JP4285193B2 - Exhaust gas purification device for internal combustion engine - Google Patents

Exhaust gas purification device for internal combustion engine Download PDF

Info

Publication number
JP4285193B2
JP4285193B2 JP2003364865A JP2003364865A JP4285193B2 JP 4285193 B2 JP4285193 B2 JP 4285193B2 JP 2003364865 A JP2003364865 A JP 2003364865A JP 2003364865 A JP2003364865 A JP 2003364865A JP 4285193 B2 JP4285193 B2 JP 4285193B2
Authority
JP
Japan
Prior art keywords
nox
temperature
storage catalyst
catalyst
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003364865A
Other languages
Japanese (ja)
Other versions
JP2005127248A (en
Inventor
孝充 浅沼
信也 広田
泰彰 仲野
俊祐 利岡
耕平 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003364865A priority Critical patent/JP4285193B2/en
Publication of JP2005127248A publication Critical patent/JP2005127248A/en
Application granted granted Critical
Publication of JP4285193B2 publication Critical patent/JP4285193B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は内燃機関の排気浄化装置に関する。   The present invention relates to an exhaust emission control device for an internal combustion engine.

リーン空燃比のもとで燃焼が行われている時に排気ガス中に含まれるNOxを浄化するための触媒として、アルミナからなる担体の表面上にアルカリ金属あるいはアルカリ土類からなるNOx吸収剤の層を形成し、更に白金のような貴金属触媒を担体表面上に担持した触媒が公知である(例えば特許文献1参照)。この触媒では触媒が活性化すると排気ガスの空燃比がリーンの時には排気ガス中に含まれるNOxがNOx吸収剤内に吸蔵され、排気ガスの空燃比がリッチにされるとNOx吸収剤に吸蔵されていたNOxが放出され、還元される。   As a catalyst for purifying NOx contained in exhaust gas when combustion is performed under a lean air-fuel ratio, a layer of NOx absorbent made of alkali metal or alkaline earth on the surface of a carrier made of alumina. And a catalyst in which a noble metal catalyst such as platinum is supported on the surface of the support is known (see, for example, Patent Document 1). In this catalyst, when the catalyst is activated, NOx contained in the exhaust gas is stored in the NOx absorbent when the air-fuel ratio of the exhaust gas is lean, and is stored in the NOx absorbent when the air-fuel ratio of the exhaust gas is made rich. The NOx that has been released is released and reduced.

ところでこのようなNOxの吸放出作用は触媒が活性化していないと行われないと考えられており、したがってこの特許文献1に記載された内燃機関では触媒が活性化していない時には電気ヒータにより触媒を加熱するようにしている。   By the way, it is considered that such NOx absorption / release action is not performed unless the catalyst is activated. Therefore, in the internal combustion engine described in Patent Document 1, when the catalyst is not activated, the catalyst is activated by an electric heater. I try to heat it.

特開平6−108826JP-A-6-108826 特開2002−89246JP 2002-89246

しかしながらこのようにNOxの吸放出作用を行うようにした触媒について本発明者が研究を重ねた結果、排気ガス中に含まれる一酸化窒素NOは触媒が活性化しないとNOx吸収剤に吸蔵されないが排気ガス中に含まれる二酸化窒素NO2は触媒が活性化しなくても、触媒活性時に一酸化窒素NOが吸蔵されるのとは異なるメカニズムでNOx吸収剤に吸蔵(低温吸蔵)されることが判明したのである。 However, as a result of repeated studies by the present inventors on the catalyst that performs the NOx absorption / release action as described above, the nitric oxide NO contained in the exhaust gas is not stored in the NOx absorbent unless the catalyst is activated. It turns out that nitrogen dioxide NO 2 contained in the exhaust gas is stored in the NOx absorbent (stored at low temperature) by a mechanism different from that in which NO is stored when the catalyst is activated even if the catalyst is not activated. It was.

そして、このような本発明者により見出された事実、すなわち触媒が活性化していない状態においてもNO2がNOx吸収剤に低温吸蔵されるということを利用すれば、従来よりも効率的に排気ガス中のNOxを除去することが可能になる。しかしながらその一方で、このような場合において、触媒のNOx浄化能力(触媒の不活性時における低温吸蔵に基づくNOx浄化能力も含む)が、触媒状態すなわち触媒の劣化や硫黄被毒の程度によって大きく異なるために意図した通りの充分なNOxの除去が行えない場合があることが判明した。そして更に、このような問題は、触媒の不活性時におけるNOx浄化能力が上記触媒状態によって大きな影響を受けることから、触媒の不活性時において特に顕著であることも判明した。 And by utilizing such facts found by the present inventors, that is, that NO 2 is stored in the NOx absorbent at a low temperature even when the catalyst is not activated, the exhaust gas can be exhausted more efficiently than before. It becomes possible to remove NOx in the gas. However, on the other hand, in such a case, the NOx purification capacity of the catalyst (including NOx purification capacity based on low-temperature occlusion when the catalyst is inactive) varies greatly depending on the catalyst state, that is, the degree of catalyst deterioration and sulfur poisoning. Therefore, it has been found that there is a case where sufficient NOx removal cannot be performed as intended. Further, it has been found that such a problem is particularly remarkable when the catalyst is inactive, since the NOx purification ability when the catalyst is inactive is greatly influenced by the catalyst state.

そこで、本発明では、触媒が活性化しない状態においても二酸化窒素NO2がNOx吸収剤に低温吸蔵されることを利用して排気ガスを浄化するようにした排気浄化装置において、上記触媒状態を考慮して排気ガスの浄化を行うことができる排気浄化装置を提供することを目的とする。 Therefore, in the present invention, in the exhaust purification device that purifies exhaust gas by utilizing the low temperature storage of nitrogen dioxide NO 2 in the NOx absorbent even when the catalyst is not activated, the catalyst state is considered. An object of the present invention is to provide an exhaust emission control device capable of purifying exhaust gas.

請求項1に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、該NOx吸蔵触媒の活性状態に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段と、を具備した内燃機関の排気浄化装置において、上記NOx浄化能力推定手段は上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を大きく推定する排気浄化装置を提供する。 The invention according to claim 1 is a NOx storage catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. when non will cold occlude nitrogen dioxide nO 2 contained in the exhaust gas in the NOx absorbent, a NOx storage catalyst to a high temperature storage of nitrogen oxides NOx in the exhaust gas in the NOx absorbent when being activated Means for estimating the NOx purification capacity of the NOx storage catalyst based on the active state of the NOx storage catalyst, wherein the NOx purification capacity estimation means is the oxidation performance of the NOx storage catalyst. comprise means for estimating the reduction degree of, as reduction degree of oxidation performance estimated by the oxidation degradation degree estimating means is high above NOx storage catalyst Serial to provide an exhaust purification device of the NOx purification capacity based on cold storage large estimates.

NOx吸蔵触媒、すなわち貴金属触媒が活性化していない状態から完全に活性化している状態に移る過程においては、貴金属触媒における炭化水素HCの酸化反応の際に二酸化窒素NO2の一酸化窒素NOへの還元反応が起こる。また、排気ガス中に含まれる二酸化窒素NO2はNOx吸蔵触媒、すなわち貴金属触媒が活性化していなくてもNOx吸収剤に低温吸蔵されるが、排気ガス中に含まれる一酸化窒素NOはNOx吸蔵触媒が活性化して二酸化窒素NO2に酸化されないとNOx吸収剤に高温吸蔵されない。 In the process of shifting from a state in which the NOx storage catalyst, that is, the precious metal catalyst is not activated to a fully activated state, during the oxidation reaction of hydrocarbon HC in the precious metal catalyst, nitrogen dioxide NO 2 is converted to nitric oxide NO. A reduction reaction occurs. Nitrogen dioxide NO 2 contained in the exhaust gas is occluded in the NOx absorbent at a low temperature even if the NOx occlusion catalyst, that is, the noble metal catalyst is not activated, but nitrogen monoxide NO contained in the exhaust gas is occluded in the NOx occlusion. Unless the catalyst is activated and oxidized to nitrogen dioxide NO 2 , it is not stored in the NOx absorbent at high temperature.

以上のようなことから、上記のような二酸化窒素NO2の一酸化窒素NOへの還元反応が起こるとNOx吸蔵触媒が活性化されていない時におけるNOx浄化能力(すなわち、上記低温吸蔵に基づくNOx浄化能力)が低下することになる。一方、上述したように上記二酸化窒素NO2の一酸化窒素NOへの還元反応は、貴金属触媒における炭化水素HCの酸化反応に伴って生じるので、NOx吸蔵触媒が劣化し貴金属触媒がシンタリングする等してその酸化性能が低下すると起こり難くなる。そして上記二酸化窒素NO2の一酸化窒素NOへの還元反応が減少すれば、その結果として、上記NOx吸蔵触媒が活性化されていない時における上記NOx浄化能力の低下が抑制される。つまり、NOx吸蔵触媒の酸化性能低下すると上記NOx吸蔵触媒が活性化されていない時における上記NOx浄化能力の低下が抑制される。 As described above, when the reduction reaction of nitrogen dioxide NO 2 to nitric oxide NO occurs as described above, the NOx storage capacity when the NOx storage catalyst is not activated (that is, NOx based on the low temperature storage). (Purification capacity) will decrease. On the other hand, as described above, the reduction reaction of nitrogen dioxide NO 2 to nitric oxide NO occurs with the oxidation reaction of hydrocarbon HC in the noble metal catalyst, so that the NOx storage catalyst deteriorates and the noble metal catalyst is sintered, etc. If the oxidation performance is lowered, it is difficult to occur. If the reduction reaction of the nitrogen dioxide NO 2 to nitric oxide NO decreases, as a result, the decrease in the NOx purification capacity when the NOx storage catalyst is not activated is suppressed. In other words, reduction of the NOx purifying ability at the time when the oxidation performance of the NOx storage catalyst decreases Then the NOx storage catalyst is not activated can be suppressed.

請求項1に記載の発明によれば、上記NOx吸蔵触媒の活性状態、例えば温度に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段が、上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、推定された酸化性能の低下度合が高い程上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を大きく推定するようにされている。このようにすると結果的には、推定された酸化性能の低下度合が高い程、NOx吸蔵触媒の活性の比較的低い状態(低活性側)におけるNOx浄化能力、すなわち例えばNOx吸蔵触媒の温度の低い場合におけるNOx浄化能力をより大きく推定することになる。より具体的には、例えばNOx吸蔵触媒の温度が酸化性能の低下度合によって定まる所定温度以下である範囲についてNOx浄化能力をより大きく推定するようにする。 According to the first aspect of the present invention, the means for estimating the NOx purification capacity of the NOx storage catalyst based on the active state of the NOx storage catalyst, for example, the temperature, estimates the degree of decrease in the oxidation performance of the NOx storage catalyst. The NOx purification ability based on the said low temperature storage of the said NOx storage catalyst is estimated largely, so that the fall degree of the estimated oxidation performance is high. As a result, as a result, the higher the estimated degree of decrease in the oxidation performance, the lower the NOx purification capacity in the state where the activity of the NOx storage catalyst is relatively low (low activity side), that is, for example, the lower the temperature of the NOx storage catalyst. In this case, the NOx purification capacity is estimated to be larger. More specifically, for example, the NOx purification capacity is estimated to be larger in a range where the temperature of the NOx storage catalyst is equal to or lower than a predetermined temperature determined by the degree of reduction in oxidation performance .

そして、このようにすることで、上記NOx吸蔵触媒のNOx浄化能力、特にNOx吸蔵触媒の酸化性能の低下度合に影響を受け易い上記NOx吸蔵触媒の活性の比較的低い状態におけるNOx浄化能力をより正確に推定することができる。そのため、このように推定されるNOx浄化能力に基づいて排気ガスの浄化を行うことで、意図した通りの充分なNOxの除去を効率的に行うことが可能となる。
なお、本明細書においてNOx浄化能力とは例えば、NOx吸蔵速度(単位時間当たりにNOx吸収剤に吸蔵されるNOx量)を意味する。
By doing so, the NOx purification ability of the NOx storage catalyst, in particular, the NOx purification ability in a relatively low activity state of the NOx storage catalyst that is easily affected by the degree of decrease in the oxidation performance of the NOx storage catalyst is further improved. It can be estimated accurately. Therefore, by performing exhaust gas purification based on the NOx purification capacity estimated in this way, it is possible to efficiently remove sufficient NOx as intended.
In this specification, the NOx purification capacity means, for example, the NOx occlusion speed (the amount of NOx occluded in the NOx absorbent per unit time).

請求項2に記載の発明は、機関排気通路内に配置された、貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、該NOx吸蔵触媒の活性状態に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段と、を具備した内燃機関の排気浄化装置において、上記NOx浄化能力推定手段は上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を小さく推定するようにした排気浄化装置を提供する。 The invention according to claim 2 is an NOx storage catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and activated when the air-fuel ratio of the inflowing exhaust gas is lean. NOx storage catalyst that stores nitrogen dioxide NO 2 contained in the exhaust gas in the NOx absorbent at a low temperature when it is not activated and stores NOx absorbent in the NOx absorbent at a high temperature when the NOx absorbent is activated And an NOx purification capacity of the NOx storage catalyst based on an active state of the NOx storage catalyst, wherein the NOx purification capacity estimation means is a sulfur of the NOx storage catalyst. Means for estimating the degree of poisoning, and the higher the degree of sulfur poisoning estimated by the sulfur poisoning degree estimating means, the lower the temperature of the NOx storage catalyst. To provide an exhaust purifying apparatus that estimates reduce the NOx purifying capability-based built.

上記NOx吸蔵触媒が硫黄被毒されると上記NOx吸蔵触媒のNOx浄化能力が低下することになるが、特に上記NOx吸蔵触媒が活性化されていない時における上記NOx浄化能力(すなわち、上記低温吸蔵に基づくNOx浄化能力)の低下が顕著である。   When the NOx occlusion catalyst is poisoned with sulfur, the NOx occlusion capacity of the NOx occlusion catalyst is reduced. In particular, the NOx occlusion capacity when the NOx occlusion catalyst is not activated (that is, the low temperature occlusion catalyst). The reduction in the NOx purification capacity based on the above is remarkable.

請求項2に記載の発明によれば、上記NOx吸蔵触媒の活性状態、例えば温度に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段が、上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、推定された硫黄被毒の度合が高い程上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を小さく推定するようにされている。このようにすると結果的には、推定された硫黄被毒の度合が高い程、NOx吸蔵触媒の活性の比較的低い状態(低活性側)におけるNOx浄化能力、すなわち例えばNOx吸蔵触媒の温度の低い場合におけるNOx浄化能力をより小さく推定することになる。より具体的には、例えばNOx吸蔵触媒の温度が硫黄被毒度合によって定まる所定温度以下である範囲についてNOx浄化能力をより小さく推定するようにする。   According to the second aspect of the present invention, the means for estimating the NOx purification capacity of the NOx storage catalyst based on the active state of the NOx storage catalyst, for example, the temperature, estimates the degree of sulfur poisoning of the NOx storage catalyst. The NOx purification ability based on the said low temperature occlusion of the said NOx occlusion catalyst is estimated to be smaller as the estimated degree of sulfur poisoning is higher. Consequently, as a result, the higher the estimated degree of sulfur poisoning, the lower the NOx purification capacity in the state where the activity of the NOx storage catalyst is relatively low (low activity side), that is, for example, the temperature of the NOx storage catalyst is lower. In this case, the NOx purification capacity is estimated to be smaller. More specifically, for example, the NOx purification capacity is estimated to be smaller in a range where the temperature of the NOx storage catalyst is equal to or lower than a predetermined temperature determined by the degree of sulfur poisoning.

そして、このようにすることで、上記NOx吸蔵触媒のNOx浄化能力、特にNOx吸蔵触媒の硫黄被毒の度合に影響を受け易い上記NOx吸蔵触媒の活性の比較的低い状態におけるNOx浄化能力をより正確に推定することができる。そのため、このように推定されるNOx浄化能力に基づいて排気ガスの浄化を行うことで、意図した通りの充分なNOxの除去を効率的に行うことが可能となる。   By doing so, the NOx purification capacity of the NOx storage catalyst, particularly the NOx purification capacity in a relatively low state of activity of the NOx storage catalyst that is easily affected by the degree of sulfur poisoning of the NOx storage catalyst is further improved. It can be estimated accurately. Therefore, by performing exhaust gas purification based on the NOx purification capacity estimated in this way, it is possible to efficiently remove sufficient NOx as intended.

請求項3に記載の発明では請求項1に記載の発明において、上記NOx浄化能力推定手段が更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、推定された硫黄被毒の度合が高い程上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を小さく推定する。   According to a third aspect of the present invention, in the first aspect of the invention, the NOx purification capacity estimating means further includes means for estimating the degree of sulfur poisoning of the NOx storage catalyst, and the estimated sulfur poisoning. The higher the degree is, the smaller the NOx purification capacity of the NOx storage catalyst based on the low temperature storage is estimated.

請求項3に記載の発明によっても、特に上記NOx吸蔵触媒の活性の比較的低い状態、すなわち例えば低温時におけるNOx浄化能力を正確に推定することができ、推定されるNOx浄化能力に基づいて排気ガスの浄化を行うことで、意図した通りの充分なNOxの除去を効率的に行うことが可能となる。   According to the third aspect of the present invention, it is possible to accurately estimate the NOx purification capacity at a relatively low activity of the NOx storage catalyst, that is, for example, at a low temperature, and exhaust gas based on the estimated NOx purification capacity. By purifying the gas, it is possible to efficiently remove sufficient NOx as intended.

請求項4に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、機関の始動後に上記NOx吸蔵触媒の温度を予め定めた目標温度以上に上昇させる昇温制御が実施される内燃機関の排気浄化装置において、更に上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記昇温制御の開始時期が遅れるようにされる、または、機関の始動から上記NOx吸蔵触媒の温度が上記目標温度になるまでの時間が長くなるようにされる排気浄化装置を提供する。 The invention according to claim 4 is a NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. A NOx storage catalyst that stores nitrogen dioxide NO 2 contained in the exhaust gas in the NOx absorbent at a low temperature when it is not activated, and stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature when activated. In an exhaust gas purification apparatus for an internal combustion engine, in which temperature rise control is performed to increase the temperature of the NOx storage catalyst to a predetermined target temperature or higher after the engine is started, the degree of reduction in the oxidation performance of the NOx storage catalyst is further reduced . comprise means for estimating, as the degree of reduction in oxidation performance estimated by the oxidation degradation degree estimating means is high, is to start time of the temperature increase control is delayed Or the temperature of the NOx storage catalyst from the start of the engine to provide an exhaust purification device to be so that the time until the target temperature becomes longer.

請求項4に記載の発明によると、NOx吸蔵触媒の酸化性能低下している場合にはNOx吸蔵触媒の昇温が遅くなりNOx吸蔵触媒の温度の低い状態が長くされる。そして上述したようにNOx吸蔵触媒の酸化性能が低下している場合には低温側でのNOx浄化能力が上昇するので、本発明のようにNOx吸蔵触媒の温度の低い状態を長くすることで、効率的且つ充分なNOxの除去が可能となる。 According to the fourth aspect of the present invention, when the oxidation performance of the NOx occlusion catalyst is lowered, the temperature rise of the NOx occlusion catalyst is delayed, and the low temperature state of the NOx occlusion catalyst is lengthened. And, as described above, when the oxidation performance of the NOx storage catalyst is lowered , the NOx purification ability on the low temperature side increases, so by increasing the low temperature state of the NOx storage catalyst as in the present invention, Efficient and sufficient removal of NOx becomes possible.

請求項5に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、機関の始動後に上記NOx吸蔵触媒の温度を予め定めた目標温度以上に上昇させる昇温制御が実施される内燃機関の排気浄化装置において、更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記昇温制御の開始時期が早まるようにされる、または、機関の始動から上記NOx吸蔵触媒の温度が上記目標温度になるまでの時間が短くなるようにされる排気浄化装置を提供する。 The invention according to claim 5 is a NOx storage catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. A NOx storage catalyst that stores nitrogen dioxide NO 2 contained in the exhaust gas in the NOx absorbent at a low temperature when it is not activated, and stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature when activated. In an exhaust gas purification apparatus for an internal combustion engine, in which temperature rise control is performed to increase the temperature of the NOx storage catalyst to a predetermined target temperature or higher after the engine is started, the degree of sulfur poisoning of the NOx storage catalyst is further increased. Means for estimating, and the higher the degree of sulfur poisoning estimated by the sulfur poisoning degree estimating means, the earlier the start timing of the temperature increase control, or Temperature from the start of the NOx storage catalyst related to provide an exhaust purification device which is as time until the target temperature is shortened.

請求項5に記載の発明によると、NOx吸蔵触媒が硫黄被毒された場合にはNOx吸蔵触媒の昇温が速くなりNOx吸蔵触媒の温度の低い状態が短くされる。そして上述したようにNOx吸蔵触媒が硫黄被毒された場合には低温側でのNOx浄化能力が特に低下するので、本発明のようにNOx吸蔵触媒の温度の低い状態を短くすることで、充分なNOxの除去の実現を図ることができる。   According to the fifth aspect of the present invention, when the NOx occlusion catalyst is poisoned with sulfur, the temperature rise of the NOx occlusion catalyst is accelerated and the low temperature state of the NOx occlusion catalyst is shortened. As described above, when the NOx storage catalyst is poisoned with sulfur, the NOx purification ability on the low temperature side is particularly lowered. Therefore, it is sufficient to shorten the low temperature state of the NOx storage catalyst as in the present invention. It is possible to realize the removal of NOx.

請求項6に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、該NOx吸蔵触媒の酸化性能の低下度合を推定する手段とを具備し、機関の始動後に上記酸化性能低下度合推定手段によって推定された酸化性能の低下度合が所定の低下度合以上であれば上記NOx吸蔵触媒の温度を低く維持するための低温維持制御が実施される内燃機関の排気浄化装置において、上記酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記低温維持制御の実施時間を長くする、または上記低温維持制御において維持する温度を低くするようにした排気浄化装置を提供する。 The invention according to claim 6 is a NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. when non will cold occlude nitrogen dioxide nO 2 contained in the exhaust gas in the NOx absorbent, a NOx storage catalyst to a high temperature storage of nitrogen oxides NOx in the exhaust gas in the NOx absorbent when being activated , and means for estimating the reduction degree of the oxidation performance of the NOx storage catalyst, the long deterioration degree of oxidation performance estimated after the start of the engine by the oxidation degradation degree estimating means is equal to or greater than a predetermined reduction degree in the exhaust purification apparatus for an internal combustion engine cryostat control is performed for maintaining a low temperature of the NOx storage catalyst, which is estimated by the oxidation degradation degree estimating means The higher the degree of reduction of performance, to increase the execution time of the low temperature maintenance control, or to provide an exhaust gas purification apparatus adapted to lower the temperature to maintain in the cryostat control.

請求項6に記載の発明によると、NOx吸蔵触媒の酸化性能が低下している場合にはNOx吸蔵触媒が温度の低い状態に長く維持されることになる。そして上述したようにNOx吸蔵触媒の酸化性能が低下している場合には低温側でのNOx浄化能力が上昇するので、本発明のようにNOx吸蔵触媒を温度の低い状態に長く維持することで、効率的且つ充分なNOxの除去が可能となる。 According to the sixth aspect of the present invention, when the oxidation performance of the NOx storage catalyst is lowered , the NOx storage catalyst is maintained at a low temperature for a long time. As described above, when the oxidation performance of the NOx storage catalyst is lowered , the NOx purification capacity on the low temperature side is increased, so that the NOx storage catalyst can be maintained at a low temperature for a long time as in the present invention. Thus, efficient and sufficient removal of NOx becomes possible.

請求項7に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、上記NOx吸蔵触媒の温度が所定温度未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒の温度が上記所定温度以上である時の同一の機関運転状態の場合に比べて増大させるようにしている排気浄化装置において、更に上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記所定温度が高く設定されるようになっている排気浄化装置を提供する。 The invention according to claim 7 is a NOx storage catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. A NOx storage catalyst that stores nitrogen dioxide NO 2 contained in the exhaust gas in the NOx absorbent at a low temperature when it is not activated, and stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature when activated. And when the temperature of the NOx storage catalyst is lower than a predetermined temperature, the ratio of nitrogen dioxide NO 2 to nitrogen monoxide NO generated when combustion is performed under a lean air-fuel ratio is expressed as the temperature of the NOx storage catalyst. In the exhaust emission control device that is increased as compared with the case of the same engine operating state when the temperature is equal to or higher than the predetermined temperature, the degree of reduction in the oxidation performance of the NOx storage catalyst Comprise means for estimating the case, the higher the degree of reduction in oxidation performance estimated by the oxidation degradation degree estimating means, to provide an exhaust purification device that is adapted to the predetermined temperature is set high.

上述したように排気ガス中に含まれる二酸化窒素NO2はNOx吸蔵触媒が活性化しなくてもNOx吸収剤に低温吸蔵されるが、排気ガス中に含まれる一酸化窒素NOはNOx吸蔵触媒が活性化して二酸化窒素NO2に酸化されないとNOx吸収剤に高温吸蔵されない。このため、NOx吸蔵触媒が活性化していない、または低活性であるNOx吸蔵触媒の低温時には、排気ガス中の一酸化窒素NOの量を減らし、排気ガス中の二酸化窒素NO2の量を増大することが好ましい。そこで、上記所定温度を例えば、NOx吸収剤に単位時間当たりに低温吸蔵される二酸化窒素NO2の量と単位時間当たりに高温吸蔵される窒素酸化物NOxの量とが等しくなる温度に設定すれば、二酸化窒素NO2の低温吸蔵がより期待できる温度域で排気ガス中の二酸化窒素NO2の量を増大することになり、NOx浄化率の向上を図ることができる。 As described above, nitrogen dioxide NO 2 contained in the exhaust gas is occluded at a low temperature by the NOx absorbent even if the NOx occlusion catalyst is not activated. However, nitrogen monoxide NO contained in the exhaust gas is activated by the NOx occlusion catalyst. If it is not oxidized to nitrogen dioxide NO 2, it will not be stored in the NOx absorbent at high temperature. For this reason, when the NOx storage catalyst is not activated or has a low activity, the amount of nitrogen monoxide NO in the exhaust gas is reduced and the amount of nitrogen dioxide NO 2 in the exhaust gas is increased when the NOx storage catalyst is low in temperature. It is preferable. Therefore, for example, if the predetermined temperature is set to a temperature at which the amount of nitrogen dioxide NO 2 stored in the NOx absorbent at a low temperature per unit time is equal to the amount of nitrogen oxide NOx stored at a high temperature per unit time. In addition, the amount of nitrogen dioxide NO 2 in the exhaust gas is increased in a temperature range where low-temperature storage of nitrogen dioxide NO 2 can be expected, and the NOx purification rate can be improved.

そして、上述したように低温吸蔵に基づくNOx浄化能力はNOx吸蔵触媒の酸化性能が低下している場合に結果的に増加するので、本発明のようにNOx吸蔵触媒の酸化性能の低下度合が高い程、上記所定温度を高くし、低温吸蔵に期待する温度範囲を広げることで、効率的且つ充分なNOxの除去が可能となる。 Since NOx purification performance based on the low-temperature storage as described above is consequently increased when the oxidation performance of the NOx storage catalyst is reduced, a higher degree of decrease of the oxidation performance of the NOx storage catalyst as in the present invention As the predetermined temperature is increased and the temperature range expected for low-temperature storage is increased, efficient and sufficient removal of NOx becomes possible.

請求項8に記載の発明は、機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、上記NOx吸蔵触媒の温度が所定温度未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒の温度が上記所定温度以上である時の同一の機関運転状態の場合に比べて増大させるようにしている排気浄化装置において、更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記所定温度が低く設定されるようになっている排気浄化装置を提供する。 The invention according to claim 8 is a NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and is activated when the air-fuel ratio of the inflowing exhaust gas is lean. A NOx storage catalyst that stores nitrogen dioxide NO 2 contained in the exhaust gas in the NOx absorbent at a low temperature when it is not activated, and stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature when activated. And when the temperature of the NOx storage catalyst is lower than a predetermined temperature, the ratio of nitrogen dioxide NO 2 to nitrogen monoxide NO generated when combustion is performed under a lean air-fuel ratio is expressed as the temperature of the NOx storage catalyst. In the exhaust emission control device that is increased as compared with the same engine operating state when the temperature is equal to or higher than the predetermined temperature, the degree of sulfur poisoning of the NOx storage catalyst is further increased. Provided is an exhaust emission control device provided with a means for estimating, wherein the predetermined temperature is set lower as the degree of sulfur poisoning estimated by the sulfur poisoning degree estimating means is higher.

上述したように低温吸蔵に基づくNOx浄化能力はNOx吸蔵触媒が硫黄被毒された場合に大きな影響を受ける。つまり、NOx吸蔵触媒が硫黄被毒されると低温吸蔵に基づくNOx浄化能力は極めて低くなってしまう。そのため、本発明のようにNOx吸蔵触媒の硫黄被毒の度合が高い程、上記所定温度を低くし、低温吸蔵に期待する温度範囲を縮小することで、充分なNOxの除去の実現を図ることができる。   As described above, the NOx purification capacity based on low-temperature storage is greatly affected when the NOx storage catalyst is poisoned with sulfur. That is, when the NOx storage catalyst is poisoned with sulfur, the NOx purification ability based on the low temperature storage becomes extremely low. Therefore, as the degree of sulfur poisoning of the NOx storage catalyst is higher as in the present invention, the predetermined temperature is lowered, and the temperature range expected for low temperature storage is reduced, thereby realizing sufficient removal of NOx. Can do.

各請求項に記載の発明は、NOx吸蔵触媒が活性化しない状態においても二酸化窒素NO2がNOx吸収剤に低温吸蔵されることを利用して排気ガスを浄化するようにした排気浄化装置において、意図した通りの充分なNOxの除去を行うことを可能にするという共通の効果を奏する。 The invention described in each claim is an exhaust purification apparatus that purifies exhaust gas by utilizing low-temperature storage of nitrogen dioxide NO 2 in the NOx absorbent even in a state where the NOx storage catalyst is not activated. There is a common effect that it is possible to remove sufficient NOx as intended.

図1は本発明を圧縮着火式内燃機関に適用した場合を示している。なお、本発明は火花点火式内燃機関に適用することもできる。   FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. The present invention can also be applied to a spark ignition internal combustion engine.

図1を参照すると、1は機関本体、2は各気筒の燃焼室、3は各燃焼室2内にそれぞれ燃料を噴射するための電子制御式燃料噴射弁、4は吸気マニホルド、5は排気マニホルドをそれぞれ示す。吸気マニホルド4は吸気ダクト6を介して排気ターボチャージャ7のコンプレッサ7aの出口に連結され、コンプレッサ7aの入口はエアクリーナ8に連結される。吸気ダクト6内にはステップモータにより駆動されるスロットル弁9が配置され、更に吸気ダクト6周りには吸気ダクト6内を流れる吸入空気を冷却するための冷却装置(インタークーラ)10が配置される。図1に示される実施形態では機関冷却水がインタークーラ10内に導かれ、機関冷却水によって吸入空気が冷却される。一方、排気マニホルド5は排気ターボチャージャ7の排気タービン7bの入口に連結され、排気タービン7bの出口はNOx吸蔵触媒11を内蔵したケーシング12に連結される。排気マニホルド5の集合部出口には排気マニホルド5内を流れる排気ガス中に例えば炭化水素からなる還元剤を供給するための還元剤供給弁13が配置される。   Referring to FIG. 1, 1 is an engine body, 2 is a combustion chamber of each cylinder, 3 is an electronically controlled fuel injection valve for injecting fuel into each combustion chamber 2, 4 is an intake manifold, and 5 is an exhaust manifold. Respectively. The intake manifold 4 is connected to the outlet of the compressor 7 a of the exhaust turbocharger 7 through the intake duct 6, and the inlet of the compressor 7 a is connected to the air cleaner 8. A throttle valve 9 driven by a step motor is arranged in the intake duct 6, and a cooling device (intercooler) 10 for cooling intake air flowing in the intake duct 6 is arranged around the intake duct 6. . In the embodiment shown in FIG. 1, the engine cooling water is guided into the intercooler 10 and the intake air is cooled by the engine cooling water. On the other hand, the exhaust manifold 5 is connected to the inlet of the exhaust turbine 7 b of the exhaust turbocharger 7, and the outlet of the exhaust turbine 7 b is connected to the casing 12 containing the NOx storage catalyst 11. A reducing agent supply valve 13 for supplying a reducing agent made of, for example, hydrocarbons into the exhaust gas flowing through the exhaust manifold 5 is disposed at the outlet of the collecting portion of the exhaust manifold 5.

排気マニホルド5と吸気マニホルド4とは排気ガス再循環(以下、EGRと称す)通路14を介して互いに連結され、EGR通路14内には電子制御式EGR制御弁15が配置される。また、EGR通路14周りにはEGR通路14内を流れるEGRガスを冷却するための冷却装置(EGRクーラ)16が配置される。図1に示される実施形態では機関冷却水がEGRクーラ16内に導かれ、機関冷却水によってEGRガスが冷却される。一方、各燃料噴射弁3は燃料供給管17を介して燃料リザーバ、いわゆるコモンレール18に連結される。このコモンレール18内へは電子制御式の吐出量可変な燃料ポンプ19から燃料が供給され、コモンレール18内に供給された燃料は各燃料供給管17を介して燃料噴射弁3に供給される。   The exhaust manifold 5 and the intake manifold 4 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 14, and an electronically controlled EGR control valve 15 is disposed in the EGR passage 14. A cooling device (EGR cooler) 16 for cooling the EGR gas flowing in the EGR passage 14 is disposed around the EGR passage 14. In the embodiment shown in FIG. 1, the engine cooling water is guided into the EGR cooler 16, and the EGR gas is cooled by the engine cooling water. On the other hand, each fuel injection valve 3 is connected to a fuel reservoir, so-called common rail 18 via a fuel supply pipe 17. Fuel is supplied into the common rail 18 from an electronically controlled fuel pump 19 with variable discharge amount, and the fuel supplied into the common rail 18 is supplied to the fuel injection valve 3 via each fuel supply pipe 17.

電子制御ユニット30はデジタルコンピュータからなり、双方向性バス31によって互いに接続されたROM(リードオンリメモリ)32、RAM(ランダムアクセスメモリ)33、CPU(マイクロプロセッサ)34、入力ポート35及び出力ポート36を具備する。NOx吸蔵触媒11にはNOx吸蔵触媒11の温度を検出するための温度センサ20が取付けられ、この温度センサ20の出力信号は対応するAD変換器37を介して入力ポート35に入力される。また、アクセルペダル40にはアクセルペダル40の踏込み量Lに比例した出力電圧を発生する負荷センサ41が接続され、負荷センサ41の出力電圧は対応するAD変換器37を介して入力ポート35に入力される。更に入力ポート35にはクランクシャフトが例えば15°回転する毎に出力パルスを発生するクランク角センサ42が接続される。一方、出力ポート36は対応する駆動回路38を介して燃料噴射弁3、スロットル弁9駆動用ステップモータ、還元剤供給弁13、EGR制御弁15、及び燃料ポンプ19に接続される。   The electronic control unit 30 is composed of a digital computer, and is connected to each other by a bidirectional bus 31. A ROM (Read Only Memory) 32, a RAM (Random Access Memory) 33, a CPU (Microprocessor) 34, an input port 35 and an output port 36. It comprises. A temperature sensor 20 for detecting the temperature of the NOx storage catalyst 11 is attached to the NOx storage catalyst 11, and an output signal of the temperature sensor 20 is input to the input port 35 via the corresponding AD converter 37. A load sensor 41 that generates an output voltage proportional to the depression amount L of the accelerator pedal 40 is connected to the accelerator pedal 40, and the output voltage of the load sensor 41 is input to the input port 35 via the corresponding AD converter 37. Is done. Further, the input port 35 is connected to a crank angle sensor 42 that generates an output pulse every time the crankshaft rotates, for example, 15 °. On the other hand, the output port 36 is connected to the fuel injection valve 3, the throttle valve 9 driving step motor, the reducing agent supply valve 13, the EGR control valve 15, and the fuel pump 19 through corresponding drive circuits 38.

図1に示すNOx吸蔵触媒11はモノリス触媒からなり、このNOx吸蔵触媒11の基体上には例えばアルミナからなる触媒担体が担持されている。図2(A)から(C)はこの触媒担体45の表面部分の断面を図解的に示している。図2(A)から(C)に示されるように触媒担体45の表面上には貴金属触媒46が分散して担持されており、更に触媒担体45の表面上にはNOx吸収剤47の層が形成されている。   The NOx storage catalyst 11 shown in FIG. 1 is composed of a monolith catalyst, and a catalyst carrier made of alumina, for example, is supported on the base of the NOx storage catalyst 11. 2A to 2C schematically show a cross section of the surface portion of the catalyst carrier 45. FIG. As shown in FIGS. 2A to 2C, a noble metal catalyst 46 is dispersedly supported on the surface of the catalyst carrier 45, and a layer of NOx absorbent 47 is further formed on the surface of the catalyst carrier 45. Is formed.

本発明の実施形態では、貴金属触媒46としては例えば白金Ptが用いられており、NOx吸収剤47を構成する成分としては例えばカリウムK、ナトリウムNa、セシウムCsのようなアルカリ金属、バリウムBa、カルシウムCaのようなアルカリ土類、ランタンLa、イットリウムYのような希土類から選ばれた少なくとも一つが用いられている。   In the embodiment of the present invention, for example, platinum Pt is used as the noble metal catalyst 46, and the components constituting the NOx absorbent 47 are, for example, alkali metals such as potassium K, sodium Na, cesium Cs, barium Ba, calcium. At least one selected from alkaline earth such as Ca, rare earth such as lanthanum La and yttrium Y is used.

機関吸気通路、燃焼室2及びNOx吸蔵触媒11上流の排気通路内に供給された空気及び燃料(炭化水素)の比を排気ガスの空燃比と称するとNOx吸収剤47は、貴金属触媒46が活性化していれば、すなわちNOx吸蔵触媒11が活性化していれば排気ガスの空燃比がリーンの時にはNOxを高温吸蔵し、排気ガス中の酸素濃度が低下すると高温吸蔵したNOxを放出するNOxの吸放出作用を行う。なお、NOx吸蔵触媒11上流の排気通路内に燃料(炭化水素)あるいは空気が供給されない場合には排気ガスの空燃比は燃焼室2内における混合気の空燃比に一致し、したがってこの場合にはNOx吸収剤47は燃焼室2内における混合気の空燃比がリーンの時にはNOxを高温吸蔵し、燃焼室2内における混合気中の酸素濃度が低下すると高温吸蔵したNOxを放出することになる。   When the ratio of air and fuel (hydrocarbon) supplied to the engine intake passage, the combustion chamber 2 and the exhaust passage upstream of the NOx storage catalyst 11 is called the air-fuel ratio of the exhaust gas, the NOx absorbent 47 is activated by the noble metal catalyst 46. If the NOx occlusion catalyst 11 is activated, NOx is occluded at a high temperature when the air-fuel ratio of the exhaust gas is lean, and NOx occlusion that releases the NOx occluded at a high temperature when the oxygen concentration in the exhaust gas decreases. Performs release action. When fuel (hydrocarbon) or air is not supplied into the exhaust passage upstream of the NOx storage catalyst 11, the air-fuel ratio of the exhaust gas matches the air-fuel ratio of the air-fuel mixture in the combustion chamber 2. Therefore, in this case The NOx absorbent 47 stores NOx at a high temperature when the air-fuel ratio of the mixture in the combustion chamber 2 is lean, and releases the NOx stored at a high temperature when the oxygen concentration in the mixture in the combustion chamber 2 decreases.

すなわち、NOx吸収剤47を構成する成分としてバリウムBaを用いた場合を例にとって説明すると、排気ガスの空燃比がリーンの時、すなわち排気ガス中の酸素濃度が高い時には貴金属触媒46が活性化していれば排気ガス中に含まれるNOは図2(A)に示されるように貴金属触媒46上において酸化されてNO2となり、次いでNOx吸収剤47内に高温吸蔵されて酸化バリウムBaOと結合しながら硝酸イオンNO3 -の形でNOx吸収剤47内に拡散する。このようにしてNOxがNOx吸収剤47内に高温吸蔵される。すなわち、このような硝酸イオンNO3 -の形での吸蔵を高温吸蔵と称する。排気ガス中の酸素濃度が高い限り貴金属触媒46の表面でNO2が生成され、NOx吸収剤47の高温吸蔵能力が飽和しない限りNO2がNOx吸収剤47内に高温吸蔵されて硝酸イオンNO3 -が生成される。 That is, the case where barium Ba is used as a component constituting the NOx absorbent 47 will be described as an example. When the air-fuel ratio of the exhaust gas is lean, that is, when the oxygen concentration in the exhaust gas is high, the noble metal catalyst 46 is activated. Then, the NO contained in the exhaust gas is oxidized on the noble metal catalyst 46 to become NO 2 as shown in FIG. 2 (A), and then stored in the NOx absorbent 47 at a high temperature and combined with the barium oxide BaO. It diffuses into the NOx absorbent 47 in the form of nitrate ions NO 3 . In this way, NOx is occluded in the NOx absorbent 47 at a high temperature. That is, such occlusion in the form of nitrate ions NO 3 is referred to as high-temperature occlusion. NO 2 on the surface as long as the precious metal catalyst 46 a high oxygen concentration in the exhaust gas is generated, as long as NO 2 to a high temperature storage capacity is not saturated in the NOx absorbent 47 is a high temperature occluded in the NOx absorbent 47 nitrate ions NO 3 - is generated.

これに対し、燃焼室2内における空燃比をリッチあるいは理論空燃比にすることによって、または還元剤供給弁13から還元剤を供給することによって排気ガスの空燃比をリッチあるいは理論空燃比にすると排気ガス中の酸素濃度が低下するために反応が逆方向に進み、斯くしてNOx吸収剤47内の硝酸イオンNO3 -がNO2またはNO等の形でNOx吸収剤47から放出される。そしてこの場合、排気ガス中に還元剤(未燃HC,CO等)が存在する状態になっているため、放出されたNOxは次いで排気ガス中に含まれる還元剤(未燃HC,CO等)によって還元される。 On the other hand, if the air-fuel ratio in the combustion chamber 2 is made rich or stoichiometric, or the reducing agent is supplied from the reducing agent supply valve 13 to make the air-fuel ratio rich or stoichiometric, the exhaust gas is exhausted. Since the oxygen concentration in the gas decreases, the reaction proceeds in the reverse direction, and thus nitrate ions NO 3 in the NOx absorbent 47 are released from the NOx absorbent 47 in the form of NO 2 or NO. In this case, since the reducing agent (unburned HC, CO, etc.) is present in the exhaust gas, the released NOx is then contained in the exhaust gas (unburned HC, CO, etc.). Reduced by

さて、排気ガス中の窒素酸化物NOxは一酸化窒素NOの形ではNOx吸収剤47に高温吸蔵されず、二酸化窒素NO2の形にならなければNOx吸収剤47に高温吸蔵されない。すなわち、排気ガス中に含まれる一酸化窒素NOは二酸化窒素NO2にならないと、すなわち酸化されないとNOx吸収剤47に高温吸蔵されない。貴金属触媒46、すなわち例えば白金Ptは本来的に低温での活性を有しているが、NOx吸収剤47の塩基性はかなり強く、そのために貴金属触媒46の低温での活性、すなわち酸化性が弱められてしまう。その結果、NOx吸蔵触媒11の温度TCが低下すると、一酸化窒素NOを二酸化窒素NO2に酸化する作用が弱まってしまう。このため、一酸化窒素NOを酸化するには貴金属触媒46の温度が高く活性化していること、すなわちNOx吸蔵触媒11が活性化していることが必要であり、したがってこれまでNOxを浄化するためには貴金属触媒46が活性化していること、すなわちNOx吸蔵触媒11が活性化していることが必要であると考えられてきた。 Now, the nitrogen oxides NOx in the exhaust gas is not hot stored in the NOx absorbent 47 in the form of nitrogen monoxide NO, are not hot stored in the NOx absorbent 47 unless not in the form of nitrogen dioxide NO 2. That is, nitrogen monoxide NO contained in the exhaust gas does not become nitrogen dioxide NO 2 , that is, is not stored in the NOx absorbent 47 unless it is oxidized. The noble metal catalyst 46, for example, platinum Pt inherently has activity at a low temperature, but the basicity of the NOx absorbent 47 is quite strong, and therefore the activity at a low temperature of the noble metal catalyst 46, that is, the oxidizing property is weakened. It will be. As a result, when the temperature TC of the NOx storage catalyst 11 decreases, the action of oxidizing nitric oxide NO to nitrogen dioxide NO 2 is weakened. For this reason, in order to oxidize nitric oxide NO, it is necessary that the temperature of the noble metal catalyst 46 is high and activated, that is, that the NOx storage catalyst 11 is activated. Has been considered to require that the noble metal catalyst 46 is activated, that is, that the NOx storage catalyst 11 is activated.

ところがこのNOx吸蔵触媒11について本発明者が研究を重ねた結果、排気ガス中に含まれる一酸化窒素NOは貴金属触媒46が活性化しないと、すなわちNOx吸蔵触媒11が活性化しないとNOx吸収剤47に吸蔵されないが排気ガス中に含まれる二酸化窒素NO2はNOx吸蔵触媒11が活性化しなくても図2(B)に示されるように亜硝酸NO2 -の形でNOx吸収剤47に低温吸蔵されることが判明したのである。なお、本明細書ではこのような亜硝酸NO2 -の形での吸蔵を上述の高温吸蔵と区別して低温吸蔵と称する。また、高温吸蔵と低温吸蔵とを特に区別する必要の無い場合にはこれらをまとめて単に吸蔵という。 However, as a result of the inventor's repeated research on the NOx storage catalyst 11, the NOx absorbent contained in the exhaust gas does not activate the noble metal catalyst 46, that is, the NOx storage catalyst 11 does not activate. Nitrogen dioxide NO 2 that is not stored in the exhaust gas but is contained in the exhaust gas is low in the NOx absorbent 47 in the form of nitrous acid NO 2 as shown in FIG. 2B even if the NOx storage catalyst 11 is not activated. It was found that it was occluded. In the present specification, such occlusion in the form of nitrous acid NO 2 is referred to as low-temperature occlusion to distinguish it from the above-described high-temperature occlusion. Further, when it is not necessary to distinguish between high temperature storage and low temperature storage, these are collectively referred to simply as storage.

このようにNOx吸蔵触媒11が活性化していなくても二酸化窒素NO2が低温吸蔵されるので、本発明の実施形態では、例えばリーン空燃比のもとで燃焼が行われている場合等、流入する排気ガスの空燃比がリーンである場合において、NOx吸蔵触媒11が活性化されていない状態で排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵させるようにしている。すなわち、図1に示されるような圧縮着火式内燃機関では、通常運転時の排気ガス空燃比はリーンである。そして例えば、機関の冷間始動後しばらくの間は、NOx吸蔵触媒11は活性化していない状態にある。このため、例えば、このような機関始動後しばらくの間等には、NOx吸蔵触媒11のNOx吸収剤47が排気ガス中に含まれる二酸化窒素NO2を低温吸蔵する。 Thus, even if the NOx storage catalyst 11 is not activated, nitrogen dioxide NO 2 is stored at a low temperature. Therefore, in the embodiment of the present invention, for example, when combustion is performed under a lean air-fuel ratio, the inflow In the case where the air-fuel ratio of the exhaust gas being lean is lean, nitrogen dioxide NO 2 contained in the exhaust gas is stored in the NOx absorbent at a low temperature while the NOx storage catalyst 11 is not activated. That is, in the compression ignition type internal combustion engine as shown in FIG. 1, the exhaust gas air-fuel ratio during normal operation is lean. For example, the NOx storage catalyst 11 is not activated for a while after the cold start of the engine. For this reason, for example, for a while after the engine is started, the NOx absorbent 47 of the NOx storage catalyst 11 stores nitrogen dioxide NO 2 contained in the exhaust gas at a low temperature.

ところで、図2(B)で示されたようなNOx吸蔵触媒11が活性化していない状態から図2(A)で示されたようなNOx吸蔵触媒11が活性化している状態への移行は、実際にはNOx吸蔵触媒11の温度TCの上昇に伴って徐々に起こる。そして、これら二つの状態の間には図2(C)で示されるような中間的な状態(以下、「中間状態」と称す)が存在する。   By the way, the transition from the state where the NOx storage catalyst 11 as shown in FIG. 2 (B) is not activated to the state where the NOx storage catalyst 11 as shown in FIG. Actually, this gradually occurs as the temperature TC of the NOx storage catalyst 11 increases. An intermediate state (hereinafter referred to as “intermediate state”) as shown in FIG. 2C exists between these two states.

この中間状態においては、図2(C)に示されているように二酸化窒素NO2が貴金属触媒46上で排気ガス中の炭化水素HCと反応して一酸化窒素NOに還元される反応が起こる。すなわち、NOx吸蔵触媒11が完全に活性化し貴金属触媒46の酸化性が充分である時に炭化水素HCが存在する場合には、二酸化窒素NO2は貴金属触媒46上で排気ガス中の炭化水素HCと反応して窒素N2に還元される(換言すれば、炭化水素HCが二酸化窒素NO2の酸素によって酸化される)が、上記中間状態ではNOx吸蔵触媒11は活性化の過程にあり貴金属触媒46の酸化性が不充分であるため二酸化窒素NO2は一酸化窒素NOまでにしか還元されないのである。 In this intermediate state, as shown in FIG. 2C, a reaction occurs in which nitrogen dioxide NO 2 reacts with hydrocarbon HC in the exhaust gas on the noble metal catalyst 46 and is reduced to nitric oxide NO. . That is, when hydrocarbon HC is present when the NOx storage catalyst 11 is fully activated and the noble metal catalyst 46 is sufficiently oxidized, nitrogen dioxide NO 2 and hydrocarbon HC in the exhaust gas on the noble metal catalyst 46. It reacts and is reduced to nitrogen N 2 (in other words, hydrocarbon HC is oxidized by oxygen of nitrogen dioxide NO 2 ). However, in the intermediate state, the NOx storage catalyst 11 is in the process of activation and the noble metal catalyst 46. Nitrogen dioxide NO 2 can only be reduced up to nitrogen monoxide NO.

そして、このように中間状態では排気ガス中の二酸化窒素NO2が一酸化窒素NOに還元されるので、排気ガス中の二酸化窒素NO2の割合が減り、一酸化窒素NOの割合が増えることになる。中間状態において二酸化窒素NO2はNOx吸収剤47に低温吸蔵され得るのであるが、上述したように排気ガス中の二酸化窒素NO2の割合が減り、一酸化窒素NOの割合が増えるので、結果としてこの中間状態におけるNOx浄化能力、例えばNOx吸蔵速度は低下すると考えられる。 In this intermediate state, nitrogen dioxide NO 2 in the exhaust gas is reduced to nitrogen monoxide NO, so that the proportion of nitrogen dioxide NO 2 in the exhaust gas decreases and the proportion of nitrogen monoxide NO increases. Become. In the intermediate state, nitrogen dioxide NO 2 can be stored in the NOx absorbent 47 at a low temperature, but as described above, the ratio of nitrogen dioxide NO 2 in the exhaust gas decreases and the ratio of nitrogen monoxide NO increases. It is considered that the NOx purification capacity in this intermediate state, for example, the NOx occlusion speed is lowered.

なお、更に詳細には、図2(A)から(C)を参照して説明した上記NOx吸蔵触媒11における各反応が、NOx吸蔵触媒11の活性状態の変化、すなわち温度変化に伴ってそれぞれの割合を変化させながら起きることになる。換言すれば、NOx吸蔵触媒11の温度TCに応じてNOx吸蔵触媒11の活性状態が定まり、その活性状態に応じて上記の各反応が割合を変えて起きることになる。つまり、NOx吸蔵触媒11の温度TCが次第に上昇する場合を例にとると、初めのうちはNOx吸蔵触媒11が低温であるため図2(B)を参照して説明したNOx吸蔵触媒11が活性化されていない場合の反応(すなわち二酸化窒素NO2の低温吸蔵)の割合が大きいが、NOx吸蔵触媒11の温度TCが上昇してくると次第に図2(C)を参照して説明した中間状態での反応(すなわち二酸化窒素NO2の一酸化窒素NOへの還元反応等)の割合が増加してくる。更に温度TCが上昇すると、上記中間状態での反応の割合が低下し図2(A)を参照して説明したNOx吸蔵触媒11が活性化されている場合の反応(すなわち窒素酸化物NOxの高温吸蔵)の割合が大きくなる。 In more detail, each reaction in the NOx storage catalyst 11 described with reference to FIGS. 2A to 2C is changed according to the change in the active state of the NOx storage catalyst 11, that is, the temperature change. It happens while changing the ratio. In other words, the active state of the NOx storage catalyst 11 is determined according to the temperature TC of the NOx storage catalyst 11, and each of the reactions described above occurs at different rates according to the active state. That is, taking the case where the temperature TC of the NOx storage catalyst 11 gradually increases as an example, the NOx storage catalyst 11 described with reference to FIG. 2B is active because the NOx storage catalyst 11 is initially at a low temperature. In the intermediate state described with reference to FIG. 2 (C) when the temperature TC of the NOx storage catalyst 11 rises, the ratio of the reaction (ie, the low temperature storage of nitrogen dioxide NO 2 ) is large. The ratio of the reaction (ie, the reduction reaction of nitrogen dioxide NO 2 to nitric oxide NO) increases. When the temperature TC further increases, the reaction rate in the intermediate state decreases, and the reaction when the NOx storage catalyst 11 described with reference to FIG. 2A is activated (that is, the high temperature of the nitrogen oxide NOx). (Occlusion) ratio increases.

そして、以上のようなNOx吸蔵触媒11の温度変化とNOx吸蔵触媒11の活性状態(すなわち活性状態に応じた上記の各反応)との関係から、NOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係は図3に示すようになると考えられる。図中のTm、Ta、Tkはそれぞれ、上述したNOx吸蔵触媒11が活性化されていない場合の反応、中間状態である場合の反応、活性化されている場合の反応の各反応の割合が多い活性状態に対応するNOx吸蔵触媒11の温度TCの例を表している。   Then, from the relationship between the temperature change of the NOx storage catalyst 11 and the active state of the NOx storage catalyst 11 (that is, each of the reactions according to the active state) as described above, the NOx storage capability Nc of the NOx storage catalyst 11 and the NOx storage are stored. It is considered that the relationship with the temperature TC of the catalyst 11 is as shown in FIG. Each of Tm, Ta, and Tk in the figure has a large proportion of each reaction of the reaction when the above-described NOx storage catalyst 11 is not activated, the reaction when it is in an intermediate state, and the reaction when it is activated. The example of temperature TC of the NOx storage catalyst 11 corresponding to an active state is represented.

以下、NOx吸蔵触媒11の温度TCが温度Tmから温度Tkまで徐々に上昇していく場合を例にとって図3について説明する。NOx吸蔵触媒11の温度TCが温度Tmである場合にはNOx吸蔵触媒11が活性化されていない状態にあるので、この場合のNOx浄化能力Ncは殆どが二酸化窒素NO2の低温吸蔵に基づくものである。そのため、NOx吸蔵触媒11の温度TCが温度Tmから上昇していくとNOx浄化能力Ncは次第に低下する。すなわち、NOx吸蔵触媒11の温度TCが温度Tmから上昇していくと、上述した中間状態における二酸化窒素NO2から一酸化窒素NOへの還元反応が徐々に多くなるため低温吸蔵できる二酸化窒素NO2が減少する。その結果としてNOx浄化能力Ncが次第に低下するのである。 Hereinafter, the case where the temperature TC of the NOx storage catalyst 11 gradually increases from the temperature Tm to the temperature Tk will be described with reference to FIG. When the temperature TC of the NOx storage catalyst 11 is the temperature Tm, the NOx storage catalyst 11 is not activated, so the NOx purification capacity Nc in this case is mostly based on the low temperature storage of nitrogen dioxide NO 2. It is. Therefore, as the temperature TC of the NOx storage catalyst 11 increases from the temperature Tm, the NOx purification capability Nc gradually decreases. That is, as the temperature TC of the NOx storage catalyst 11 rises from the temperature Tm, the reduction reaction from nitrogen dioxide NO 2 to nitrogen monoxide NO in the intermediate state described above gradually increases, so nitrogen dioxide NO 2 that can be stored at a low temperature. Decrease. As a result, the NOx purification capacity Nc gradually decreases.

一方、更にNOx吸蔵触媒11の温度TCが上昇して温度Taに近づいてくると、NOx吸蔵触媒が徐々に活性化し始めてNOxの高温吸蔵が可能になってくる。そしてNOx吸蔵触媒11の温度TCが温度Taを超えると低温吸蔵に基づくNOx浄化能力Ncの低下度合を高温吸蔵に基づくNOx浄化能力Ncの上昇度合が上回り、NOx吸蔵触媒11の温度上昇に伴って全体のNOx浄化能力Ncが上昇するようになる。つまり、NOx吸蔵触媒11の温度TCが温度Taとなった時にNOx浄化能力Ncが極小値をとる。   On the other hand, when the temperature TC of the NOx occlusion catalyst 11 further increases and approaches the temperature Ta, the NOx occlusion catalyst gradually starts to be activated and high temperature occlusion of NOx becomes possible. When the temperature TC of the NOx storage catalyst 11 exceeds the temperature Ta, the degree of increase in the NOx purification capacity Nc based on the low temperature storage exceeds the degree of decrease in the NOx purification capacity Nc based on the high temperature storage, and as the temperature of the NOx storage catalyst 11 increases. The overall NOx purification capacity Nc increases. That is, when the temperature TC of the NOx storage catalyst 11 reaches the temperature Ta, the NOx purification capacity Nc takes a minimum value.

NOx吸蔵触媒11の温度TCが温度Taを超えると、NOx吸蔵触媒11の温度TCの上昇に伴って一酸化窒素NOを酸化して二酸化窒素NO2とする酸化反応が活発化し、その結果として次第に多くのNOxが高温吸蔵されるようになってNOx浄化能力Ncは上昇していく。そして、NOx吸蔵触媒11の温度TCが温度TkとなるころにはNOx吸蔵触媒11が完全に活性化され、この場合のNOx浄化能力Ncの殆どが窒素酸化物NOxの高温吸蔵に基づくものとなる。 When the temperature TC of the NOx storage catalyst 11 exceeds the temperature Ta, as the temperature TC of the NOx storage catalyst 11 increases, the oxidation reaction of oxidizing nitric oxide NO to nitrogen dioxide NO 2 is activated, and as a result, gradually. A large amount of NOx is occluded and the NOx purification capacity Nc increases. When the temperature TC of the NOx storage catalyst 11 reaches the temperature Tk, the NOx storage catalyst 11 is completely activated, and in this case, most of the NOx purification capacity Nc is based on the high temperature storage of the nitrogen oxide NOx. .

ところで、図3に示されるようなNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を把握することは、NOx吸蔵触媒11の温度TCを制御して排気ガス中のNOxを浄化する際に重要である。すなわち、NOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を正確に把握していればNOx吸蔵触媒11の温度TCを制御することで排気ガス中のNOxを効率的且つ充分に除去することが可能になる。   By the way, ascertaining the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 as shown in FIG. 3 is controlled by controlling the temperature TC of the NOx storage catalyst 11 in the exhaust gas. This is important when purifying NOx. That is, if the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 is accurately grasped, the temperature TC of the NOx storage catalyst 11 is controlled to efficiently reduce NOx in the exhaust gas. And it becomes possible to remove sufficiently.

一方、上述したように、NOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係は、NOx吸蔵触媒11が各温度TCの場合においてNOx吸蔵触媒11において生じる各反応(すなわち、図2(A)から(C)を参照して説明した各反応)のバランスによって決定される。したがって、このNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係は、NOx吸蔵触媒11における上記各反応に影響を与える要因、すなわち例えばNOx吸蔵触媒11の触媒状態によっても影響を受ける。ここで、上記触媒状態の例としては、NOx吸蔵触媒11の劣化度合や硫黄被毒の度合が挙げられる。   On the other hand, as described above, the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 is such that each reaction occurring in the NOx storage catalyst 11 when the NOx storage catalyst 11 is at each temperature TC (that is, Each reaction described with reference to FIGS. 2 (A) to 2 (C) is determined by the balance. Therefore, the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 depends on factors affecting the above reactions in the NOx storage catalyst 11, that is, for example, the catalyst state of the NOx storage catalyst 11. to be influenced. Here, examples of the catalyst state include the degree of deterioration of the NOx storage catalyst 11 and the degree of sulfur poisoning.

すなわち、NOx吸蔵触媒11が劣化すると、貴金属触媒46がシンタリングしてその表面積が低下する等して酸化性能の低下が生じる。そのため、上述した中間状態における二酸化窒素NO2から一酸化窒素NOへの還元反応が抑制されると共に、NOx吸蔵触媒11が活性化されている状態における一酸化窒素NOから二酸化窒素NO2への酸化反応が抑制される。その結果、NOx吸蔵触媒11が劣化している場合、NOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係は図4に示したようになる。 That is, when the NOx occlusion catalyst 11 deteriorates, the noble metal catalyst 46 is sintered and its surface area is reduced. Therefore, the reduction reaction from nitrogen dioxide NO 2 to nitrogen monoxide NO in the intermediate state described above is suppressed, and oxidation from nitrogen monoxide NO to nitrogen dioxide NO 2 in a state where the NOx storage catalyst 11 is activated. The reaction is suppressed. As a result, when the NOx storage catalyst 11 is deteriorated, the relationship between the NOx purification capability Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 is as shown in FIG.

すなわち、図4において、実線が、NOx吸蔵触媒11が劣化している場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表しており、点線が、NOx吸蔵触媒11が劣化していない場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表している。つまり、NOx吸蔵触媒11が劣化している場合は劣化していない場合に比べ、低温側でのNOx浄化能力Ncが上昇し高温側でのNOx浄化能力Ncが低下する。また、その結果として、NOx吸蔵触媒11が劣化している場合にNOx浄化能力Ncが極小となる温度Tbは、NOx吸蔵触媒11が劣化していない場合(温度Ta)に比べ高くなっている。そしてこのような傾向は、NOx吸蔵触媒11の劣化度合が高い程大きくなる。   That is, in FIG. 4, the solid line represents the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the NOx storage catalyst 11 has deteriorated, and the dotted line represents the NOx storage catalyst. The relationship between the NOx purification capability Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the catalyst 11 is not deteriorated is shown. That is, when the NOx storage catalyst 11 is deteriorated, the NOx purification capability Nc on the low temperature side is increased and the NOx purification capability Nc on the high temperature side is decreased compared to the case where the NOx storage catalyst 11 is not deteriorated. As a result, the temperature Tb at which the NOx purification capacity Nc is minimized when the NOx storage catalyst 11 is deteriorated is higher than that when the NOx storage catalyst 11 is not deteriorated (temperature Ta). Such a tendency increases as the degree of deterioration of the NOx storage catalyst 11 increases.

なお、ここで、低温側においてNOx浄化能力Ncが上昇するのは、上記中間状態における二酸化窒素NO2から一酸化窒素NOへの還元反応が抑制されることにより、低温吸蔵に基づくNOx浄化能力の低下が抑制されるためである。 Here, the NOx purification capacity Nc increases on the low temperature side because the reduction reaction from nitrogen dioxide NO 2 to nitrogen monoxide NO in the intermediate state is suppressed, so that the NOx purification capacity based on low temperature storage is reduced. This is because the decrease is suppressed.

また、NOx吸蔵触媒11の劣化は、例えばNOx吸蔵触媒11の温度が高い程、または、触媒種によって定まる上限温度以上の温度となっている時間が長い程、あるいは、流入する排気ガスの酸素濃度が高い程、その進行が速くなることが判明している。したがって、このことを利用してNOx吸蔵触媒11の劣化の度合を推定することができる。すなわち、例えば、新品のNOx吸蔵触媒11を取り付けた時からのNOx吸蔵触媒11の温度履歴に基づいてNOx吸蔵触媒11の劣化度合を推定することができる。   The deterioration of the NOx storage catalyst 11 is caused by, for example, the higher the temperature of the NOx storage catalyst 11, the longer the time when the temperature is higher than the upper limit temperature determined by the catalyst type, or the oxygen concentration of the inflowing exhaust gas. It has been found that the higher the value, the faster the progression. Therefore, the degree of deterioration of the NOx storage catalyst 11 can be estimated using this fact. That is, for example, the degree of deterioration of the NOx storage catalyst 11 can be estimated based on the temperature history of the NOx storage catalyst 11 since the new NOx storage catalyst 11 is attached.

一方、NOx吸蔵触媒11の硫黄被毒は、排気ガス中の硫黄酸化物SOxが窒素酸化物NOxを高温吸蔵するのと同じメカニズムでNOx吸収剤47に吸蔵され、NOx吸収剤47内に硫酸塩、例えば硫酸バリウムBaSO4を生成することによって生じる。このような硫酸塩は塩基度が低いため、NOx吸蔵触媒11が硫黄被毒されるとNOx吸収剤47上の塩基点が減少し二酸化窒素NO2の低温吸蔵が起こり難くなる。また、上記のように硫酸塩は窒素酸化物NOxを高温吸蔵するのと同じメカニズムで硫黄酸化物SOxを吸蔵することによって生じるため、NOx吸収剤47内に硫酸塩が増える分だけ高温吸蔵できるNOx量が減少してしまう。そのため、NOx吸蔵触媒11が硫黄被毒されると窒素酸化物NOxの高温吸蔵も起こり難くなる。以上のようなことから、NOx吸蔵触媒11が硫黄被毒された場合、NOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係は図5に示したようになる。 On the other hand, sulfur poisoning of the NOx storage catalyst 11 is stored in the NOx absorbent 47 by the same mechanism as the sulfur oxide SOx in the exhaust gas stores the nitrogen oxide NOx at a high temperature, and sulfate is contained in the NOx absorbent 47. For example, by producing barium sulfate BaSO 4 . Since such a sulfate has a low basicity, when the NOx storage catalyst 11 is poisoned with sulfur, the base point on the NOx absorbent 47 is reduced, and low temperature storage of nitrogen dioxide NO 2 is difficult to occur. Further, as described above, since sulfate is stored by storing sulfur oxide SOx by the same mechanism as storing nitrogen oxide NOx at a high temperature, NOx can be stored at a high temperature by the amount of sulfate in the NOx absorbent 47. The amount will decrease. Therefore, when the NOx storage catalyst 11 is poisoned with sulfur, high temperature storage of nitrogen oxides NOx hardly occurs. From the above, when the NOx storage catalyst 11 is poisoned with sulfur, the relationship between the NOx purification capability Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 is as shown in FIG.

すなわち、図5において、実線が、NOx吸蔵触媒11が硫黄被毒されている場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表しており、点線が、NOx吸蔵触媒11が硫黄被毒されていない場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表している。つまり、NOx吸蔵触媒11が硫黄被毒されている場合は硫黄被毒されていない場合に比べて、全温度域でNOx浄化能力Ncが低下する。但し、その影響は低温側で大きく、その結果としてNOx吸蔵触媒11が硫黄被毒されている場合にNOx浄化能力Ncが極小となる温度Tsは、NOx吸蔵触媒11が硫黄被毒されていない場合(温度Ta)に比べ低くなっている。そしてこのような傾向は、NOx吸蔵触媒11の硫黄被毒の度合が高い程大きくなる。   That is, in FIG. 5, the solid line represents the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the NOx storage catalyst 11 is poisoned with sulfur, and the dotted line represents The relationship between the NOx purification capability Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the NOx storage catalyst 11 is not sulfur-poisoned is shown. That is, when the NOx storage catalyst 11 is sulfur-poisoned, the NOx purification capacity Nc is reduced in the entire temperature range as compared to the case where the NOx-occlusion catalyst 11 is not sulfur-poisoned. However, the effect is large on the low temperature side, and as a result, the temperature Ts at which the NOx purification capacity Nc is minimized when the NOx storage catalyst 11 is sulfur poisoned is the case where the NOx storage catalyst 11 is not sulfur poisoned. It is lower than (temperature Ta). Such a tendency increases as the degree of sulfur poisoning of the NOx storage catalyst 11 increases.

なお、NOx吸蔵触媒11の硫黄被毒の度合は、例えば前回の硫黄被毒解消制御実施後の燃料消費量から推定することができる。すなわち、NOx吸蔵触媒11の硫黄被毒は、NOx吸蔵触媒11を600℃程度に昇温すると共にNOx吸蔵触媒11に流入する排気ガスの空燃比を理論空燃比またはリッチにすると、硫黄酸化物SOxがNOx吸収剤47から放出されて解消されることがわかっている。したがって、上記のようなNOx吸蔵触媒を備えた排気浄化装置では通常、NOx吸蔵触媒11を600℃程度に昇温すると共にNOx吸蔵触媒11に流入する排気ガスの空燃比を理論空燃比またはリッチにする硫黄被毒解消制御が定期的に実施される。このような硫黄被毒解消制御が実施されれば硫黄被毒は基本的には解消されるので、燃料の硫黄含有量を予め求めておけば、硫黄被毒解消制御実施後の燃料消費量から現在の硫黄被毒の度合を推定することができる。更に、オイルの硫黄含有量も求めておきオイル消費量も考慮して硫黄被毒の度合を求めるようにしてもよい。   The degree of sulfur poisoning of the NOx storage catalyst 11 can be estimated from, for example, the fuel consumption after the previous sulfur poisoning elimination control. That is, the sulfur poisoning of the NOx storage catalyst 11 is caused by raising the temperature of the NOx storage catalyst 11 to about 600 ° C. and making the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 11 the stoichiometric air-fuel ratio or rich. Has been found to be released from the NOx absorbent 47 and eliminated. Therefore, in the exhaust gas purification apparatus provided with the NOx storage catalyst as described above, the NOx storage catalyst 11 is usually heated to about 600 ° C. and the air-fuel ratio of the exhaust gas flowing into the NOx storage catalyst 11 is made the stoichiometric air-fuel ratio or rich. Sulfur poisoning elimination control is regularly implemented. If such sulfur poisoning elimination control is carried out, sulfur poisoning is basically eliminated. Therefore, if the sulfur content of the fuel is obtained in advance, the fuel consumption after the sulfur poisoning elimination control is implemented. The current degree of sulfur poisoning can be estimated. Further, the sulfur content of the oil may be obtained, and the degree of sulfur poisoning may be obtained in consideration of the oil consumption.

あるいは、NOx吸蔵触媒11の下流側に排気ガス中のNOx濃度を検出するNOxセンサを設けておき、NOxセンサの出力値に基づいて硫黄被毒の度合を推定するようにしてもよい。すなわち、この場合には例えば、硫黄被毒されていない時の基準出力を予め求めておき、その基準出力と実際のNOxセンサ出力値とを比較して硫黄被毒の度合を推定するようにする。   Alternatively, a NOx sensor that detects the NOx concentration in the exhaust gas may be provided on the downstream side of the NOx storage catalyst 11, and the degree of sulfur poisoning may be estimated based on the output value of the NOx sensor. That is, in this case, for example, a reference output when sulfur poisoning is not performed is obtained in advance, and the degree of sulfur poisoning is estimated by comparing the reference output with the actual NOx sensor output value. .

以上、説明したように、NOx吸蔵触媒11のNOx浄化能力NcはNOx吸蔵触媒11の温度TC(すなわち、活性状態)の他、NOx吸蔵触媒11の劣化度合や硫黄被毒の度合等の触媒状態にも影響を受ける。そこで本発明の実施形態では、上記触媒状態を考慮して、すなわち上述したような上記触媒状態のNOx浄化能力Ncへの影響を考慮して排気ガスの浄化を行うようにしている。   As described above, the NOx purification ability Nc of the NOx storage catalyst 11 is not limited to the temperature TC (that is, the active state) of the NOx storage catalyst 11, but the catalyst state such as the degree of deterioration of the NOx storage catalyst 11 and the degree of sulfur poisoning. Also affected. Therefore, in the embodiment of the present invention, the exhaust gas is purified in consideration of the catalyst state, that is, in consideration of the influence of the catalyst state on the NOx purification ability Nc as described above.

すなわち、例えば本発明の一実施形態においては、機関の始動から所定時間ts経過後にNOx吸蔵触媒11の温度TCが所定の目標温度To未満であればNOx吸蔵触媒11の活性化を目的としてNOx吸蔵触媒11の温度TCを上記目標温度Toまで上昇させる昇温制御を実施するようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の劣化度合が高い程、始動からNOx吸蔵触媒11の温度TCが上記目標温度Toになるまでの時間が長くなるようにされている。より具体的には例えば、上記所定時間tsを長くしたり、昇温のペースを遅く(単位時間当たりの温度上昇を小さく)したりする。また、例えば上記昇温制御において上記の最終的な目標温度Toまでの間に段階的にターゲット温度を設定し各ターゲット温度に維持する時間tiを定めることで昇温のペースを決定している場合には、NOx吸蔵触媒11の劣化度合が高い程、各ターゲット温度における上記維持時間tiを長くするようにする。   That is, for example, in one embodiment of the present invention, if the temperature TC of the NOx storage catalyst 11 is less than the predetermined target temperature To after a predetermined time ts has elapsed since the start of the engine, the NOx storage catalyst 11 is activated for the purpose of activating the NOx storage catalyst 11. In the exhaust gas purification apparatus that performs the temperature rise control for raising the temperature TC of the catalyst 11 to the target temperature To, the higher the estimated deterioration degree of the NOx storage catalyst 11, the higher the temperature of the NOx storage catalyst 11 from the start. The time until TC reaches the target temperature To is increased. More specifically, for example, the predetermined time ts is lengthened, or the rate of temperature rise is slowed (temperature rise per unit time is made small). Further, for example, in the temperature increase control, when the target temperature is set stepwise until the final target temperature To and the time ti for maintaining each target temperature is determined, the rate of temperature increase is determined. In other words, the higher the degree of deterioration of the NOx storage catalyst 11, the longer the maintenance time ti at each target temperature.

このようにすると、NOx吸蔵触媒11が劣化された場合にはNOx吸蔵触媒11の昇温が遅くなりNOx吸蔵触媒11の温度TCの低い状態が長くされる。そして上述したようにNOx吸蔵触媒11が劣化された場合には低温側でのNOx浄化能力Ncが上昇するので、上記のようにしてNOx吸蔵触媒11の温度TCの低い状態を長くすることで、より効率的なNOxの除去が可能となる。   In this way, when the NOx storage catalyst 11 is deteriorated, the temperature rise of the NOx storage catalyst 11 is delayed, and the state where the temperature TC of the NOx storage catalyst 11 is low is lengthened. As described above, when the NOx storage catalyst 11 is deteriorated, the NOx purification ability Nc on the low temperature side increases, so by increasing the low temperature TC state of the NOx storage catalyst 11 as described above, More efficient removal of NOx becomes possible.

なお、始動からNOx吸蔵触媒11の温度TCが上記目標温度Toになるまでの時間をどの程度長くするか(より具体的には、例えば上記所定時間tsをどの程度長くするか、あるいは昇温ペースをどの程度遅くするか等)については、事前にマップを作成しておき、そのマップに基づいて求めるようにする。すなわち、NOx吸蔵触媒11の劣化度合と低温側でのNOx浄化能力Ncの上昇との関係を事前に求め、それに基づいてNOx吸蔵触媒11の劣化度合に対応して必要な制御パラメータ(例えば、上記所定時間ts等)の適切な値が求められるマップを作成しておき、そのマップに基づいて求めるようにする。なお、このマップには、複数の劣化度合に対応して複数の値が規定されていてもよいし、劣化している場合と劣化していない場合の二つの値のみが規定されていてもよい。   It should be noted that how long the time from the start until the temperature TC of the NOx storage catalyst 11 reaches the target temperature To is increased (more specifically, for example, how long the predetermined time ts is increased, or the rate of temperature increase) For example, how much late is to be made), a map is prepared in advance, and the map is obtained based on the map. That is, the relationship between the degree of deterioration of the NOx storage catalyst 11 and the increase in the NOx purification capacity Nc on the low temperature side is obtained in advance, and based on this, control parameters necessary for the degree of deterioration of the NOx storage catalyst 11 (for example, the above-mentioned) A map for which an appropriate value for a predetermined time ts or the like is obtained is created and obtained based on the map. In this map, a plurality of values may be defined corresponding to a plurality of degrees of deterioration, or only two values, that is, a case where deterioration is caused and a case where deterioration is not caused may be prescribed. .

また、本発明の別の実施形態においては、機関の始動から所定時間ts経過後にNOx吸蔵触媒11の温度TCが所定の目標温度To未満であればNOx吸蔵触媒11の活性化を目的としてNOx吸蔵触媒11の温度TCを上記目標温度Toまで上昇させる昇温制御を実施するようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の硫黄被毒の度合が高い程、始動からNOx吸蔵触媒11の温度TCが上記目標温度Toになるまでの時間が短くなるようにされている。より具体的には例えば、上記所定時間tsを短くしたり、昇温のペースを速く(単位時間当たりの温度上昇を大きく)したりする。また、例えば上記昇温制御において上記の最終的な目標温度Toまでの間に段階的にターゲット温度を設定し各ターゲット温度に維持する時間tiを定めることで昇温のペースを決定している場合には、NOx吸蔵触媒11の硫黄被毒の度合が高い程、各ターゲット温度における上記維持時間tiを短くするようにする。   In another embodiment of the present invention, if the temperature TC of the NOx storage catalyst 11 is lower than a predetermined target temperature To after a predetermined time ts has elapsed from the start of the engine, the NOx storage catalyst 11 is activated for the purpose of activating the NOx storage catalyst 11. In the exhaust gas purification apparatus that performs the temperature raising control for raising the temperature TC of the catalyst 11 to the target temperature To, the higher the estimated degree of sulfur poisoning of the NOx storage catalyst 11, the more the NOx storage catalyst from the start. The time until the temperature TC 11 becomes the target temperature To is shortened. More specifically, for example, the predetermined time ts is shortened, or the rate of temperature increase is increased (the temperature increase per unit time is increased). Further, for example, in the temperature increase control, when the target temperature is set stepwise until the final target temperature To and the time ti for maintaining each target temperature is determined, the rate of temperature increase is determined. First, the higher the degree of sulfur poisoning of the NOx storage catalyst 11, the shorter the maintenance time ti at each target temperature.

このようにすると、NOx吸蔵触媒11が硫黄被毒された場合にはNOx吸蔵触媒11の昇温が速くなりNOx吸蔵触媒11の温度TCの低い状態が短くされる。そして上述したようにNOx吸蔵触媒11が硫黄被毒された場合には低温側でのNOx浄化能力Ncが特に低下するので、上記のようにしてNOx吸蔵触媒11の温度TCの低い状態を短くすることで、充分なNOxの除去の実現を図ることができる。   In this way, when the NOx storage catalyst 11 is poisoned with sulfur, the temperature rise of the NOx storage catalyst 11 is accelerated, and the state where the temperature TC of the NOx storage catalyst 11 is low is shortened. As described above, when the NOx storage catalyst 11 is poisoned with sulfur, the NOx purification ability Nc on the low temperature side is particularly lowered, so that the low temperature TC state of the NOx storage catalyst 11 is shortened as described above. Thus, it is possible to achieve sufficient removal of NOx.

なお、始動からNOx吸蔵触媒11の温度TCが上記目標温度Toになるまでの時間をどの程度短くするか(より具体的には、例えば上記所定時間tsをどの程度短くするか、あるいは昇温ペースをどの程度速くするか等)については、上述した劣化度合の場合と同様にして事前にNOx吸蔵触媒11の硫黄被毒の度合と必要な制御パラメータ(例えば、上記所定時間ts等)の適切な値とを対応させたマップを作成しておき、そのマップに基づいて求めるようにする。   It should be noted that how much time is required from the start until the temperature TC of the NOx storage catalyst 11 reaches the target temperature To (more specifically, how much the predetermined time ts is reduced, for example, or the rate of temperature increase) As to the degree of deterioration, the degree of sulfur poisoning of the NOx storage catalyst 11 and the appropriate control parameters (for example, the predetermined time ts) are appropriately set in advance. A map in which values are associated with each other is created and obtained based on the map.

また、ここでの昇温制御は、例えば、以下のように燃料噴射パターンを制御することによって実施できる。すなわち、図6は図1に示した内燃機関で実施し得る燃料噴射パターンのうちの四つの例について示した概略図であるが、通常時には主燃料qmは図6において(I)で示されるように圧縮上死点付近で噴射される。これに対し、昇温制御が開始されると、例えば図6の(II)に示されるような燃料噴射パターンとされる。つまり、主燃料qmの噴射時期が圧縮上死点以後まで遅角せしめられる。このように主燃料qmの噴射時期を圧縮上死点以後まで遅角させると後燃え期間が長くなり、斯くして排気ガス温が上昇する。排気ガス温が高くなるとそれに伴ってNOx吸蔵触媒11の温度TCが上昇する。   Further, the temperature increase control here can be performed by controlling the fuel injection pattern as follows, for example. That is, FIG. 6 is a schematic diagram showing four examples of fuel injection patterns that can be implemented in the internal combustion engine shown in FIG. 1, but the main fuel qm is normally indicated by (I) in FIG. Is injected near the compression top dead center. On the other hand, when the temperature raising control is started, a fuel injection pattern as shown in FIG. That is, the injection timing of the main fuel qm is retarded until after the compression top dead center. Thus, if the injection timing of the main fuel qm is retarded until after the compression top dead center, the afterburning period becomes longer, and thus the exhaust gas temperature rises. As the exhaust gas temperature increases, the temperature TC of the NOx storage catalyst 11 increases accordingly.

また、NOx吸蔵触媒11の温度TCを上昇させるために図6の(III)に示されるように主燃料qmに加え、吸気上死点付近において補助燃料qvを噴射することもできる。このように補助燃料qvを追加的に噴射すると補助燃料qv分だけ燃焼せしめられる燃料が増えるために排気ガス温が上昇し、斯くしてNOx吸蔵触媒11の温度TCが上昇する。   Further, in order to increase the temperature TC of the NOx storage catalyst 11, in addition to the main fuel qm as shown in FIG. 6 (III), the auxiliary fuel qv can be injected near the intake top dead center. When the auxiliary fuel qv is additionally injected in this manner, the amount of fuel combusted by the amount corresponding to the auxiliary fuel qv increases, so that the exhaust gas temperature rises, and thus the temperature TC of the NOx storage catalyst 11 rises.

一方、このように吸気上死点付近において補助燃料qvを噴射すると圧縮行程中に圧縮熱によってこの補助燃料qvからアルデヒド、ケトン、パーオキサイド、一酸化炭素等の中間生成物が生成され、これら中間生成物によって主燃料qmの反応が加速される。したがってこの場合には図6の(III)に示されるように主燃料qmの噴射時期を大巾に遅らせても失火を生ずることなく良好な燃焼が得られる。すなわち、このように主燃料qmの噴射時期を大巾に遅らせることができるので排気ガス温はかなり高くなり、斯くしてNOx吸蔵触媒11の温度TCをすみやかに上昇させることができる。   On the other hand, when the auxiliary fuel qv is injected in the vicinity of the intake top dead center, intermediate products such as aldehyde, ketone, peroxide, and carbon monoxide are generated from the auxiliary fuel qv by the compression heat during the compression stroke. The product accelerates the reaction of the main fuel qm. Therefore, in this case, as shown in FIG. 6 (III), even if the injection timing of the main fuel qm is greatly delayed, good combustion can be obtained without causing misfire. That is, since the injection timing of the main fuel qm can be greatly delayed in this way, the exhaust gas temperature becomes considerably high, and thus the temperature TC of the NOx storage catalyst 11 can be quickly raised.

また、NOx吸蔵触媒11の温度TCを上昇させるために図6の(IV)に示されるように主燃料qmに加え、膨張行程中または排気行程中に補助燃料qpを噴射することもできる。すなわち、この場合、大部分の補助燃料qpは燃焼することなく未燃HCの形で排気通路内に排出される。この未燃HCはNOx吸蔵触媒11上において過剰酸素により酸化され、この時発生する酸化反応熱によってNOx吸蔵触媒11の温度TCが上昇せしめられる。   Further, in order to increase the temperature TC of the NOx storage catalyst 11, in addition to the main fuel qm as shown in FIG. 6 (IV), the auxiliary fuel qp can be injected during the expansion stroke or the exhaust stroke. That is, in this case, most of the auxiliary fuel qp is discharged into the exhaust passage in the form of unburned HC without burning. The unburned HC is oxidized on the NOx storage catalyst 11 by excess oxygen, and the temperature TC of the NOx storage catalyst 11 is raised by the oxidation reaction heat generated at this time.

そして、以上のような燃料噴射パターンにおいて、主噴射qmの遅角量、補助燃料qv及びqpの噴射時期及び噴射量等を調節することによってNOx吸蔵触媒11の昇温のペースを制御することができる。   In the fuel injection pattern as described above, the rate of temperature increase of the NOx storage catalyst 11 can be controlled by adjusting the retard amount of the main injection qm, the injection timing and the injection amount of the auxiliary fuels qv and qp, and the like. it can.

本発明の更に他の実施形態においては、機関の冷間始動後等において、NOx吸蔵触媒11の温度TCが上昇して所定温度Tdになった時にNOx吸蔵触媒11の活性化を目的としてNOx吸蔵触媒11の温度TCを所定の目標温度Toまで昇温する昇温制御を実施するようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の劣化度合が高い程、上記所定温度Tdが高く設定されるようになっている。   In still another embodiment of the present invention, for example, after the cold start of the engine, the NOx occlusion catalyst 11 is activated for the purpose of activating the NOx occlusion catalyst 11 when the temperature TC of the NOx occlusion catalyst 11 rises to a predetermined temperature Td. In the exhaust gas purification apparatus that performs the temperature raising control for raising the temperature TC of the catalyst 11 to a predetermined target temperature To, the higher the estimated degree of deterioration of the NOx storage catalyst 11, the higher the predetermined temperature Td. It is set up.

このようにすると、NOx吸蔵触媒11が劣化された場合にはNOx吸蔵触媒11がその温度TCの低い状態に長く維持されることになる。そして上述したようにNOx吸蔵触媒11が劣化された場合には低温側でのNOx浄化能力Ncが上昇するので、上記のようにしてNOx吸蔵触媒11をその温度TCの低い状態に長く維持することで、より効率的なNOxの除去が可能となる。   In this way, when the NOx storage catalyst 11 is deteriorated, the NOx storage catalyst 11 is maintained for a long time at a low temperature TC. As described above, when the NOx storage catalyst 11 is deteriorated, the NOx purification ability Nc on the low temperature side increases, so that the NOx storage catalyst 11 is maintained at a low temperature TC for a long time as described above. Thus, more efficient removal of NOx becomes possible.

更に、この場合において、NOx吸蔵触媒11の劣化度合がNOx浄化能力Ncへ与える影響を考慮して昇温制御の開始温度(すなわち上記所定温度Td)と終了温度(すなわち上記目標温度To)を設定することで、NOx浄化能力Ncが不足する時間を効率的に短縮することができる。これについて図7を参照しつつ説明する。すなわち図7においては、実線が、NOx吸蔵触媒11が劣化している場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表し、点線が、NOx吸蔵触媒11が劣化していない場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表していて、Nrが必要なNOx浄化能力を表している。図7で示された例において、NOx吸蔵触媒11が劣化していない場合には、昇温制御はNOx吸蔵触媒11の温度TCが温度T1になった時に開始され、温度T2になった時に終了せしめられる。そして、NOx吸蔵触媒11が劣化している場合には、昇温制御はNOx吸蔵触媒11の温度TCが温度T3になった時に開始され、温度T4になった時に終了せしめられる。 Further, in this case, the start temperature (that is, the predetermined temperature Td) and the end temperature (that is, the target temperature To) of the temperature increase control are set in consideration of the influence of the deterioration degree of the NOx storage catalyst 11 on the NOx purification ability Nc. By doing so, the time when the NOx purification capacity Nc is insufficient can be efficiently shortened. This will be described with reference to FIG. That is, in FIG. 7, the solid line represents the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the NOx storage catalyst 11 has deteriorated, and the dotted line represents the NOx storage catalyst 11. The relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when NO is not deteriorated represents the NOx purification capacity that requires Nr. In the example shown in FIG. 7, when the NOx storage catalyst 11 is not deteriorated, the temperature increase control is started when the temperature TC of the NOx storage catalyst 11 reaches the temperature T 1 and reaches the temperature T 2 . Sometimes it ends. When the NOx storage catalyst 11 is deteriorated, the temperature rise control is started when the temperature TC of the NOx storing catalyst 11 becomes the temperature T 3, is caused to exit when it becomes the temperature T 4.

このようにNOx吸蔵触媒11の劣化度合がNOx浄化能力Ncへ与える影響を考慮して昇温制御の開始温度(すなわち上記所定温度Td)と終了温度(すなわち上記目標温度To)を設定することで、昇温制御が劣化度合に応じた適切な温度範囲に対して実施されるようになり、NOx浄化能力Ncが必要NOx浄化能力Nr以下になる時間を効率的に短縮することができる。すなわち、例えばNOx吸蔵触媒11が劣化している場合にも昇温制御がNOx吸蔵触媒11の温度TCが温度T1になった時に開始され、温度T2になった時に終了せしめられたとすると、NOx吸蔵触媒11の温度TCが機関の通常運転によって温度T2から温度T4に上昇するまでNOx浄化能力Ncが不足している状態が続いてしまう。 In this way, the temperature rise control start temperature (ie, the predetermined temperature Td) and end temperature (ie, the target temperature To) are set in consideration of the influence of the deterioration degree of the NOx storage catalyst 11 on the NOx purification capacity Nc. Thus, the temperature rise control is performed over an appropriate temperature range according to the degree of deterioration, and the time during which the NOx purification capability Nc is equal to or less than the required NOx purification capability Nr can be efficiently shortened. That is, for example, even when the NOx storage catalyst 11 is deteriorated, the temperature increase control is started when the temperature TC of the NOx storage catalyst 11 reaches the temperature T 1 and is ended when the temperature T 2 reaches the temperature T 2 . temperature TC of the NOx storing catalyst 11 will continue to be a state where the NOx purifying ability Nc is insufficient to increase the temperature T 2 to the temperature T 4 by the normal operation of the engine.

なお、上述したようなNOx吸蔵触媒11の劣化度合に応じた昇温制御の開始温度及び終了温度の設定を行うためには、NOx吸蔵触媒11の劣化度合とそれに対応する適切な昇温制御の開始温度及び終了温度との関係を事前に求め、マップ化しておくとよい。   In order to set the start temperature and the end temperature of the temperature increase control according to the deterioration degree of the NOx storage catalyst 11 as described above, the deterioration degree of the NOx storage catalyst 11 and an appropriate temperature increase control corresponding thereto are performed. The relationship between the start temperature and the end temperature may be obtained in advance and mapped.

更に、本発明の他の実施形態においては、機関の冷間始動後等において、NOx吸蔵触媒11の温度TCが上昇して所定温度Tdになった時にNOx吸蔵触媒11の活性化を目的としてNOx吸蔵触媒11の温度TCを所定の目標温度Toまで昇温する昇温制御を実施するようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の硫黄被毒の度合が高い程、上記所定温度Tdが低く設定されるようになっている。   Furthermore, in another embodiment of the present invention, for example, for the purpose of activating the NOx storage catalyst 11 when the temperature TC of the NOx storage catalyst 11 rises to a predetermined temperature Td after a cold start of the engine or the like. In the exhaust gas purification apparatus in which the temperature raising control for raising the temperature TC of the storage catalyst 11 to the predetermined target temperature To is performed, the higher the estimated degree of sulfur poisoning of the NOx storage catalyst 11, the higher the predetermined value. The temperature Td is set low.

このようにすると、NOx吸蔵触媒11が硫黄被毒された場合には昇温制御がNOx吸蔵触媒11の温度TCのより低い時から開始されるようになり、結果としてNOx吸蔵触媒の温度TCの低い状態が短くされる。そして上述したようにNOx吸蔵触媒11が硫黄被毒された場合には低温側でのNOx浄化能力Ncが特に低下するので、上記のようにして昇温制御をNOx吸蔵触媒11の温度TCのより低い時から開始するようにすることで、充分なNOxの除去の実現を図ることができる。   In this way, when the NOx storage catalyst 11 is poisoned with sulfur, the temperature increase control is started when the temperature TC of the NOx storage catalyst 11 is lower, and as a result, the temperature TC of the NOx storage catalyst 11 is increased. The low state is shortened. As described above, when the NOx storage catalyst 11 is poisoned with sulfur, the NOx purification ability Nc on the low temperature side is particularly reduced. Therefore, the temperature increase control is performed by the temperature TC of the NOx storage catalyst 11 as described above. By starting from a low time, it is possible to realize sufficient removal of NOx.

そして、この場合においても、NOx吸蔵触媒11の硫黄被毒度合がNOx浄化能力Ncへ与える影響を考慮して昇温制御の開始温度(すなわち上記所定温度Td)と終了温度(すなわち上記目標温度To)を設定することで、NOx浄化能力Ncが不足する時間を効率的に短縮することができる。これについて図8を参照しつつ説明する。すなわち図8においては、実線が、NOx吸蔵触媒11が硫黄被毒している場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表し、点線が、NOx吸蔵触媒11が硫黄被毒されていない場合のNOx吸蔵触媒11のNOx浄化能力NcとNOx吸蔵触媒11の温度TCとの関係を表していて、Nrが必要なNOx浄化能力を表している。図8で示された例において、NOx吸蔵触媒11が硫黄被毒されていない場合には、昇温制御はNOx吸蔵触媒11の温度TCが温度T1になった時に開始され、温度T2になった時に終了せしめられる。そして、NOx吸蔵触媒11が硫黄被毒されている場合には、昇温制御はNOx吸蔵触媒11の温度TCが温度T5以下である時は常に実施され、温度T5になった時に終了せしめられる。 In this case also, the temperature rise control start temperature (that is, the predetermined temperature Td) and end temperature (that is, the target temperature To) are considered in consideration of the influence of the sulfur poisoning degree of the NOx storage catalyst 11 on the NOx purification capability Nc. ) Can be set to efficiently reduce the time for which the NOx purification capacity Nc is insufficient. This will be described with reference to FIG. That is, in FIG. 8, the solid line represents the relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the NOx storage catalyst 11 is poisoned with sulfur, and the dotted line represents the NOx storage catalyst. The relationship between the NOx purification capacity Nc of the NOx storage catalyst 11 and the temperature TC of the NOx storage catalyst 11 when the catalyst 11 is not poisoned with sulfur is shown, and the NOx purification capacity that requires Nr is shown. In the example shown in FIG. 8, when the NOx storage catalyst 11 is not poisoned with sulfur, the temperature increase control is started when the temperature TC of the NOx storage catalyst 11 reaches the temperature T 1, and reaches the temperature T 2 . It is finished when it becomes. When the NOx storage catalyst 11 is sulfur poisoning, the temperature increase control is always performed when the temperature TC of the NOx storing catalyst 11 is the temperature T 5 less, allowed ends when it becomes the temperature T 5 It is done.

このようにNOx吸蔵触媒11の硫黄被毒度合がNOx浄化能力Ncへ与える影響を考慮して昇温制御の開始温度(すなわち上記所定温度Td)と終了温度(すなわち上記目標温度To)を設定することで、昇温制御が硫黄被毒度合に応じた適切な温度範囲に対して実施されるようになり、NOx浄化能力Ncが必要NOx浄化能力Nr以下になる時間を効率的に短縮することができる。すなわち、例えばNOx吸蔵触媒11が硫黄被毒されている場合にも昇温制御がNOx吸蔵触媒11の温度TCが温度T1になった時に開始され、温度T2になった時に終了せしめられるとすると、NOx吸蔵触媒11の温度TCが機関の通常運転によって温度T1に上昇するまでの間及び温度T2から温度T5に上昇するまでの間はNOx浄化能力Ncが不足している状態が続いてしまう。 As described above, the start temperature (that is, the predetermined temperature Td) and the end temperature (that is, the target temperature To) of the temperature increase control are set in consideration of the influence of the degree of sulfur poisoning of the NOx storage catalyst 11 on the NOx purification ability Nc. As a result, the temperature increase control is performed over an appropriate temperature range corresponding to the degree of sulfur poisoning, and the time during which the NOx purification capability Nc is equal to or less than the required NOx purification capability Nr can be efficiently shortened. it can. That is, for example, when the NOx storage catalyst 11 is poisoned with sulfur, the temperature increase control is started when the temperature TC of the NOx storage catalyst 11 reaches the temperature T 1 and is ended when the temperature TC reaches the temperature T 2. then, the state between the between and temperature T 2 to the temperature TC of the NOx storage catalyst 11 is raised to the temperature T 1 of the normal operation of the engine until the rise in the temperature T 5 is the NOx purifying ability Nc is insufficient It will continue.

なお、上述したようなNOx吸蔵触媒11の硫黄被毒度合に応じた昇温制御の開始温度及び終了温度の設定を行うためには、劣化度合に関する場合と同様、NOx吸蔵触媒11の硫黄被毒度合とそれに対応する適切な昇温制御の開始温度及び終了温度との関係を事前に求め、マップ化しておくとよい。   In order to set the start temperature and the end temperature of the temperature increase control according to the sulfur poisoning degree of the NOx storage catalyst 11 as described above, the sulfur poisoning of the NOx storage catalyst 11 is the same as in the case of the deterioration degree. The relationship between the degree and the start temperature and end temperature of appropriate temperature increase control corresponding to the degree is preferably obtained in advance and mapped.

また、本発明の更に別の実施形態においては、機関の始動後等において、推定されたNOx吸蔵触媒11の劣化度合に応じてNOx吸蔵触媒11の温度TCを低く維持するための低温維持制御が実施されるようになっている。すなわち、NOx吸蔵触媒11の劣化度合が高い場合(例えば予め定めた基準の劣化度合より高い場合)に低温維持制御が行われる。また、この場合に劣化度合が高い程、低温維持制御の時間を長くする、あるいは維持する温度を低くするようにしてもよい。この時、制御パラメータ(例えば、低温維持制御の時間等)の具体的な値は、NOx吸蔵触媒11の劣化度合と低温側でのNOx浄化能力Ncの上昇との関係に基づいて事前にNOx吸蔵触媒11の劣化度合と必要な制御パラメータの適切な値とを対応させたマップを作成しておき、それに基づいて求めるようにすることができる。なお、ここでの低温維持制御は、例えば、燃料噴射時期を進角すること、EGR量を減少すること、NOx吸蔵触媒11の上流に空気を導入することの少なくとも何れか一つを実施することで実現することができる。   In yet another embodiment of the present invention, low temperature maintenance control for keeping the temperature TC of the NOx occlusion catalyst 11 low according to the estimated degree of deterioration of the NOx occlusion catalyst 11 after engine startup or the like is performed. To be implemented. That is, the low temperature maintenance control is performed when the deterioration degree of the NOx storage catalyst 11 is high (for example, when the deterioration degree is higher than a predetermined reference deterioration degree). In this case, the higher the degree of deterioration, the longer the time for low temperature maintenance control, or the lower the temperature to be maintained. At this time, the specific value of the control parameter (for example, the time for maintaining the low temperature) is stored in advance based on the relationship between the degree of deterioration of the NOx storage catalyst 11 and the increase in the NOx purification capacity Nc on the low temperature side. A map in which the degree of deterioration of the catalyst 11 is associated with an appropriate value of a necessary control parameter can be created and obtained based on the map. Note that the low temperature maintenance control here includes, for example, at least one of advancing the fuel injection timing, reducing the EGR amount, and introducing air upstream of the NOx storage catalyst 11. Can be realized.

このような実施形態によれば、NOx吸蔵触媒11が劣化している場合にNOx吸蔵触媒11がその温度TCの低い状態に長く維持される。そして上述したようにNOx吸蔵触媒11が劣化された場合には低温側でのNOx浄化能力Ncが上昇するので、上記のようにしてNOx吸蔵触媒11をその温度TCの低い状態に長く維持することで、より効率的なNOxの除去が可能となる。   According to such an embodiment, when the NOx storage catalyst 11 is deteriorated, the NOx storage catalyst 11 is maintained at a low temperature TC for a long time. As described above, when the NOx storage catalyst 11 is deteriorated, the NOx purification ability Nc on the low temperature side increases, so that the NOx storage catalyst 11 is maintained at a low temperature TC for a long time as described above. Thus, more efficient removal of NOx becomes possible.

更に、本発明の他の実施形態においては、NOx吸蔵触媒11の温度TCが所定温度Tf未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒11の温度TCが所定温度Tf以上である時の同一の機関運転状態、すなわち同一回転数、同一トルクの場合に比べて増大させるようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の劣化度合が高い程、上記所定温度Tfが高く設定されるようになっている。 Furthermore, in another embodiment of the present invention, when the temperature TC of the NOx storage catalyst 11 is less than the predetermined temperature Tf, nitrogen dioxide with respect to nitrogen monoxide NO generated when combustion is performed under a lean air-fuel ratio. In the exhaust gas purification apparatus in which the ratio of NO 2 is increased compared to the same engine operating state when the temperature TC of the NOx storage catalyst 11 is equal to or higher than the predetermined temperature Tf, that is, the same rotational speed and the same torque. The predetermined temperature Tf is set higher as the estimated degree of deterioration of the NOx storage catalyst 11 is higher.

上述したように排気ガス中に含まれる二酸化窒素NO2はNOx吸蔵触媒11が活性化しなくてもNOx吸収剤47に低温吸蔵されるが、排気ガス中に含まれる一酸化窒素NOはNOx吸蔵触媒11が活性化して二酸化窒素NO2に酸化されないとNOx吸収剤47に高温吸蔵されない。このため、NOx吸蔵触媒11が活性化していない、または低活性であるNOx吸蔵触媒11の低温時には、排気ガス中の一酸化窒素NOの量を減らし、排気ガス中の二酸化窒素NO2の量を増大することが好ましい。そこで、上記所定温度Tfを例えば、NOx吸収剤47に単位時間当たりに低温吸蔵される二酸化窒素NO2の量と単位時間当たりに高温吸蔵される窒素酸化物NOxの量とが等しくなる温度に設定すれば、二酸化窒素NO2の低温吸蔵がより期待できる温度域で排気ガス中の二酸化窒素NO2の量を増大することになり、NOx浄化率の向上を図ることができる。 As described above, nitrogen dioxide NO 2 contained in the exhaust gas is stored in the NOx absorbent 47 at a low temperature even if the NOx storage catalyst 11 is not activated, but nitrogen monoxide NO contained in the exhaust gas is stored in the NOx storage catalyst. The NOx absorbent 47 is not occluded at high temperature unless 11 is activated and oxidized to nitrogen dioxide NO 2 . Therefore, when the NOx storage catalyst 11 is not activated or has a low activity, the NOx storage catalyst 11 has a low temperature, the amount of nitrogen monoxide NO in the exhaust gas is reduced, and the amount of nitrogen dioxide NO 2 in the exhaust gas is reduced. It is preferable to increase. Therefore, for example, the predetermined temperature Tf is set to a temperature at which the amount of nitrogen dioxide NO 2 stored in the NOx absorbent 47 at a low temperature per unit time is equal to the amount of nitrogen oxide NOx stored at a high temperature per unit time. In this case, the amount of nitrogen dioxide NO 2 in the exhaust gas is increased in a temperature range where low-temperature storage of nitrogen dioxide NO 2 can be expected, and the NOx purification rate can be improved.

そして、上述したように低温吸蔵に基づくNOx浄化能力NcはNOx吸蔵触媒11が劣化された場合に結果的に増加するので、上記のようにNOx吸蔵触媒11の劣化度合が高い程、上記所定温度Tfを高くし、低温吸蔵に期待する温度範囲を広げることで、より効率的なNOxの除去が可能となる。   As described above, the NOx purification capacity Nc based on the low-temperature storage increases as a result when the NOx storage catalyst 11 is deteriorated. Therefore, the higher the degree of deterioration of the NOx storage catalyst 11 as described above, the higher the predetermined temperature. By increasing Tf and expanding the temperature range expected for low-temperature storage, more efficient removal of NOx becomes possible.

また、本発明の他の実施形態においては、NOx吸蔵触媒11の温度TCが所定温度Tf未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒11の温度TCが所定温度Tf以上である時の同一の機関運転状態、すなわち同一回転数、同一トルクの場合に比べて増大させるようにしている排気浄化装置において、推定されたNOx吸蔵触媒11の硫黄被毒の度合が高い程、上記所定温度Tfが低く設定されるようになっている。 In another embodiment of the present invention, when the temperature TC of the NOx storage catalyst 11 is lower than the predetermined temperature Tf, nitrogen dioxide with respect to nitrogen monoxide NO generated when combustion is performed under a lean air-fuel ratio. In the exhaust gas purification apparatus in which the ratio of NO 2 is increased compared to the same engine operating state when the temperature TC of the NOx storage catalyst 11 is equal to or higher than the predetermined temperature Tf, that is, the same rotational speed and the same torque. The predetermined temperature Tf is set lower as the estimated degree of sulfur poisoning of the NOx storage catalyst 11 is higher.

上述したように低温吸蔵に基づくNOx浄化能力NcはNOx吸蔵触媒11が硫黄被毒された場合に大きな影響を受ける。つまり、NOx吸蔵触媒11が硫黄被毒されると低温吸蔵に基づくNOx浄化能力Ncは極めて低くなってしまう。そのため、上記のようにNOx吸蔵触媒11の硫黄被毒の度合が高い程、上記所定温度Tfを低くし、低温吸蔵に期待する温度範囲を縮小することで、充分なNOxの除去の実現を図ることができる。   As described above, the NOx purification capacity Nc based on low-temperature storage is greatly affected when the NOx storage catalyst 11 is poisoned with sulfur. That is, when the NOx storage catalyst 11 is poisoned with sulfur, the NOx purification ability Nc based on the low temperature storage becomes extremely low. Therefore, the higher the degree of sulfur poisoning of the NOx storage catalyst 11 as described above, the lower the predetermined temperature Tf and the lower the temperature range expected for low temperature storage, thereby realizing sufficient removal of NOx. be able to.

なお、上記のNO2の割合(=NO2の量/NOの量)は、緩慢な燃焼を行わせると増大することが判明しており、例えば燃料噴射時期を遅角するか、EGRガス量を増大するか、パイロット噴射を行うか、または予混合気燃焼を行うかの少なくとも何れか一つを行うと燃焼が緩慢となる。そこで本発明による実施形態のうち上記のような排気ガス中の二酸化窒素NO2量の増大を図るものでは、二酸化窒素NO2量の増大の必要がある時に上記の燃焼を緩慢にする方法の少なくとも何れか一つを実施して緩慢な燃焼を行わせるようにしている。 It has been found that the ratio of NO 2 (= NO 2 amount / NO amount) increases when slow combustion is performed. For example, the fuel injection timing is retarded or the EGR gas amount is increased. When at least one of the above is increased, pilot injection is performed, or premixed gas combustion is performed, the combustion becomes slow. Therefore, in the embodiment according to the present invention, in order to increase the amount of nitrogen dioxide NO 2 in the exhaust gas as described above, at least the method of slowing down the combustion when the amount of nitrogen dioxide NO 2 needs to be increased is required. Either one is implemented to cause slow combustion.

なお、以上の説明では、昇温制御は燃料噴射パターンを制御することによって行われたが、本発明はこれに限定されるものではなく、例えば電気ヒータを用いる等、他の手段によってNOx吸蔵触媒11を昇温するようにしてもよい。   In the above description, the temperature raising control is performed by controlling the fuel injection pattern. However, the present invention is not limited to this, and the NOx occlusion catalyst is used by other means such as using an electric heater. 11 may be heated.

また、以上の説明では理解を容易にするためにNOx吸蔵触媒11の劣化度合に応じて行われる制御とNOx吸蔵触媒11の硫黄被毒度合に応じて行われる制御とを別々に説明したが、これら両方の度合を考慮して実施する制御を決定するようにしてもよい。この場合、例えばNOx吸蔵触媒11が劣化し且つ硫黄被毒されていると、低温側でのNOx浄化能力Ncは劣化度合に応じた分だけ上昇し、硫黄被毒度合に応じた分だけ低下するものとして実施する制御が決定される。したがって、上述した機関の冷間始動後に昇温制御を開始するまでの所定時間tsを例にとると、劣化度合に応じた分だけ長くされた後、硫黄被毒度合に応じた分だけ短くされて実際の制御に用いられる最終的な所定時間tsが決定される。   Moreover, in the above description, in order to facilitate understanding, the control performed according to the deterioration degree of the NOx storage catalyst 11 and the control performed according to the sulfur poisoning degree of the NOx storage catalyst 11 are separately described. The control to be performed may be determined in consideration of both of these degrees. In this case, for example, if the NOx storage catalyst 11 is deteriorated and sulfur-poisoned, the NOx purification capacity Nc on the low temperature side increases by the amount corresponding to the degree of deterioration and decreases by the amount corresponding to the degree of sulfur poisoning. The control to be implemented is determined. Therefore, taking as an example the predetermined time ts until the temperature raising control is started after the cold start of the engine described above, it is increased by an amount corresponding to the degree of deterioration and then reduced by an amount corresponding to the degree of sulfur poisoning. Thus, a final predetermined time ts used for actual control is determined.

図1は、本発明を圧縮着火式内燃機関に適用した場合を示している。FIG. 1 shows a case where the present invention is applied to a compression ignition type internal combustion engine. 図2は、NOx吸蔵触媒の担体表面部分の断面を図解的に示す図である。FIG. 2 is a diagram schematically showing a cross-section of the carrier surface portion of the NOx storage catalyst. 図3は、NOx吸蔵触媒のNOx浄化能力NcとNOx吸蔵触媒の温度TCとの関係を示す図である。FIG. 3 is a diagram showing the relationship between the NOx purification capacity Nc of the NOx storage catalyst and the temperature TC of the NOx storage catalyst. 図4は、図3と同様の図であり、NOx吸蔵触媒が劣化している場合と劣化していない場合とを比較して示している。FIG. 4 is a view similar to FIG. 3 and shows a comparison between a case where the NOx storage catalyst is deteriorated and a case where the NOx storage catalyst is not deteriorated. 図5は、図3と同様の図であり、NOx吸蔵触媒が硫黄被毒されている場合と硫黄被毒されていない場合とを比較して示している。FIG. 5 is a view similar to FIG. 3 and shows a comparison between a case where the NOx storage catalyst is sulfur-poisoned and a case where it is not sulfur-poisoned. 図6は、種々の燃料噴射パターンを示す図である。FIG. 6 is a diagram showing various fuel injection patterns. 図7は、本発明の一実施形態において、NOx吸蔵触媒の昇温制御の開始温度と終了温度を決定する方法を説明するための図である。FIG. 7 is a diagram for explaining a method for determining the start temperature and the end temperature of the temperature increase control of the NOx storage catalyst in an embodiment of the present invention. 図8は、本発明の他の実施形態において、NOx吸蔵触媒の昇温制御の開始温度と終了温度を決定する方法を説明するための図である。FIG. 8 is a diagram for explaining a method for determining the start temperature and the end temperature of the temperature rise control of the NOx storage catalyst in another embodiment of the present invention.

符号の説明Explanation of symbols

3…燃料噴射弁
4…吸気マニホルド
5…排気マニホルド
7…排気ターボチャージャ
11…NOx吸蔵触媒
13…還元剤供給弁
3 ... Fuel injection valve 4 ... Intake manifold 5 ... Exhaust manifold 7 ... Exhaust turbocharger 11 ... NOx storage catalyst 13 ... Reductant supply valve

Claims (8)

機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、
該NOx吸蔵触媒の活性状態に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段と、を具備した内燃機関の排気浄化装置において、
上記NOx浄化能力推定手段は上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を大きく推定する排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated NOx storage catalyst that stores nitrogen dioxide NO 2 in the NOx absorbent at a low temperature and, when activated, stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature;
Means for estimating the NOx purification capacity of the NOx storage catalyst based on the active state of the NOx storage catalyst,
The above NOx purification ability estimation means comprise means for estimating the reduction degree of the oxidation performance of the NOx storage catalyst, as degree of reduction in oxidation performance estimated by the oxidation degradation degree estimating means is high, the NOx storage catalyst An exhaust gas purification apparatus that largely estimates the NOx purification capacity based on the low temperature storage.
機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、
該NOx吸蔵触媒の活性状態に基づいて上記NOx吸蔵触媒のNOx浄化能力を推定する手段と、を具備した内燃機関の排気浄化装置において、
上記NOx浄化能力推定手段は上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を小さく推定するようにした排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated NOx storage catalyst that stores nitrogen dioxide NO 2 in the NOx absorbent at a low temperature and, when activated, stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature;
Means for estimating the NOx purification capacity of the NOx storage catalyst based on the active state of the NOx storage catalyst,
The NOx purification capacity estimation means includes means for estimating the degree of sulfur poisoning of the NOx storage catalyst, and the higher the degree of sulfur poisoning estimated by the sulfur poisoning degree estimation means, the higher the NOx storage catalyst. An exhaust gas purification apparatus in which the NOx purification capacity based on the low-temperature storage is estimated to be small.
上記NOx浄化能力推定手段が更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、推定された硫黄被毒の度合が高い程上記NOx吸蔵触媒の上記低温吸蔵に基づくNOx浄化能力を小さく推定する請求項1に記載の排気浄化装置。   The NOx purification capacity estimating means further includes means for estimating the degree of sulfur poisoning of the NOx storage catalyst, and the higher the estimated degree of sulfur poisoning, the more the NOx purification based on the low temperature storage of the NOx storage catalyst. The exhaust emission control device according to claim 1, wherein the capacity is estimated to be small. 機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、機関の始動後に上記NOx吸蔵触媒の温度を予め定めた目標温度以上に上昇させる昇温制御が実施される内燃機関の排気浄化装置において、
更に上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記昇温制御の開始時期が遅れるようにされる、または、機関の始動から上記NOx吸蔵触媒の温度が上記目標温度になるまでの時間が長くなるようにされる排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated A NOx storage catalyst that stores nitrogen dioxide NO 2 in the NOx absorbent at a low temperature and, when activated, stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature, is provided after the engine is started. In the exhaust gas purification apparatus for an internal combustion engine in which the temperature raising control for raising the temperature of the storage catalyst to a predetermined target temperature or higher is performed
Further comprise means for estimating the reduction degree of the oxidation performance of the NOx storage catalyst, as degree of reduction in oxidation performance estimated by the oxidation degradation degree estimating means is high, so that the starting time of the temperature increase control is delayed Or an exhaust purification device in which the time from the start of the engine until the temperature of the NOx storage catalyst reaches the target temperature is lengthened.
機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、機関の始動後に上記NOx吸蔵触媒の温度を予め定めた目標温度以上に上昇させる昇温制御が実施される内燃機関の排気浄化装置において、
更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記昇温制御の開始時期が早まるようにされる、または、機関の始動から上記NOx吸蔵触媒の温度が上記目標温度になるまでの時間が短くなるようにされる排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated A NOx storage catalyst that stores nitrogen dioxide NO 2 in the NOx absorbent at a low temperature and, when activated, stores nitrogen oxide NOx contained in the exhaust gas in the NOx absorbent at a high temperature, is provided after the engine is started. In the exhaust gas purification apparatus for an internal combustion engine in which the temperature raising control for raising the temperature of the storage catalyst to a predetermined target temperature or higher is performed
Furthermore, a means for estimating the degree of sulfur poisoning of the NOx storage catalyst is provided, so that the higher the degree of sulfur poisoning estimated by the sulfur poisoning degree estimating means, the earlier the start timing of the temperature increase control. Or an exhaust purification device in which the time from the start of the engine until the temperature of the NOx storage catalyst reaches the target temperature is shortened.
機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒と、該NOx吸蔵触媒の酸化性能の低下度合を推定する手段とを具備し、機関の始動後に上記酸化性能低下度合推定手段によって推定された酸化性能の低下度合が所定の低下度合以上であれば上記NOx吸蔵触媒の温度を低く維持するための低温維持制御が実施される内燃機関の排気浄化装置において、
上記酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記低温維持制御の実施時間を長くする、または上記低温維持制御において維持する温度を低くするようにした排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated Nitrogen dioxide NO 2 is stored in the NOx absorbent at a low temperature, and when activated, the NOx storage catalyst that stores NOx absorbent in the exhaust gas at a high temperature is stored in the NOx absorbent, and the oxidation performance of the NOx storage catalyst And a means for estimating the degree of decrease, and the temperature of the NOx occlusion catalyst is kept low if the degree of decrease in oxidation performance estimated by the degree of decrease in oxidation performance estimated after starting the engine is equal to or greater than a predetermined degree of decrease. In an exhaust gas purification apparatus for an internal combustion engine in which low temperature maintenance control is performed for
The exhaust gas purification apparatus in which the lower the oxidation performance estimated by the oxidation performance degradation degree estimation means, the longer the duration of the low temperature maintenance control, or the lower the temperature maintained in the low temperature maintenance control.
機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、上記NOx吸蔵触媒の温度が所定温度未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒の温度が上記所定温度以上である時の同一の機関運転状態の場合に比べて増大させるようにしている排気浄化装置において、
更に上記NOx吸蔵触媒の酸化性能の低下度合を推定する手段を備えていて、該酸化性能低下度合推定手段によって推定された酸化性能の低下度合が高い程、上記所定温度が高く設定されるようになっている排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated nitrogen dioxide NO 2 is cold stored in the NOx absorbent, when being activated comprising the NOx storage catalyst to a high temperature storage of nitrogen oxides NOx in the exhaust gas in the NOx absorbent, the temperature of the NOx storage catalyst Is lower than the predetermined temperature, the ratio of nitrogen dioxide NO 2 to nitrogen monoxide NO generated when combustion is performed at a lean air-fuel ratio is determined when the temperature of the NOx storage catalyst is equal to or higher than the predetermined temperature. In the exhaust emission control device that is increased compared to the case of the same engine operating state,
Further comprise means for estimating the reduction degree of the oxidation performance of the NOx storage catalyst, the higher the degree of reduction in oxidation performance estimated by the oxidation degradation degree estimating means, so that the predetermined temperature is set high Exhaust gas purification device.
機関排気通路内に配置された貴金属触媒とNOx吸収剤とからなるNOx吸蔵触媒であって、流入する排気ガスの空燃比がリーンである場合において、活性化されていない時には排気ガス中に含まれる二酸化窒素NO2をNOx吸収剤に低温吸蔵し、活性化されている時には排気ガス中に含まれる窒素酸化物NOxをNOx吸収剤に高温吸蔵するNOx吸蔵触媒を具備し、上記NOx吸蔵触媒の温度が所定温度未満である時には、リーン空燃比のもとで燃焼を行った際に発生する一酸化窒素NOに対する二酸化窒素NO2の割合を、NOx吸蔵触媒の温度が上記所定温度以上である時の同一の機関運転状態の場合に比べて増大させるようにしている排気浄化装置において、
更に上記NOx吸蔵触媒の硫黄被毒の度合を推定する手段を備えていて、該硫黄被毒度合推定手段によって推定された硫黄被毒の度合が高い程、上記所定温度が低く設定されるようになっている排気浄化装置。
A NOx occlusion catalyst comprising a noble metal catalyst and a NOx absorbent disposed in the engine exhaust passage, and when the air-fuel ratio of the inflowing exhaust gas is lean, it is included in the exhaust gas when it is not activated nitrogen dioxide NO 2 is cold stored in the NOx absorbent, when being activated comprising the NOx storage catalyst to a high temperature storage of nitrogen oxides NOx in the exhaust gas in the NOx absorbent, the temperature of the NOx storage catalyst Is lower than the predetermined temperature, the ratio of nitrogen dioxide NO 2 to nitrogen monoxide NO generated when combustion is performed at a lean air-fuel ratio is determined when the temperature of the NOx storage catalyst is equal to or higher than the predetermined temperature. In the exhaust emission control device that is increased compared to the case of the same engine operating state,
Further, a means for estimating the degree of sulfur poisoning of the NOx storage catalyst is provided, and the predetermined temperature is set lower as the degree of sulfur poisoning estimated by the sulfur poisoning degree estimating means is higher. Exhaust gas purification device.
JP2003364865A 2003-10-24 2003-10-24 Exhaust gas purification device for internal combustion engine Expired - Fee Related JP4285193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003364865A JP4285193B2 (en) 2003-10-24 2003-10-24 Exhaust gas purification device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003364865A JP4285193B2 (en) 2003-10-24 2003-10-24 Exhaust gas purification device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2005127248A JP2005127248A (en) 2005-05-19
JP4285193B2 true JP4285193B2 (en) 2009-06-24

Family

ID=34643716

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003364865A Expired - Fee Related JP4285193B2 (en) 2003-10-24 2003-10-24 Exhaust gas purification device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4285193B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4706404B2 (en) * 2005-09-13 2011-06-22 トヨタ自動車株式会社 Exhaust gas purification device for internal combustion engine
JP4739104B2 (en) * 2006-04-21 2011-08-03 日本特殊陶業株式会社 Sensor control device
JP2010255531A (en) * 2009-04-24 2010-11-11 Honda Motor Co Ltd Exhaust emission control system for internal combustion engine

Also Published As

Publication number Publication date
JP2005127248A (en) 2005-05-19

Similar Documents

Publication Publication Date Title
JP4158697B2 (en) Exhaust gas purification device and exhaust gas purification method for internal combustion engine
JP2004068700A (en) Exhaust gas purification method
JP4039349B2 (en) Exhaust gas purification device for internal combustion engine
JP5056725B2 (en) Control device for internal combustion engine
JPWO2003069137A1 (en) Exhaust gas purification system and exhaust gas purification method
JP4935928B2 (en) Exhaust gas purification device for internal combustion engine
JP5748005B2 (en) Exhaust gas purification device for internal combustion engine
JP3912354B2 (en) Exhaust purification device and exhaust purification method for internal combustion engine
JP3536733B2 (en) Exhaust gas purification device for internal combustion engine
JP4285193B2 (en) Exhaust gas purification device for internal combustion engine
JP4556364B2 (en) Exhaust gas purification device for internal combustion engine
JP4357917B2 (en) Exhaust gas purification device for internal combustion engine
JP2001003782A (en) Exhaust emission control device for internal combustion engine
JP3512064B2 (en) Exhaust gas purification device for internal combustion engine
JP4269919B2 (en) Exhaust gas purification device for internal combustion engine
JP4254505B2 (en) Exhaust gas purification device for internal combustion engine
JP4003730B2 (en) Exhaust gas purification device for internal combustion engine
JP4329378B2 (en) Exhaust gas purification device for internal combustion engine
JP2003214152A (en) Exhaust emission control device for internal combustion engine
JP2005090310A (en) NOx CLEANING DEVICE
JPH11294152A (en) Compression ignition type internal combustion engine
JP5088298B2 (en) Exhaust gas purification method and exhaust gas purification system
JP2005188387A (en) Exhaust emission control device for internal combustion engine
JP2003083115A (en) Exhaust emission control device for internal combustion engine
JP2003065108A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061002

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees