JP4285086B2 - Secondary air supply control device for internal combustion engine - Google Patents

Secondary air supply control device for internal combustion engine Download PDF

Info

Publication number
JP4285086B2
JP4285086B2 JP2003154830A JP2003154830A JP4285086B2 JP 4285086 B2 JP4285086 B2 JP 4285086B2 JP 2003154830 A JP2003154830 A JP 2003154830A JP 2003154830 A JP2003154830 A JP 2003154830A JP 4285086 B2 JP4285086 B2 JP 4285086B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
secondary air
air supply
ignition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003154830A
Other languages
Japanese (ja)
Other versions
JP2004353615A (en
Inventor
辰則 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2003154830A priority Critical patent/JP4285086B2/en
Publication of JP2004353615A publication Critical patent/JP2004353615A/en
Application granted granted Critical
Publication of JP4285086B2 publication Critical patent/JP4285086B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrical Control Of Ignition Timing (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関の排気通路内の触媒に2次空気を供給し活性化する内燃機関の2次空気供給制御装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の2次空気供給制御装置に関連する先行技術文献としては、実開昭58−75914号公報、実開昭58−163622号公報にて開示されたものが知られている。前者のものでは、内燃機関の暖機状態にかかわらず、減速時に2次空気制御弁を「開」として排気通路(排気流路)に2次空気を供給する技術が示されている。また、後者のものでは、内燃機関の機関回転速度が所定回転速度以上からの減速初期には暖機途中(暖機前)であっても、触媒早期暖機のため理論空燃比よりも濃い空燃比に応じて導入されている2次空気供給を停止する技術が示されている。
【特許文献1】
実開昭58−75914号公報(第1頁)
【特許文献2】
実開昭58−163622号公報(第1頁)
【0003】
【発明が解決しようとする課題】
ところで、前述の実開昭58−75914号公報では、減速時に増加する未燃HC(炭化水素)を2次空気供給によって燃焼させ、エミッションを改善するものである。ここで、点火遅角による触媒早期暖機を実施する場合、減速時に2次空気を供給すると多量の未燃HCの燃焼により排気通路内でアフタファイヤに至らないまでもボソボソ音が発生するという不具合があった。
【0004】
また、実開昭58−163622号公報では、急減速時には暖機途中であっても2次空気供給を停止することで排気通路におけるアフタファイヤを防止するものである。ここで、点火遅角による触媒早期暖機を実施する場合、減速時に2次空気供給を停止すると未燃HCの燃焼が損なわれることで、結果的に、触媒の早期暖機による活性化が遅れるという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、点火遅角による触媒早期暖機を実施する場合、減速時に2次空気供給を適宜、停止することで、触媒早期暖機を損なうことなく排気通路内のボソボソ音の発生を抑えることができる内燃機関の2次空気供給制御装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の内燃機関の2次空気供給制御装置によれば、暖機状態検出手段で検出される内燃機関の暖機途中では、点火遅角制御手段にて2次空気供給機構により触媒の上流側の排気通路内に2次空気を供給すると共に、内燃機関の点火時期に対する点火遅角量が設定される点火遅角制御が実行され、触媒の早期暖機が行われる。この際、減速状態検出手段で減速状態が検出されると、判定レベル変更手段によって2次空気供給機構による2次空気の供給を停止する際の吸気圧検出手段で検出される吸気圧の判定レベルが変更される。つまり、点火遅角制御中に減速状態となり、このときの吸気圧が判定レベルより低くなる期間だけ2次空気供給が停止される。このため、触媒の早期暖機による活性化を損なうことなく排気通路内で未燃HCが燃焼するときの異音の発生が抑えられる。
【0007】
請求項2の内燃機関の2次空気供給制御装置における判定レベル変更手段では、点火遅角制御手段による点火遅角制御中の判定レベルが、点火遅角制御中でないときよりも正圧側に設定されることで、減速時に2次空気供給が停止されるタイミングが増加されることとなり、排気通路内で未燃HCが燃焼するときの異音の発生が抑えられると共に、触媒の早期暖機による活性化が達成される。
【0008】
請求項3の内燃機関の2次空気供給制御装置における判定レベル変更手段では、点火遅角制御手段による点火遅角制御中の判定レベルが、点火遅角制御中でないときよりも負圧側に設定されることで、減速時に2次空気供給が停止されるタイミングが減少されることとなり、排気通路内で未燃HCが良好に燃焼され、触媒の早期暖機による活性化と共に、エミッションが改善される。
【0009】
請求項4の内燃機関の2次空気供給制御装置における判定レベル変更手段では、点火遅角制御手段による点火遅角量によって変更される判定レベルによれば、内燃機関の排気通路内での未燃HCの燃焼が最適化され、触媒の早期暖機が良好に達成される。
【0010】
請求項5の内燃機関の2次空気供給制御装置では、内燃機関が二輪車に搭載されることで、触媒早期暖機のための点火遅角制御において、特に、バルブオーバラップ量の大きな二輪車に要望される排気通路内の未燃HCの減少によってエミッションの改善が図られる。
【0011】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0012】
図1は本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置が適用された二輪車における内燃機関及びその周辺機器を示す概略構成図である。
【0013】
図1において、内燃機関1は4サイクル4気筒(#1気筒〜#4気筒)の火花点火式として構成され、その吸入空気は上流側からエアクリーナ2、吸気通路3、スロットルバルブ4を通過して吸気通路3内でインジェクタ(燃料噴射弁)5から噴射された燃料と混合され、所定空燃比の混合気として吸気ポート6から各気筒内に分配供給される。また、内燃機関1のシリンダヘッドには気筒毎に点火プラグ7が配設され、点火タイミング毎に点火コイル/イグナイタ8から高電圧が各気筒の点火プラグ7に印加され、各気筒内の混合気に点火される。そして、内燃機関1の各気筒で燃焼された排気ガスは排気ポート11から排気通路12の下流側に配設された三元触媒13を通過して大気中に排出される。
【0014】
エアクリーナ2内には吸気温センサ21が配設され、吸気温センサ21によってエアクリーナ2内に流入される吸気温THA〔℃〕が検出される。また、吸気通路3には吸気圧センサ22が配設され、吸気圧センサ22によってスロットルバルブ4の下流側の吸気圧PM〔kPa:キロパスカル〕が検出される。そして、スロットルバルブ4にはスロットル開度センサ23が配設され、スロットル開度センサ23によってスロットルバルブ4のスロットル開度TA〔°〕が検出される。また、内燃機関1のシリンダブロックには水温センサ24が配設され、水温センサ24によって内燃機関1内の冷却水温THW〔℃〕が検出される。そして、内燃機関1のクランクシャフト(図示略)にはクランク角センサ25が配設され、クランク角センサ25によってクランクシャフトの回転に伴い単位時間当たりに発生されるパルス数からなるクランク角信号に基づく機関回転速度NE〔rpm〕が検出される。更に、内燃機関1のカムシャフト(図示略)にはカム角センサ26が配設され、カム角センサ26によってカムシャフト回転角θ2 〔°CA(Crank Angle:クランク角)〕が検出される。
【0015】
また、排気通路12内の三元触媒13の上流側には酸素(O2 )センサ27が配設され、酸素センサ27によって排気通路12の三元触媒13の上流側の酸素濃度に対応する出力電圧VOX1〔V:ボルト〕が検出される。なお、酸素センサ27に替えて空燃比(A/F)センサを配設し、内燃機関1から排出される排気ガスにおける空燃比をリニアに検出してもよい。
【0016】
この他、変速機(図示略)にはギヤ位置センサ28が配設され、ギヤ位置センサ28によってギヤ位置GPが検出される。また、車載バッテリ(図示略)には電源電圧センサ29が配設され、電源電圧センサ29によって電源電圧VB 〔V〕が検出される。更に、車両の車輪(図示略)または変速機の出力軸(図示略)には車速センサ30が配設され、車速センサ30によって車輪または出力軸の回転に伴い単位時間当たりに発生されるパルス数からなる車速信号に基づく車速SPD〔km/h〕が検出される。
【0017】
一方、燃料タンク31内から燃料ポンプ32で汲上げられた燃料は、燃料配管33、燃料フィルタ34、燃料配管35、デリバリパイプ36の順に圧送され、各気筒のインジェクタ5に分配供給される。デリバリパイプ36内の余剰燃料は、プレッシャレギュレータ37、リターン配管38の経路にて燃料タンク31内に戻される。このプレッシャレギュレータ37によってデリバリパイプ36内の燃圧(燃料圧力)と吸気圧との差圧が一定になるようにデリバリパイプ36内の燃圧が調整される。
【0018】
更に、エアクリーナ2と内燃機関1の排気ポート11直後の排気通路12とが2次空気通路41にて接続され、その2次空気通路41途中にはエアクリーナ2からの空気を2次空気として、排気通路12内に適宜、導入するための2次空気制御弁42が配設されている。
【0019】
内燃機関1の運転状態を制御するECU(Electronic Control Unit:電子制御ユニット)50は、周知の各種演算処理を実行する中央処理装置としてのCPU51、制御プログラムや制御マップ等を格納したROM52、各種データを格納するRAM53、B/U(バックアップ)RAM54等を中心に論理演算回路として構成され、上述の各種センサからの検出信号を入力する入力ポート55及び各種アクチュエータとしてのインジェクタ5に燃料噴射量TAU、燃料ポンプ32に制御信号Ip、2次空気制御弁42に制御信号Iaや点火コイル/イグナイタ8に制御信号Igを出力する出力ポート56に対しバス57を介して接続されている。
【0020】
次に、本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置で使用されているECU50内のCPU51における点火時期演算の処理手順を示す図2のフローチャートに基づいて説明する。なお、この点火時期演算ルーチンは各気筒のクランク角信号同期にてCPU51にて繰返し実行される。また、本実施例で用いられる各マップはROM52内に予め記憶されている。
【0021】
図2において、まず、ステップS101でクランク角センサ25にて検出されたクランク角信号に基づく機関回転速度NEが読込まれる。次にステップS102に移行して、負荷としてスロットル開度センサ23にて検出されたスロットル開度TA、吸気圧センサ22にて検出された吸気圧PM等が読込まれる。次にステップS103に移行して、ステップS101で読込まれた機関回転速度NE〔rpm〕とステップS102で読込まれた負荷としてのスロットル開度TA〔°〕、吸気圧PM〔kPa〕等をパラメータとしてマップ(図示略)に基づき基本点火時期ABSE〔°CA〕が算出される。
【0022】
次にステップS104に移行して、水温センサ24にて検出された冷却水温THW〔℃〕が所定温度α未満であるかが判定される。ステップS104の判定条件が成立、即ち、冷却水温THW〔℃〕が所定温度α未満と低く、内燃機関1が冷間始動による暖機途中であるときにはステップS105に移行し、冷却水温THW〔℃〕とステップS101で読込まれた機関回転速度NE〔rpm〕とステップS102で読込まれた負荷としてのスロットル開度TA〔°〕、吸気圧PM〔kPa〕等をパラメータとしてマップ(図示略)に基づき三元触媒13を早期暖機するための点火遅角量ARET〔°CA〕が算出される。
【0023】
一方、ステップS104の判定条件が成立せず、即ち、冷却水温THW〔℃〕が所定温度α以上と高く、内燃機関1が暖機後であるときにはステップS106に移行し、点火遅角量ARET〔°CA〕が「0〔°CA〕」に設定される。ステップS105またはステップS106の処理ののちステップS107に移行し、ステップS103で算出された基本点火時期ABSE〔°CA〕からステップS105またはステップS106による点火遅角量ARET〔°CA〕が減算され最終点火時期AESA〔°CA〕が算出され、本ルーチンを終了する。
【0024】
次に、本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置で使用されているECU50内のCPU51における2次空気供給制御の処理手順を示す図3のフローチャートに基づき、図4及び図5を参照して説明する。ここで、図4は図3で点火遅角量ARET〔°CA〕をパラメータとして吸気圧PM〔kPa〕に対する判定閾値β〔kPa〕を設定するマップである。また、図5は図2及び図3の処理に対応し、始動後、加減速を繰返しているときの各種センサ信号や各種制御量等の遷移状態を示すタイムチャートであり、点火遅角量ARET〔°CA〕が冷却水温THW〔℃〕の上昇に伴って徐々に小さくなっている。なお、この2次空気供給制御ルーチンは所定時間毎にCPU51にて繰返し実行される。
【0025】
図3において、ステップS201では、減速時であるかが判定される。ステップS201の判定条件が成立、即ち、クランク角センサ25にて検出されたクランク角信号に基づく機関回転速度NE、スロットル開度センサ23にて検出されたスロットル開度TA、吸気圧センサ22にて検出された吸気圧PM等の変化量が予め設定された所定量を越え、減速時であると判定されるときにはステップS202に移行する。ステップS202では、図4のマップに基づき、上述の点火時期演算ルーチンで算出された点火遅角量ARET〔°CA〕に応じて2次空気制御弁42を「開」/「閉」させるときの吸気圧PM〔kPa〕に対する判定閾値β〔kPa〕が設定される。なお、図4のマップは、点火遅角量ARET〔°CA〕が大きくなるに連れて判定閾値β〔kPa〕を正圧側とする特性を有している。
【0026】
次にステップS203に移行して、吸気圧センサ22にて検出された吸気圧PM〔kPa〕がステップS202で設定された判定閾値β〔kPa〕未満であるかが判定される。ステップS203の判定条件が成立、即ち、内燃機関1の減速時、かつ吸気圧PM〔kPa〕が判定閾値β〔kPa〕未満と低いときにはステップS204に移行し、排気通路12内の排気ガス中に未燃HCが多く存在する可能性があるため2次空気制御弁42が「閉」とされ、本ルーチンを終了する。
【0027】
上述のルーチンによれば、図5に示すように、減速時では点火遅角量ARET〔°CA〕に応じて、吸気圧PM〔kPa〕に対する判定閾値β〔kPa〕が、通常(点火遅角量ARET〔°CA〕が「0〔°CA〕」で、触媒早期暖機のための点火遅角制御が実施されていないとき)より正圧側に設定され、吸気圧PM〔kPa〕が判定閾値β〔kPa〕未満と低くなると2次空気制御弁42が「閉」とされ2次空気供給が停止される。このように、内燃機関1が暖機途中、かつ触媒早期暖機のための点火遅角制御中では、判定閾値β〔kPa〕が通常より正圧側に設定され、減速時に吸気圧PM〔kPa〕が判定閾値β〔kPa〕未満と低くなるときには2次空気供給が停止される。このため、三元触媒13の早期暖機による活性化を損なうことなく排気通路12内で未燃HCが燃焼するときのボソボソ音の発生を抑えることができる。
【0028】
一方、ステップS201の判定条件が成立せず、即ち、減速時でないとき、またはステップS203の判定条件が成立せず、即ち、吸気圧PM〔kPa〕が判定閾値β〔kPa〕以上と高いときにはステップS205に移行し、排気通路12内の排気ガス中に未燃HCがさほど存在することがないため2次空気制御弁42が「開」とされ、三元触媒13の上流側で内燃機関1の排気ポート11近傍の排気通路12内に2次空気が供給され、本ルーチンを終了する。このように、内燃機関1の減速時でなく、または内燃機関1が暖機後で触媒早期暖機のための点火遅角制御中でなく、吸気圧PM〔kPa〕が判定閾値β〔kPa〕以上と高いときには2次空気供給が継続され、排気通路12内の未燃HCが良好に燃焼されるため、エミッションを改善することができる。
【0029】
このように、本実施例の内燃機関の2次空気供給制御装置は、内燃機関1の排気通路12途中に設置され、内燃機関1から排出される排気ガスを浄化する三元触媒13と、三元触媒13の上流側の排気通路12内に2次空気を供給する2次空気通路41、2次空気制御弁42及びECU50にて達成される2次空気供給機構と、内燃機関1の吸気圧PMを検出する吸気圧検出手段としての吸気圧センサ22と、吸気圧センサ22による吸気圧PMの変化量、またはスロットル開度センサ23によるスロットル開度TAの変化量、またはクランク角センサ25による機関回転速度NEの変化量等に基づき内燃機関1の減速状態を検出するECU50にて達成される減速状態検出手段と、内燃機関1の暖機状態を検出する水温センサ24及びECU50にて達成される暖機状態検出手段と、前記暖機状態検出手段による内燃機関1の暖機途中では、前記2次空気供給機構により2次空気を供給すると共に、内燃機関1の基本点火時期ABSEに対する点火遅角量ARETを設定する点火遅角制御を実行するECU50にて達成される点火遅角制御手段と、前記点火遅角制御手段による点火遅角制御中に前記減速状態検出手段で減速状態が検出されたときには、前記2次空気供給機構による2次空気の供給を停止する際の吸気圧PMの判定レベルとしての判定閾値βを変更するECU50にて達成される判定レベル変更手段とを具備するものである。
【0030】
つまり、内燃機関1の暖機途中で点火遅角制御が実行されているときには、排気通路12内に2次空気が供給され三元触媒13の早期暖機が行われる。この際、減速状態が検出され、このときの吸気圧PMが判定閾値βより低くなると2次空気供給が停止される。このため、三元触媒13の早期暖機による活性化を損なうことなく排気通路12内で未燃HCが燃焼するときのボソボソ音の発生を抑えることができる。
【0031】
また、本実施例の内燃機関の2次空気供給制御装置のECU50にて達成される判定レベル変更手段は、ECU50にて達成される点火遅角制御手段による点火遅角制御中では、その点火遅角制御中でないときよりも判定閾値βを正圧側に変更するものである。つまり、点火遅角制御中の判定閾値βが、点火遅角制御中でない通常より正圧側に設定されることで、減速時に2次空気供給が停止されるタイミングを増加させることができる。これにより、排気通路12内で未燃HCが燃焼するときのボソボソ音の発生を抑えつつ、三元触媒13の早期暖機による活性化を達成することができる。
【0032】
そして、本実施例の内燃機関の2次空気供給制御装置のECU50にて達成される判定レベル変更手段は、ECU50にて達成される点火遅角制御手段による点火遅角量ARETに基づき判定閾値βを変更するものである。つまり、点火遅角制御による触媒早期暖機では、内燃機関1の機関回転速度NEやスロットル開度TA、吸気圧PM等及び冷却水温THWに基づき点火遅角量ARETが算出され、この点火遅角量ARETによって判定閾値βが変更される。このように、内燃機関1の運転状態や負荷及び暖機状態に応じた点火遅角量ARETにて変更される判定閾値βによれば、内燃機関1の排気通路12内での未燃HCの燃焼を最適化することができ、三元触媒13の早期暖機を良好に達成することができる。
【0033】
また、本実施例の内燃機関の2次空気供給制御装置は、内燃機関1が二輪車に搭載されているものである。これにより、触媒早期暖機のための点火遅角制御において、特に、バルブオーバラップ量の大きな二輪車に要望される排気通路12内の未燃HCの減少によってエミッションの改善が図られる。
【0034】
次に、上述のルーチンにおけるステップS202及びステップS203で判定閾値βに替え、図6のマップで設定される判定閾値β′を用いた変形例について、図7のタイムチャートを参照して説明する。なお、図6は図3で点火遅角量ARET〔°CA〕をパラメータとして吸気圧PM〔kPa〕に対する判定閾値β′〔kPa〕を設定するマップである。このマップは、点火遅角量ARET〔°CA〕が大きくなるに連れて判定閾値β′〔kPa〕を負圧側とする特性を有している。また、図7は図2及び図3の処理に対応し、始動後、加減速を繰返しているときの各種センサ信号や各種制御量等の遷移状態を示すタイムチャートであり、点火遅角量ARET〔°CA〕が冷却水温THW〔℃〕の上昇に伴って徐々に小さくなっている。
【0035】
図6のマップによれば、図7に示すように、減速時では点火遅角量ARET〔°CA〕に応じて、吸気圧PM〔kPa〕に対する判定閾値β′〔kPa〕が、通常(点火遅角量ARET〔°CA〕が「0〔°CA〕」で、触媒早期暖機のための点火遅角制御が実施されていないとき)より負圧側に設定され、吸気圧PM〔kPa〕が判定閾値β′〔kPa〕未満と低くなると2次空気制御弁42が「閉」とされ2次空気供給が停止される。
【0036】
つまり、内燃機関1が暖機途中、かつ触媒早期暖機のための点火遅角制御中では、判定閾値β′〔kPa〕が通常より負圧側に設定されることで、減速時に吸気圧PM〔kPa〕が判定閾値β′〔kPa〕未満と低くなることが少なくなり、2次空気供給が継続される。
【0037】
このように、本変形例の内燃機関の2次空気供給制御装置のECU50にて達成される判定レベル変更手段は、ECU50にて達成される点火遅角制御手段による点火遅角制御中では、その点火遅角制御中でないときよりも判定閾値β′を負圧側に変更するものである。つまり、点火遅角制御中の判定閾値β′が、点火遅角制御中でない通常より負圧側に設定されることで、減速時に2次空気供給が停止されるタイミングを減少させることができる。これにより、排気通路12内で未燃HCが良好に燃焼され、三元触媒13の早期暖機による活性化と共に、エミッションを改善することができる。
【0038】
ところで、上記実施例及び変形例では、図4または図6の何れかのマップを用いて判定閾値をそれぞれ設定し、触媒早期暖機のための点火遅角制御中、内燃機関1の減速時に排気通路12内で未燃HCが燃焼するときのボソボソ音の発生を抑えつつ、未燃HCの良好な燃焼によってエミッションを改善させるものであるが、本発明を実施する場合には、これに限定されるものではなく、触媒早期暖機のための点火遅角制御中、内燃機関1の減速時に排気通路12内で未燃HCが燃焼するときのボソボソ音の発生状況や内燃機関1の運転状態に応じて、図4または図6のマップを適宜、選択または組合わせて判定閾値を設定することで触媒早期暖機のための点火遅角制御を最適化することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置が適用された二輪車における内燃機関及びその周辺機器を示す概略構成図である。
【図2】 図2は本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置で使用されているECU内のCPUにおける点火時期演算の処理手順を示すフローチャートである。
【図3】 図3は本発明の実施の形態の一実施例にかかる内燃機関の2次空気供給制御装置で使用されているECU内のCPUにおける2次空気供給制御の処理手順を示すフローチャートである。
【図4】 図4は図3で点火遅角量をパラメータとして吸気圧に対する判定閾値を設定するマップである。
【図5】 図5は図2及び図3の処理及び図4の判定閾値に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【図6】 図6は図3で点火遅角量をパラメータとして吸気圧に対する判定閾値を設定するマップの変形例である。
【図7】 図7は図2及び図3の処理及び図6の判定閾値に対応する各種センサ信号や各種制御量等の遷移状態を示すタイムチャートである。
【符号の説明】
1 内燃機関
12 排気通路
13 三元触媒
22 吸気圧センサ
23 スロットル開度センサ
24 水温センサ
25 クランク角センサ
42 2次空気制御弁
50 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a secondary air supply control device for an internal combustion engine that supplies and activates secondary air to a catalyst in an exhaust passage of the internal combustion engine.
[0002]
[Prior art]
Conventionally, as prior art documents related to a secondary air supply control device for an internal combustion engine, those disclosed in Japanese Utility Model Laid-Open Nos. 58-75914 and 58-163622 are known. The former shows a technique for supplying secondary air to an exhaust passage (exhaust passage) by opening the secondary air control valve at the time of deceleration regardless of the warm-up state of the internal combustion engine. In the latter case, the engine speed of the internal combustion engine is in the middle of warming up (before warming up) in the early stage of deceleration from a predetermined rotational speed or higher. A technique for stopping the secondary air supply introduced in accordance with the fuel ratio is shown.
[Patent Document 1]
Japanese Utility Model Publication No. 58-75914 (first page)
[Patent Document 2]
Japanese Utility Model Publication No. 58-163622 (first page)
[0003]
[Problems to be solved by the invention]
By the way, in the above-mentioned Japanese Utility Model Publication No. 58-75914, unburned HC (hydrocarbon), which increases at the time of deceleration, is combusted by secondary air supply to improve emission. Here, when performing early catalyst warm-up by ignition delay, if secondary air is supplied at the time of deceleration, a large amount of unburned HC burns and a vowel sound is generated even if it does not reach afterfire in the exhaust passage was there.
[0004]
Japanese Utility Model Laid-Open No. 58-163622 prevents after-fire in the exhaust passage by stopping the supply of secondary air even during warm-up during sudden deceleration. Here, when performing early catalyst warm-up by ignition delay, if the secondary air supply is stopped during deceleration, combustion of unburned HC is impaired, and as a result, activation due to early warm-up of the catalyst is delayed. There was a problem that.
[0005]
Therefore, the present invention has been made to solve such a problem, and when performing early catalyst warm-up by ignition delay, the secondary air supply is appropriately stopped at the time of deceleration to impair early catalyst warm-up. It is an object of the present invention to provide a secondary air supply control device for an internal combustion engine that can suppress the generation of lumping noise in the exhaust passage without any problems.
[0006]
[Means for Solving the Problems]
According to the secondary air supply control device for an internal combustion engine according to claim 1, during the warm-up of the internal combustion engine detected by the warm-up state detection means, the ignition retard control means causes the secondary air supply mechanism to upstream the catalyst. The secondary air is supplied into the exhaust passage on the side, and the ignition delay control in which the ignition delay amount with respect to the ignition timing of the internal combustion engine is set is executed, and the catalyst is warmed up early. At this time, when the deceleration state is detected by the deceleration state detection means, the determination level of the intake pressure detected by the intake pressure detection means when stopping the supply of secondary air by the secondary air supply mechanism by the determination level changing means Is changed. That is, the secondary air supply is stopped only during the period during which the intake pressure is lower than the determination level during the ignition retard control. For this reason, generation | occurrence | production of the noise when unburned HC combusts in an exhaust passage is suppressed, without impairing the activation by the early warming-up of a catalyst.
[0007]
In the determination level changing means in the secondary air supply control device of the internal combustion engine according to claim 2, the determination level during the ignition delay control by the ignition delay control means is set to be more positive than when the ignition delay control is not being performed. As a result, the timing at which the secondary air supply is stopped at the time of deceleration is increased, the generation of abnormal noise when the unburned HC burns in the exhaust passage is suppressed, and the activity due to the early warm-up of the catalyst is suppressed. Is achieved.
[0008]
In the determination level changing means in the secondary air supply control device for an internal combustion engine according to claim 3, the determination level during the ignition delay control by the ignition delay control means is set to the negative pressure side than when the ignition delay control is not being performed. As a result, the timing at which the secondary air supply is stopped at the time of deceleration is reduced, the unburned HC is burned well in the exhaust passage, and the emission is improved along with the activation by the early warm-up of the catalyst. .
[0009]
In the determination level changing means in the secondary air supply control device for an internal combustion engine according to claim 4, the unburned fuel in the exhaust passage of the internal combustion engine is determined according to the determination level changed by the ignition delay amount by the ignition delay control means. HC combustion is optimized, and early warming up of the catalyst is satisfactorily achieved.
[0010]
In the secondary air supply control device for an internal combustion engine according to claim 5, the internal combustion engine is mounted on a two-wheeled vehicle, so that it is particularly desired for a two-wheeled vehicle having a large valve overlap amount in ignition retard control for early catalyst warm-up. The emission is improved by reducing the unburned HC in the exhaust passage.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0012]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and its peripheral devices in a motorcycle to which a secondary air supply control device for an internal combustion engine according to an example of an embodiment of the present invention is applied.
[0013]
In FIG. 1, an internal combustion engine 1 is configured as a 4-cycle 4-cylinder (# 1 cylinder to # 4 cylinder) spark ignition type, and its intake air passes through an air cleaner 2, an intake passage 3, and a throttle valve 4 from the upstream side. It is mixed with fuel injected from an injector (fuel injection valve) 5 in the intake passage 3 and distributed and supplied from the intake port 6 into each cylinder as an air-fuel mixture having a predetermined air-fuel ratio. The cylinder head of the internal combustion engine 1 is provided with an ignition plug 7 for each cylinder, and a high voltage is applied from the ignition coil / igniter 8 to the ignition plug 7 of each cylinder at each ignition timing. Is ignited. The exhaust gas burned in each cylinder of the internal combustion engine 1 passes through the three-way catalyst 13 disposed on the downstream side of the exhaust passage 12 from the exhaust port 11 and is discharged into the atmosphere.
[0014]
An intake air temperature sensor 21 is disposed in the air cleaner 2, and the intake air temperature THA [° C.] flowing into the air cleaner 2 is detected by the intake air temperature sensor 21. An intake pressure sensor 22 is disposed in the intake passage 3, and the intake pressure sensor 22 detects an intake pressure PM [kPa: kilopascals] on the downstream side of the throttle valve 4. The throttle valve 4 is provided with a throttle opening sensor 23, which detects the throttle opening TA [°] of the throttle valve 4. A water temperature sensor 24 is disposed in the cylinder block of the internal combustion engine 1, and the coolant temperature THW [° C.] in the internal combustion engine 1 is detected by the water temperature sensor 24. The crankshaft (not shown) of the internal combustion engine 1 is provided with a crank angle sensor 25, which is based on a crank angle signal composed of the number of pulses generated per unit time as the crankshaft rotates by the crank angle sensor 25. The engine speed NE [rpm] is detected. Further, a cam angle sensor 26 is disposed on the cam shaft (not shown) of the internal combustion engine 1, and the cam angle sensor 26 detects a cam shaft rotation angle θ 2 [° CA (Crank Angle)].
[0015]
Further, an oxygen (O 2 ) sensor 27 is disposed on the upstream side of the three-way catalyst 13 in the exhaust passage 12, and an output corresponding to the oxygen concentration on the upstream side of the three-way catalyst 13 in the exhaust passage 12 by the oxygen sensor 27. The voltage VOX1 [V: volts] is detected. Note that an air-fuel ratio (A / F) sensor may be provided in place of the oxygen sensor 27 and the air-fuel ratio in the exhaust gas discharged from the internal combustion engine 1 may be detected linearly.
[0016]
In addition, a gear position sensor 28 is provided in the transmission (not shown), and the gear position GP is detected by the gear position sensor 28. Further, a power supply voltage sensor 29 is provided in the in-vehicle battery (not shown), and the power supply voltage sensor 29 detects the power supply voltage VB [V]. Further, a vehicle speed sensor 30 is disposed on a vehicle wheel (not shown) or an output shaft (not shown) of the transmission, and the number of pulses generated per unit time by the vehicle speed sensor 30 as the wheel or the output shaft rotates. A vehicle speed SPD [km / h] based on the vehicle speed signal is detected.
[0017]
On the other hand, the fuel pumped up from the fuel tank 31 by the fuel pump 32 is pumped in the order of the fuel pipe 33, the fuel filter 34, the fuel pipe 35, and the delivery pipe 36, and is distributed and supplied to the injectors 5 of each cylinder. Excess fuel in the delivery pipe 36 is returned into the fuel tank 31 through a path of a pressure regulator 37 and a return pipe 38. The pressure regulator 37 adjusts the fuel pressure in the delivery pipe 36 so that the differential pressure between the fuel pressure (fuel pressure) in the delivery pipe 36 and the intake pressure becomes constant.
[0018]
Further, the air cleaner 2 and the exhaust passage 12 immediately after the exhaust port 11 of the internal combustion engine 1 are connected by a secondary air passage 41, and the air from the air cleaner 2 is taken as secondary air in the middle of the secondary air passage 41. A secondary air control valve 42 is provided for introduction into the passage 12 as appropriate.
[0019]
An ECU (Electronic Control Unit) 50 that controls the operating state of the internal combustion engine 1 includes a CPU 51 as a central processing unit that executes various known arithmetic processes, a ROM 52 that stores a control program and a control map, and various data. A fuel injection amount TAU, an input port 55 for inputting detection signals from the above-mentioned various sensors and an injector 5 as various actuators. A control signal Ip is connected to the fuel pump 32, a control signal Ia is output to the secondary air control valve 42, and an output port 56 that outputs a control signal Ig to the ignition coil / igniter 8 is connected via a bus 57.
[0020]
Next, a description will be given based on the flowchart of FIG. 2 showing the processing procedure of the ignition timing calculation in the CPU 51 in the ECU 50 used in the secondary air supply control device for the internal combustion engine according to an example of the embodiment of the present invention. To do. This ignition timing calculation routine is repeatedly executed by the CPU 51 in synchronization with the crank angle signal of each cylinder. Each map used in this embodiment is stored in the ROM 52 in advance.
[0021]
In FIG. 2, first, the engine speed NE based on the crank angle signal detected by the crank angle sensor 25 in step S101 is read. In step S102, the throttle opening TA detected by the throttle opening sensor 23, the intake pressure PM detected by the intake pressure sensor 22, and the like are read as loads. Next, the process proceeds to step S103, where the engine rotational speed NE [rpm] read in step S101, the throttle opening TA [°] as the load read in step S102, the intake pressure PM [kPa], etc. are used as parameters. A basic ignition timing ABSE [° CA] is calculated based on a map (not shown).
[0022]
Next, the process proceeds to step S104, and it is determined whether or not the cooling water temperature THW [° C.] detected by the water temperature sensor 24 is lower than a predetermined temperature α. When the determination condition of step S104 is satisfied, that is, when the coolant temperature THW [° C.] is as low as less than the predetermined temperature α and the internal combustion engine 1 is in the middle of warming up due to cold start, the routine proceeds to step S105 and the coolant temperature THW [° C.]. The engine rotational speed NE [rpm] read in step S101 and the throttle opening TA [°] and intake pressure PM [kPa] as loads read in step S102 are parameters based on a map (not shown). An ignition retardation amount ARET [° CA] for early warming up of the original catalyst 13 is calculated.
[0023]
On the other hand, if the determination condition in step S104 is not satisfied, that is, the cooling water temperature THW [° C.] is as high as the predetermined temperature α or more and the internal combustion engine 1 is after warming up, the routine proceeds to step S106 and the ignition retard amount ARET [ [° CA] is set to “0 [° CA]”. After the process of step S105 or step S106, the process proceeds to step S107, and the ignition retard amount ARET [° CA] obtained in step S105 or step S106 is subtracted from the basic ignition timing ABSE [° CA] calculated in step S103. Time AESA [° CA] is calculated, and this routine ends.
[0024]
Next, based on the flowchart of FIG. 3 which shows the processing procedure of the secondary air supply control in CPU51 in ECU50 used with the secondary air supply control apparatus of the internal combustion engine concerning one Example of embodiment of this invention. This will be described with reference to FIGS. 4 and 5. FIG. Here, FIG. 4 is a map for setting the determination threshold value β [kPa] for the intake pressure PM [kPa] with the ignition retard amount ARET [° CA] as a parameter in FIG. FIG. 5 corresponds to the processing of FIGS. 2 and 3 and is a time chart showing transition states of various sensor signals and various control amounts when acceleration / deceleration is repeated after starting. [° CA] gradually decreases as the cooling water temperature THW [° C.] rises. The secondary air supply control routine is repeatedly executed by the CPU 51 at predetermined time intervals.
[0025]
In FIG. 3, it is determined in step S201 whether the vehicle is decelerating. The determination condition of step S201 is satisfied, that is, the engine speed NE based on the crank angle signal detected by the crank angle sensor 25, the throttle opening TA detected by the throttle opening sensor 23, and the intake pressure sensor 22 When the detected change amount of the intake pressure PM exceeds a predetermined amount set in advance and it is determined that the vehicle is decelerating, the process proceeds to step S202. In step S202, when the secondary air control valve 42 is "opened" / "closed" in accordance with the ignition retard amount ARET [° CA] calculated in the above ignition timing calculation routine based on the map of FIG. A determination threshold value β [kPa] for the intake pressure PM [kPa] is set. Note that the map of FIG. 4 has a characteristic in which the determination threshold value β [kPa] is set to the positive pressure side as the ignition retard amount ARET [° CA] increases.
[0026]
Next, the process proceeds to step S203, and it is determined whether the intake pressure PM [kPa] detected by the intake pressure sensor 22 is less than the determination threshold value β [kPa] set in step S202. If the determination condition of step S203 is satisfied, that is, when the internal combustion engine 1 is decelerated and the intake pressure PM [kPa] is low below the determination threshold value β [kPa], the process proceeds to step S204, and the exhaust gas in the exhaust passage 12 is contained in the exhaust gas. Since there is a possibility that a large amount of unburned HC exists, the secondary air control valve 42 is “closed”, and this routine is terminated.
[0027]
According to the routine described above, as shown in FIG. 5, at the time of deceleration, the determination threshold value β [kPa] with respect to the intake pressure PM [kPa] is normally (ignition delay angle) according to the ignition delay amount ARET [° CA]. The amount ARET [° CA] is “0 [° CA]” and the ignition retard control for early catalyst warm-up is not performed), and the intake pressure PM [kPa] is set to the determination threshold value. When the pressure is lower than β [kPa], the secondary air control valve 42 is “closed” and the secondary air supply is stopped. Thus, during the warming-up of the internal combustion engine 1 and during the ignition delay control for the early catalyst warm-up, the determination threshold value β [kPa] is set to the positive pressure side than normal, and the intake pressure PM [kPa] during deceleration is set. Is lower than the determination threshold β [kPa], the secondary air supply is stopped. For this reason, it is possible to suppress the generation of lumpy noise when unburned HC burns in the exhaust passage 12 without impairing the activation of the three-way catalyst 13 due to early warm-up.
[0028]
On the other hand, when the determination condition of step S201 is not satisfied, that is, when it is not during deceleration, or when the determination condition of step S203 is not satisfied, that is, when the intake pressure PM [kPa] is higher than the determination threshold value β [kPa], step The process proceeds to S205, and the secondary air control valve 42 is opened because there is not so much unburned HC in the exhaust gas in the exhaust passage 12, and the internal combustion engine 1 is upstream of the three-way catalyst 13. Secondary air is supplied into the exhaust passage 12 in the vicinity of the exhaust port 11, and this routine ends. Thus, not when the internal combustion engine 1 is decelerated, or when the internal combustion engine 1 is not warming up and during ignition retard control for early catalyst warm-up, the intake pressure PM [kPa] is determined as the determination threshold value β [kPa]. When it is higher than the above, the secondary air supply is continued and the unburned HC in the exhaust passage 12 is combusted satisfactorily, so that the emission can be improved.
[0029]
As described above, the secondary air supply control device for the internal combustion engine of the present embodiment is installed in the middle of the exhaust passage 12 of the internal combustion engine 1, and the three-way catalyst 13 for purifying the exhaust gas discharged from the internal combustion engine 1, The secondary air passage 41 for supplying secondary air into the exhaust passage 12 upstream of the original catalyst 13, the secondary air control mechanism 42 and the secondary air supply mechanism achieved by the ECU 50, and the intake air pressure of the internal combustion engine 1 An intake pressure sensor 22 as an intake pressure detection means for detecting PM, a change amount of the intake pressure PM by the intake pressure sensor 22, a change amount of the throttle opening TA by the throttle opening sensor 23, or an engine by the crank angle sensor 25 Deceleration state detection means that is achieved by the ECU 50 that detects the deceleration state of the internal combustion engine 1 based on the change amount of the rotational speed NE, the water temperature sensor 24 that detects the warm-up state of the internal combustion engine 1, and the EC During the warming-up of the internal combustion engine 1 by the warming-up state detecting means and the warming-up state detecting means, the secondary air is supplied by the secondary air supply mechanism and the basic ignition of the internal combustion engine 1 is performed. An ignition delay control means that is achieved by an ECU 50 that executes an ignition delay control that sets an ignition delay amount ARET with respect to the timing ABSE; and the deceleration state detection means during the ignition delay control by the ignition delay control means A determination level changing means that is achieved by the ECU 50 that changes a determination threshold value β as a determination level of the intake pressure PM when stopping the supply of secondary air by the secondary air supply mechanism when a deceleration state is detected; It comprises.
[0030]
That is, when the ignition delay control is being executed during the warm-up of the internal combustion engine 1, the secondary air is supplied into the exhaust passage 12 and the three-way catalyst 13 is warmed up early. At this time, a deceleration state is detected, and when the intake pressure PM at this time becomes lower than the determination threshold value β, the secondary air supply is stopped. For this reason, it is possible to suppress the generation of lumpy noise when unburned HC burns in the exhaust passage 12 without impairing the activation of the three-way catalyst 13 due to early warm-up.
[0031]
Further, the determination level changing means achieved by the ECU 50 of the secondary air supply control device for the internal combustion engine of the present embodiment is the ignition delay during the ignition delay control by the ignition delay control means achieved by the ECU 50. The determination threshold value β is changed to the positive pressure side than when the angle control is not being performed. That is, the determination threshold value β during the ignition retard control is set to be more positive than the normal during the ignition retard control, so that the timing at which the secondary air supply is stopped during deceleration can be increased. As a result, it is possible to achieve the activation of the three-way catalyst 13 by the early warm-up while suppressing the generation of the vowel sound when the unburned HC burns in the exhaust passage 12.
[0032]
The determination level changing means achieved by the ECU 50 of the secondary air supply control device for the internal combustion engine of this embodiment is based on the ignition delay amount ARET by the ignition delay control means achieved by the ECU 50. Is to change. That is, in the early catalyst warm-up by the ignition retard control, the ignition retard amount ARET is calculated based on the engine speed NE, the throttle opening TA, the intake pressure PM, etc. of the internal combustion engine 1 and the coolant temperature THW, and this ignition retard The determination threshold β is changed by the amount ARET. As described above, according to the determination threshold value β that is changed by the ignition retard amount ARET corresponding to the operation state, load, and warm-up state of the internal combustion engine 1, the unburned HC in the exhaust passage 12 of the internal combustion engine 1 is changed. Combustion can be optimized and early warm-up of the three-way catalyst 13 can be satisfactorily achieved.
[0033]
The secondary air supply control device for an internal combustion engine according to this embodiment is such that the internal combustion engine 1 is mounted on a two-wheeled vehicle. As a result, in the ignition delay control for early warm-up of the catalyst, the emission can be improved especially by reducing the unburned HC in the exhaust passage 12, which is required for a motorcycle with a large valve overlap amount.
[0034]
Next, a modified example using the determination threshold value β ′ set in the map of FIG. 6 in place of the determination threshold value β in steps S202 and S203 in the above-described routine will be described with reference to the time chart of FIG. FIG. 6 is a map for setting the determination threshold value β ′ [kPa] for the intake pressure PM [kPa] with the ignition retard amount ARET [° CA] as a parameter in FIG. This map has a characteristic that the determination threshold value β ′ [kPa] is set to the negative pressure side as the ignition retard amount ARET [° CA] increases. FIG. 7 corresponds to the processing of FIGS. 2 and 3 and is a time chart showing transition states of various sensor signals and various control amounts when acceleration / deceleration is repeated after starting. [° CA] gradually decreases as the cooling water temperature THW [° C.] rises.
[0035]
According to the map of FIG. 6, as shown in FIG. 7, at the time of deceleration, the determination threshold β ′ [kPa] for the intake pressure PM [kPa] is normal (ignition) according to the ignition retard amount ARET [° CA]. The retard amount ARET [° CA] is “0 [° CA]” and the ignition retard control for early catalyst warm-up is not performed), and the intake pressure PM [kPa] is set to the negative pressure side. When it becomes lower than the determination threshold value β ′ [kPa], the secondary air control valve 42 is “closed” and the secondary air supply is stopped.
[0036]
That is, when the internal combustion engine 1 is being warmed up and during ignition retard control for early catalyst warm-up, the determination threshold value β ′ [kPa] is set to the negative pressure side than normal, so that the intake pressure PM [ kPa] is less likely to be lower than the determination threshold β ′ [kPa], and the secondary air supply is continued.
[0037]
As described above, the determination level changing means achieved by the ECU 50 of the secondary air supply control device for the internal combustion engine of the present modification is the ignition retard control performed by the ignition retard control means achieved by the ECU 50. The determination threshold value β ′ is changed to the negative pressure side compared to when ignition retard control is not being performed. That is, the determination threshold value β ′ during the ignition retard control is set to a negative pressure side than the normal during the ignition retard control, so that the timing at which the secondary air supply is stopped during deceleration can be reduced. Thereby, unburned HC is burned well in the exhaust passage 12, and the activation of the three-way catalyst 13 by the early warm-up can be improved and the emission can be improved.
[0038]
By the way, in the above-described embodiment and modification, the determination threshold is set by using any of the maps in FIG. 4 or FIG. 6, and the exhaust gas is exhausted when the internal combustion engine 1 is decelerated during the ignition delay control for the early catalyst warm-up. While suppressing the generation of lumpy noise when unburned HC burns in the passage 12, the emission is improved by good combustion of the unburned HC. However, the present invention is limited to this. In the ignition retard control for early warm-up of the catalyst, not only is the state of occurrence of lumpy noise or the operating state of the internal combustion engine 1 when unburned HC is combusted in the exhaust passage 12 when the internal combustion engine 1 is decelerated. Accordingly, the ignition delay control for early catalyst warm-up can be optimized by appropriately selecting or combining the maps of FIG. 4 or FIG. 6 and setting the determination threshold value.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an internal combustion engine and peripheral devices in a motorcycle to which a secondary air supply control device for an internal combustion engine according to an example of an embodiment of the present invention is applied.
FIG. 2 is a flowchart showing a processing procedure of ignition timing calculation in a CPU in an ECU used in a secondary air supply control device for an internal combustion engine according to an example of an embodiment of the present invention.
FIG. 3 is a flowchart showing a processing procedure of secondary air supply control in a CPU in an ECU used in a secondary air supply control device for an internal combustion engine according to an example of an embodiment of the present invention. is there.
FIG. 4 is a map for setting a determination threshold for intake pressure using the ignition retardation amount as a parameter in FIG. 3;
FIG. 5 is a time chart showing transition states of various sensor signals and various control amounts corresponding to the processing of FIGS. 2 and 3 and the determination threshold value of FIG. 4;
6 is a modification of the map in FIG. 3 for setting a determination threshold for intake pressure using the ignition retardation amount as a parameter.
7 is a time chart showing transition states of various sensor signals and various control amounts corresponding to the processes of FIGS. 2 and 3 and the determination threshold value of FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 12 Exhaust passage 13 Three-way catalyst 22 Intake pressure sensor 23 Throttle opening sensor 24 Water temperature sensor 25 Crank angle sensor 42 Secondary air control valve 50 ECU (electronic control unit)

Claims (5)

内燃機関の排気通路途中に設置され、前記内燃機関から排出される排気ガスを浄化する触媒と、
前記触媒の上流側の前記排気通路内に2次空気を供給する2次空気供給機構と、
前記内燃機関の吸気圧を検出する吸気圧検出手段と、
前記内燃機関の減速状態を検出する減速状態検出手段と、
前記内燃機関の暖機状態を検出する暖機状態検出手段と、
前記暖機状態検出手段による前記内燃機関の暖機途中では、前記2次空気供給機構により2次空気を供給すると共に、前記内燃機関の点火時期に対する点火遅角量を設定する点火遅角制御を実行する点火遅角制御手段と、
前記点火遅角制御手段による点火遅角制御中に前記減速状態検出手段で減速状態が検出され、前記吸気圧が所定の判定レベルより低くなるときに、前記2次空気供給機構による前記2次空気の供給を停止する2次空気供給停止手段と、
前記判定レベルを前記点火遅角量に基づいて変更する判定レベル変更手段と
を具備することを特徴とする内燃機関の2次空気供給制御装置。
A catalyst installed in the exhaust passage of the internal combustion engine to purify exhaust gas discharged from the internal combustion engine;
A secondary air supply mechanism for supplying secondary air into the exhaust passage on the upstream side of the catalyst;
Intake pressure detecting means for detecting the intake pressure of the internal combustion engine;
Deceleration state detection means for detecting a deceleration state of the internal combustion engine;
A warm-up state detecting means for detecting a warm-up state of the internal combustion engine;
During the warm-up of the internal combustion engine by the warm-up state detection means, secondary air is supplied by the secondary air supply mechanism, and ignition retard control for setting an ignition retard amount with respect to the ignition timing of the internal combustion engine is performed. Ignition retard control means to be executed;
When the deceleration state is detected by the deceleration state detection means during the ignition delay control by the ignition delay control means, and the intake pressure becomes lower than a predetermined determination level, the secondary air by the secondary air supply mechanism is detected. Secondary air supply stop means for stopping the supply of
A secondary air supply control device for an internal combustion engine, comprising: determination level changing means for changing the determination level based on the ignition retardation amount .
前記判定レベル変更手段は、前記点火遅角制御手段による点火遅角制御中では、その点火遅角制御中でないときよりも前記判定レベルを正圧側に変更することを特徴とする請求項1に記載の内燃機関の2次空気供給制御装置。2. The determination level changing unit changes the determination level to a positive pressure side during ignition delay control by the ignition delay control unit than when the ignition delay control is not being performed. Secondary air supply control device for internal combustion engine. 前記判定レベル変更手段は、前記点火遅角制御手段による点火遅角制御中では、その点火遅角制御中でないときよりも前記判定レベルを負圧側に変更することを特徴とする請求項1に記載の内燃機関の2次空気供給制御装置。2. The determination level changing unit changes the determination level to a negative pressure side during ignition delay control by the ignition delay control unit than when the ignition delay control is not being performed. Secondary air supply control device for internal combustion engine. 前記判定レベル変更手段は、前記点火遅角制御手段による点火遅角量に基づき前記判定レベルを変更することを特徴とする請求項1乃至請求項3の何れか1つに記載の内燃機関の2次空気供給制御装置。The internal combustion engine according to any one of claims 1 to 3, wherein the determination level changing means changes the determination level based on an ignition delay amount by the ignition delay control means. Secondary air supply control device. 前記内燃機関は、二輪車に搭載されていることを特徴とする請求項1乃至請求項4の何れか1つに記載の内燃機関の2次空気供給制御装置。The secondary air supply control device for an internal combustion engine according to any one of claims 1 to 4, wherein the internal combustion engine is mounted on a motorcycle.
JP2003154830A 2003-05-30 2003-05-30 Secondary air supply control device for internal combustion engine Expired - Fee Related JP4285086B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003154830A JP4285086B2 (en) 2003-05-30 2003-05-30 Secondary air supply control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003154830A JP4285086B2 (en) 2003-05-30 2003-05-30 Secondary air supply control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2004353615A JP2004353615A (en) 2004-12-16
JP4285086B2 true JP4285086B2 (en) 2009-06-24

Family

ID=34049382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003154830A Expired - Fee Related JP4285086B2 (en) 2003-05-30 2003-05-30 Secondary air supply control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4285086B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6107451B2 (en) * 2013-06-12 2017-04-05 スズキ株式会社 Outboard motor

Also Published As

Publication number Publication date
JP2004353615A (en) 2004-12-16

Similar Documents

Publication Publication Date Title
US7287500B2 (en) Start controller for internal combustion engine
JP2006118458A (en) Internal combustion engine device, stop position estimating method for internal combustion engine, and control method for internal combustion engine
JP2019138265A (en) Control device of internal combustion engine
JP2012026332A (en) Control device for internal combustion engine
JP5218289B2 (en) Control device for internal combustion engine
JP4285086B2 (en) Secondary air supply control device for internal combustion engine
JP2004340065A (en) Control device for hydrogen engine
JP4345389B2 (en) Catalyst temperature raising device for internal combustion engine
JP4134395B2 (en) In-cylinder internal combustion engine
JP2007032320A (en) Controller of internal combustion engine
JP2005337139A (en) Air fuel ratio control device for internal combustion engine
JP2007056778A (en) Controller for eliminating smoldering of ignition plug
JP4604361B2 (en) Control device for internal combustion engine
JP2005240607A (en) Control device for internal combustion engine
JP2005016396A (en) Catalyst warming-up system of internal combustion engine
JP4110534B2 (en) Variable valve control device for internal combustion engine
JP2007138757A (en) Start control device for internal combustion engine
JP4365230B2 (en) Internal combustion engine operation control device
JP2004360640A (en) Air fuel ratio control system of internal combustion engine
US7877190B2 (en) Fuel control device for internal combustion engine
JP5164619B2 (en) Operation control method for internal combustion engine
JP4035718B2 (en) Control device for internal combustion engine
JP2007162625A (en) Control device of internal combustion engine
JP2004183503A (en) Controller for internal combustion engine
JP2019035368A (en) Control device of internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285086

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees