JP4285016B2 - Flat polyester stretch molding - Google Patents

Flat polyester stretch molding Download PDF

Info

Publication number
JP4285016B2
JP4285016B2 JP2003025441A JP2003025441A JP4285016B2 JP 4285016 B2 JP4285016 B2 JP 4285016B2 JP 2003025441 A JP2003025441 A JP 2003025441A JP 2003025441 A JP2003025441 A JP 2003025441A JP 4285016 B2 JP4285016 B2 JP 4285016B2
Authority
JP
Japan
Prior art keywords
axis direction
flat
aliphatic polyester
stretch
molecular orientation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003025441A
Other languages
Japanese (ja)
Other versions
JP2004230866A (en
Inventor
卓郎 伊藤
修 後藤
宏行 本田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Kaisha Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2003025441A priority Critical patent/JP4285016B2/en
Publication of JP2004230866A publication Critical patent/JP2004230866A/en
Application granted granted Critical
Publication of JP4285016B2 publication Critical patent/JP4285016B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2949/00Indexing scheme relating to blow-moulding
    • B29C2949/07Preforms or parisons characterised by their configuration
    • B29C2949/081Specified dimensions, e.g. values or ranges
    • B29C2949/082Diameter
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W90/00Enabling technologies or technologies with a potential or indirect contribution to greenhouse gas [GHG] emissions mitigation
    • Y02W90/10Bio-packaging, e.g. packing containers made from renewable resources or bio-plastics

Description

【0001】
【発明の属する技術分野】
本発明は、偏平状ポリエステル延伸成形体に関し、より詳細には、脂肪族ポリエステル及び無機充填剤を含有する樹脂組成物から成る、耐熱性及び成形性が顕著に向上された偏平状延伸成形体に関する。
【0002】
【従来の技術】
包装容器の分野においては、種々の形状の容器が採用されており、把持しやすく、また圧潰しやすい等の点から胴部の断面形状が偏平状の容器が従来から製造されている。
ポリエステル樹脂を延伸ブロー成形して成る延伸成形体においても、偏平状のものは公知である。このような偏平状の容器において、断面が真円の試験管状のプリフォームを一様に加熱した後、延伸ブロー成形することによって、偏平状の容器に成形すると、容器の長径方向と短径方向で延伸倍率が異なり、長径部分で延伸されすぎて過延伸になり、著しく薄くなったり、マイクロボイド状の白化を生じる。一方、短径部分は延伸されず、肉溜りを形成することになる。このような延伸の程度が短径方向と長径方向で異なる容器においては、過延伸の長径部分と延伸が不十分な短径部分で、分子配向の程度が異なるため、特に耐熱性や機械的強度等の性能に劣ることになる。
【0003】
従来、このような偏平容器においては、周方向の肉厚を均一にするために、ブロー成形前のプリフォームの再加熱の際、プリフォームの加熱を周方向に対して不均一にさせ、温度の高い部分が短径方向になるようにブロー成形することも提案されている(特許文献1)。
【0004】
一方、プラスチック廃棄物の問題から、バクテリヤや真菌類が対外に放出する酵素の作用で崩壊する生分解性プラスチックに大きな期待が寄せられており、かかる脂肪族ポリエステルを用いた成形体として、脂肪族ポリエステルに無機充填剤を配合して成る耐熱性樹脂組成物をブロー成形して成るブローボトルも提案されている (例えば、特許文献2)。
【0005】
【特許文献1】
特開平6−99478号公報
【特許文献2】
特開平10−87976号公報
【0006】
【発明が解決しようとする課題】
しかしながら、このような生分解性を有する脂肪族ポリエステルは一般に融解温度(Tm)や結晶化温度(Tc)が従来のポリエステル樹脂に比べ低く、無機充填剤を配合することや、胴部の肉厚を単に均一にする延伸ブロー成形だけでは、十分な耐熱性や機械的強度等を確保することが困難となっている。
【0007】
従って本発明の目的は、生分解性を有する脂肪族ポリエステル及び無機充填剤を含有する樹脂組成物から成る偏平状ポリエステル延伸成形体において、長径方向及び短径方向のいずれの部位でもほぼ同程度の分子配向度を有し、耐熱性及び機械的強度等に顕著に優れた延伸成形体を提供することにある。
【0008】
【課題を解決するための手段】
本発明によれば、脂肪族ポリエステルを主体とする樹脂に無機充填剤を1乃至30重量%の割合で配合して成る樹脂組成物から成る胴部の断面形状が偏平の二軸延伸ブロー成形体であって、胴部の短径方向及び長径方向の延伸軸方向をそろえて13C広幅NMRで測定したNMRスペクトルにおいて、下記式(1)、
Do=(S−Sa)/S …(1)
式中、Sは成形体試料を13C広幅NMRで測定した時の化学シフト100ppm〜300ppmのピーク面積を表し、Saは前記試料の非晶質粉末について上記と同様に測定した時のNMRスペクトルのピーク面積を表す、
で定義される分子配向度(Do)が、短径方向及び長径方向のいずれの部位においても0.1以上であることを特徴とする偏平状ポリエステル延伸成形体が提供される。
【0009】
本発明の偏平状ポリエステル延伸成形体においては、
1.胴部の短径方向の分子配向度(Do1)及び長径方向の分子配向度(Do2)の比R(Do2/Do1)が0.5乃至10.0の範囲にあること、
2.脂肪族ポリエステルを主体とする樹脂が、ガラス転移点が−60℃以上であること、
3.脂肪族ポリエステルが、光学活性異性体量が5.0モル%以下であること、
4.70%容量の油を充填後55℃の温度で2時間保存した場合に、延伸された底部にバックリングが観測されないこと、
が好適である。
【0010】
【発明の実施形態】
本発明の偏平状延伸成形体においては、脂肪族ポリエステルを主体とする樹脂及び無機充填剤から成る樹脂組成物から成り、優れた生分解性を有していると共に、偏平形状の延伸ブローボトルにおいても、胴部の短径方向においても長径方向とほぼ同程度の配向結晶が形成され、耐熱性及び成形性に顕著に優れているという特徴を有している。
【0011】
通常、芳香族カルボン酸を主体とする二塩基酸とグリコールとから誘導された熱可塑性ポリエステルは、配向による結晶化度を密度法で測定することができ、測定される密度と結晶化度との関係は、下記式(2)
Xc=(ρc/ρ)×{(ρ−ρam)/(ρc−ρam)}×100 …(2)
ρは、サンプルの密度、ρamは非晶密度、ρcは結晶密度
で表される。
しかしながら、脂肪族ポリエステルの場合、特にポリ乳酸等は非晶試料も高度に配向した試料も密度はほとんど一定であり、密度法を用いて結晶化度を求めることはできない。
【0012】
このため、本発明においては、脂肪族ポリエステルを13C広幅NMRで測定したときの化学シフト100乃至300ppm(カルボニル炭素領域)のスペクトル形状(線形)は配向成分と無配向成分でそれぞれ異なる線形を示すためこのスペクトル形状とその成分量から分子配向度が測定できる。非晶質粉末について上記と同様に測定した時のNMRスペクトルのピーク面積Saを求め、下記式(1)、
Do=(S−Sa)/S …(1)
から分子配向度(Do)を算出する。
本発明においては、このように求められた分子配向度(Do)が成形体胴部の短径方向及び長径方向のいずれにおいても0.1以上であることにより、無機充填剤を配合した脂肪族ポリエステルを主体とする樹脂組成物から成る偏平状延伸ブロー成形体の耐熱性を顕著に改善できることを見出したのである。
【0013】
本発明においては、胴部の短径方向の分子配向度(Do1)及び長径方向の分子配向度(Do2)の比R(Do2/Do1)が0.5乃至10.0、特に0.6乃至6.0の範囲にあることが好ましく、これにより短径方向及び長径方向が同程度に分子配向しているため、特に優れた耐熱性及び成形性を得ることが可能となる。
【0014】
本発明の偏平状延伸ブロー成形体においては、胴部のみならず底部においても耐熱性に優れている。すなわち、成形体の底部は胴部に比して延伸の程度が低く、厚肉であり、充分に分子配向させることが困難な箇所であり、特に偏平状成形体の場合は、底部においても短径方向及び長径方向で分子配向の程度が異なるため、耐熱性に劣ったものとなるが、本発明の偏平状延伸ブロー成形体では、70%容量の油を充填後55℃の温度で2時間保存した場合でも、延伸された底部にバックリングが観測されないという特徴を有している。
【0015】
(脂肪族ポリエステル樹脂)
本発明において、脂肪族ポリエステル樹脂としては、ヒドロキシアルカノエート単位を主体とする生分解性脂肪族ポリエステル樹脂の任意のものが使用される。この脂肪族ポリエステル樹脂は、少なくともフィルムを形成し得る分子量を有するべきであり、一般にその数平均分子量は、10000乃至300000、特に20000乃至200000の範囲にあるのがよい。
好適な脂肪族ポリエステル樹脂の例は、ポリヒドロキシアルカノエート、或いはこれらの共重合体である。
【0016】
ポリヒドロキシアルカノエートとしては、下記式
【化1】

Figure 0004285016
式中、Rは水素原子、または直鎖或いは分岐鎖のアルキル基であり、
nはゼロを含む正の整数である、
で表される反復単位、例えば、
乳酸[R=CH、n=0、LA]、
3−ヒドロキシブチレート[R=CH、n=1、3HB]、
3−ヒドロキシバリレート[R=CH CH 、n=1、3HV]、
3−ヒドロキシカプロエート[R=(CH CH 、n=1、3HC]、
3−ヒドロキシヘプタノエート[R=(CHCH 、n=1、3HH]、
3−ヒドロキシオクタノエート[R=(CHCH n=1、3HO]、
3−ヒドロキシノナノエート[R=(CHCH 、n=1、3HN]、
3−ヒドロキシデカノエート[R=(CHCH 、n=1、3HD]、
γ−ブチロラクトン[R=H、n=2、BL]、
δ−バレロラクトン[R=H、n=3、VL]、
ε−カプロラクトン[R=H、n=4、CL]
等の1種或いは2種以上からなる重合体が挙げられる。
【0017】
このポリヒドロキシアルカノエートは、ポリ乳酸(ポリ乳酸としては、構成単位がL−乳酸のみからなるポリ(L−乳酸)、D−乳酸のみからなるポリ(D−乳酸)およびL−乳酸単位とD−乳酸種任意の割合で存在するポリ(DL−乳酸)を示す。)、またポリεカプロラクトンのような単独重合体であってもよく、グリコール酸等の他のヒドロキシアルカノエートとの共重合体でもよい。また3−ヒドロキシブチレートと、他の3−ヒドロキシアルカノエート、特に3−ヒドロキシバリレートとを共重合させた共重合体であってもよい。
また、これらの樹脂を主体とする樹脂組成物であってもよい。
【0018】
本発明に用いる脂肪族ポリエステルは、ガラス転移点(Tg)が−60℃以上、特に30℃以上のものが好ましい。
これらの脂肪族ポリエステルの内、工業的に量産され入手が容易であり、環境にも優しい脂肪族ポリエステルとして、ポリ乳酸が挙げられる。
ポリ乳酸(PLA)は、トウモロコシなどの穀物デンプンを原料とする樹脂であり、デンプンの乳酸発酵物、乳酸をモノマーとする重合体である。一般にそのダイマーであるラクタイドの開環重合法、及び、直接重縮合法により製造される。この重合体は、自然界に存在する微生物により、水と炭酸ガスにより分解され、完全リサイクルシステム型の樹脂として着目されている。
また、そのガラス転移点(Tg)も約58℃とPETのTgに近いという利点を有している。
【0019】
本発明においては特に、光学活性異性体量が5.0モル%以下であるポリ乳酸を用いることが好ましい。すなわち上記範囲よりも光学活性異性体の割合が多いと、非晶性を示すため延伸により配向結晶を形成することができず耐熱性を損なう。
【0020】
本発明の偏平状延伸ブロー成形体においては、上記脂肪族ポリエステル、特に光学活性異性体量が5モル%以下のポリ乳酸を単独で使用することもできるし、他の脂肪族ポリエステル或いは他の樹脂とのブレンド物を用いることもできるが、脂肪族ポリエステル以外の他の樹脂を用いる場合には、脂肪族ポリエステルの有する優れた生分解性を損なわないために、脂肪族ポリエステルを0.1重量%以上、特に50重量%未満の量で含有していることが重要である。
【0021】
更に、上記脂肪族ポリエステルとのブレンド物、或いは脂肪族ポリエステルから成る層との積層体の形で使用可能な他の樹脂としては、バリアー樹脂、例えば酸素に対してバリアー性を示す水酸基含有熱可塑性樹脂、ナイロン樹脂、バリアー性脂肪族並びに2種以上のジカルボン酸から成るポリエステル樹脂、ハイニトリル樹脂や、水蒸気に対してバリアー性を示す環状オレフィン系共重合体等を挙げることができる。
これらの内でも、生分解性の点では水酸基含有樹脂や脂肪族ポリエステルが好ましく、水酸基含有樹脂の場合熱成形が可能である限り、任意の樹脂を用いることができる。この樹脂は、その分子鎖中に、水酸基を有する反復単位と、樹脂に熱成形性を付与する単位とを有している。水酸基含有反復単位はビニルアルコール単位、ヒドロキシアルキル(メタ)アクリレート単位であってよいが、生分解性の点ではビニルアルコール単位が好ましい。この水酸基含有樹脂中に含有される他の単位は、エチレン、プロピレン等のオレフィン単位、酢酸ビニル等のビニルエステル単位;アルキル(メタ)アクリレート単位等が挙げられる。又、これらの水酸基含有樹脂は、少なくともフィルムを形成するに足る分子量を有するべきである。
【0022】
好適な水酸基含有樹脂は、10乃至40モル%のエチレン単位と、40乃至88モル%のビニルアルコール単位と、50モル%以下のエステル含有ビニル単位とを含有する共重合体からなる。
このような水酸基含有重合体をブレンド物或いは積層体として用いることで、延伸成形体のガスバリアー性を向上させることができ、しかも生分解性を実質上阻害しないという利点が達成される。
更に、ガスバリアー性を改善した脂肪族ポリエステルとしては、板状無機充填剤を含有した脂肪族ポリエステルや酸素吸収性樹脂組成物を含む脂肪族ポリエステル並びにそれらを組み合わせた樹脂も用いることができる。
【0023】
(無機充填剤)
本発明においては、上記脂肪族ポリエステルを主体とする樹脂に無機充填剤を配合することが重要である。
すなわち脂肪族ポリエステルは、それ自体耐熱性に劣るものであるため、無機充填剤を含有させることにより結晶化を促進して耐熱性を向上させることが可能となる。
用いる無機充填剤としては、タルク、カオリン、クレー及びカオリナイト等が好ましく、特にタルクを好適に用いることができる。
無機充填剤の配合量は、一般に0.5乃至40重量%、特に1乃至30重量%の範囲内にあることが好ましい。上記範囲より無機充填剤の量が少ないと充分な耐熱性を付与することができず、一方上記範囲よりも無機充填剤の量が多いと成形性に劣るようになる。
尚、成形体の偏平率が大きい場合は、偏平率が小さいものに比して成形加工が過酷になるため、成形性を向上させるために上記範囲の配合量の中で無機充填剤の量を少なめにすることが特に好ましい。
【0024】
本発明の偏平状延伸成形体には、その用途に応じて、各種着色剤、無機系或いは有機系の補強剤、滑剤、可塑剤、レベリング剤、界面活性剤、増粘剤、減粘剤、安定剤、抗酸化剤、紫外線吸収剤、防錆剤等を、公知の処方にしたがって配合することができる。
【0025】
(偏平状延伸成形体の製法)
本発明の偏平状延伸成形体は、脂肪族ポリエステルを主体とする樹脂の予備成形体を、胴部の短径方向及び長径方向の分子配向度が0.1以上になるように、二軸延伸ブロー成形を行うことにより製造される。
【0026】
予備成形体(プリフォーム)の製造は、それ自体公知の押出成形法や射出成形法、圧縮成形法で製造することができる。
例えば、溶融樹脂をTーダイを通して押し出しすることにより、延伸フィルムの薄肉シート、及び、フィルムや、カップへの圧空成形乃至プラグアシスト成形用のシートが成形される。また、溶融樹脂をリングダイを通して押し出しすることにより、容器成形用のパイプ状プリフォームも成形することができる。
更に、溶融樹脂を、スクリュー或いはプランジャーにより、キャビテイ金型とコア金型とからなる金型中に射出することで、ボトルなどの立体容器用のプリフォームが成形される。また、溶融樹脂のパリソンをキャビテイ金型とコア金型で圧縮することでもボトルなどの立体用プリフォームが得られる。
偏平状延伸成形体を製造するための予備成形体(プリフォーム)としては、胴部断面形状が真円且つ均一な肉厚のものを用いることが最も容易で好ましいが、勿論、予備成形体の段階で断面形状が偏平状のものや、偏平状延伸成形体の短径方向となるべき部分の肉厚が長径方向となるべき部分の肉厚に比して薄肉のものを用いることもできる。
【0027】
脂肪族ポリエステルと他の樹脂、例えば水酸基含有樹脂やバリアー性を有する或いはバリアー性を付与した脂肪族ポリエステルとの積層体から成る予備成形体を製造するには、それ自体公知の積層技術が使用され、例えば押出成形法の場合、樹脂の種類に対応する押出機を用い、多層ダイを用いて共押出することにより、多層の予備成形体を製造する。
また、射出成形では、それ自体公知の同時共射出法や逐次共射出法により、多層プリフォームを形成することができる。更に、圧縮成形法でも、共押出などにより多層の溶融樹脂パリソンを形成することで、多層プリフォームを製造することができる。
【0028】
本発明の偏平状延伸成形体は、下記式(3)
偏平率=胴部の最大長径/最大長径と直交する位置の径(短径) …(3)
で表される偏平率が1より大きく2.5以下であることが好ましく、この範囲の偏平率を有するように、二軸延伸ブロー成形を行う。
また二軸延伸ブロー成形は、胴部の短径方向及び長径方向の何れの部位おいても、分子配向度(Do)が0.1以上、特に胴部の短径方向の分子配向度(Do1)及び長径方向の分子配向度(Do2)の比R(Do2/Do1)が0.5乃至10.0の範囲となるように行う点以外は、従来公知の二軸延伸ブロー成形法を採用することができる。
【0029】
本発明において断面形状が真円且つ均一な肉厚の予備成形体を用いて偏平状の延伸成形体を成形する場合、延伸成形に際して予備成形体を再加熱する際に、予備成形体の短径方向となるべき部分を長径方向となるべき部分に比して3乃至20℃高くなるように加熱することが好ましい。このように短径方向となるべき部分を長径方向に比して高温に加熱することにより、優先的に短径方向の延伸が可能となり、分子配向しにくい短径部を上述した範囲にすることが可能となる。
延伸温度は、脂肪族ポリエステルの種類によっても相違するが、一般的にいって、脂肪族ポリエステルのガラス転移点(Tg)を基準とし、Tg乃至Tg+50℃の温度が適当であり、例えばポリ乳酸の場合、Tg+10℃乃至Tg+50℃の温度が適当である。
【0030】
本発明の偏平状延伸成形体において、胴部の短径方向及び長径方向の何れの部位おいても、分子配向度(Do)が0.1以上で、胴部の短径方向の分子配向度(Do1)及び長径方向の分子配向度(Do2)の比R(Do2/Do1)が0.5乃至10.0の範囲にあるためには、延伸倍率を所定の範囲に制御することが重要である。
すなわち、長径方向においては、面積延伸倍率が2.0乃至12.0倍、特に、2.5乃至10.0倍となるように、短径方向においては、面積延伸倍率が2.0乃至12.0倍、特に、2.5乃至10.0倍となるように二軸延伸することが好ましい。
面積延伸倍率が上記範囲よりも小さい場合には、延伸が不十分で配向せず、上述した0.1以上の分子配向度を得ることができず、また上記範囲よりも大きいと歪みが生じて機械的強度が低下するおそれがある。
【0031】
また本発明の偏平状延伸成形体において、底部においても優れた耐熱性及び機械的強度を得るためには、底部も充分に延伸されていることが望ましく、このため底部の形状として、底部を半球状に延伸した後、底部中央部を上方にへこませることにより、中央部が上方に凹み、その周囲が平坦な形状などの底形状を採用することが好ましい。
また延伸ブロー成形後の成形体は80乃至140℃の温度で熱固定することが好ましく、これにより更に耐熱性を向上させることが可能となる。
【0032】
(用途)
本発明の偏平状延伸成形体は、偏平状であることから把持しやすく、また圧潰しやすいと共に、生分解性を有することから、化粧品や洗剤等の生活用品、飲料等のためのボトルとして好適に使用することができる。
【0033】
【実施例】
次に、具体的な実施例をもって本発明を説明する。尚、本発明は以下の実施例に限定されるものではない。
(成形)
試験樹脂に脂肪族ポリエステルとしてポリ乳酸と芳香族ポリエステルとしてポリエチレンテレフタレートを用いた。特に、ポリ乳酸は、光学活性異性体組成量が2.0mol%で、且つ、重量平均分子量(Mw)190,000のポリ乳酸(融解温度Tm=170℃、結晶化温度Tc=110℃、ガラス転移点Tg=58℃)を用いた。射出成形機を用い、190℃〜230℃の温度条件下、口径17mmφの有底プリフォームを射出成形した。次に、赤外線加熱ヒーターを用い、110℃までの温度範囲で再加熱後、ブロー成形機を用い、120ml容の偏平ボトルをブロー成形した。この場合、ボトル長径部距離をボトル短径部距離で割った値を偏平ボトルの偏平率とした。
又、プリフォーム再加熱時のプリフォーム回転を制御することで、プリフォーム円周方向の対角領域で加熱温度が異なる加熱をし、偏平ボトル短径部該当部をより高温に加熱した。
【0034】
(ブロー成形性評価)
口径17mmφの有底プリフォームを、赤外線加熱ヒーターを用い、120℃までの温度範囲で再加熱後、ブロー成形機で、120ml容の偏平ボトルをブロー成形した。この場合、ブロー金型形状にブロー成形できた場合ブロー成形性を○とし、ブロー成形時にパンクし、金型形状にブロー成形できなかった場合×とした。
【0035】
(13C 広幅NMR)
日本電子(株)社製核磁気共鳴装置を用い、13C広幅NMR測定用に改造したプローブを用い13C 広幅NMR測定した。測定試料は、長径方向ならびに短径方向をそれぞれボトル成立方向に4mm幅で切り出した後、切り出し軸をそろえて、ダイフロン製ホルダーにセット後、13C広幅NMR測定に供した。この場合、延伸試料と未延伸試料で得られる13C広幅NMRスペクトルのスペクトルパターンが異なることから、ボトル切片の実測スペクトル(S)から同試料の未延伸試料のスペクトル(Sa)(パウダーパターンスペクトル)を差し引き、(1)式を用い、分子配向成分の組成分率(Do)を求めた。
Do=(S−Sa)/S (1)
更に、偏平ボトルの長径方向部位の分子配向成分組成分率(Do2)を短径方向部位の分子配向成分組成分率(Do1)で割った分子配向成分比(R=Do2/Do1)を用い、偏平ボトルの長径部位と短径部位のそれぞれの部位における分子レベルの延伸性を検討した。
【0036】
(胴部短径部の面積延伸倍率)
ブロー成形で得られたボトルの短径部肉厚を測定し(Tb)、初期プリフォーム肉厚(Tp)で割った値を用い、この値の逆数値(Tp/Tb)を面積延伸倍率とした。
【0037】
(耐熱性試験)
満注内容積で70%容の椰子の実油を充填し、キャッピング後、55℃恒温槽に保存した。保存2時間後、ボトル形状変化(胴部短径部の熱膨張変化・底部のバックリング)を目視観察し、ボトル形状が変化しないものを○とし、胴部の熱膨張ならびに底部のバックリングが観測されたものを×とした。又、バックリングのみ観測されたボトルを△とした。
【0038】
(実施例1)
ポリ乳酸に平均粒径10μmのタルクを15wt%メルトブレンドした樹脂を用い、偏平率1.80でかつボトル底部が内容品側に凸状になる偏平ボトルをブロー成形した。特に、プリフォーム加熱時に偏平ボトル短径部に該当する部位を108℃に加熱し、その対角領域を98℃に加熱した。ブロー成形性は、用いたブロー金型形状への成形可否を確認した。又、得られたボトルの短径部の面積延伸倍率、ならびに13C広幅NMRスペクトルから求めた長径、短径両部位の分子配向成分組成率(Do2;Do1)、および、その組成比率(R=Do2/Do1)を求めた。更に、75℃保存時のボトル形状変化を求めた。結果を表1に示した。
【0039】
(実施例2)
ブロー成形金型を偏平率1.30形状に変更する以外、実施例1と同様の評価を行った。結果を表1に示した。
【0040】
(比較例1)
ポリ乳酸に平均粒径10μmのタルクを15wt%メルトブレンドした樹脂を用い、偏平率1.80で、且つ、ボトル底部が内容品側に凸状となる偏平ボトルを成形した。特に、プリフォームの加熱時、短径部、および、長径部に該当するそれぞれの部位を一律105℃に加熱する以外は実施例1と同様の評価を行った。結果を表1に示した。
【0041】
(比較例2)
タルクをブレンドしない(含有しない)ポリ乳酸を用いた以外は実施例1と同様の評価を行った。結果を表1に示した。
【0042】
(比較例3)
タルクをブレンドしないポリ乳酸を用い、更に、プリフォームの加熱時、偏平ボトルの短径部、および、長径部にそれぞれ該当する部位を一律105℃に加熱する以外は実施例1と同様の評価を行った。結果を表1に示した。
【0043】
(比較例4)
ポリ乳酸に平均粒径10μmのタルクを31wt%メルトブレンドした樹脂を用い、偏平率1.80で、且つ、ボトル底部が内容品側に凸状となる偏平ボトルにつき実施例1と同様の評価を行った。しかし、この場合、ブロー金型形状へのブロー成形が不可能であり、ブロー成形できなかった。結果を表1に示した。
【0044】
(比較例5)
ポリエチレンテレフタレート(PET)樹脂を用い、偏平率1.80で且つボトル形状が内容品側に凸状の偏平ボトルを成形した。特に、プリフォーム加熱時、偏平ボトルの短径部該当部位を130℃に加熱し、その対角領域を120℃に加熱する以外は実施例1と同様の評価を行った。結果を表1に示した。
【0045】
【表1】
Figure 0004285016
【0046】
【発明の効果】
本発明によれば、脂肪族ポリエステルを主体とする樹脂に、無機充填剤を含有する組成物から成る胴部の断面形状が偏平の二軸延伸ブロー成形体であって、胴部の短径方向及び長径方向の延伸軸方向をそろえて13C広幅NMRで測定したNMRスペクトルにおいて、上記式(1)で定義される分子配向度(Do)が、短径方向及び長径方向のいずれの部位においても0.1以上であることにより、成形性、耐熱性及び機械的強度に優れ、生分解性を有する偏平状延伸成形体を得ることができた。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flat polyester stretch-molded body, and more particularly to a flat stretch-molded body having a significantly improved heat resistance and moldability, comprising a resin composition containing an aliphatic polyester and an inorganic filler. .
[0002]
[Prior art]
In the field of packaging containers, containers of various shapes have been adopted, and containers having a flat cross-sectional shape of the body have been conventionally manufactured from the viewpoint of easy gripping and easy crushing.
Also in the stretch-molded product formed by stretch-blow-molding a polyester resin, a flat product is known. In such a flat container, the test tube preform having a perfectly circular cross section is uniformly heated and then stretch blow molded to form a flat container. The stretching ratio is different, and the film is excessively stretched at the major axis portion, resulting in overstretching, resulting in marked thinning or microvoid whitening. On the other hand, the short-diameter portion is not stretched and forms a meat reservoir. In containers where the degree of stretching differs between the minor axis direction and the major axis direction, the degree of molecular orientation is different between the major axis part of overstretching and the minor axis part that is not sufficiently stretched. It will be inferior in performance.
[0003]
Conventionally, in such a flat container, in order to make the wall thickness in the circumferential direction uniform, when the preform is reheated before blow molding, the heating of the preform is made nonuniform in the circumferential direction, It has also been proposed to perform blow molding so that the higher portion is in the minor axis direction (Patent Document 1).
[0004]
On the other hand, due to the problem of plastic waste, there is great expectation for biodegradable plastics that disintegrate due to the action of enzymes released to the outside by bacteria and fungi. As molded articles using such aliphatic polyesters, A blow bottle formed by blow-molding a heat-resistant resin composition obtained by blending an inorganic filler with polyester has also been proposed (for example, Patent Document 2).
[0005]
[Patent Document 1]
JP-A-6-99478 [Patent Document 2]
Japanese Patent Laid-Open No. 10-87976
[Problems to be solved by the invention]
However, such an aliphatic polyester having biodegradability generally has a lower melting temperature (Tm) and crystallization temperature (Tc) than conventional polyester resins, and blends inorganic fillers and the thickness of the trunk. It is difficult to ensure sufficient heat resistance, mechanical strength, and the like only by stretch-blow molding that simply makes the material uniform.
[0007]
Accordingly, an object of the present invention is to provide a flat polyester stretched molded article comprising a resin composition containing a biodegradable aliphatic polyester and an inorganic filler, which is almost the same in both the major axis direction and the minor axis direction. An object of the present invention is to provide a stretched molded article having a degree of molecular orientation and remarkably excellent in heat resistance, mechanical strength, and the like.
[0008]
[Means for Solving the Problems]
According to the present invention, a biaxially stretched blow-molded body having a flat cross-sectional shape of a body portion made of a resin composition obtained by blending an inorganic filler in a proportion of 1 to 30% by weight with a resin mainly composed of an aliphatic polyester. In the NMR spectrum measured by 13 C wide-width NMR by aligning the minor axis direction and the major axis direction of the trunk part, the following formula (1),
Do = (S−Sa) / S (1)
In the formula, S represents a peak area of a chemical shift of 100 ppm to 300 ppm when a compact sample is measured by 13 C wide NMR, and Sa is an NMR spectrum of the amorphous powder of the sample measured in the same manner as described above. Represents the peak area,
The flat polyester stretch-molded article is characterized in that the degree of molecular orientation (Do) defined by the formula (1) is 0.1 or more in both the minor axis direction and the major axis direction.
[0009]
In the flat polyester stretch molded product of the present invention,
1. The ratio R (Do2 / Do1) of the molecular orientation degree (Do1) in the minor axis direction and the molecular orientation degree (Do2) in the major axis direction of the trunk is in the range of 0.5 to 10.0,
2. The resin mainly composed of aliphatic polyester has a glass transition point of −60 ° C. or higher,
3. The aliphatic polyester has an optically active isomer amount of 5.0 mol% or less,
4. No buckling is observed at the stretched bottom when stored for 2 hours at 55 ° C. after filling with 70% volume of oil.
Is preferred.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In the flat stretched molded product of the present invention, it is composed of a resin composition comprising a resin mainly composed of aliphatic polyester and an inorganic filler, and has excellent biodegradability, and in a flat stretch blow bottle In addition, in the minor axis direction of the trunk part, oriented crystals of almost the same degree as in the major axis direction are formed, and the heat resistance and moldability are remarkably excellent.
[0011]
Usually, a thermoplastic polyester derived from a dibasic acid mainly composed of an aromatic carboxylic acid and a glycol can measure the crystallinity by orientation by the density method, and the measured density and crystallinity The relationship is the following formula (2)
Xc = (ρc / ρ) × {(ρ−ρam) / (ρc−ρam)} × 100 (2)
ρ is the density of the sample, ρam is the amorphous density, and ρc is the crystal density.
However, in the case of aliphatic polyesters, the density of the polylactic acid or the like is almost constant for both amorphous and highly oriented samples, and the crystallinity cannot be determined using the density method.
[0012]
For this reason, in the present invention, the spectral shape (linear) of the chemical shift of 100 to 300 ppm (carbonyl carbon region) when the aliphatic polyester is measured by 13 C wide-width NMR shows different linear shapes for the oriented component and the non-oriented component. Therefore, the degree of molecular orientation can be measured from this spectral shape and the amount of its components. The peak area Sa of the NMR spectrum when measured in the same manner as described above for the amorphous powder was determined, and the following formula (1),
Do = (S−Sa) / S (1)
The molecular orientation degree (Do) is calculated from
In the present invention, the degree of molecular orientation (Do) determined in this way is 0.1 or more in both the minor axis direction and the major axis direction of the molded body, so that an aliphatic blended with an inorganic filler is used. It has been found that the heat resistance of a flat stretch blow molded article made of a resin composition mainly composed of polyester can be remarkably improved.
[0013]
In the present invention, the ratio R (Do2 / Do1) of the molecular orientation degree (Do1) in the minor axis direction and the molecular orientation degree (Do2) in the major axis direction of the trunk is 0.5 to 10.0, particularly 0.6 to It is preferable to be in the range of 6.0, whereby the minor axis direction and the major axis direction are molecularly oriented to the same extent, so that particularly excellent heat resistance and moldability can be obtained.
[0014]
The flat stretch blow molded article of the present invention is excellent in heat resistance not only at the body but also at the bottom. In other words, the bottom of the molded body has a lower degree of stretching than the body part, is thick, and is difficult to achieve sufficient molecular orientation. Especially in the case of a flat molded body, the bottom is also short. Since the degree of molecular orientation differs in the radial direction and the major axis direction, the heat resistance is inferior. However, the flat stretch blow molded article of the present invention is filled with 70% volume of oil at a temperature of 55 ° C. for 2 hours. Even when stored, there is a feature that no buckling is observed at the stretched bottom.
[0015]
(Aliphatic polyester resin)
In the present invention, as the aliphatic polyester resin, any biodegradable aliphatic polyester resin mainly composed of hydroxyalkanoate units is used. The aliphatic polyester resin should have at least a molecular weight capable of forming a film, and generally its number average molecular weight should be in the range of 10,000 to 300,000, particularly 20,000 to 200,000.
Examples of suitable aliphatic polyester resins are polyhydroxyalkanoates or copolymers thereof.
[0016]
The polyhydroxyalkanoate has the following formula:
Figure 0004285016
In the formula, R is a hydrogen atom or a linear or branched alkyl group,
n is a positive integer including zero,
A repeating unit represented by
Lactic acid [R = CH 3 , n = 0, LA],
3-hydroxybutyrate [R = CH 3 , n = 1, 3HB],
3-hydroxyvalerate [R = CH 2 CH 3, n = 1,3HV],
3-hydroxy caproate [R = (CH 2) 2 CH 3, n = 1,3HC],
3-hydroxyheptanoate [R = (CH 2 ) 3 CH 3 , n = 1, 3HH],
3-hydroxyoctanoate [R = (CH 2 ) 4 CH 3 n = 1, 3HO],
3-hydroxynonanoate [R = (CH 2 ) 5 CH 3 , n = 1, 3HN],
3-hydroxydecanoate [R = (CH 2 ) 6 CH 3 , n = 1, 3HD],
γ-butyrolactone [R = H, n = 2, BL],
δ-valerolactone [R = H, n = 3, VL],
ε-caprolactone [R = H, n = 4, CL]
The polymer which consists of 1 type, or 2 or more types, etc. is mentioned.
[0017]
This polyhydroxyalkanoate is composed of polylactic acid (as polylactic acid, poly (L-lactic acid) whose structural unit is composed only of L-lactic acid, poly (D-lactic acid) composed of only D-lactic acid, and L-lactic acid units and D -Poly (DL-lactic acid) present in an arbitrary proportion of lactic acid species.), Or a homopolymer such as poly-ε-caprolactone, and a copolymer with other hydroxyalkanoates such as glycolic acid But you can. Further, it may be a copolymer obtained by copolymerizing 3-hydroxybutyrate and other 3-hydroxyalkanoate, particularly 3-hydroxyvalerate.
Moreover, the resin composition which has these resins as a main body may be sufficient.
[0018]
The aliphatic polyester used in the present invention preferably has a glass transition point (Tg) of -60 ° C or higher, particularly 30 ° C or higher.
Among these aliphatic polyesters, polylactic acid is an example of an aliphatic polyester that is industrially mass-produced and easily available and is also environmentally friendly.
Polylactic acid (PLA) is a resin using cereal starch such as corn as a raw material, a lactic acid fermentation product of starch, and a polymer using lactic acid as a monomer. In general, the dimer is produced by a ring-opening polymerization method of lactide and a direct polycondensation method. This polymer is decomposed by water and carbon dioxide by microorganisms that exist in nature, and has attracted attention as a completely recycle system type resin.
In addition, the glass transition point (Tg) has an advantage of about 58 ° C., which is close to the Tg of PET.
[0019]
In the present invention, it is particularly preferable to use polylactic acid having an optically active isomer amount of 5.0 mol% or less. That is, when the ratio of the optically active isomer is larger than the above range, it exhibits amorphous property, and an oriented crystal cannot be formed by stretching, and heat resistance is impaired.
[0020]
In the flat stretch blow molded article of the present invention, the above aliphatic polyester, particularly polylactic acid having an optically active isomer amount of 5 mol% or less can be used alone, or other aliphatic polyester or other resin. In the case of using a resin other than the aliphatic polyester, 0.1% by weight of the aliphatic polyester is used so as not to impair the excellent biodegradability of the aliphatic polyester. As mentioned above, it is important to contain especially in the amount of less than 50 weight%.
[0021]
Further, as other resins that can be used in the form of a blend with the above aliphatic polyester or a laminate with a layer comprising an aliphatic polyester, a barrier resin, for example, a hydroxyl group-containing thermoplastic having a barrier property against oxygen is used. Examples thereof include resins, nylon resins, barrier aliphatics, polyester resins composed of two or more dicarboxylic acids, high nitrile resins, and cyclic olefin copolymers that exhibit barrier properties against water vapor.
Of these, hydroxyl group-containing resins and aliphatic polyesters are preferable from the viewpoint of biodegradability, and any resin can be used in the case of hydroxyl group-containing resins as long as thermoforming is possible. This resin has a repeating unit having a hydroxyl group and a unit imparting thermoformability to the resin in its molecular chain. The hydroxyl group-containing repeating unit may be a vinyl alcohol unit or a hydroxyalkyl (meth) acrylate unit, but a vinyl alcohol unit is preferred in terms of biodegradability. Examples of other units contained in the hydroxyl group-containing resin include olefin units such as ethylene and propylene, vinyl ester units such as vinyl acetate, and alkyl (meth) acrylate units. Also, these hydroxyl group-containing resins should have at least a molecular weight sufficient to form a film.
[0022]
A preferred hydroxyl group-containing resin comprises a copolymer containing 10 to 40 mol% ethylene units, 40 to 88 mol% vinyl alcohol units, and 50 mol% or less ester-containing vinyl units.
By using such a hydroxyl group-containing polymer as a blend or a laminate, it is possible to improve the gas barrier properties of the stretch-molded product and to achieve the advantage that the biodegradability is not substantially inhibited.
Furthermore, as the aliphatic polyester having improved gas barrier properties, an aliphatic polyester containing a plate-like inorganic filler, an aliphatic polyester containing an oxygen-absorbing resin composition, and a resin combining them can also be used.
[0023]
(Inorganic filler)
In the present invention, it is important to add an inorganic filler to the resin mainly composed of the aliphatic polyester.
That is, since aliphatic polyester itself is inferior in heat resistance, crystallization can be promoted and heat resistance can be improved by containing an inorganic filler.
As the inorganic filler to be used, talc, kaolin, clay, kaolinite and the like are preferable, and talc can be particularly preferably used.
The blending amount of the inorganic filler is generally in the range of 0.5 to 40% by weight, particularly 1 to 30% by weight. If the amount of the inorganic filler is less than the above range, sufficient heat resistance cannot be imparted. On the other hand, if the amount of the inorganic filler is larger than the above range, the moldability becomes poor.
In addition, when the flatness ratio of the molded body is large, the molding process becomes severe as compared with a small flatness ratio. Therefore, in order to improve the moldability, the amount of the inorganic filler is set within the above range. It is particularly preferable to use a small amount.
[0024]
In the flat stretched molded product of the present invention, various colorants, inorganic or organic reinforcing agents, lubricants, plasticizers, leveling agents, surfactants, thickeners, thickeners, Stabilizers, antioxidants, ultraviolet absorbers, rust inhibitors, and the like can be blended according to known formulations.
[0025]
(Manufacturing method of flat stretch molded product)
The flat stretched molded product of the present invention is a biaxially stretched preform of a resin mainly composed of aliphatic polyester so that the degree of molecular orientation in the minor axis direction and the major axis direction of the trunk part is 0.1 or more. Manufactured by blow molding.
[0026]
The preform (preform) can be produced by a known extrusion molding method, injection molding method or compression molding method.
For example, by extruding the molten resin through a T-die, a thin sheet of stretched film and a sheet for pressure-air molding or plug assist molding on a film or cup are formed. Moreover, the pipe-shaped preform for container shaping | molding can also be shape | molded by extruding molten resin through a ring die.
Furthermore, a preform for a three-dimensional container such as a bottle is formed by injecting the molten resin into a mold composed of a cavity mold and a core mold with a screw or a plunger. Further, a three-dimensional preform such as a bottle can be obtained by compressing a molten resin parison with a cavity mold and a core mold.
As a preform (preform) for producing a flat stretched molded body, it is most easy and preferable to use a body having a perfectly circular cross section and a uniform thickness. It is also possible to use one having a flat cross-sectional shape at the stage, or one having a thin wall thickness compared with the thickness of the portion where the flat elongated molded body should be in the minor axis direction.
[0027]
In order to produce a preform formed from a laminate of an aliphatic polyester and another resin such as a hydroxyl group-containing resin or an aliphatic polyester having a barrier property or imparting a barrier property, a known lamination technique is used. For example, in the case of extrusion molding, a multilayer preform is produced by coextrusion using a multilayer die using an extruder corresponding to the type of resin.
In injection molding, a multilayer preform can be formed by a co-injection method or a sequential co-injection method known per se. Furthermore, even by the compression molding method, a multilayer preform can be produced by forming a multilayer molten resin parison by coextrusion or the like.
[0028]
The flat stretched molded product of the present invention has the following formula (3):
Flatness ratio = maximum major axis of the body / diameter at the position perpendicular to the major axis (minor axis) (3)
Is preferably greater than 1 and not more than 2.5, and biaxial stretch blow molding is performed so as to have an aspect ratio in this range.
In biaxial stretch blow molding, the degree of molecular orientation (Do) is 0.1 or more, particularly the degree of molecular orientation (Do1) in the minor axis direction of the trunk part at any part in the minor axis direction and major axis direction of the trunk part. ) And the ratio R (Do2 / Do1) of the molecular orientation degree (Do2) in the major axis direction are in the range of 0.5 to 10.0, a conventionally known biaxial stretch blow molding method is adopted. be able to.
[0029]
In the present invention, when a flat stretched molded body is formed using a preform having a perfectly circular cross-sectional shape and a uniform thickness, when the preform is reheated during stretch molding, the short diameter of the preform is reduced. It is preferable to heat the portion to be the direction to be 3 to 20 ° C. higher than the portion to be the major axis direction. By heating the portion that should be the minor axis direction to a higher temperature than the major axis direction, it is possible to preferentially extend in the minor axis direction, and to make the minor axis part that is difficult to molecularly orientate within the above range. Is possible.
The stretching temperature varies depending on the type of aliphatic polyester, but generally speaking, a temperature of Tg to Tg + 50 ° C. is appropriate based on the glass transition point (Tg) of the aliphatic polyester. In this case, a temperature of Tg + 10 ° C. to Tg + 50 ° C. is appropriate.
[0030]
In the flat stretched molded article of the present invention, the molecular orientation degree (Do) is 0.1 or more and the molecular orientation degree in the minor axis direction of the trunk part at any part in the minor axis direction and major axis direction of the trunk part. In order for the ratio R (Do2 / Do1) of (Do1) and the molecular orientation degree (Do2) in the major axis direction to be in the range of 0.5 to 10.0, it is important to control the draw ratio within a predetermined range. is there.
That is, in the major axis direction, the area stretch ratio is 2.0 to 12.0 times, and particularly in the minor axis direction, the area stretch ratio is 2.0 to 12 times. It is preferable to perform biaxial stretching so as to be 0.0 times, particularly 2.5 to 10.0 times.
When the area stretching ratio is smaller than the above range, the stretching is insufficient and the film is not oriented, the above-mentioned molecular orientation degree of 0.1 or more cannot be obtained, and when it is larger than the above range, distortion occurs. Mechanical strength may be reduced.
[0031]
In addition, in the flat stretched molded product of the present invention, in order to obtain excellent heat resistance and mechanical strength at the bottom, it is desirable that the bottom is sufficiently stretched. For this reason, the bottom is hemispherical. It is preferable to adopt a bottom shape such as a shape in which the central portion is recessed upward and the periphery thereof is flat by extending the central portion of the bottom portion into the upper portion after stretching.
Moreover, it is preferable that the molded body after stretch blow molding is heat-set at a temperature of 80 to 140 ° C., which makes it possible to further improve the heat resistance.
[0032]
(Use)
The flat stretch-molded product of the present invention is suitable for use as a bottle for daily products such as cosmetics and detergents, beverages and the like because it is flat and easy to grip, is easily crushed and has biodegradability. Can be used for
[0033]
【Example】
Next, the present invention will be described with specific examples. In addition, this invention is not limited to a following example.
(Molding)
Polylactic acid as an aliphatic polyester and polyethylene terephthalate as an aromatic polyester were used as test resins. In particular, polylactic acid is a polylactic acid having an optically active isomer composition amount of 2.0 mol% and a weight average molecular weight (Mw) of 190,000 (melting temperature Tm = 170 ° C., crystallization temperature Tc = 110 ° C., glass Transition point Tg = 58 ° C.) was used. A bottomed preform having a diameter of 17 mmφ was injection molded under a temperature condition of 190 ° C. to 230 ° C. using an injection molding machine. Next, using an infrared heater, after reheating in the temperature range up to 110 ° C., a 120 ml flat bottle was blow molded using a blow molding machine. In this case, a value obtained by dividing the bottle major axis distance by the bottle minor axis distance was defined as the flatness of the flat bottle.
Further, by controlling the rotation of the preform during the reheating of the preform, the heating was performed at different heating temperatures in the diagonal region in the circumferential direction of the preform, and the portion corresponding to the flat bottle short diameter portion was heated to a higher temperature.
[0034]
(Blow moldability evaluation)
A preform with a bottom diameter of 17 mmφ was reheated in the temperature range up to 120 ° C. using an infrared heater, and then a 120 ml flat bottle was blow molded with a blow molding machine. In this case, the blow moldability was evaluated as “B” when blow molding into a blow mold shape was performed, and “X” was performed when blow molding was not possible.
[0035]
(13C broad NMR)
Using a nuclear magnetic resonance apparatus manufactured by JEOL Ltd., 13 C wide NMR measurement was performed using a probe modified for 13 C wide NMR measurement. The measurement sample was cut into 4 mm widths in the major axis direction and the minor axis direction in the bottle formation direction, respectively, aligned with the cutting axis, set in a holder made of Daifron, and subjected to 13 C wide-width NMR measurement. In this case, since the spectrum pattern of the 13 C wide NMR spectrum obtained between the stretched sample and the unstretched sample is different, the spectrum (Sa) (powder pattern spectrum) of the unstretched sample of the same sample from the measured spectrum (S) of the bottle section. And the compositional fraction (Do) of the molecular orientation component was determined using equation (1).
Do = (S−Sa) / S (1)
Furthermore, using the molecular orientation component ratio (R = Do2 / Do1) obtained by dividing the molecular orientation component composition fraction (Do2) in the major axis direction part of the flat bottle by the molecular orientation component composition fraction (Do1) in the minor axis direction part, The stretchability at the molecular level in each of the major axis part and the minor axis part of the flat bottle was examined.
[0036]
(Area stretch ratio of the trunk minor axis)
Measure the thickness of the short axis part of the bottle obtained by blow molding (Tb) and use the value divided by the initial preform thickness (Tp). The reciprocal value (Tp / Tb) of this value is the area stretch ratio. did.
[0037]
(Heat resistance test)
Filled with 70% volume of coconut oil in a full injection volume, capped, and stored in a 55 ° C constant temperature bath. After 2 hours of storage, visually observe the bottle shape change (change in thermal expansion of the short axis of the trunk and buckling of the bottom), and mark the bottle that does not change the shape as ○, and the thermal expansion of the trunk and buckling of the bottom What was observed was set as x. A bottle in which only buckling was observed was indicated by Δ.
[0038]
Example 1
A flat bottle having a flatness of 1.80 and having a bottle bottom convex toward the content product was blow-molded using a resin obtained by melt blending 15 wt% of talc having an average particle diameter of 10 μm with polylactic acid. In particular, when the preform was heated, the portion corresponding to the flat bottle minor axis was heated to 108 ° C., and the diagonal region was heated to 98 ° C. As for blow moldability, it was confirmed whether or not molding into a blow mold shape was used. Moreover, the area stretch ratio of the short diameter part of the obtained bottle, the long diameter and the molecular orientation component composition ratio (Do2; Do1) of both short diameter parts determined from 13 C wide NMR spectrum, and the composition ratio (R = Do2 / Do1) was determined. Furthermore, the bottle shape change at the time of 75 degreeC preservation | save was calculated | required. The results are shown in Table 1.
[0039]
(Example 2)
The same evaluation as in Example 1 was performed except that the blow molding die was changed to a flatness 1.30 shape. The results are shown in Table 1.
[0040]
(Comparative Example 1)
A flat bottle having a flatness of 1.80 and a bottle bottom convex toward the content product was formed using a resin obtained by melt blending 15 wt% of talc having an average particle diameter of 10 μm with polylactic acid. In particular, during the heating of the preform, the same evaluation as in Example 1 was performed except that the respective portions corresponding to the short diameter part and the long diameter part were uniformly heated to 105 ° C. The results are shown in Table 1.
[0041]
(Comparative Example 2)
Evaluation was performed in the same manner as in Example 1 except that polylactic acid not containing (not containing) talc was used. The results are shown in Table 1.
[0042]
(Comparative Example 3)
The same evaluation as in Example 1 was performed except that polylactic acid not blended with talc was used, and the portion corresponding to the short diameter part and the long diameter part of the flat bottle was uniformly heated to 105 ° C. when the preform was heated. went. The results are shown in Table 1.
[0043]
(Comparative Example 4)
The same evaluation as in Example 1 was performed on a flat bottle having a flat rate of 1.80 and a bottom of the bottle having a convex shape toward the contents using a resin obtained by melt blending 31 wt% of talc having an average particle size of 10 μm with polylactic acid. went. However, in this case, blow molding into a blow mold shape is impossible and blow molding cannot be performed. The results are shown in Table 1.
[0044]
(Comparative Example 5)
Using a polyethylene terephthalate (PET) resin, a flat bottle having a flatness of 1.80 and a bottle shape convex toward the contents side was formed. In particular, during the preform heating, the same evaluation as in Example 1 was performed except that the portion corresponding to the short diameter part of the flat bottle was heated to 130 ° C. and the diagonal region was heated to 120 ° C. The results are shown in Table 1.
[0045]
[Table 1]
Figure 0004285016
[0046]
【The invention's effect】
According to the present invention, a biaxially stretched blow-molded body having a flat cross-sectional shape of a body made of a composition containing an inorganic filler in a resin mainly composed of an aliphatic polyester, the body having a minor axis direction In the NMR spectrum measured by 13 C wide-width NMR with the direction of the stretching axis in the major axis direction, the degree of molecular orientation (Do) defined by the above formula (1) is at any part in the minor axis direction and the major axis direction. By being 0.1 or more, a flat stretched molded article having excellent moldability, heat resistance and mechanical strength and having biodegradability could be obtained.

Claims (5)

脂肪族ポリエステルを主体とする樹脂に無機充填剤を1乃至30重量%の割合で配合して成る樹脂組成物から成る胴部の断面形状が偏平の二軸延伸ブロー成形体であって、胴部の短径方向及び長径方向の延伸軸方向をそろえて13C広幅NMRで測定したNMRスペクトルにおいて、下記式(1)、
Do=(S−Sa)/S …(1)
式中、Sは成形体試料を13C広幅NMRで測定した時の化学シフト100ppm〜300ppmのピーク面積を表し、Saは前記試料の非晶質粉末について上記と同様に測定した時のNMRスペクトルのピーク面積を表す、
で定義される分子配向度(Do)が、短径方向及び長径方向のいずれの部位においても0.1以上であることを特徴とする偏平状ポリエステル延伸成形体。
A biaxially stretched blow-molded body having a flat cross-sectional shape of a body portion comprising a resin composition obtained by blending an inorganic filler in a proportion of 1 to 30% by weight with a resin mainly composed of aliphatic polyester, In the NMR spectrum measured by 13 C wide-width NMR by aligning the short axis direction and the long axis direction, the following formula (1),
Do = (S−Sa) / S (1)
In the formula, S represents a peak area of a chemical shift of 100 ppm to 300 ppm when a compact sample is measured by 13 C wide NMR, and Sa is an NMR spectrum of the amorphous powder of the sample measured in the same manner as described above. Represents the peak area,
A flat polyester stretch-molded article characterized in that the degree of molecular orientation (Do) defined by the formula (1) is 0.1 or more in any part of the minor axis direction and the major axis direction.
前記胴部の短径方向の分子配向度(Do1)及び長径方向の分子配向度(Do2)の比R(Do2/Do1)が0.5乃至10.0の範囲にある請求項1記載の偏平状ポリエステル延伸成形体。The flatness according to claim 1, wherein a ratio R (Do2 / Do1) of a molecular orientation degree (Do1) in the minor axis direction and a molecular orientation degree (Do2) in the major axis direction of the trunk part is in a range of 0.5 to 10.0. -Like polyester stretch-molded body. 前記脂肪族ポリエステルを主体とする樹脂が、ガラス転移点が−60℃以上である請求項1又は2記載の偏平状ポリエステル延伸成形体。The flat polyester stretch-molded product according to claim 1 or 2, wherein the resin mainly composed of the aliphatic polyester has a glass transition point of -60 ° C or higher. 前記脂肪族ポリエステルが、光学活性異性体量が5モル%以下である請求項1乃至3の何れかに記載の偏平状ポリエステル延伸成形体。The flat polyester stretch-molded product according to any one of claims 1 to 3, wherein the aliphatic polyester has an optically active isomer content of 5 mol% or less. 70%容量の油を充填後55℃の温度で2時間保存した場合に、延伸された底部にバックリングが観測されない請求項1乃至4の何れかに記載の偏平状ポリエステル延伸成形体。The flat polyester stretch-molded article according to any one of claims 1 to 4, wherein no buckling is observed at the stretched bottom when the 70% volume of oil is filled and stored at 55 ° C for 2 hours.
JP2003025441A 2003-02-03 2003-02-03 Flat polyester stretch molding Expired - Fee Related JP4285016B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003025441A JP4285016B2 (en) 2003-02-03 2003-02-03 Flat polyester stretch molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003025441A JP4285016B2 (en) 2003-02-03 2003-02-03 Flat polyester stretch molding

Publications (2)

Publication Number Publication Date
JP2004230866A JP2004230866A (en) 2004-08-19
JP4285016B2 true JP4285016B2 (en) 2009-06-24

Family

ID=32953721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003025441A Expired - Fee Related JP4285016B2 (en) 2003-02-03 2003-02-03 Flat polyester stretch molding

Country Status (1)

Country Link
JP (1) JP4285016B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200600A (en) * 2004-01-19 2005-07-28 Mitsui Chemicals Inc Lactic acid-based polymer composition
JP2007083599A (en) * 2005-09-22 2007-04-05 Unitika Ltd Biodegradable container and method for molding the same

Also Published As

Publication number Publication date
JP2004230866A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US6159416A (en) Stretch blow molded container and production process thereof
JP4256779B2 (en) Polyglycolic acid composition
EP0925915B1 (en) Gas-barrier, multi-layer hollow container
US7976919B2 (en) Multilayer blow molded container and production process thereof
JP4294475B2 (en) Biaxial stretch blow thermoset container and method for manufacturing the same
CA2501953A1 (en) Pet copolymer composition with enhanced mechanical properties and stretch ratio, articles made therewith and methods
AU2005258308A1 (en) Injection stretch blow molding process using polylactide resins
KR100265877B1 (en) Stretch blow molded container and production process thereof
EP2025703B1 (en) Biodegradable stretch-molded container having excellent heat resistance
KR20230095077A (en) Biodegradable containers and resins therefor
EP1674240A1 (en) Method for producing multilayer stretch-molded article
JPH10337772A (en) Stretching blown container and its manufacture
JP4758097B2 (en) Multilayer stretch molding
JP4767690B2 (en) Manufacturing method of hollow container
JP2001018290A (en) Aliphatic polyester stretch-molded object and production thereof
JP4285016B2 (en) Flat polyester stretch molding
JP2001354223A (en) Container made of aliphatic polyester
US8349955B2 (en) Poly(hydroxyalkanoic acid) plasticized with poly(trimethylene ether) glycol
JP2003020344A (en) Polyglycolic acid molded article
JP3726682B2 (en) Stretch molded container
JP2009062532A (en) Thermally molded product and composition containing poly (hydroxyalkanoic acid) and polyoxymethylene
JP4348960B2 (en) POLYESTER RESIN COMPOSITION, EXTENDED MOLDED BODY, AND METHOD FOR PRODUCING EXTENDED MOLDED BODY
JP4158800B2 (en) Aliphatic polyester cup
WO2004003077A1 (en) Container formed by stretch forming

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090316

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4285016

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120403

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130403

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140403

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees