気ガスは、第1気筒排気ポート6から第1気筒排気通路23を通って図示しない排気管から外部へ排出される。
【0010】
シリンダヘッド100の第2気筒部分には、第1気筒部分と同様にそれぞれ第2気筒吸気ポート10,第2気筒排気ポート7,第2気筒吸気通路21及び第2気筒排気通路24を備えている。
【0011】
シリンダヘッド100の第3気筒部分にも、第1気筒部分及び第2気筒部分と同様にそれぞれ第3気筒吸気ポート11,第3気筒排気ポート8,第3気筒吸気通路22及び第3気筒排気通路25を備えている。
【0012】
複数のヘッドボルト(図3の符号26,27を付したヘッドボルトと同じ種類のヘッドボルト)が、水室1を仕切る側壁に設けたヘッドボルト通し孔14〜17を貫通してシリンダブロック99のねじ孔又はねじ穴に螺合し、シリンダヘッド100とシリンダブロック99とが締結されている。
【0013】
また、第1気筒吸気ポート9の第2気筒側の側壁には気筒間ヘッドボルト通し孔13が設けてある。さらに第2気筒排気ポート7の第1気筒側の側壁には気筒間ヘッドボルト通し孔12が設けてある。これら気筒間ヘッドボルト通し孔12,13にヘッドボルト26,27を貫通させ、シリンダブロック99(図3)のねじ孔又はねじ穴と螺合させる。特に、このヘッドボルト26,27の締結位置は、第1気筒のボアと第2気筒のボアの間であるので、ボア間と呼ばれている。
【0014】
第2気筒部分は、第1気筒部分と第3気筒部分の間に位置しているので、4つの気筒間ヘッドボルト通し孔と2つのヘッドボルト通し孔にそれぞれヘッドボルトを貫通させシリンダブロック99と螺合させる。
【0015】
第3気筒部分は、第1気筒部分と同じく、2つの気筒間ヘッドボルト通し孔と4つのヘッドボルト通し孔にそれぞれヘッドボルトを貫通させシリンダブロック99と螺合させる。
【0016】
第1気筒部分と第2気筒部分の間(ボア間)のヘッドボルト26と27の締結力を、なるべくヘッドボルト26,27の締結位置の中央付近にまで及ぼすため、水室1の上壁4と下壁5の両方に当接するリブ2及び3を設ける。図1に示すように、ヘッドボルト26と27(図3)を通す気筒間ヘッドボルト通し孔12,13を設けたボルトボス部12a,13aに沿って配置すると、ボルトボス部12a,13aが補強され、かつヘッドボルト26,27の締付力がリブ2,3を介して広範囲に伝達され易くなる。
【0017】
このリブ2,3の材質には、シリンダヘッド100と同じ材質(例えば、FC250〜280)を選定する。このリブ2,3を設けることにより、ヘッドボルト26,27の締結力はボア間の中央付近に及び易くなる。その結果、シリンダヘッド100とシリンダブロック99の面圧が大きくなり、燃焼ガスが漏れにくくなる。
【0018】
図4は、図2のリブ2,3とは別のリブ30,31を設けた内燃機関のシリンダヘッド100の縦断平面図である。シリンダヘッド100そのものは図2のシリンダヘッド100と何ら変わりはない。
【0019】
リブ30は、第1気筒吸気ポート9の側壁と、第2気筒の気筒間ヘッドボルト通し孔12を設けたボルトボス部12aに沿って設けてある。リブ31は、ボルトボス部13aに沿って設けてある。
【0020】
図5は、図4のV−V断面図である。リブ30,31は図2のリブ2,3と同様に、上壁4から下壁5まで真っ直ぐに水室1の壁面(第1気筒吸気ポート9の側壁,ボルトボス部12a,13aの側壁)に沿って設置されている。
【0021】
図2に示すリブ2とリブ3は、第1気筒と第2気筒の境界面(図2に一点鎖線で示す)に直角方向にずらして配置されている。したがって、図2に示すリブ2,3を配置すると、冷却水の流れをあまり阻害せずに済む。
【0022】
また、図4に示すリブ30とリブ31は、どちらも第1気筒と第2気筒の境界面(図2に一点鎖線で示す)上に配置されており、図2のリブ2,3と比較して、ヘッドボルト26,27の締付力をボア間の中央付近まで及ぼし易くなり、その結果、シリンダヘッド100とシリンダブロック99の間から燃焼ガスが漏れることを防止し易くなる。
【0023】
また、図2及び図4のいずれの場合においても、片方のリブのみ(例えば図2ではリブ2又はリブ3、図4ではリブ30又はリブ31のいずれか)を設置するようにしてもよい。第2気筒と第3気筒の間にも、第1気筒と第2気筒の間と同様にリブを配置する。
【0024】
図6は、図2,図4とは異なるリブ32を配置したシリンダヘッド100の縦断平面図である。図7は、図6のVII−VII断面図である。図7に示すようにリブ32の形状は略V字形であり、両端が上壁4に当接しており、中央部分が下壁5に当接している。
【0025】
また図8は、図6のリブ32をリブ33に置き換えたシリンダヘッド100の縦断平面図である。また、図9は図8のIX−IX断面図である。リブ33の形状は、リブ32と同様に略V字形であるが、図8,図9に示すように中央部分で段差が設けてある点のみがリブ32と異なる。
【0026】
図6のようなリブ32を設けると、図2,図4に示すような真っ直ぐな形状のリブを水室1の鉛直方向に設けるよりもヘッドボルト26,27の締付力をボア間中央部に伝達し易く、したがって、シリンダヘッド100とシリンダブロック99の間の面圧を大きくすることができ、燃焼ガスの漏れを良好に防止することができる。また、図8,図9に示すようにリブ33の中央付近に段差を設けると、冷却水がリブ33を通過し易くなる。
【0027】
さらに、図6に示すリブ32のように、両端部がボルトボス部12a,13aと上壁4に当接し、中央部が下壁5に当接するようにすると、ヘッドボルト26,27の締付力を下壁5へ伝達し易くなる。
【0028】
また、第1気筒吸気ポート9の側壁と第2気筒排気ポート7の側壁に沿ってリブ32(図6)を設けるようにすると、ボア径が100mm以下の内燃機関のシリンダヘッド100にも対応することができる。
【0029】
図10は、前述のリブとは異なるリブ34を配置した内燃機関のシリンダヘッド100の縦断平面図である。また、図11は図10のXI−XI断面図である。リブ34は、第1気筒吸気ポート9の側壁と第2気筒排気ポートの側壁の両方に当接しながら上壁4と下壁5に当接している。このようにリブ34を配置すれば、ボア径が100mm以下の内燃機関のシリンダヘッド100で、各ポートの側壁間の隙間が非常に狭い場合においてもヘッドボルト26,27の締付力をボア間の中央部に伝達することができ、シリンダヘッド100とシリンダブロック99の間の面圧を大きくすることができる。
【0030】
図2〜図11に示すようなリブを設けると、ボア間の中央付近におけるシリンダヘッド100とシリンダブロック99の間の面圧を10〜40%程度向上させることができる。
【0031】
【発明の効果】
請求項1、2の発明によると、水室1の上壁4と下壁5のいずれにも当接するリブを設けることにより、シリンダヘッド100とシリンダブロック99とを締結するヘッドボルト26,27の締付力をボア間の中央方向へ分散させることができるので、ボア間の中央部分におけるシリンダヘッド100とシリンダブロック99の間の面圧を向上させることができ、この部分における燃焼ガスの漏れを防止することができる。
【0032】
リブ2,3は、ボア間のいずれの位置に設けても面圧を向上させることができるが、特にボルトボス部12a,13aに沿って設けるとヘッドボルト26,27の締付力が伝達され易く面圧向上の効果を大きくすることができる。
【0033】
請求項の発明によると、第1気筒吸気ポート9の側壁に設けたボルトボス部13a(吸気通路側ボルトボス部)と、第2気筒排気ポート7の側壁に設けたボルトボス部12a(排気通路側ボルトボス部)に沿ってそれぞれリブ2,3を設けるようにしたので、ボア径が100mm以上の内燃機関のシリンダヘッド100においても間隔の広いヘッドボルト26,27の締付力をボア間の中央方向に分散させてシリンダヘッド100とシリンダブロック99の間の面圧を向上させることができ、燃焼ガスの漏れを良好に防止することができる。
【0034】
ここで、吸気通路側ボルトボス部を第1気筒吸気ポート9の側壁に設けたボルトボス部13aと称し、また、排気通路側ボルトボス部を第2気筒排気ポート7の側壁に設けたボルトボス部12aと称したが、これは第1気筒と第2気筒の間を例にとって説明したものであり、第2気筒と第3気筒の間においてもリブを設けることにより上述の効果を奏することができる。
【0035】
【0036】
請求項の発明によると、第1気筒吸気ポート9の側壁に設けたボルトボス部13a(吸気通路側ボルトボス部)と、第2気筒排気ポート7の側壁に設けたボルトボス部12a(排気通路側ボルトボス部)に沿って設けたリブ2,3を段違いに、つまり、隣接する気筒の境界面(ボア間に一点鎖線で示す)に直角の方向にずれる異なる平面上に配置したので、水室1内を流れる冷却水がリブ2,3を通過し易くなる。
【0037】
請求項の発明によると、V字形のリブ33を設けたので、水室1に垂直にリブをボア間の中央へヘッドボルト26,27の締付力を伝達し易くなり、シリンダヘッド100とシリンダブロック99の間の面圧を向上させることができるので、燃焼ガスの漏れを良好に防止することができる。リブ33の形状はV字形,略V字形のいずれであっても同様の効果を奏することができる。
【0038】
請求項の発明によると、V字形のリブ33を隣接する気筒に対向する吸気通路の側壁及び排気通路の側壁に沿って配置するようにしたので、ボア径が100mm以下の比較的小さな内燃機関のシリンダヘッド100にも効果的に適用することができる。
【0039】
請求項の発明によると、隣接する気筒の境界面に直角な方向(第1気筒〜第3気筒が並ぶ方向)に段差を設けたV字形のリブ33を設けたので、冷却水がリブ33を通過し易くなる。そして、リブ32を設けるよりもシリンダヘッド100の軽量化を図ることができる。
【0040】
【図面の簡単な説明】
【図1】請求項1、2の発明を実施することができる内燃機関のシリンダヘッドの縦断斜視図である。
【図2】シリンダヘッドの縦断平面図である。
【図3】図2のIII−III断面図である。
【図4】図2は異なるリブを備えたシリンダヘッドの縦断平面図である。
【図5】図4のV−V断面図である。
【図6】図2及び図4とは異なるリブを備えたシリンダヘッドの縦断平面図である。
【図7】図6のVII−VII断面図である。
【図8】図2,図4及び図6とは異なるリブを備えたシリンダヘッドの縦断平面図である。
【図9】図8のIX−IX断面図である。
【図10】図2〜図9とは異なるリブを備えたシリンダヘッドの縦断平面図である。
【図11】図10のXI−XI断面図である。
【図12】従来のリブを備えたシリンダヘッドの縦断平面図である。
【図13】図12のXIII−XIII断面図である。
【符号の説明】
1 水室
2,3 リブ
4 上壁
5 下壁
6,7,8 第1,第2,第3気筒排気ポート
9,10,11 第1,第2,第3気筒吸気ポート
12,13 気筒間ヘッドボルト通し孔
12a,13a ヘッドボルトボス部
14〜17 ヘッドボルト通し孔
20,21,22 第1,第2,第3気筒吸気通路
23,24,25 第1,第2,第3気筒排気通路
26,27 ヘッドボルト
30〜34 リブ
99 シリンダブロック
100 シリンダヘッド
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a cylinder head of an internal combustion engine having a plurality of cylinders that can prevent gas leakage from between a cylinder head and a cylinder block.
[0002]
[Prior art]
FIG. 12 is a longitudinal plan view of a cylinder head 200 of a conventional internal combustion engine. FIG. 13 is a sectional view taken along line XIII-XIII in FIG. The cylinder head 200 and the cylinder block 94 are fastened with six head bolts arranged around one cylinder. For example, in the first cylinder of FIG. 12, the cylinder head 200 and the cylinder block 94 are fastened by the head bolts 86 to 91.
[0003]
Cooling water in the cylinder block 94 flows into the water chamber 93 of the cylinder head 200. The water chamber 93 communicates from the first cylinder side through the second cylinder to the third cylinder side. The cooling water flows in the water chamber 93 from the first cylinder side to the third cylinder side.
[0004]
The distance between the head bolts 87 and 88 is wider than the distance between the head bolts 86 and 87 or 87 and 88. Therefore, the surface pressure between the cylinder block 94 and the cylinder head 200 near the middle between the head bolts 87 and 88 is lower than the surface pressure between the head bolts 86 and 87. As a result, high-pressure combustion gas in a combustion chamber (not shown) formed between the cylinder block 94 and the cylinder head 200 is likely to leak. Therefore, conventionally, as shown in FIGS. 12 and 13, a rib 92 is disposed along the lower wall 96 between the head bolts 87 and 88 in the water chamber 93 of the cylinder head 200, and the lower wall 96 of the cylinder head 200 is arranged. The lower wall 96 is made difficult to bend to prevent the combustion gas from leaking.
[0005]
[Problems to be solved by the invention]
However, when the distance between the head bolts 87 and 88 increases, it is difficult to generate a surface pressure exceeding a predetermined value between the cylinder head 200 and the cylinder block 94, and the lower wall 96 is reinforced to cope with combustion gas leakage. There is a limit to doing it. Accordingly, an object of the present invention is to provide a cylinder head structure for an internal combustion engine that can generate a surface pressure that can prevent leakage of combustion gas between the cylinder head and the cylinder block.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problem, according to the first aspect of the present invention, in an internal combustion engine having a plurality of cylinders, the intake passage side wall of one cylinder and the other cylinder facing each other between adjacent cylinders in a water chamber provided in the cylinder head are provided. A rib that disperses the fastening force of the head bolt that fastens the cylinder head and the cylinder block by contacting both the upper wall and the lower wall of the water chamber between the side walls of the exhaust passage, between adjacent cylinders, An intake passage side bolt boss provided on the intake passage side wall of one cylinder, and an exhaust passage side bolt boss provided on the exhaust passage side wall of the other cylinder facing the intake passage side wall of the one cylinder, respectively The ribs arranged along the intake passage side bolt boss portion and the exhaust passage side wall side bolt boss portion are arranged on a different plane parallel to the boundary surface of the adjacent cylinder.
In the invention of claim 2, in an internal combustion engine having a plurality of cylinders, between the intake passage side wall and the exhaust passage side wall of the other cylinder of one cylinder facing between adjacent cylinders of the water chamber provided in the cylinder head the ribs to distribute the fastening force of the head bolt for fastening the cylinder head and the cylinder block also in contact with the one of the upper wall and the lower wall of the water chamber, between adjacent cylinders, the intake passage side bolt boss portion and V-shaped or substantially V-shaped so as to come into contact with the upper end of the exhaust passage side bolt boss portion in the water chamber and the water chamber lower wall between the intake passage side bolt boss portion and the exhaust passage side bolt boss portion, A V-shaped or substantially V-shaped rib is disposed along the opposing intake passage side wall and exhaust passage side wall between adjacent cylinders, and the V-shaped or substantially V-shaped rib is formed in a direction perpendicular to the boundary surface between adjacent cylinders. Step By providing the cooling water was easily passed through the ribs of the V-shaped or substantially V-shaped.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a vertical perspective view of a cylinder head 100 of an internal combustion engine having a plurality of cylinders (here, three cylinders) capable of carrying out the present invention (the inventions of claims 1 and 2 ). FIG. 2 is a longitudinal plan view of the cylinder head 100. 3 is a cross-sectional view taken along the line III-III in FIG.
[0008]
As shown in FIG. 2, the first cylinder portion of the cylinder head 100 includes a first cylinder intake port 9 and a first cylinder exhaust port 6. The first cylinder intake port 9 is provided with an intake valve through hole 18. An intake valve (not shown) is installed in the intake valve through hole 18, and the intake of the first cylinder is controlled by operating the intake valve. The first cylinder exhaust port 6 is provided with an exhaust valve through hole 19. An exhaust valve (not shown) is disposed in the exhaust valve through hole 19, and the exhaust of the first cylinder is controlled by operating the exhaust valve. .
[0009]
Air is supplied from the first cylinder intake port 9 to the first cylinder through the first cylinder intake passage 20. Further, the exhaust gas after combustion in the combustion chamber (not shown) is discharged from the first cylinder exhaust port 6 through the first cylinder exhaust passage 23 to the outside through an exhaust pipe (not shown).
[0010]
Similar to the first cylinder portion, the second cylinder portion of the cylinder head 100 includes a second cylinder intake port 10, a second cylinder exhaust port 7, a second cylinder intake passage 21, and a second cylinder exhaust passage 24, respectively. .
[0011]
Similarly to the first cylinder portion and the second cylinder portion, the third cylinder intake port 11, the third cylinder exhaust port 8, the third cylinder intake passage 22, and the third cylinder exhaust passage are also provided in the third cylinder portion of the cylinder head 100. 25.
[0012]
A plurality of head bolts (the head bolts of the same type as the head bolts denoted by reference numerals 26 and 27 in FIG. 3) pass through the head bolt through holes 14 to 17 provided on the side wall partitioning the water chamber 1 and the cylinder block 99. The cylinder head 100 and the cylinder block 99 are fastened by screwing into the screw holes or screw holes.
[0013]
An inter-cylinder head bolt through hole 13 is provided on the side wall of the first cylinder intake port 9 on the second cylinder side. Further, an inter-cylinder head bolt through hole 12 is provided on the side wall of the second cylinder exhaust port 7 on the first cylinder side. The head bolts 26 and 27 are passed through the inter-cylinder head bolt through holes 12 and 13 and screwed into the screw holes or screw holes of the cylinder block 99 (FIG. 3). In particular, the fastening position of the head bolts 26 and 27 is between the bores of the first cylinder and the second cylinder, and is therefore called between the bores.
[0014]
Since the second cylinder portion is located between the first cylinder portion and the third cylinder portion, the head bolts are passed through the four inter-cylinder head bolt through holes and the two head bolt through holes, respectively. Screw together.
[0015]
As in the first cylinder portion, the third cylinder portion is threaded into the cylinder block 99 by passing the head bolt through the two cylinder head bolt through holes and the four head bolt through holes, respectively.
[0016]
In order to exert the fastening force of the head bolts 26 and 27 between the first cylinder part and the second cylinder part (between the bores) as close to the center of the fastening position of the head bolts 26 and 27 as possible, the upper wall 4 of the water chamber 1 And ribs 2 and 3 that contact both the lower wall 5 and the lower wall 5 are provided. As shown in FIG. 1, when the bolt bosses 12a and 13a are provided along the cylinder head bolt through holes 12 and 13 through which the head bolts 26 and 27 (FIG. 3) are passed, the bolt bosses 12a and 13a are reinforced. In addition, the tightening force of the head bolts 26 and 27 is easily transmitted over a wide range via the ribs 2 and 3.
[0017]
As the material of the ribs 2 and 3, the same material as the cylinder head 100 (for example, FC 250 to 280) is selected. By providing the ribs 2 and 3, the fastening force of the head bolts 26 and 27 can easily reach the vicinity of the center between the bores. As a result, the surface pressure of the cylinder head 100 and the cylinder block 99 increases, and the combustion gas is difficult to leak.
[0018]
FIG. 4 is a longitudinal plan view of the cylinder head 100 of the internal combustion engine provided with ribs 30 and 31 different from the ribs 2 and 3 of FIG. The cylinder head 100 itself is not different from the cylinder head 100 of FIG.
[0019]
The rib 30 is provided along the side wall of the first cylinder intake port 9 and the bolt boss portion 12a provided with the inter-cylinder head bolt through hole 12 of the second cylinder. The rib 31 is provided along the bolt boss portion 13a.
[0020]
5 is a cross-sectional view taken along the line VV in FIG. The ribs 30 and 31 are straight from the upper wall 4 to the lower wall 5 on the wall surface of the water chamber 1 (the side wall of the first cylinder intake port 9 and the side wall of the bolt boss portions 12a and 13a), similarly to the ribs 2 and 3 in FIG. It is installed along.
[0021]
The rib 2 and the rib 3 shown in FIG. 2 are arranged so as to be shifted in the direction perpendicular to the boundary surface (indicated by a one-dot chain line in FIG. 2) between the first cylinder and the second cylinder. Therefore, when the ribs 2 and 3 shown in FIG. 2 are arranged, the flow of the cooling water is not significantly disturbed.
[0022]
Also, the rib 30 and the rib 31 shown in FIG. 4 are both arranged on the boundary surface between the first cylinder and the second cylinder (indicated by a one-dot chain line in FIG. 2), and compared with the ribs 2 and 3 in FIG. Thus, the tightening force of the head bolts 26 and 27 is easily applied to the vicinity of the center between the bores, and as a result, it is easy to prevent the combustion gas from leaking between the cylinder head 100 and the cylinder block 99.
[0023]
2 and 4, only one of the ribs (for example, either rib 2 or rib 3 in FIG. 2 or rib 30 or rib 31 in FIG. 4) may be provided. A rib is also disposed between the second cylinder and the third cylinder in the same manner as between the first cylinder and the second cylinder.
[0024]
6 is a longitudinal plan view of the cylinder head 100 in which ribs 32 different from those in FIGS. 2 and 4 are arranged. 7 is a sectional view taken along line VII-VII in FIG. As shown in FIG. 7, the shape of the rib 32 is substantially V-shaped, both ends are in contact with the upper wall 4, and the center portion is in contact with the lower wall 5.
[0025]
8 is a longitudinal plan view of the cylinder head 100 in which the rib 32 of FIG. 9 is a cross-sectional view taken along the line IX-IX in FIG. The shape of the rib 33 is substantially V-shaped like the rib 32, but differs from the rib 32 only in that a step is provided at the center as shown in FIGS. 8 and 9.
[0026]
When the rib 32 as shown in FIG. 6 is provided, the tightening force of the head bolts 26 and 27 is more centrally provided between the bores than when the straight rib as shown in FIGS. 2 and 4 is provided in the vertical direction of the water chamber 1. Therefore, the surface pressure between the cylinder head 100 and the cylinder block 99 can be increased, and combustion gas leakage can be satisfactorily prevented. Further, when a step is provided near the center of the rib 33 as shown in FIGS. 8 and 9, the cooling water easily passes through the rib 33.
[0027]
Further, when the both ends are in contact with the bolt bosses 12a and 13a and the upper wall 4 and the center is in contact with the lower wall 5 as in the rib 32 shown in FIG. Is easily transmitted to the lower wall 5.
[0028]
If ribs 32 (FIG. 6) are provided along the side wall of the first cylinder intake port 9 and the side wall of the second cylinder exhaust port 7, the cylinder head 100 of an internal combustion engine having a bore diameter of 100 mm or less is also supported. be able to.
[0029]
FIG. 10 is a longitudinal plan view of a cylinder head 100 of an internal combustion engine in which ribs 34 different from the aforementioned ribs are arranged. FIG. 11 is a sectional view taken along line XI-XI in FIG. The rib 34 is in contact with the upper wall 4 and the lower wall 5 while being in contact with both the side wall of the first cylinder intake port 9 and the side wall of the second cylinder exhaust port. If the ribs 34 are arranged in this way, the tightening force of the head bolts 26 and 27 can be reduced between the bores even in the case of a cylinder head 100 of an internal combustion engine having a bore diameter of 100 mm or less and the gap between the side walls of each port is very narrow. The surface pressure between the cylinder head 100 and the cylinder block 99 can be increased.
[0030]
When the ribs as shown in FIGS. 2 to 11 are provided, the surface pressure between the cylinder head 100 and the cylinder block 99 near the center between the bores can be improved by about 10 to 40%.
[0031]
【The invention's effect】
According to the first and second aspects of the present invention, the head bolts 26 and 27 for fastening the cylinder head 100 and the cylinder block 99 are provided by providing ribs that come into contact with both the upper wall 4 and the lower wall 5 of the water chamber 1. Since the tightening force can be distributed in the central direction between the bores, the surface pressure between the cylinder head 100 and the cylinder block 99 in the central portion between the bores can be improved, and combustion gas leakage in this portion can be reduced. Can be prevented.
[0032]
The ribs 2 and 3 can improve the surface pressure regardless of the position between the bores. However, when the ribs 2 and 3 are provided along the bolt boss portions 12a and 13a, the tightening force of the head bolts 26 and 27 is easily transmitted. The effect of improving the surface pressure can be increased.
[0033]
According to the first aspect of the present invention, the bolt boss portion 13a (intake passage side bolt boss portion) provided on the side wall of the first cylinder intake port 9 and the bolt boss portion 12a (exhaust passage side bolt boss) provided on the side wall of the second cylinder exhaust port 7 are provided. In the cylinder head 100 of the internal combustion engine having a bore diameter of 100 mm or more, the tightening force of the head bolts 26 and 27 having a wide interval is provided in the central direction between the bores. The surface pressure between the cylinder head 100 and the cylinder block 99 can be improved by being dispersed, and combustion gas leakage can be satisfactorily prevented.
[0034]
Here, the intake passage side bolt boss portion is referred to as a bolt boss portion 13 a provided on the side wall of the first cylinder intake port 9, and the exhaust passage side bolt boss portion is referred to as a bolt boss portion 12 a provided on the side wall of the second cylinder exhaust port 7. However, this has been described by taking the area between the first cylinder and the second cylinder as an example, and the above-described effects can be achieved by providing ribs between the second cylinder and the third cylinder.
[0035]
[0036]
According to the first aspect of the present invention, the bolt boss portion 13a (intake passage side bolt boss portion) provided on the side wall of the first cylinder intake port 9 and the bolt boss portion 12a (exhaust passage side bolt boss) provided on the side wall of the second cylinder exhaust port 7 are provided. The ribs 2 and 3 provided along the section) are arranged in different steps, that is, on different planes shifted in a direction perpendicular to the boundary surface between adjacent cylinders (indicated by a one-dot chain line between the bores). It becomes easy for the cooling water flowing through the ribs 2 and 3 to pass through.
[0037]
According to the second aspect of the present invention, since the V-shaped rib 33 is provided, it becomes easy to transmit the tightening force of the head bolts 26 and 27 to the center between the bores perpendicular to the water chamber 1. Since the surface pressure between the cylinder blocks 99 can be improved, combustion gas leakage can be prevented satisfactorily. Even if the rib 33 is V-shaped or substantially V-shaped, the same effect can be obtained.
[0038]
According to the invention of claim 2 , since the V-shaped rib 33 is arranged along the side wall of the intake passage and the side of the exhaust passage facing the adjacent cylinder, the internal combustion engine having a relatively small bore diameter of 100 mm or less. The present invention can also be effectively applied to the cylinder head 100.
[0039]
According to the second aspect of the present invention, since the V-shaped rib 33 having steps in the direction perpendicular to the boundary surface between adjacent cylinders (the direction in which the first to third cylinders are arranged) is provided, the cooling water is supplied to the rib 33. It becomes easy to pass through. In addition, the cylinder head 100 can be lighter than the ribs 32 provided.
[0040]
[Brief description of the drawings]
FIG. 1 is a vertical perspective view of a cylinder head of an internal combustion engine capable of implementing the first and second aspects of the invention.
FIG. 2 is a longitudinal plan view of a cylinder head.
3 is a sectional view taken along line III-III in FIG.
The [4] 2 is a longitudinal plan view of a cylinder head having a different rib.
5 is a cross-sectional view taken along line VV in FIG.
6 is a longitudinal plan view of a cylinder head having ribs different from those in FIGS. 2 and 4. FIG.
7 is a cross-sectional view taken along the line VII-VII of FIG.
8 is a longitudinal plan view of a cylinder head provided with ribs different from those in FIGS. 2, 4 and 6. FIG.
9 is a cross-sectional view taken along the line IX-IX in FIG.
10 is a longitudinal plan view of a cylinder head provided with ribs different from those shown in FIGS.
11 is a cross-sectional view taken along the line XI-XI in FIG.
FIG. 12 is a longitudinal plan view of a cylinder head having a conventional rib.
13 is a sectional view taken along line XIII-XIII in FIG.
[Explanation of symbols]
1 Water chamber 2, 3 Rib 4 Upper wall 5 Lower wall 6, 7, 8 1st, 2nd, 3rd cylinder exhaust port 9, 10, 11 Between 1st, 2nd, 3rd cylinder intake port 12, 13 cylinder Head bolt through holes 12a, 13a Head bolt boss portions 14-17 Head bolt through holes 20, 21, 22 First, second and third cylinder intake passages 23, 24, 25 First, second and third cylinder exhaust passages 26, 27 Head bolt 30 to 34 Rib 99 Cylinder block 100 Cylinder head

Claims (2)

複数気筒を備えた内燃機関において、
シリンダヘッドに設けた水室内の隣接する気筒間の対向する一方の気筒の吸気通路側壁と他方の気筒の排気通路側壁の間に、前記水室の上壁と下壁のいずれにも当接してシリンダヘッドとシリンダブロックとを締結するヘッドボルトの締結力を分散させるリブを、
隣接する気筒間の、一方の気筒の吸気通路側壁に設けた吸気通路側ボルトボス部、及び、前記一方の気筒の吸気通路側壁に対向する他方の気筒の排気通路側壁に設けた排気通路側ボルトボス部、に沿って、各々、設け、
吸気通路側ボルトボス部と排気通路側壁側ボルトボス部に沿ってそれぞれ配置した前記各リブを、隣接する気筒の境界面と平行かつ異なる平面上に配置したことを特徴とする内燃機関のシリンダヘッド構造。
In an internal combustion engine with multiple cylinders,
Between the intake passage side wall and the exhaust passage side wall of the other cylinder of one cylinder facing between adjacent cylinders of the water chamber provided in the cylinder head, also in contact with the one of the upper wall and the lower wall of the water chamber The rib that disperses the fastening force of the head bolt that fastens the cylinder head and the cylinder block
Between adjacent cylinders, an intake passage side bolt boss provided on the intake passage side wall of one cylinder and an exhaust passage side bolt boss provided on the exhaust passage side wall of the other cylinder facing the intake passage side wall of the one cylinder , Along each,
A cylinder head structure for an internal combustion engine, characterized in that each of the ribs arranged along the intake passage side bolt boss portion and the exhaust passage side wall side bolt boss portion is arranged on a plane parallel to and different from the boundary surface between adjacent cylinders .
複数気筒を備えた内燃機関において、
シリンダヘッドに設けた水室内の隣接する気筒間の対向する一方の気筒の吸気通路側壁と他方の気筒の排気通路側壁の間に、前記水室の上壁と下壁のいずれにも当接してシリンダヘッドとシリンダブロックとを締結するヘッドボルトの締結力を分散させるリブを、
隣接する気筒間の、前記吸気通路側ボルトボス部及び排気通路側ボルトボス部の水室内における上端と、前記吸気通路側ボルトボス部と排気通路側ボルトボス部との間の水室下壁と、に当接するよう、V字形又は略V字形に設け、
前記V字形又は略V字形のリブを、隣接する気筒間の対向する吸気通路側壁及び排気通路側壁に沿って配置し、
隣接する気筒の境界面に直角な方向に前記V字形又は略V字形のリブに段差を設けることにより、冷却水が前記V字形又は略V字形のリブを通過し易くしたことを特徴とする内燃機関のシリンダヘッド構造。
In an internal combustion engine with multiple cylinders,
Between the intake passage side wall and the exhaust passage side wall of the other cylinder of one cylinder facing between adjacent cylinders of the water chamber provided in the cylinder head, also in contact with the one of the upper wall and the lower wall of the water chamber The rib that disperses the fastening force of the head bolt that fastens the cylinder head and the cylinder block
Abutting between the upper ends of the intake passage side bolt boss portion and the exhaust passage side bolt boss portion in the water chamber and the water chamber lower wall between the intake passage side bolt boss portion and the exhaust passage side bolt boss portion between adjacent cylinders. So as to be V-shaped or substantially V-shaped,
The V-shaped or substantially V-shaped ribs are disposed along opposing intake and exhaust passage sidewalls between adjacent cylinders;
An internal combustion engine characterized in that cooling water can easily pass through the V-shaped or substantially V-shaped rib by providing a step in the V-shaped or substantially V-shaped rib in a direction perpendicular to the boundary surface between adjacent cylinders. Engine cylinder head structure.
JP2000325364A 2000-10-25 2000-10-25 Cylinder head structure of internal combustion engine Expired - Fee Related JP4285900B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000325364A JP4285900B2 (en) 2000-10-25 2000-10-25 Cylinder head structure of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000325364A JP4285900B2 (en) 2000-10-25 2000-10-25 Cylinder head structure of internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002130047A JP2002130047A (en) 2002-05-09
JP4285900B2 true JP4285900B2 (en) 2009-06-24

Family

ID=18802743

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000325364A Expired - Fee Related JP4285900B2 (en) 2000-10-25 2000-10-25 Cylinder head structure of internal combustion engine

Country Status (1)

Country Link
JP (1) JP4285900B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5310643B2 (en) * 2010-04-28 2013-10-09 三菱自動車工業株式会社 cylinder head

Also Published As

Publication number Publication date
JP2002130047A (en) 2002-05-09

Similar Documents

Publication Publication Date Title
JP4923036B2 (en) Exhaust gas recirculation device for internal combustion engine
US8079350B2 (en) Blow-by gas recirculation structure for internal combustion engine
KR100482120B1 (en) water jacket for cylinder head
JP2003074430A (en) Intake device for multicylinder engine
JP4285900B2 (en) Cylinder head structure of internal combustion engine
JPS6213759A (en) Cooling water passage structure in cylinder head for internal-combustion engine
JP3618593B2 (en) Structure of cylinder head in internal combustion engine
JP2008057359A (en) Exhaust gas recirculation device of engine
KR20090063993A (en) Cylinder head and cylinder head gasket
WO2020095965A1 (en) Intake structure of internal combustion engine
JP3547917B2 (en) Exhaust gas recirculation system for 4-cylinder internal combustion engine
US7966986B2 (en) Cylinder head
JP7131309B2 (en) Intake structure of internal combustion engine
JP2753787B2 (en) Cylinder head for water-cooled multi-cylinder diesel engine
JPH0115877Y2 (en)
JP7471346B2 (en) Cylinder head structure
JP3637637B2 (en) Engine cylinder head structure
JP3235795B2 (en) Engine cylinder structure
JP2753785B2 (en) Cylinder head for water-cooled multi-cylinder diesel engine
JP3165878B2 (en) Cylinder head for water-cooled multi-cylinder diesel engine
JPH11173209A (en) Cylinder block
JP2753788B2 (en) Cylinder head for water-cooled multi-cylinder diesel engine
JPH0218418B2 (en)
JP6779222B2 (en) Auxiliary air assembly for the engine
KR200142723Y1 (en) Vent structure for intake manifold flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090324

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees