JP4284052B2 - Defect repair method - Google Patents

Defect repair method Download PDF

Info

Publication number
JP4284052B2
JP4284052B2 JP2002317309A JP2002317309A JP4284052B2 JP 4284052 B2 JP4284052 B2 JP 4284052B2 JP 2002317309 A JP2002317309 A JP 2002317309A JP 2002317309 A JP2002317309 A JP 2002317309A JP 4284052 B2 JP4284052 B2 JP 4284052B2
Authority
JP
Japan
Prior art keywords
repaired
defect
repair
repair material
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002317309A
Other languages
Japanese (ja)
Other versions
JP2004148456A (en
Inventor
昌子 中橋
祐司 安田
吉延 牧野
隆志 徳永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Plant Systems and Services Corp
Original Assignee
Toshiba Corp
Toshiba Plant Systems and Services Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Plant Systems and Services Corp filed Critical Toshiba Corp
Priority to JP2002317309A priority Critical patent/JP4284052B2/en
Publication of JP2004148456A publication Critical patent/JP2004148456A/en
Application granted granted Critical
Publication of JP4284052B2 publication Critical patent/JP4284052B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Laser Beam Processing (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、被補修部材、例えば弁座等の部品に生じた割れ等の欠陥を補修する欠陥補修方法に関する。
【0002】
【従来の技術】
火力発電プラントや原子力発電プラントには仕切弁、流量調節弁等の多数の弁が設けられており、これらの弁には弁ケーシングに弁体との間で水密性を保持する弁座が設けられる。これらの弁座等の構成部材は、長期間使用すると表面に割れ等の欠陥が生じる。例えば弁座は、弁体と水密性を保持して密着させる必要がありシール機能を要するため溶接による肉盛り施工が行われる。しかし、弁座は長期間使用すると摩耗、損耗あるいはその他の理由により、凸状の肉盛り施工部分に割れ等の欠陥が発生する恐れがある。
【0003】
このため、欠陥が発生した構成部材は、補修する必要がある。
【0004】
そこで、従来は弁座等の構成部材に発生した欠陥部にフラックスを含むペースト状の粉末ろう材を塗布し、その後に加熱処理により粉末ろう材を溶融して欠陥部に浸透させる欠陥補修方法により欠陥が補修される(例えば特許文献1参照)。このとき、粉末ろう材は、加熱したときに構成部材を溶融させないために、構成部材の融点よりも低い融点であるものが使用される。
【0005】
【特許文献1】
特開平11−123617号公報(第3頁−第4頁)
【0006】
【発明が解決しようとする課題】
従来の欠陥補修方法はフラックスを用いるため、酸化作用の影響や、残留物などの不純物の影響を避けることができず、被補修部材の品質が劣化する恐れがある。そこで被補修部材への酸化作用の影響を低減させるためには、被補修部材の補修は粉末ろう材を負圧下で加熱することにより行う必要がある。
【0007】
しかし、粉末ろう材を負圧下で加熱するためには真空炉等の機器が必要であり、かつ真空炉等の機器内部に被補修部材を配置する必要があるためコスト増加の要因となる。さらに、被補修部材が大型であるときは、真空炉内に設置することができない場合がある。そこで、被補修部材の一部を部分的に囲う小型真空炉を用いる方法が考えられるが、特に被補修部材の形状が複雑で凹凸がある場合には、真空炉内の気密性を保つことが困難である。
【0008】
また、従来の欠陥補修方法においては、ろう材が被補修部材の欠陥部に浸透した後、ろう材により形成される面が基材面より高く肉盛られるように、すなわち凸状に形成することができない。このため、被補修部材が例えば弁座であり、欠陥部が凸状の肉盛り施工部分である場合には、シール機能を維持することができない。
【0009】
一方、被補修部材の欠陥部に、被補修部材と同質の材料を用いて溶接により補修施工することもできる。しかし、被補修部材に部分的な溶融が生じ、非溶融部分との境界面に残留応力が残る。このため、補修部近傍に摩耗や割れ等の欠陥が再発する恐れがある。従って、被補修部材の欠陥部が例えば弁座の肉盛り施工部分である場合には、長期間弁座のシール効果を維持することができない。
【0010】
さらに、被補修部材の欠陥部が弁座の肉盛り施工部分である場合のように凸形状であるときには、残留応力の発生を抑制するために被補修部材の凸形状部分を全て機械加工により除去した後、被補修部材と同質の材料を用いて溶接により補修施工することもできる。
【0011】
しかし、再び被補修部材に肉盛り施工をする必要があるため、特に作業エリアが狭い場合には補修作業が困難であり、労力および時間を要する。
【0012】
本発明はかかる従来の事情に対処するためになされたものであり、摩耗や割れ等の欠陥部が生じた被補修部材を、フラックスを用いることなくより高品質に補修を施工することが可能な欠陥補修方法を提供することを目的とする。
【0014】
【課題を解決するための手段】
本発明に係る欠陥補修方法は、上述の目的を達成するために、請求項1に記載したように、被補修部材に発生した欠陥部に補修材を設けるステップと、前記被補修部材の欠陥部近傍に、不活性ガスの流路を形成するためのガスシールド板を設けるステップと、前記補修材および前記被補修部材の欠陥部近傍に不活性ガスを吹き付けながらレーザビームを照射して加熱することにより前記補修材を前記欠陥部に浸透させるステップとを有することを特徴とするものである。
【0016】
【発明の実施の形態】
本発明に係る欠陥補修方法の実施の形態について添付図面を参照して説明する。
【0017】
図1は本発明に係る欠陥補修方法の実施形態の手順を示す説明図である。
【0018】
図1(a)に示すように欠陥補修方法の適用対象である被補修部材1は、例えば各種弁の弁座、弁体、弁ケーシング等の部材を対象とし、基材2に耐摩耗部3を被着して構成される。基材2は、例えば炭素鋼である。そして炭素鋼の基材2には、プラズマアーク溶接により肉盛り施工した1.5wt%C、1wt%Mn、28wt%Cr、0.5wt%Mo、4wt%W、残部Coで組成した耐摩耗部3が被着される。
【0019】
被補修部材1の長年の使用により、耐摩耗部3には欠陥部4が生じている場合を想定する。欠陥部4の大きさは、幅Wが例えば0.1mmあるいは0.2mm程度であり、深さDが1mmあるいは2mm程度である。
【0020】
そして、図1(b)に示すように、耐摩耗部3の欠陥部4に補修材5を設ける。補修材5は、基材2より融点の低いろう材を含む材料が用いられる。そして補修材5は、例えば塩素等の有害な成分を含まない有機バインダ6を用いて欠陥部4に被着される。
【0021】
次に、図1(c)に示すように、レーザビーム照射装置7を耐摩耗部3の欠陥部4に設けた補修材5の近傍に配置する。そして、このレーザビーム照射装置7により高出力のレーザビームXを照射して不活性ガスYをノズルより吹き付けながら補修材5を加熱し、欠陥部4に浸透させて溶け込ませる。このとき不活性ガスYは、補修材5と欠陥部4全体を覆って不活性ガスYの膜を形成し、外部環境から遮断する遮断層を構成する。不活性ガスYには、アルゴン、ヘリウム、窒素やさらに酸化防止を推進するため、数%から数10%の水素を混合するガスも含まれる。
【0022】
さらに、図1(d)に示すように、耐摩耗部3表面から凸状に形成された補修材5の部分を機械加工等の加工により平坦化する。
【0023】
すなわち、欠陥補修方法は被補修部材1の欠陥部4に補修材5を設け、不活性ガスYを欠陥部4に吹き付けながらレーザビームXを照射して加熱し、欠陥部4に溶け込ませた後、補修材5により形成された凸部を機械加工等の加工により平坦化する方法である。
【0024】
次に、被補修部材1の欠陥部4に設ける補修材5の組成について説明する。
【0025】
補修材5の組成の具体例を表1に示す。
【0026】
【表1】

Figure 0004284052
【0027】
補修材5は、主成分と副成分とから構成される。そして、補修材5の主成分には、被補修部材1より融点の低い例えばAu等の金属材料が用いられる一方、補修材5の副成分には補修材5の主成分と合金化して融点を低下させる例えばCu等の材料が用いられる。
【0028】
このため補修材5が加熱されると補修材5は被補修部材1の融点より低い温度で溶融する。このため、被補修部材1の溶融に先駆けて補修材5が溶融され、補修材5はより少ない被補修部材1の溶融量で補修材5が被補修部材1の欠陥部4に浸透して充填させることができる。
【0029】
補修材5の主成分の例としては、融点が1064℃であるAu、融点が962℃であるAg、融点が1083℃であるCuが挙げられる。
【0030】
一方、補修材5の副成分の例としては、Auを主成分とする場合は、Cu、Co、Ge、Fe、Niが挙げられる。そして、主成分であるAuにCuを副成分として含有させて補修材5を構成させる場合、補修材5の融点が最小となるときのCuの補修材5に対する概略含有量は22wt%程度である。このときの補修材5の最小融点、すなわちAuを主成分として副成分であるCuを22wt%含有させた補修材5の融点は、889℃程度である。
【0031】
同様に、Auを主成分としてAuに副成分であるCo、Ge、Fe、Niをそれぞれ含有させて補修材5を構成させる場合、補修材5の融点が最小となるときの補修材5に対する概略含有量はそれぞれ24.8wt%、28wt%、18.5wt%、18wt%程度である。さらに、このときの補修材5の最小融点はそれぞれ996℃、361℃、1036℃、955℃程度である。
【0032】
また、Agを主成分としてAgに副成分であるCu含有させて補修材5を構成させる場合、補修材5の融点が最小となるときの補修材5に対する概略含有量は28wt%程度であり、このときの補修材5の最小融点は780℃程度である。
【0033】
さらに、Cuを主成分としてCuに副成分であるMn、Pをそれぞれ含有させて補修材5を構成させる場合、補修材5の融点が最小となるときの補修材5に対する概略含有量はそれぞれ37wt%、15.7wt%程度であり、このときの補修材5の最小融点はそれぞれ871℃、714℃程度である。
【0034】
さらに第2の副成分として、Al、Cr、Ti、Zr等を加えてもよい。これらの第2の副成分は、上記金属材料(主成分)あるいは副成分の少なくとも1成分と合金化して、硬い析出物を生成するものである。すなわち、前記主成分、副成分、第2の副成分からなる硬質ろう材を用いてろう付けすると、ろう付時にろう材の温度が上がると共にろう材中の主成分あるいは副成分1の少なくとも1成分が副成分2の少なくとも1成分と合金化反応を生じ、硬い析出物がろう材中に生成して、その結果、ろう材部分の硬さそのものが大きくなる効果が得られる。これら、第2の副成分として、上記Al、Cr、Ti、Zr等が挙げられる。
【0035】
また、補修材5は、主成分と副成分あるいは、主成分と副成分と第2の副成分とを主材として、この主材にさらに硬質材料を添加することができる。補修材5に硬質材料を添加すると、硬質材料により主材が保持されて補修材5が被補修部材1の欠陥部4を充填した後、更に肉盛層が形成される。このため、被補修部材1の欠陥部4を補修材5により充填した後、被補修部材1の表面を平坦化加工する際、補修後の欠陥部4が被補修部材1の表面から凹むことがない。
【0036】
補修材5の硬質材料は、主材の主成分より融点が高い材料が用いられ、1種類に限らず複数種類により構成してもよい。補修材5に添加する硬質材料の具体例を表2に示す。
【0037】
【表2】
Figure 0004284052
【0038】
例えば、補修材5の主材はAuを主成分としてAuには、Cu、Co、Fe、Ge、Ni、Siが融点低減のために副成分として含有される。このとき主成分と副成分が合金化して補修材5を構成することにより、補修材5の融点がAuの融点よりも低下すれば副成分の含有量は任意である。
【0039】
一方、補修材5の主材の主成分がAuであるとき、補修材5に添加する硬質材料の例としては、Ni基合金、Co基合金、耐火金属、炭化物、ほう化物、窒化物が挙げられる。この硬質材料の補修材5に対する含有量は、1〜40vol%が望ましい。
【0040】
補修材5は、所要の組成の合金に限らす組成の構成要素となる複数の単体金属粉末の混合物により構成してもよい。補修材5を単体金属粉末の混合物により構成しても、単体金属粉末の混合物を加熱すると各単体金属粉末が相互拡散して、被補修部材1より低融点の合金が形成されるため所要の組成の補修材5を得ることができる。
【0041】
このため、補修材5を単体金属粉末の混合物により構成すると、合金を用いる場合に比べて合金化の工程が不要となり、より安価に補修材5を構成することができる。
【0042】
尚、補修材5は、組成を構成する単体金属粉末の混合物により構成するのみならず、組成要素の一部を合金化した金属粉末の混合物を用いて構成しても良い。
【0043】
補修材5を金属粉末の混合物により構成する場合、補修材5を被補修部材1の欠陥部4に設ける方法としては、例えば金属粉末の混合物を有機バインダで混練して被補修部材1の欠陥部4に被着する方法、あるいは金属粉末の混合物を各金属粉末の融点以下の温度で加熱または加圧して一体化してから被補修部材1の欠陥部4に設ける方法がある。
【0044】
金属粉末の混合物を加熱または加圧して一体化する方法により得られた補修材5は有機バインダを含まないため、補修後の被補修部材1内部に有機バインダによる分解残留物が残留しない。このため、補修後の被補修部材1の品質の劣化を低減させることができる。
【0045】
さらに、金属粉末の混合物を加熱または加圧して一体化する方法により得られた補修材5は、施工性がよく所定のサイズに加工することができる。
【0046】
また、金属粉末の混合物を加熱または加圧して一体化して補修材5を構成した後、さらにこの一体化した金属粉末の補修材5を適量の有機バインダで被補修部材1の欠陥部4に被着することも可能である。この場合、被補修部材1の欠陥部4が存在をする面が水平でなくても、補修材5を所定の位置に設けることができる。
【0047】
次に、被補修部材1の欠陥部4に設けた補修材5の加熱方法について説明する。
【0048】
図2は図1(c)に示す欠陥補修方法において被補修部材1の欠陥部4に設けた補修材5に不活性ガスYを吹き付けながらレーザビーム照射装置7によりレーザビームXを照射して加熱する方法を示す詳細説明図である。
【0049】
レーザビーム照射装置7は、光ファイバ10の端部にレーザヘッド11を設けた構成である。そして、レーザヘッド11は筒状の配管12内部に設けられる。さらに配管12内部の欠陥部4(被補修部)近傍には筒状あるいは板状のガスシールド板13が設けられる。
【0050】
そして、レーザヘッド11は配管12内部のガスシールド板13を経由して被補修部材1の欠陥部4に設けた補修材5にレーザビームXを照射可能に構成される。さらに、ノズル14より供給される不活性ガスYも、レーザビームXとともにガスシールド板13の間を経由して補修材5に吹き付けられるように構成される。
【0051】
すなわち、ガスシールド板13により不活性ガスYの流路が形成され、不活性ガスYの流れが補修材5に一様に向かう適切な流れとなるように構成される。このため、不活性ガスYが補修材5近傍に停留しやすくなるとともに大気の混入を抑制することができる。
【0052】
そして、補修材5近傍にガスシールド板13を配置し、さらに不活性ガスYを吹き付けながらレーザビーム照射装置7によりレーザビームXを補修材5に照射して加熱する。この結果、補修材5は溶融し、被補修部材1の欠陥部4に浸透して溶け込む。
【0053】
このとき、基材2あるいは耐摩耗部3の温度が低いと補修材5が被補修部材1の欠陥部4に十分に浸透しない。このため、補修部である耐摩耗部3の欠陥部4近傍を予熱することにより、補修材5をより良好に欠陥部4に浸透させることができる。耐摩耗部3の欠陥部4近傍を予熱する方法として、例えば、欠陥部4の周囲にヒータを巻き付けて加熱する方法が挙げられる。あるいは、レーザビームを複数回照射したり、照射する際の移動速度を遅くして照射するレーザビームXの入熱量を調整する方法も挙げられる。
【0054】
図3は、図1(a)に示す被補修部材1の上面図である。
【0055】
被補修部材1の耐摩耗部3には、線状の欠陥部4が生じている。この欠陥部4は線状の端部あるいはその近傍である助走部20と、助走部20以外の主部21とで構成される。
【0056】
レーザビーム照射装置7が補修材5に照射するレーザビームXによる入熱量を、耐摩耗部3に生じた欠陥部4の助走部20において多くすることにより、助走部20での欠陥部4への補修材5の浸透を良好にすることができる。
【0057】
一方、レーザビーム照射装置7が耐摩耗部3に生じた欠陥部4の主部21にレーザビームXを照射するときは、助走部20での入熱があるため欠陥部4が予熱され、助走部20より少ない入熱であっても補修材5の欠陥部4への浸透が良好となる。
【0058】
耐摩耗部3の欠陥部4において、レーザビーム照射装置7からのレーザビームXによる入熱量を増やす方法としては、レーザビームXの移動速度を遅くする方法、レーザビームXの出力を大きくする方法、レーザビームXを欠陥部4において複数回移動させる方法等の方法が挙げられる。尚、レーザビーム照射装置7によりレーザビームXを耐摩耗部3の欠陥部4において複数回移動させる場合、主部21よりも助走部20においてより多数回移動させて予熱を十分与えることも有効である。
【0059】
すなわち、補修材5が耐摩耗部3の欠陥部4に十分に浸透しない場合には、レーザビームXの移動速度を遅くする方法、レーザビームXの出力を大きくする方法、レーザビームXを複数回助走部20において移動させる方法等の方法により欠陥部4への入熱料を増加させることにより、補修材5を欠陥部4に浸透させることができる。
【0060】
逆に、レーザビーム照射装置7が被補修部材1および補修材5に照射するレーザビームXのエネルギ密度が大きいと、補修材5の一部あるいは耐摩耗部3の一部のみが溶融され、補修材5全体を溶融して予熱された欠陥部4に十分に浸透させることができなくなる恐れがある。
【0061】
このため、レーザビーム照射装置7が補修材5および耐摩耗部3の欠陥部4近傍に照射するレーザビームXのエネルギ密度は、1平方ミリメートル当たり5ワットから120ワットにすることが望ましい。レーザビームXのエネルギ密度が1平方ミリメートル当たり5ワット未満の場合、補修材5および耐摩耗部3の加熱が十分になされなくなる一方、1平方ミリメートル当たり120ワットを超えると、補修材5および耐摩耗部3の一部のみが溶融し易くなるためである。
【0062】
レーザビーム照射装置7が補修材5および耐摩耗部3の欠陥部4近傍に照射するレーザビームXのエネルギ密度は、レーザビームXの出力をレーザビームXの照射面積で割った値となる。このため、レーザビームXのエネルギ密度は、レーザビームXの出力あるいは照射面積を変化させることにより調整することができる。
【0063】
例えば、補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの照射面積を1平方ミリメートル、レーザビームXの出力を20ワットとすると20ワット/平方ミリメートルのエネルギ密度が得られる。
【0064】
同様に、例えば補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの照射面積を10平方ミリメートル、レーザビームXの出力を50ワットとすると5ワット/平方ミリメートルのエネルギ密度となり、レーザビームXの照射面積を10平方ミリメートル、レーザビームXの出力を500ワットとすると50ワット/平方ミリメートルのエネルギ密度となる。
【0065】
また、同様に補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの照射面積を30平方ミリメートル、レーザビームXの出力を2500ワットとすると約80ワット/平方ミリメートルのエネルギ密度となる。
【0066】
補修材5を溶融させることにより耐摩耗部3の欠陥部4を補修する場合、欠陥部4に被着した補修材5は、その全体を加熱するほうがより効率的に加熱することができる。このため、レーザビームXの照射面積をある程度広げて補修材5を加熱することが望ましい。
【0067】
また、補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの移動速度は任意であるが、レーザビームXの移動速度がより遅い方が補修材5および耐摩耗部3の欠陥部4近傍に、より効果的に予熱的効果を与え、補修材5の耐摩耗部3への浸透性が有効となる。補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの移動速度は、例えば毎分0.01メートルから毎分0.5メートルの範囲が望ましい。
【0068】
また、補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXの波長も任意であるが、補修材5および耐摩耗部3の欠陥部4近傍からの反射がより少なく、吸収効率がより大きい波長、すなわちより短い波長とすることが望ましい。さらに、光ファイバ10でレーザビームXを伝送する際に、光ファイバ10内においてレーザビームXの損失が少ない波長のレーザビームXを用いることが望ましい。
【0069】
このため、補修材5および耐摩耗部3の欠陥部4近傍に照射されるレーザビームXは、例えば波長が約1ミクロンメートルのYAGレーザビームやさらに波長の短い半導体レーザビーム等のレーザビームXが挙げられる。
【0070】
また、光ファイバ10によりレーザビームXを伝送することにより、レーザヘッド11のサイズをより小さくすることができる。このため、被補修部材1の耐摩耗部3に生じた欠陥部4周辺の領域が狭い場合であっても被補修部材1の欠陥部4近傍に容易にレーザビームXを導くことが可能となり、また補修材5および耐摩耗部3の欠陥部4近傍へのレーザビームXの照射も容易とすることができる。
【0071】
例えば、被補修部材1の欠陥部4がパイプ状形状の内面にある場合には、レーザヘッド11のサイズをパイプの内部に挿入可能な大きさにする必要がある。さらに、被補修部材1の欠陥部4に所定の角度でレーザビームXを照射する必要がある場合には、レーザヘッド11のサイズがパイプの内部に挿入可能な大きさでありかつレーザヘッド11を所定の角度に傾けることが可能なサイズとする必要がある。
【0072】
そこで、光ファイバ10によりレーザビームXを伝送することでレーザヘッド11のサイズをより小さくすることにより、例えばパイプ状形状の被補修部材1の内面に存在する欠陥部4であっても所定の角度でレーザビームXを照射することができる。
【0073】
図1に示す欠陥補修方法により補修した後の被補修部材1を切断し、さらに研磨して光学顕微鏡で観察した。その結果、被補修部材1の耐摩耗部3の欠陥部4に補修材5が十分に溶け込んでいることが認められた。
【0074】
また、欠陥補修方法による補修においては、フラックスを用いることなく補修材5を不活性ガスY雰囲気中で加熱したため、補修部での酸化物の生成や変色も認められなかった。このため、欠陥補修方法により被補修部材1を補修すれば、補修後の被補修部材1の品質をより良好に維持することができる。
【0075】
被補修部材1の例としては火力発電プラントや原子力発電プラントの主蒸気隔離弁30の構成要素である弁座32および弁体31が挙げられる。
【0076】
図4は、図1に示す欠陥補修方法の被補修部材1の例である弁座32および弁体31を具備する発電プラントの主蒸気隔離弁30の一部を切り欠いた図である。
【0077】
主蒸気隔離弁30は弁体31と弁座32とを具備しており、弁体31を駆動させて弁座32に着脱することにより主蒸気隔離弁30が開閉される。弁体31および弁座32は互いに水密的に当接されている。
【0078】
図5は、図4に示す主蒸気隔離弁30の弁体31の正面図、図6は図5に示す弁体31の側面図、図7は図4に示す主蒸気隔離弁30の弁座32の正面図、図8は図7に示す弁座32の側面図である。
【0079】
主蒸気隔離弁30の弁体31および弁座32の接触部位は、基材40に耐摩耗部31が溶接により肉盛り施工されて構成される。そして、弁体31および弁座32の耐摩耗部31の作用により、主蒸気隔離弁30の閉弁時におけるシール効果が高められる。しかし、弁体31および弁座32の耐摩耗部31は、長期間使用すると摩耗あるいはその他の理由により割れ等の欠陥が生じることがあった。
【0080】
このため、耐摩耗部31の欠陥部4をシール機能を維持した状態で補修する必要がある。
【0081】
一方、従来の被補修部材1の欠陥補修方法として、被補修部材1の欠陥部4にフラックスを含み被補修部材1よりも低融点のペースト状の粉末ろう材を塗布し、その後に加熱処理により粉末ろう材を溶融して欠陥部4に浸透させて欠陥部4を補修させる方法がある。
【0082】
しかし、従来の欠陥補修方法においては、フラックスを用いて大気中で施工するため、酸化作用の影響や残留物などの不純物の影響を避けることができず、被補修部材1の補修部の品質が劣化するという問題点があった。さらに、ろう材が被補修部材1の欠陥部4に浸透した後、ろう材により形成される被補修部材1の表面が当初の被補修部材1の表面より高く肉盛られるように施工することができない。
【0083】
このため、弁体31および弁座32のように凸状に形成されシール機能を要する被補修部材1に従来の欠陥補修方法を適用すると、シール機能が低下するという問題があった。
【0084】
また、従来の欠陥補修方法において酸化作用の影響を低減させるため、被補修部材1の補修を負圧下でろう材を加熱することにより行う方法があるが、真空炉等の機器が必要となり、コスト増加の要因となる。さらに、被補修部材1が主蒸気隔離弁30の弁体31および弁座32である場合には、主蒸気隔離弁30が大型であり真空炉等の機器内に設定できない。
【0085】
そこで、弁体31および弁座32を囲う小型真空炉を設ける方法が考えられるが、弁体31および弁座32は形状が複雑で凹凸が多いため、補修部の気密性を保つことが困難である。
【0086】
このため、主蒸気隔離弁30の弁体31および弁座32に発生した欠陥部4の補修は、耐摩耗部31と同質材を用いて溶接補修施工し、弁体31と弁座32との水密性を維持させる場合が多かった。
【0087】
しかし、耐摩耗部31と同質材を用いた溶接補修による補修においては、弁体31および弁座32を構成する補修前の耐摩耗部31も部分的に溶融する。このため、耐摩耗部31の溶融部分と非溶融部分との境界面に残留応力が残り、耐摩耗部31の補修部近傍に摩耗や割れ等の欠陥が再度発生することがあり、長期間シール効果を維持することができないという問題点があった。
【0088】
一方、主蒸気隔離弁30の弁体31および弁座32の耐摩耗部31による肉盛り施工部分に欠陥が発生した場合、残留応力を局部的に残留させないために、肉盛り施工部分を機械加工により全て除去した後、再び肉盛り施工を実施する欠陥補修方法が考えられる。しかし、主蒸気隔離弁30の周囲に十分な作業空間が得られず、補修作業が困難で多大な労力と時間が必要であった。
【0089】
本発明の欠陥補修方法によれば、フラックスを用いることなく不活性ガスY雰囲気中で補修材5を加熱溶融することにより主蒸気隔離弁30の弁体31および弁座32に発生した欠陥部4を補修することができるため、酸化物の生成を抑制させることができる。このため欠陥補修方法では、補修後の主蒸気隔離弁30の弁体31および弁座32に、より高い品質を維持させることができる。
【0090】
このため、真空炉等の機器を設ける必要がなくより安価に弁体31および弁座32に発生した欠陥部4を補修することができるとともに主蒸気隔離弁30の弁体31および弁座32のように大型の被補修部材1であっても被補修部材1を工場等に移送させることなく補修することが可能である。
【0091】
また、欠陥補修方法では、補修材5に添加した硬質材料の作用により、補修材5が弁体31および弁座32に発生した欠陥部4を充填した後、肉盛層が形成される。すなわち、補修後の弁体31および弁座32の肉盛り施工部分は、他の肉盛り施工部分から凹むことがない。このため、補修後の弁体31および弁座32のシール機能を維持することができる。
【0092】
尚、欠陥補修方法は主蒸気隔離弁30の弁体31および弁座32に発生した欠陥部4の補修に限らず、電動弁等の弁あるいはその他の任意の構成部材に発生した欠陥の補修に適用することができる。
【0093】
また、被補修部材1は、基材2と耐摩耗部3とにより構成される必要はなく単一の部材で構成されていてもよい。
【0094】
【発明の効果】
本発明に係る欠陥補修方法においては、フラックスを使用せずに不活性ガスを吹き付けつつレーザビームを照射して補修材を加熱溶融し、被補修部材の欠陥部に浸透させるため、酸化作用の影響を回避させて、より高い品質を補修後の被補修部材に維持させることができる。
【図面の簡単な説明】
【図1】本発明に係る欠陥補修方法の実施形態の手順を示す説明図。
【図2】図1(c)に示す欠陥補修方法において被補修部材の欠陥部に設けた補修材に不活性ガスを吹き付けながらレーザビーム照射装置によりレーザビームを照射して加熱する方法を示す詳細説明図。
【図3】図1(a)に示す被補修部材の上面図。
【図4】図1に示す欠陥補修方法の被補修部材の例である弁座および弁体を具備する発電プラントの主蒸気隔離弁の一部を切り欠いた図。
【図5】図4に示す主蒸気隔離弁の弁体の正面図。
【図6】図5に示す弁体の側面図。
【図7】図4に示す主蒸気隔離弁の弁座の正面図。
【図8】図7に示す弁座の側面図。
【符号の説明】
1…被補修部材、2…基材、3…耐摩耗部、4…欠陥部、5…補修材、6…有機バインダ、7…レーザビーム照射装置、10…光ファイバ、11…レーザヘッド、12…配管、13…ガスシールド板、14…ノズル、20…助走部、21…主部、30…主蒸気隔離弁、31…弁体、32…弁座、40…基材、41…耐摩耗部、X…レーザビーム、Y…不活性ガス。[0001]
BACKGROUND OF THE INVENTION
The present invention repairs defects such as cracks occurring in parts to be repaired, such as valve seats. Defect repair method About.
[0002]
[Prior art]
Thermal power plants and nuclear power plants are provided with a number of valves such as gate valves and flow control valves, and these valves are provided with valve seats that maintain watertightness between the valve casing and the valve body. . These components such as valve seats have defects such as cracks on the surface when used for a long period of time. For example, the valve seat needs to be in close contact with the valve body while maintaining water tightness and requires a sealing function. However, when the valve seat is used for a long period of time, there is a risk that defects such as cracks may occur in the convex build-up portion due to wear, wear or other reasons.
[0003]
For this reason, it is necessary to repair the component in which the defect has occurred.
[0004]
Therefore, conventionally, a defect repairing method in which a paste-like powder brazing material containing flux is applied to a defective portion generated in a component such as a valve seat, and then the powder brazing material is melted by heat treatment to penetrate into the defective portion. The defect is repaired (see, for example, Patent Document 1). At this time, a powder brazing material having a melting point lower than the melting point of the constituent member is used so as not to melt the constituent member when heated.
[0005]
[Patent Document 1]
JP-A-11-123617 (pages 3 to 4)
[0006]
[Problems to be solved by the invention]
Since conventional defect repair methods use flux, the effects of oxidation and the effects of impurities such as residues cannot be avoided, and the quality of the repaired member may be degraded. Therefore, in order to reduce the influence of the oxidation action on the member to be repaired, it is necessary to repair the member to be repaired by heating the powder brazing material under a negative pressure.
[0007]
However, in order to heat the powder brazing material under a negative pressure, a device such as a vacuum furnace is required, and a repaired member needs to be disposed inside the device such as a vacuum furnace, which causes an increase in cost. Furthermore, when the member to be repaired is large, it may not be installed in the vacuum furnace. Therefore, a method using a small vacuum furnace that partially encloses a part of the member to be repaired is conceivable. Especially when the shape of the member to be repaired is complicated and has unevenness, the airtightness in the vacuum furnace can be maintained. Have difficulty.
[0008]
Further, in the conventional defect repairing method, after the brazing material penetrates into the defective part of the repaired member, the surface formed by the brazing material is built up higher than the base material surface, that is, formed in a convex shape. I can't. For this reason, when the member to be repaired is, for example, a valve seat and the defective portion is a convex build-up construction portion, the sealing function cannot be maintained.
[0009]
On the other hand, it is possible to repair the defective portion of the member to be repaired by welding using the same material as the member to be repaired. However, partial melting occurs in the member to be repaired, and residual stress remains on the interface with the non-melted portion. For this reason, there is a possibility that defects such as wear and cracks may recur near the repaired portion. Therefore, when the defective part of the member to be repaired is, for example, a build-up part of the valve seat, the sealing effect of the valve seat cannot be maintained for a long time.
[0010]
Furthermore, when the defective part of the member to be repaired has a convex shape as in the case where the valve seat is overlaid, all the convex part of the member to be repaired is removed by machining in order to suppress the occurrence of residual stress. Then, repair can be performed by welding using the same material as the member to be repaired.
[0011]
However, since it is necessary to build up the member to be repaired again, particularly when the work area is small, the repair work is difficult and requires labor and time.
[0012]
The present invention has been made in order to cope with such a conventional situation, and it is possible to repair a member to be repaired in which a defective portion such as wear or cracking has occurred with higher quality without using a flux. The purpose is to provide a defect repair method.
[0014]
[Means for Solving the Problems]
In order to achieve the above-described object, the defect repairing method according to the present invention includes a step of providing a repairing material in a defective part generated in a repaired member, as described in claim 1; Providing a gas shield plate for forming an inert gas flow path in the vicinity of the defective portion of the repaired member; A step of infiltrating the repair material into the defective portion by irradiating and heating a laser beam while blowing an inert gas in the vicinity of the defective portion of the repair material and the member to be repaired. is there.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
According to the present invention Defect repair method Embodiments will be described with reference to the accompanying drawings.
[0017]
FIG. 1 is an explanatory view showing the procedure of an embodiment of a defect repair method according to the present invention.
[0018]
As shown in FIG. 1 (a), a repaired member 1 to which a defect repairing method is applied targets, for example, members such as valve seats, valve bodies, and valve casings of various valves. It is composed by adhering. The base material 2 is, for example, carbon steel. The carbon steel base material 2 has a wear-resistant portion composed of 1.5 wt% C, 1 wt% Mn, 28 wt% Cr, 0.5 wt% Mo, 4 wt% W, and the balance Co, which is built up by plasma arc welding. 3 is deposited.
[0019]
It is assumed that the wear-resistant part 3 has a defective part 4 due to long-time use of the member 1 to be repaired. As for the size of the defect portion 4, the width W is, for example, about 0.1 mm or 0.2 mm, and the depth D is about 1 mm or 2 mm.
[0020]
And as shown in FIG.1 (b), the repair material 5 is provided in the defect part 4 of the wear-resistant part 3. As shown in FIG. As the repair material 5, a material including a brazing material having a melting point lower than that of the base material 2 is used. The repair material 5 is attached to the defect portion 4 using an organic binder 6 that does not contain harmful components such as chlorine.
[0021]
Next, as shown in FIG. 1C, the laser beam irradiation device 7 is disposed in the vicinity of the repair material 5 provided in the defective portion 4 of the wear resistant portion 3. Then, the laser beam irradiation device 7 irradiates the high-power laser beam X and heats the repairing material 5 while spraying the inert gas Y from the nozzle, so that the defect material 4 is infiltrated and melted. At this time, the inert gas Y forms a film of the inert gas Y so as to cover the repair material 5 and the entire defective portion 4, and constitutes a blocking layer that blocks from the external environment. The inert gas Y includes argon, helium, nitrogen, and a gas mixed with hydrogen from several percent to several tens percent in order to promote oxidation prevention.
[0022]
Furthermore, as shown in FIG.1 (d), the part of the repair material 5 formed convexly from the wear-resistant part 3 surface is planarized by processes, such as machining.
[0023]
That is, the defect repairing method is such that after the repair material 5 is provided on the defect portion 4 of the member 1 to be repaired, the laser beam X is irradiated and heated while spraying the inert gas Y onto the defect portion 4, and the defect portion 4 is melted. This is a method of flattening the convex portion formed by the repair material 5 by machining or the like.
[0024]
Next, the composition of the repair material 5 provided on the defective portion 4 of the repaired member 1 will be described.
[0025]
Specific examples of the composition of the repair material 5 are shown in Table 1.
[0026]
[Table 1]
Figure 0004284052
[0027]
The repair material 5 includes a main component and a subcomponent. For the main component of the repair material 5, a metal material such as Au having a lower melting point than that of the member to be repaired 1 is used. On the other hand, the subcomponent of the repair material 5 is alloyed with the main component of the repair material 5 to have a melting point. For example, a material such as Cu is used.
[0028]
For this reason, when the repair material 5 is heated, the repair material 5 melts at a temperature lower than the melting point of the member 1 to be repaired. For this reason, the repair material 5 is melted prior to the melting of the member 1 to be repaired, and the repair material 5 penetrates and fills the defective portion 4 of the member 1 to be repaired with a smaller melt amount of the member 1 to be repaired. Can be made.
[0029]
Examples of the main component of the repair material 5 include Au having a melting point of 1064 ° C., Ag having a melting point of 962 ° C., and Cu having a melting point of 1083 ° C.
[0030]
On the other hand, examples of subcomponents of the repair material 5 include Cu, Co, Ge, Fe, and Ni when Au is the main component. When the repair material 5 is formed by containing Cu as a subcomponent in Au as the main component, the approximate content of Cu with respect to the repair material 5 when the melting point of the repair material 5 is minimized is about 22 wt%. . The minimum melting point of the repair material 5 at this time, that is, the melting point of the repair material 5 containing 22 wt% of Cu, which is a main component of Au, is about 889 ° C.
[0031]
Similarly, when the repair material 5 is configured by including Au as a main component and Co, Ge, Fe, and Ni as auxiliary components in Au, an outline of the repair material 5 when the melting point of the repair material 5 is minimized. The contents are about 24.8 wt%, 28 wt%, 18.5 wt%, and 18 wt%, respectively. Furthermore, the minimum melting points of the repair material 5 at this time are about 996 ° C., 361 ° C., 1036 ° C., and 955 ° C., respectively.
[0032]
Further, when the repair material 5 is constituted by containing Ag as a main component and Cu as a subcomponent in the Ag, the approximate content with respect to the repair material 5 when the melting point of the repair material 5 is minimized is about 28 wt%, The minimum melting point of the repair material 5 at this time is about 780 ° C.
[0033]
Further, when the repair material 5 is constituted by containing Cu as a main component and Cu as the subcomponents Mn and P, the approximate content with respect to the repair material 5 when the melting point of the repair material 5 is minimized is 37 wt. %, And the minimum melting point of the repair material 5 at this time is about 871 ° C. and 714 ° C., respectively.
[0034]
Further, Al, Cr, Ti, Zr or the like may be added as the second subcomponent. These second subcomponents are alloyed with the metal material (main component) or at least one of the subcomponents to form hard precipitates. That is, when brazing using a hard brazing material comprising the main component, subcomponent, and second subcomponent, the temperature of the brazing material increases during brazing and at least one component of the main component or subcomponent 1 in the brazing material Causes an alloying reaction with at least one component of the subcomponent 2, and hard precipitates are generated in the brazing material. As a result, an effect of increasing the hardness of the brazing material portion itself can be obtained. These second subcomponents include the above Al, Cr, Ti, Zr and the like.
[0035]
Further, the repair material 5 can include a main component and a sub component or a main component, a sub component, and a second sub component as main materials, and a hard material can be further added to the main material. When a hard material is added to the repair material 5, after the main material is held by the hard material and the repair material 5 fills the defective portion 4 of the repaired member 1, a buildup layer is further formed. For this reason, after filling the defect part 4 of the member 1 to be repaired with the repair material 5, when the surface of the member 1 to be repaired is flattened, the defect part 4 after repair may be recessed from the surface of the member 1 to be repaired. Absent.
[0036]
The hard material of the repair material 5 is a material having a melting point higher than that of the main component of the main material, and is not limited to one type and may be composed of a plurality of types. Specific examples of the hard material added to the repair material 5 are shown in Table 2.
[0037]
[Table 2]
Figure 0004284052
[0038]
For example, the main material of the repair material 5 is Au as a main component, and Au contains Cu, Co, Fe, Ge, Ni, and Si as subcomponents for reducing the melting point. At this time, if the melting point of the repair material 5 is lower than the melting point of Au by forming the repair material 5 by alloying the main component and the sub component, the content of the sub component is arbitrary.
[0039]
On the other hand, when the main component of the repair material 5 is Au, examples of hard materials added to the repair material 5 include Ni-based alloys, Co-based alloys, refractory metals, carbides, borides, and nitrides. It is done. As for content with respect to the repair material 5 of this hard material, 1-40 vol% is desirable.
[0040]
The repair material 5 may be composed of a mixture of a plurality of simple metal powders which are constituent elements of a composition limited to an alloy having a required composition. Even if the repair material 5 is composed of a mixture of simple metal powders, heating the mixture of simple metal powders causes the individual metal powders to diffuse to each other and form an alloy having a lower melting point than the repaired member 1. The repair material 5 can be obtained.
[0041]
For this reason, when the repair material 5 is composed of a mixture of single metal powders, an alloying step is not required as compared with the case of using an alloy, and the repair material 5 can be configured at a lower cost.
[0042]
The repair material 5 may be constituted not only by a mixture of simple metal powders constituting the composition but also by using a mixture of metal powders obtained by alloying a part of the composition elements.
[0043]
When the repair material 5 is composed of a mixture of metal powders, as a method of providing the repair material 5 on the defective portion 4 of the member 1 to be repaired, for example, a defective portion of the member 1 to be repaired by kneading a mixture of metal powder with an organic binder. 4 or a mixture of metal powders is integrated by heating or pressurizing at a temperature below the melting point of each metal powder, and then provided to the defective portion 4 of the repaired member 1.
[0044]
Since the repair material 5 obtained by heating or pressurizing and integrating the mixture of metal powders does not contain an organic binder, no decomposition residue due to the organic binder remains in the repaired member 1 after repair. For this reason, deterioration of the quality of the repaired member 1 after repair can be reduced.
[0045]
Furthermore, the repair material 5 obtained by the method of heating or pressurizing and integrating the metal powder mixture has good workability and can be processed into a predetermined size.
[0046]
Further, after the mixture of metal powders is heated or pressed to be integrated to form the repair material 5, the integrated metal powder repair material 5 is further covered with the appropriate amount of an organic binder on the defective portion 4 of the repaired member 1. It is also possible to wear it. In this case, the repair material 5 can be provided at a predetermined position even if the surface on which the defective portion 4 of the repaired member 1 exists is not horizontal.
[0047]
Next, a heating method of the repair material 5 provided in the defective portion 4 of the repaired member 1 will be described.
[0048]
FIG. 2 shows the defect repairing method shown in FIG. 1C, in which a laser beam X is irradiated and heated by a laser beam irradiation device 7 while spraying an inert gas Y onto a repair material 5 provided on a defective portion 4 of a member 1 to be repaired. It is detailed explanatory drawing which shows the method to do.
[0049]
The laser beam irradiation device 7 has a configuration in which a laser head 11 is provided at the end of an optical fiber 10. The laser head 11 is provided inside the cylindrical pipe 12. Further, a cylindrical or plate-shaped gas shield plate 13 is provided in the vicinity of the defective portion 4 (repaired portion) inside the pipe 12.
[0050]
The laser head 11 is configured to be able to irradiate the repair material 5 provided on the defective portion 4 of the repaired member 1 via the gas shield plate 13 inside the pipe 12 with the laser beam X. Further, the inert gas Y supplied from the nozzle 14 is also configured to be sprayed onto the repair material 5 via the gap between the gas shield plates 13 together with the laser beam X.
[0051]
That is, the flow path of the inert gas Y is formed by the gas shield plate 13, and the flow of the inert gas Y is configured to be an appropriate flow that is uniformly directed toward the repair material 5. For this reason, it becomes easy for the inert gas Y to stay in the vicinity of the repair material 5, and the mixing of air can be suppressed.
[0052]
Then, the gas shield plate 13 is disposed in the vicinity of the repair material 5, and further, the repair material 5 is irradiated with the laser beam X by the laser beam irradiation device 7 while the inert gas Y is sprayed and heated. As a result, the repair material 5 melts and penetrates into the defective portion 4 of the repaired member 1 and melts.
[0053]
At this time, if the temperature of the base material 2 or the wear resistant part 3 is low, the repair material 5 does not sufficiently penetrate into the defective part 4 of the repaired member 1. For this reason, the repair material 5 can be penetrated into the defect part 4 more favorably by preheating the vicinity of the defect part 4 of the wear-resistant part 3 which is a repair part. As a method for preheating the vicinity of the defective portion 4 of the wear-resistant portion 3, for example, a method in which a heater is wound around the defective portion 4 and heated is cited. Alternatively, a method of adjusting the heat input amount of the laser beam X to be irradiated by irradiating the laser beam a plurality of times or slowing the moving speed when irradiating is also mentioned.
[0054]
FIG. 3 is a top view of the repaired member 1 shown in FIG.
[0055]
A linear defect 4 is generated in the wear-resistant part 3 of the member 1 to be repaired. The defective portion 4 includes a running portion 20 that is a linear end portion or the vicinity thereof, and a main portion 21 other than the running portion 20.
[0056]
The amount of heat input by the laser beam X applied to the repair material 5 by the laser beam irradiation device 7 is increased in the run-up portion 20 of the defect portion 4 generated in the wear-resistant portion 3, so that the defect portion 4 in the run-up portion 20 The penetration of the repair material 5 can be improved.
[0057]
On the other hand, when the laser beam irradiation device 7 irradiates the main part 21 of the defective part 4 generated in the wear-resistant part 3 with the laser beam X, the defective part 4 is preheated due to heat input in the auxiliary part 20, and Even if the heat input is less than that of the part 20, the penetration of the repair material 5 into the defective part 4 becomes good.
[0058]
As a method of increasing the amount of heat input by the laser beam X from the laser beam irradiation device 7 in the defective portion 4 of the wear resistant portion 3, a method of slowing the moving speed of the laser beam X, a method of increasing the output of the laser beam X, Examples of the method include a method of moving the laser beam X in the defect portion 4 a plurality of times. When the laser beam irradiation device 7 moves the laser beam X a plurality of times in the defective portion 4 of the wear-resistant portion 3, it is also effective to provide the preheating sufficiently by moving the laser beam X many times in the run-up portion 20 rather than the main portion 21. is there.
[0059]
That is, when the repair material 5 does not sufficiently penetrate into the defective portion 4 of the wear-resistant portion 3, a method of slowing the moving speed of the laser beam X, a method of increasing the output of the laser beam X, and the laser beam X are applied a plurality of times. The repair material 5 can be infiltrated into the defective part 4 by increasing the heat input to the defective part 4 by a method such as a method of moving in the running part 20.
[0060]
Conversely, when the energy density of the laser beam X irradiated to the repaired member 1 and the repair material 5 by the laser beam irradiation device 7 is large, only a part of the repair material 5 or a part of the wear resistant part 3 is melted and repaired. There is a possibility that the entire material 5 cannot be melted and sufficiently penetrated into the preheated defect portion 4.
[0061]
For this reason, it is desirable that the energy density of the laser beam X irradiated by the laser beam irradiation device 7 in the vicinity of the repair material 5 and the defect portion 4 of the wear-resistant portion 3 is 5 watts to 120 watts per square millimeter. When the energy density of the laser beam X is less than 5 watts per square millimeter, the repair material 5 and the wear resistant portion 3 are not sufficiently heated. This is because only part of the portion 3 is easily melted.
[0062]
The energy density of the laser beam X that the laser beam irradiation device 7 irradiates in the vicinity of the repair material 5 and the defect portion 4 of the wear resistant portion 3 is a value obtained by dividing the output of the laser beam X by the irradiation area of the laser beam X. For this reason, the energy density of the laser beam X can be adjusted by changing the output of the laser beam X or the irradiation area.
[0063]
For example, if the irradiation area of the laser beam X irradiated to the repair material 5 and the defective portion 4 of the wear resistant portion 3 is 1 square millimeter and the output of the laser beam X is 20 watts, an energy density of 20 watts / square millimeter is obtained. It is done.
[0064]
Similarly, for example, when the irradiation area of the laser beam X irradiated near the defect portion 4 of the repair material 5 and the wear resistant portion 3 is 10 square millimeters and the output of the laser beam X is 50 watts, the energy density is 5 watts / square millimeter. When the irradiation area of the laser beam X is 10 square millimeters and the output of the laser beam X is 500 watts, the energy density is 50 watts / square millimeter.
[0065]
Similarly, if the irradiation area of the laser beam X irradiated to the repair material 5 and the defect portion 4 of the wear-resistant portion 3 is 30 square millimeters and the output of the laser beam X is 2500 watts, the energy is about 80 watts / square millimeter. It becomes density.
[0066]
When repairing the defect part 4 of the wear-resistant part 3 by melting the repair material 5, the repair material 5 attached to the defect part 4 can be heated more efficiently by heating the whole. For this reason, it is desirable to heat the repair material 5 by expanding the irradiation area of the laser beam X to some extent.
[0067]
Further, the moving speed of the laser beam X irradiated near the defect portion 4 of the repair material 5 and the wear resistant portion 3 is arbitrary, but the repair material 5 and the wear resistant portion 3 are slower when the moving speed of the laser beam X is slower. The preheating effect is more effectively given in the vicinity of the defective portion 4 of the steel, and the permeability of the repair material 5 to the wear-resistant portion 3 becomes effective. The moving speed of the laser beam X irradiated near the repair material 5 and the defective portion 4 of the wear resistant portion 3 is preferably in the range of 0.01 meter / min to 0.5 meter / min, for example.
[0068]
Further, the wavelength of the laser beam X irradiated near the defect portion 4 of the repair material 5 and the wear-resistant portion 3 is also arbitrary, but there is less reflection from the vicinity of the defect portion 4 of the repair material 5 and the wear-resistant portion 3, It is desirable that the wavelength has a higher absorption efficiency, that is, a shorter wavelength. Furthermore, when transmitting the laser beam X through the optical fiber 10, it is desirable to use the laser beam X having a wavelength with a small loss of the laser beam X in the optical fiber 10.
[0069]
For this reason, the laser beam X irradiated near the defect portion 4 of the repair material 5 and the wear-resistant portion 3 is, for example, a laser beam X such as a YAG laser beam having a wavelength of about 1 micrometer or a semiconductor laser beam having a shorter wavelength. Can be mentioned.
[0070]
Further, by transmitting the laser beam X through the optical fiber 10, the size of the laser head 11 can be further reduced. For this reason, it is possible to easily guide the laser beam X to the vicinity of the defective portion 4 of the repaired member 1 even when the area around the defective portion 4 generated in the wear-resistant portion 3 of the repaired member 1 is narrow. Further, it is possible to easily irradiate the repair material 5 and the vicinity of the defect portion 4 of the wear resistant portion 3 with the laser beam X.
[0071]
For example, when the defective part 4 of the member to be repaired 1 is on the inner surface of the pipe shape, the size of the laser head 11 needs to be set so as to be inserted into the pipe. Further, when it is necessary to irradiate the defective portion 4 of the repaired member 1 with the laser beam X at a predetermined angle, the size of the laser head 11 is large enough to be inserted into the pipe, and the laser head 11 is The size needs to be tilted to a predetermined angle.
[0072]
Therefore, by transmitting the laser beam X through the optical fiber 10 to reduce the size of the laser head 11, for example, even a defect portion 4 existing on the inner surface of the pipe-shaped repaired member 1 has a predetermined angle. Can be irradiated with the laser beam X.
[0073]
The member 1 to be repaired after being repaired by the defect repairing method shown in FIG. 1 was cut, polished and observed with an optical microscope. As a result, it was recognized that the repair material 5 was sufficiently dissolved in the defective portion 4 of the wear-resistant portion 3 of the repaired member 1.
[0074]
Further, in the repair by the defect repair method, the repair material 5 was heated in an inert gas Y atmosphere without using a flux, and therefore no oxide generation or discoloration was observed in the repair portion. For this reason, if the member 1 to be repaired is repaired by the defect repairing method, the quality of the member 1 to be repaired after the repair can be maintained better.
[0075]
Examples of the member 1 to be repaired include a valve seat 32 and a valve body 31 that are components of the main steam isolation valve 30 of a thermal power plant or a nuclear power plant.
[0076]
FIG. 4 is a view in which a part of the main steam isolation valve 30 of the power plant including the valve seat 32 and the valve body 31 which is an example of the repaired member 1 of the defect repairing method shown in FIG. 1 is cut away.
[0077]
The main steam isolation valve 30 includes a valve body 31 and a valve seat 32, and the main steam isolation valve 30 is opened and closed by driving the valve body 31 to be attached to and detached from the valve seat 32. The valve body 31 and the valve seat 32 are in water-tight contact with each other.
[0078]
5 is a front view of the valve body 31 of the main steam isolation valve 30 shown in FIG. 4, FIG. 6 is a side view of the valve body 31 shown in FIG. 5, and FIG. 7 is a valve seat of the main steam isolation valve 30 shown in FIG. FIG. 8 is a front view of the valve seat 32 shown in FIG.
[0079]
The contact portion between the valve body 31 and the valve seat 32 of the main steam isolation valve 30 is configured by depositing the wear resistant portion 31 on the base material 40 by welding. The sealing effect when the main steam isolation valve 30 is closed is enhanced by the action of the wear resistant portion 31 of the valve body 31 and the valve seat 32. However, the wear-resistant part 31 of the valve body 31 and the valve seat 32 may have a defect such as cracking due to wear or other reasons when used for a long time.
[0080]
For this reason, it is necessary to repair the defective portion 4 of the wear-resistant portion 31 while maintaining the sealing function.
[0081]
On the other hand, as a conventional defect repairing method for the member to be repaired 1, a paste-like powder brazing material containing a flux and having a lower melting point than the member to be repaired 1 is applied to the defective portion 4 of the member to be repaired 1, and then heat treatment There is a method of repairing the defect portion 4 by melting the powder brazing material and infiltrating the defect portion 4.
[0082]
However, in the conventional defect repair method, since the construction is performed in the atmosphere using the flux, the influence of the oxidizing action and the influence of impurities such as residues cannot be avoided, and the quality of the repaired part of the repaired member 1 is high. There was a problem of deterioration. Further, after the brazing material penetrates into the defective portion 4 of the repaired member 1, the surface of the repaired member 1 formed by the brazing material may be built up higher than the original surface of the repaired member 1. Can not.
[0083]
For this reason, when the conventional defect repairing method is applied to the repaired member 1 that is formed in a convex shape such as the valve body 31 and the valve seat 32 and requires a sealing function, there is a problem that the sealing function is deteriorated.
[0084]
In addition, in order to reduce the influence of the oxidation action in the conventional defect repairing method, there is a method of repairing the member to be repaired 1 by heating the brazing material under a negative pressure, but a device such as a vacuum furnace is required, and the cost is reduced. Increase factor. Further, when the repaired member 1 is the valve body 31 and the valve seat 32 of the main steam isolation valve 30, the main steam isolation valve 30 is large and cannot be set in a device such as a vacuum furnace.
[0085]
Therefore, a method of providing a small vacuum furnace that encloses the valve body 31 and the valve seat 32 is conceivable. However, since the valve body 31 and the valve seat 32 are complicated in shape and have many irregularities, it is difficult to maintain the airtightness of the repair portion. is there.
[0086]
For this reason, repair of the defective portion 4 generated in the valve body 31 and the valve seat 32 of the main steam isolation valve 30 is performed by welding repair using the same material as the wear resistant portion 31, and the valve body 31 and the valve seat 32 are repaired. In many cases, water tightness was maintained.
[0087]
However, in the repair by welding repair using the same material as the wear-resistant part 31, the wear-resistant part 31 before repair constituting the valve body 31 and the valve seat 32 is partially melted. For this reason, residual stress remains at the boundary surface between the melted portion and the non-melted portion of the wear-resistant portion 31, and defects such as wear and cracks may occur again in the vicinity of the repaired portion of the wear-resistant portion 31. There was a problem that the effect could not be maintained.
[0088]
On the other hand, when a defect occurs in the build-up construction portion by the valve body 31 of the main steam isolation valve 30 and the wear-resistant portion 31 of the valve seat 32, the build-up construction portion is machined so that residual stress does not remain locally. After removing all of the above, a defect repairing method can be considered in which overlaying is performed again. However, a sufficient working space was not obtained around the main steam isolation valve 30, and the repair work was difficult, requiring a lot of labor and time.
[0089]
According to the defect repair method of the present invention, the defective portion 4 generated in the valve body 31 and the valve seat 32 of the main steam isolation valve 30 by heating and melting the repair material 5 in an inert gas Y atmosphere without using a flux. Therefore, the generation of oxide can be suppressed. For this reason, in the defect repair method, higher quality can be maintained in the valve body 31 and the valve seat 32 of the main steam isolation valve 30 after repair.
[0090]
For this reason, it is not necessary to provide equipment such as a vacuum furnace, and the defective portion 4 generated in the valve body 31 and the valve seat 32 can be repaired at a lower cost, and the valve body 31 and the valve seat 32 of the main steam isolation valve 30 can be repaired. Thus, even the large repaired member 1 can be repaired without transferring the repaired member 1 to a factory or the like.
[0091]
Further, in the defect repairing method, the overlay material is formed after the repair material 5 fills the defective portion 4 generated in the valve body 31 and the valve seat 32 by the action of the hard material added to the repair material 5. That is, the built-up construction part of the valve body 31 and the valve seat 32 after repair does not dent from other build-up construction parts. For this reason, the sealing function of the valve body 31 and the valve seat 32 after repair can be maintained.
[0092]
The defect repairing method is not limited to repairing the defective portion 4 generated in the valve body 31 and the valve seat 32 of the main steam isolation valve 30, but is also used for repairing a defect generated in a valve such as an electric valve or other arbitrary components. Can be applied.
[0093]
Further, the repaired member 1 does not need to be configured by the base material 2 and the wear-resistant portion 3 and may be configured by a single member.
[0094]
【The invention's effect】
In the defect repairing method according to the present invention, the irradiation of a laser beam while spraying an inert gas without using a flux causes the repairing material to be heated and melted so as to penetrate into the defective part of the repaired member. Thus, higher quality can be maintained in the repaired member after repair.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a procedure of an embodiment of a defect repair method according to the present invention.
FIG. 2 is a detail showing a method of heating by irradiating a laser beam with a laser beam irradiation apparatus while blowing an inert gas to a repair material provided in a defective portion of a repaired member in the defect repair method shown in FIG. Illustration.
FIG. 3 is a top view of the repaired member shown in FIG.
4 is a view in which a part of a main steam isolation valve of a power plant including a valve seat and a valve body, which is an example of a repaired member of the defect repair method shown in FIG. 1, is cut away.
FIG. 5 is a front view of the valve body of the main steam isolation valve shown in FIG. 4;
6 is a side view of the valve body shown in FIG. 5. FIG.
7 is a front view of the valve seat of the main steam isolation valve shown in FIG. 4. FIG.
8 is a side view of the valve seat shown in FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Repair member, 2 ... Base material, 3 ... Wear-resistant part, 4 ... Defect part, 5 ... Repair material, 6 ... Organic binder, 7 ... Laser beam irradiation apparatus, 10 ... Optical fiber, 11 ... Laser head, 12 ... Piping, 13 ... Gas shield plate, 14 ... Nozzle, 20 ... Running part, 21 ... Main part, 30 ... Main steam isolation valve, 31 ... Valve element, 32 ... Valve seat, 40 ... Base material, 41 ... Abrasion resistant part , X ... laser beam, Y ... inert gas.

Claims (11)

被補修部材に発生した欠陥部に補修材を設けるステップと、前記被補修部材の欠陥部近傍に、不活性ガスの流路を形成するためのガスシールド板を設けるステップと、前記補修材および前記被補修部材の欠陥部近傍に不活性ガスを吹き付けながらレーザビームを照射して加熱することにより前記補修材を前記欠陥部に浸透させるステップとを有することを特徴とする欠陥補修方法。A step of providing a repair material in a defective portion generated in the member to be repaired, a step of providing a gas shield plate for forming a flow path of an inert gas in the vicinity of the defective portion of the member to be repaired, the repair material and the above And a step of infiltrating the repair material into the defect portion by irradiating and heating a laser beam while blowing an inert gas near the defect portion of the member to be repaired. 前記被補修部材を予熱することを特徴とする請求項1記載の欠陥補修方法。  The defect repair method according to claim 1, wherein the member to be repaired is preheated. 前記欠陥部の端部近傍の助走部の入熱量を、前記助走部以外の前記欠陥部近傍である主部の入熱量より大きくすることを特徴とする請求項1記載の欠陥補修方法。  The defect repairing method according to claim 1, wherein a heat input amount of an approaching portion in the vicinity of an end portion of the defect portion is made larger than a heat input amount of a main portion in the vicinity of the defect portion other than the approaching portion. 前記レーザビームのエネルギ密度は、1平方ミリメートル当たり5ワットから120ワットであることを特徴とする請求項1記載の欠陥補修方法。  2. The defect repairing method according to claim 1, wherein the energy density of the laser beam is 5 to 120 watts per square millimeter. 前記補修材は前記被補修部材よりも融点の低い金属材料を含むことを特徴とする請求項1記載の欠陥補修方法。  The defect repair method according to claim 1, wherein the repair material includes a metal material having a melting point lower than that of the member to be repaired. 前記補修材は、前記被補修部材より融点の低い金属材料で構成される主成分と、この主成分と合金化して前記主成分の融点を低下させる副成分とで構成されることを特徴とする請求項1記載の欠陥補修方法。  The repair material includes a main component composed of a metal material having a melting point lower than that of the member to be repaired, and a subcomponent that is alloyed with the main component to lower the melting point of the main component. The defect repairing method according to claim 1. 前記補修材は、前記被補修部材より融点の低い金属材料で構成される主成分と、この主成分と合金化して前記主成分の融点を低下させる副成分と、この主成分より融点の高い硬質材料とにより構成されることを特徴とする請求項1記載の欠陥補修方法。  The repair material includes a main component composed of a metal material having a lower melting point than the member to be repaired, a subcomponent that is alloyed with the main component to lower the melting point of the main component, and a hard component having a higher melting point than the main component. The defect repairing method according to claim 1, wherein the defect repairing method is made of a material. 前記硬質材料は、Ni基合金、Co基合金、炭化物、ほう化物あるいは窒化物のうちのいずれかにより構成したことを特徴とする請求項記載の欠陥補修方法。The defect repairing method according to claim 7 , wherein the hard material is made of any one of a Ni-based alloy, a Co-based alloy, a carbide, a boride, and a nitride. 前記補修材は、金属粉末の混合物により構成されることを特徴とする請求項1記載の欠陥補修方法。  The defect repair method according to claim 1, wherein the repair material is composed of a mixture of metal powders. 前記補修材は、金属粉末の混合物を前記金属粉末の融点以下の温度で加熱あるいは加圧および加熱して一体化することにより構成されることを特徴とする請求項1記載の欠陥補修方法。  2. The defect repair method according to claim 1, wherein the repair material is configured by heating or pressurizing and heating a mixture of metal powders at a temperature equal to or lower than a melting point of the metal powders. 前記補修材は、有機バインダにより前記被補修部材の欠陥部に被着されることを特徴とする請求項1記載の欠陥補修方法。  The defect repair method according to claim 1, wherein the repair material is attached to a defective portion of the repaired member by an organic binder.
JP2002317309A 2002-10-31 2002-10-31 Defect repair method Expired - Fee Related JP4284052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002317309A JP4284052B2 (en) 2002-10-31 2002-10-31 Defect repair method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002317309A JP4284052B2 (en) 2002-10-31 2002-10-31 Defect repair method

Publications (2)

Publication Number Publication Date
JP2004148456A JP2004148456A (en) 2004-05-27
JP4284052B2 true JP4284052B2 (en) 2009-06-24

Family

ID=32460741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002317309A Expired - Fee Related JP4284052B2 (en) 2002-10-31 2002-10-31 Defect repair method

Country Status (1)

Country Link
JP (1) JP4284052B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8324526B2 (en) * 2007-02-13 2012-12-04 Siemens Aktiengesellschaft Welded repair of defects lying on the inside of components
WO2010070548A1 (en) * 2008-12-18 2010-06-24 Csir Method of repairing a metallic artefact

Also Published As

Publication number Publication date
JP2004148456A (en) 2004-05-27

Similar Documents

Publication Publication Date Title
EP2950972B1 (en) Localized repair of supperalloy component
US9352419B2 (en) Laser re-melt repair of superalloys using flux
US9283593B2 (en) Selective laser melting / sintering using powdered flux
KR101791113B1 (en) Deposition of superalloys using powdered flux and metal
US6673169B1 (en) Method and apparatus for repairing superalloy components
US9352413B2 (en) Deposition of superalloys using powdered flux and metal
EP2950959B1 (en) Cladding of alloys using cored feed material comprising powdered flux and metal
US9315903B2 (en) Laser microcladding using powdered flux and metal
KR20150113149A (en) Selective laser melting/sintering using powdered flux
US20130316183A1 (en) Localized repair of superalloy component
WO2014121060A1 (en) Localized repair of superalloy component
US20150033559A1 (en) Repair of a substrate with component supported filler
KR20070073612A (en) Machine components and methods of fabricating and repairing
US9272363B2 (en) Hybrid laser plus submerged arc or electroslag cladding of superalloys
KR20150110799A (en) Method of laser re-melt repair of superalloys using flux
JPWO2008111150A1 (en) Valve device
JPH08118049A (en) Laser cladding method
JP4284052B2 (en) Defect repair method
EP2950965A1 (en) Laser microcladding using powdered flux and metal
JP2005254283A (en) Method of repairing wear-resistant member
JP2003001402A (en) Wear-resistant member repairing method, repairing device used for repairing wear-resistant member, and steam valve
Taheri et al. Microstructural Evolution of Laser-Clad IN625 Powder on Rene80 Superalloy

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090310

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees