JP4284033B2 - Vacuum valve - Google Patents

Vacuum valve Download PDF

Info

Publication number
JP4284033B2
JP4284033B2 JP2002133487A JP2002133487A JP4284033B2 JP 4284033 B2 JP4284033 B2 JP 4284033B2 JP 2002133487 A JP2002133487 A JP 2002133487A JP 2002133487 A JP2002133487 A JP 2002133487A JP 4284033 B2 JP4284033 B2 JP 4284033B2
Authority
JP
Japan
Prior art keywords
contact member
contact
content
vacuum valve
vacuum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002133487A
Other languages
Japanese (ja)
Other versions
JP2003331699A (en
Inventor
匠 船橋
浩資 捧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002133487A priority Critical patent/JP4284033B2/en
Publication of JP2003331699A publication Critical patent/JP2003331699A/en
Application granted granted Critical
Publication of JP4284033B2 publication Critical patent/JP4284033B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、真空バルブに係り、特にコンデンサバンク回路に使用されるような突入電流時の特性を向上しうる改良した接点を備えた真空バルブに関する。
【0002】
【従来の技術】
周知のように真空遮断器は、小形、軽量、メンテナンスフリー、環境調和など優れた特徴を有するため、適用範囲が拡大してきた。真空遮断器に用いられる真空バルブは、真空中でのアーク拡散性を利用したもので、真空中で一対の接点を開離させて電流遮断を行うものである。
【0003】
この接点を収納する代表的な真空バルブの縦断面図を示す図8において、アルミナ磁器からなる筒形の絶縁容器1は、その両端開口端面に固定側封着金具2aと可動側封着金具2bとが気密に封止されている。
【0004】
そして、前記固定側封着金具2aには、互いに接離自在の一方の電路となる固定通電軸3が気密に貫通固定され、この固定通電軸3の端部に固定側接点4が取付けられている。また、この固定側接点4と対向して、可動側接点5が図示していない操作機構に連結された他方の電路となる可動通電軸6の端部に固着されている。
【0005】
一方、前記可動通電軸6と前記可動側封着金具2bの中央開口部は、ベローズ7により気密に固着されている。これにより、内部圧力1×10−2Pa以下に真空バルブ内の真空度を維持しながら、前記可動通電軸6を軸方向に移動させることが可能になっている。
【0006】
また、前記絶縁容器1の内面には、前記固定側接点4と前記可動側接点5の電流開閉時に発生する金属蒸気が前記絶縁容器1の内面に付着して、沿面の絶縁抵抗が低下するのを防止するため、前記両接点4、5を包囲するように円筒状のアークシールド8が固定されている。
【0007】
このような真空バルブにおいて、真空遮断器用接点に要求される要件として、(1)溶着性が少ないこと、(2)耐電圧特性が優れていること、(3)大電流の遮断特性が優れていること、(4)耐消耗性に優れること、(5)裁断電流値が小さいこと、などがある。しかしながら、これらの要件の中には相反するものがあるので、単一の金属材料によって全てを満足させることは困難である。
【0008】
このため、実用されている多くの接点材料においては、不足する性能を相互に補えるような2種以上の接点材料を組合せて、優れた特性を有するものを開発してきた。例えば、特開昭62−64012号公報や特開平4−242029号公報に記載のものでは、2層構造の接点が開示されている。即ち、Ag−WC合金で裁断電流値を小さくして低サージ機能を保ちながら、熱特性のよいCu−Cr合金で耐電圧特性を向上させ、低サージと耐電圧特性とが要求される特定用途に適したものとされている。
【0009】
【発明が解決しようとする課題】
以上述べたように真空遮断器の適用拡大がされてきたが、最近の真空遮断器に対する期待は一層高まり、特定用途の拡大が要求されるなど過酷化している。例えば、コンデンサバンクでの真空遮断器の適用例を説明する。
【0010】
図9に示すような力率改善用コンデンサバンクCと、高周波サージを抑制するため直列リアクトルLが接続された回路を、真空遮断器VCBで開閉しようとすると、真空遮断器VCBには過酷な耐電圧特性と遮断特性とが要求される。即ち、図10に示すように、真空遮断器VCBをONさせる時には、前記両接点4、5が接触する直前に絶縁破壊が起き、前記接点4−5間でプレアークを発生する。このプレアークは、コンデンサバンクCのキャパシタンスと直列リアクトルLのインダクタンスによる高周波の突入電流Imと、コンデンサバンクCの負荷電流Iとが合成された大電流の突入電流となる。
【0011】
このような大電流の突入電流により、前記両接点4、5は損傷を受け通電を行うことになるが、その後、真空遮断器VCBをOFFさせる時には、この損傷程度によっては回復電圧Vに耐えられなくなる。特に、前記接点4、5が接触する直前には、短ギャップ領域となり必ず絶縁破壊を起こすので、この絶縁破壊によるプレアークで損傷を起こし難い接点材料が要求される。ここで、前記Cu−Cr合金は、Cr含有率を多くすれば、損傷を起こし難く耐電圧特性がよくなるが、導電率が高くなるので遮断特性が劣り、これらは相反する特性となる。
【0012】
このため、損傷を起こし難く耐電圧特性が優れていて、導電率が低く遮断特性が優れていることを同時に兼備した接点を備えた真空バルブが望まれていた。
【0013】
本発明の目的は、上記課題に鑑みなされたもので、真空遮断器の適用拡大を図るため、遮断特性と耐電圧特性という2つの相反する特性を有し、特に突入電流時の特性を向上させることができる接点を有する真空バルブを提供することにある。
【0014】
【課題を解決するための手段】
上記の目的を達成するために本発明の真空バルブは、真空の絶縁容器内に配置され、且つ通電軸に固着された互いに接離自在の一対の接点を有する真空バルブにおいて、前記接点の互いの接触面を中央領域の第1の接触部材と、外周領域を形成する第2の接触部材を有する2つの領域に分割構成し、前記第1の接触部材をCr含有率40wt%〜60wt%のCu−Cr合金とするとともに縦断面凸状の円板状とし、前記第2の接触部材をCr含有率10wt%〜30wt%のCu−Cr合金とするとともに、前記凸状の細径部の高さより低い高さを持った環状とし、前記凸状の細径部の外周部に前記第2の接触部材をロウ付けによって固着し、前記凸状の太径部の底部面の外周部に、前記凸状の細径部の外径よりも大きい内径を持った磁界制御コイルを配設するとともに、中央部に前記通電軸を固着したことを特徴とする。
【0016】
本発明の構成によれば、真空遮断器のON時に最も早く絶縁破壊を起こす前記第1の接触部材にCr含有率が多く、溶融し難いCu−Cr合金を用いているため、表面の損傷が少なく優れた耐電圧特性が得られる。
【0017】
また、真空遮断器のOFF時にアークが広がる前記第2の接触部材に、Crの含有率が少なく導電率の小さいCu−Cr合金を用いているため、優れた遮断特性が得られる。
【0018】
従って、耐電圧特性が優れているとともに、遮断特性が優れているため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【0019】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して説明する。
【0020】
(第1の実施の形態)
先ず、本発明の第1の実施の形態に係る真空バルブの接点部分を図1および図2を参照して説明する。図1は、本発明の第1の実施の形態に係る真空バルブの要部である接点部分の縦断面図、図2は、本発明の第1の実施の形態に係る真空バルブの要部である接点部分の平面図である。
【0021】
図1に示すように、真空の絶縁容器内に配置された互いに接離自在の一対の接点4、5は、互いの接触面に設けた中央領域の円板状の第1の接触部材11と、外周領域を形成する円板状で、前記第1の接触部材11と同軸上に配置した第2の接触部材12とを有する2つの領域に分割構成されている。ここで、前記接点4、5は、対向配置されるが、両接点4、5が接触したとき互いの前記第1の接触部材11が接触する。
【0022】
そして、前記第1の接触部材11は、前記第2の接触部材12の一方の面、例えば上面にロウ付けなどによって固着され、また、前記第2の接触部材12の他方の面、例えば下面には通電用の電極部材13の一方の面が固着されている。更に、この電極部材13の他方の面、例えば下面外周部には、前記第1の接触部材11の外径より大きい内径を持ち、磁界制御をしてアークを拡散させる磁界制御コイル14が配設され、また、中央部には、通電軸15が固着されている。
【0023】
この接点4、5を構成する第1の接触部材11および第2の接触部材12は、それぞれCu−Cr合金からなり、更にCr含有率を、前記第2の接触部材12より前記第1の接触部材11の方を多くしている。
【0024】
この理由は、熱特性のよいことが知られているCu−Cr合金が、Cr含有率によって、耐電圧特性と遮断特性とが相反する特性を示すためである。図3に、この相反する特性を示しているが、Cr含有率を変化させ、Cr含有率を多くすると耐電圧特性が向上し、逆にCr含有率を少なくすると遮断特性が向上している。これらの特性変化は、Cr含有率が多い場合には、アークによってCrが溶融し難いので、表面の損傷が少なく耐電圧特性が向上するとされている。また、Cr含有率が少ない場合には、導電率が小さくなるので、アーク電流による内部発熱が抑えられ遮断特性が向上するとされている。
【0025】
この両特性から、先ず、前記第1の接触部材11では、Cr含有率を40wt%〜60wt%の範囲としている。これは、Cr含有率40wt%〜50wt%の範囲では、遮断特性より耐電圧特性が若干低下するが、プレアークの放電起点にばらつきがあり、電極表面の一点にプレアークが集中せず、損傷程度が実用上問題とならないためである。なお、Cr含有率が40wt%以下になれば、プレアークによる損傷で耐電圧特性の低下が大きくなるので好ましくない。
【0026】
また、Cr含有率50wt%〜60wt%の範囲では、耐電圧特性より遮断特性が若干低下するが、遮断特性の低下率が小さく実用上問題とならないためである。なお、Cr含有率が60wt%以上になれば、材料の硬度が増し脆くなるので、多頻度開閉の真空遮断器には適さなくなる。
【0027】
次に、前記第2の接触部材12では、Cr含有率を10wt%〜30wt%の範囲としている。これは、Cr含有率30wt%以下では、遮断特性を耐電圧特性より充分に高く維持できると共に、耐電圧特性の低下率が小さく、遮断時のアーク電圧を適切に維持できるためである。なお、Cr含有率が10wt%以下では、遮断時に拡散されたアーク電流により前記接点4、5の損傷が大きくなるので好ましくない。また、Cr含有率が30wt%以上では、遮断特性の低下が大きくなり、優れた遮断特性が得られなくなるので好ましくない。
【0028】
そして、Cr含有率の最適値は、前記第1の接触部材11では、耐電圧特性と遮断特性の両特性が交わるCr含有率50wt%、また、前記第2の接触部材12では、遮断特性の向上率が屈折して低下する点のCr含有率25wt%となる。
【0029】
従って、真空遮断器のON時に最も早く接触し、突入電流によるプレアークが発生する前記第1の接触部材11は、Cr含有率が多く表面の損傷が抑えられる。更に、真空遮断器のOFF時には、前記第1の接触部材11で発生したアークが前記磁界制御コイル14で制御され半径方向の外側に広がり、その結果、Cr含有率の少ない前記第2の接触部材12によって優れた遮断特性が得られる。
【0030】
なお、前記第1の接触部材11を円板状とし、且つ前記第2の接触部材12と同軸上に設けているので、前記接点4、5の接触状態の安定度が増し好ましい。
【0031】
上記第1の実施の形態の真空バルブの前記接点4、5を用いることにより、真空遮断器のON時に最も早く絶縁破壊を起こす前記第1の接触部材11に、Cr含有率が多く溶融し難いCu−Cr合金を用いているため、表面の損傷が少なく優れた耐電圧特性が得られる。
【0032】
また、真空遮断器のOFF時にアークが広がる前記第2の接触部材12に、Crの含有率が少なく導電率が小さいCu−Cr合金を用いているため、優れた遮断特性が得られる。
【0033】
従って、耐電圧特性が優れているとともに、遮断特性が優れているため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【0034】
(第2の実施の形態)
次に、本発明の第2の実施の形態に係る真空バルブを図4に示した接点の平面図を参照して説明する。なお、第1の実施の形態と同一構成部分には、同一符号を付して詳しい説明は省略する。
【0035】
図4に示すように、互いに接離自在の一対の接点4、5は、その接触面において、正三角形の各頂点の3個所に分散させた円板状の第1の接触部材16を、円板状の第2の接触部材12の一方の面、例えば上面にロウ付けなどで固着させている。そして、前記3個所に分散させた前記第1の接触部材16の夫々は、前述した図2における通電用の電極部材13に配設された磁界制御コイル14の内径の内側に位置するように配置されている。
【0036】
この接点4、5を構成する第1の接触部材16および第2の接触部材12は、それぞれCu−Cr合金からなり、そのCr含有率は前記第2の接触部材12より前記第1の接触部材16の方を多くしている。
【0037】
この理由は、上記第1の実施の形態で説明した通り、Cr含有率が多くなると耐電圧特性が向上し、逆にCr含有率が少なくなると遮断特性が向上するためである。そして、前記第1の接触部材16では、Cr含有率を40wt%〜60wt%とし、また、前記第2の接触部材12では、Cr含有率を10wt%〜30wt%としている。
【0038】
従って、真空遮断器のON時に最も早く接触し、突入電流によるプレアークが発生する前記第1の接触部材16は、Cr含有率が多く表面の損傷が抑えられる。更に、前記第1の接触部材16は前記3個所に分散されているため、プレアークが分散され、上記第1の実施の形態と比べて、前記接点4、5の表面の損傷が更に抑えられる。また、真空遮断器のOFF時には、アークが前記磁界制御コイル14で制御され半径方向の外側に広がり、その結果、Cr含有率の少ない前記第2の接触部材12で優れた遮断特性が得られる。
【0039】
なお、前記第1の接触部材16は、3個所に限定されるものではなく、少なくとも2個所以上あればプレアークの分散ができる。また、3個所以上では、正多角形の各頂点に配置し、それぞれの前記接点4、5が対向配置されているので接触状態の安定度が増し好ましい。
【0040】
上記第2の実施の形態の前記接点4、5を備えた真空バルブによれば、上記第1の実施の形態による効果の他に、最も早く絶縁破壊を起こす前記第1の接触部材16が複数個所に存在しているため、プレアークが分散され表面の損傷が更に少なくなり、優れた耐電圧特性が得られる。
【0041】
従って、耐電圧特性が更に優れているとともに、遮断特性が優れているため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【0042】
(第3の実施の形態)
次に、本発明の第3の実施の形態に係る真空バルブを図5に示した接点の平面図を参照して説明する。なお、第1の実施の形態と同一構成部分には、同一符号を付して詳しい説明は省略する。
【0043】
図5に示すように、互いに接離自在の一対の接点4、5は、その接触面において、環状の第1の接触部材17を、この第1の接触部材17と同軸上に配置した円板状の第2の接触部材12の一方の面、例えば上面にロウ付けなどで固着させている。そして、前記第1の接触部材17は、前述した図2における通電用の電極部材13に配設された磁界制御コイル14の内径の内側に位置するように配置されている。
【0044】
この接点4、5を構成する第1の接触部材17および前記第2の接触部材12は、それぞれCu−Cr合金からなり、そのCr含有率は前記第2の接触部材12より前記第1の接触部材17の方を多くしている。
【0045】
この理由は、上記第1の実施の形態で説明した通り、Cr含有率が多くなると耐電圧特性が向上し、逆にCr含有率が少なくなると遮断特性が向上するためである。そして、前記第1の接触部材17では、Cr含有率を40wt%〜60wt%とし、また、前記第2の接触部材12では、Cr含有率を10wt%〜30wtとしている。
【0046】
従って、真空遮断器のON時に最も早く接触し、突入電流によるプレアークが発生する前記第1の接触部材17は、Cr含有率が多く表面の損傷が抑えられる。更に、環状の前記第1の接触部材17にプレアークが円周方向に沿って広がり、上記第1の実施の形態に比べて、表面の損傷が更に抑えられる。また、真空遮断器のOFF時には、アークが前記磁界制御コイル14で制御され半径方向の外側に広がり、その結果、Cr含有率の少ない前記第2の接触部材12で優れた遮断特性が得られる。
【0047】
なお、環状の前記第1の接触部材17は、前記接点4、5において、同一形状の環状のものが対向配置されているので接触状態の安定度が増し好ましい。
【0048】
上記第3の実施の形態の前記接点4、5を備えた真空バルブによれば、上記第1の実施の形態による効果の他に、最も早く絶縁破壊を起こす前記第1の接触部材17が環状のため、プレアークが円周方向に沿って広がり表面の損傷が更に少なくなり、優れた耐電圧特性が得られる。
【0049】
従って、耐電圧特性が更に優れているとともに、遮断特性が優れているため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【0050】
(第4の実施の形態)
次に、本発明の第4の実施の形態に係る真空バルブを図6に示した接点の縦断面図を参照して説明する。なお、第1の実施の形態と同一構成部分には、同一符号を付して詳しい説明は省略する。
【0051】
図6に示すように、互いに接離自在の一対の接点4、5は、互いの接触面に設けた中央領域を形成する第1の接触部材18と、外周領域を形成する第2の接触部材19を有する2つの領域に分割構成されている。
【0052】
即ち、前記第2の接触部材19は、縦断面台形の円板状であり、その頂部面に円板状の前記第1の接触部材18が、前記第2の接触部材19の頂部面から突出しないように段差をなくして埋め込まれている。そして、両者間がロウ付けなどによって固着されている。更に、前記第2の接触部材19の底部面には、通電用の電極部材13が固着されている。また、前記電極部材13の図示下面の外周部には、アークを拡散させる磁界制御コイル14が配設されており、前記第1の接触部材18の外径より大きい内径を有している。
【0053】
この接点4、5を構成する前記第1の接触部材18および前記第2の接触部材19は、それぞれCu−Cr合金からなり、そのCr含有率は前記第2の接触部材19より第1の接触部材18の方を多くしている。
【0054】
この理由は、上記第1の実施の形態で説明した通り、Cr含有率が多くなると耐電圧特性が向上し、逆にCr含有率が少なくなると遮断特性が向上するためである。そして、前記第1の接触部材18では、Cr含有率を40wt%〜60wt%とし、また、前記第2の接触部材19では、Cr含有率を10wt%〜30wt%としている。
【0055】
従って、真空遮断器のON時に最も早く接触し、突入電流によるプレアークが発生する前記第1の接触部材18は、Cr含有率が多く表面の損傷が抑えられる。更に、前記第1の接触部材18は、前記第2の接触部材19との境界部に段差がないので、端面部にプレアークが集中することがなく、第1の実施の形態に比べて、表面の損傷が更に抑えられる。また、真空遮断器のOFF時には、アークが前記磁界制御コイル14で制御され半径方向の外側に広がり、その結果、Cr含有率の少ない前記第2の電極部材19で優れた遮断特性が得られる。
【0056】
上記第4の実施の形態の前記接点4、5を備えた真空バルブによれば、上記第1の実施の形態による効果の他に、最も早く絶縁破壊を起こす前記第1の接触部材18が前記第2の接触部材19の面から突出していないため、端面部にプレアークが集中せず表面の損傷が更に少なくなり、優れた耐電圧特性が得られる。
【0057】
従って、耐電圧特性が更に優れているとともに、遮断特性が優れているため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【0058】
(第5の実施の形態)
次に、本発明の第5の実施の形態に係る真空バルブを図7に示した接点の縦断面図を参照して説明する。なお、第1の実施の形態と同一構成部分には、同一符号を付して詳しい説明は省略する。
【0059】
図7に示すように、互いに接離自在の一対の接点4、5は、互いの接触面に設けた中央領域を形成する第1の接触部材20と、外周領域を形成する第2の接触部材21を有する2つの領域に分割構成されている。
【0060】
即ち、前記第1の接触部材20は、縦断面凸状の円板状であり、その凸部を形成する細径部20aの外周に位置するように、前記細径部20aの高さより低い高さを持った環状の前記第2の接触部材21が配置されている。そして、両者間はロウ付けなどによって固着されている。更に、前記第1の接触部材20の太径部20bの底部面における外周部には、アークを拡散させる磁界制御コイル14が配設され、前記細径部20aの外径より大きい内径を有している。また、中央部には、通電軸15が固着されている。
【0061】
この接点4、5を構成する前記第1の接触部材20および前記第2の接触部材21は、それぞれCu−Cr合金からなり、そのCr含有率は前記第2の接触部材21より第1の接触部材20の方を多くしている。
【0062】
この理由は、上記第1の実施の形態で説明した通り、Cr含有率が多くなると耐電圧特性が向上し、逆にCr含有率が少なくなると遮断特性が向上するためである。そして、前記第1の接触部材20では、Cr含有率を40wt%〜60wt%とし、また、前記第2の接触部材21では、Cr含有率を10wt%〜30wt%としている。
【0063】
従って、真空遮断器のON時に最も早く接触し、突入電流によるプレアークが発生する前記第1の接触部材の前記細径部20aは、Cr含有率が多く表面の損傷が抑えられる。更に、前記第1の接触部材20は、前記通電軸15と直結に固着されているので、上記第1乃至第4の実施の形態に比べて、接続部が少なく接触抵抗の増加が抑えられる。また、真空遮断器のOFF時には、アークが前記磁界制御コイル14で制御され半径方向の外側に広がり、その結果、Cr含有率の少ない前記第2の電極部材21で優れた遮断特性が得られる。
【0064】
上記第5の実施の形態の前記接点4、5を備えた真空バルブによれば、上記第1の実施の形態による効果の他に、前記第1の接触部材20から前記通電軸15までの間の接続部が少なく接触抵抗の増加が抑えられるため、通電電流による温度上昇が抑えられる。
【0065】
従って、耐電圧特性と遮断特性とが優れるとともに、通電電流による温度上昇が抑制されるため、コンデンサバンク回路など突入電流の責務を有する大容量の回路への真空遮断器の適用拡大を図ることができる。
【0066】
【発明の効果】
以上述べたように、本発明による接点を備えた真空バルブは、互いの接触面にCu−Cr合金から成る中央領域の第1の接触部材と、外周領域を形成する第2の接触部材とに分割構成され、そのCr含有率を前記第2の接触部材より前記第1の接触部材の方を多くしている。このため、真空遮断器のON時には、最も早く絶縁破壊を起こす前記第1の接触部材の表面の損傷が少なくなり耐電圧特性を向上させることができる。また、真空遮断器のOFF時には、前記第2の接触部材にアークが拡散され遮断特性を向上させることができる。従って、耐電圧特性と遮断特性との相反する特性を兼備できるため、コンデンサバンク回路など突入電流の責務を有する回路への真空遮断器の適用拡大を図ることができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る真空バルブの接点部分を示す縦断面図。
【図2】 本発明の第1の実施の形態に係る真空バルブの接点部分を示す平面図。
【図3】 本発明の第1の実施の形態に係る真空バルブの接点部分の耐電圧特性と遮断特性を説明するための特性図。
【図4】 本発明の第2の実施の形態に係る真空バルブの接点部分を示す平面図。
【図5】 本発明の第3の実施の形態に係る真空バルブの接点部分を示す平面図。
【図6】 本発明の第4の実施の形態に係る真空バルブの接点部分を示す縦断面図。
【図7】 本発明の第5の実施の形態に係る真空バルブの接点部分を示す縦断面図。
【図8】 従来の真空バルブの構成を示す縦断面図。
【図9】 コンデンサバンクに適用される真空遮断器の回路図。
【図10】 コンデンサバンクに適用される真空遮断器の責務を説明するための説明図。
【符号の説明】
1 絶縁容器
2a 固定側封着金具
2b 可動側封着金具
3 固定通電軸
4 固定側接点
5 可動側接点
6 可動通電軸
7 ベローズ
8 アークシールド
11、16、17、18、20 第1の接触部材
12、19、21 第2の接触部材
13 電極部材
14 磁界制御コイル
15 通電軸
20a 第1の接触部材の凸部の細径部
20b 第1の接触部材の凸部の太径部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vacuum valve, and more particularly, to a vacuum valve having an improved contact that can improve the characteristics during an inrush current as used in a capacitor bank circuit.
[0002]
[Prior art]
As is well known, the vacuum circuit breaker has excellent features such as small size, light weight, maintenance free, and environmental harmony, and thus the application range has been expanded. A vacuum valve used in a vacuum circuit breaker utilizes arc diffusibility in a vacuum, and performs current interruption by opening a pair of contacts in a vacuum.
[0003]
In FIG. 8, which shows a longitudinal sectional view of a typical vacuum valve that houses this contact, a cylindrical insulating container 1 made of alumina porcelain has a fixed-side sealing metal fitting 2a and a movable-side sealing metal fitting 2b on both end opening end faces. Are hermetically sealed.
[0004]
A fixed energizing shaft 3 serving as one of electric paths that can be connected to and separated from each other is hermetically penetrated and fixed to the fixed-side sealing metal fitting 2a, and a fixed-side contact 4 is attached to an end of the fixed energizing shaft 3. Yes. Opposite to the fixed side contact 4, the movable side contact 5 is fixed to the end of the movable energizing shaft 6 serving as the other electric path connected to an operation mechanism (not shown).
[0005]
On the other hand, the movable energizing shaft 6 and the central opening of the movable side sealing fitting 2b are airtightly fixed by a bellows 7. Thereby, the movable energizing shaft 6 can be moved in the axial direction while maintaining the degree of vacuum in the vacuum valve at an internal pressure of 1 × 10 −2 Pa or less.
[0006]
Further, metal vapor generated when the current of the stationary contact 4 and the movable contact 5 is opened and closed adheres to the inner surface of the insulating container 1 and the creeping insulation resistance decreases. In order to prevent this, a cylindrical arc shield 8 is fixed so as to surround both the contacts 4 and 5.
[0007]
In such a vacuum valve, requirements for a contact for a vacuum circuit breaker are as follows: (1) low weldability, (2) excellent withstand voltage characteristics, and (3) excellent high current interrupt characteristics. (4) excellent wear resistance, and (5) a small cutting current value. However, because some of these requirements are contradictory, it is difficult to satisfy them all with a single metallic material.
[0008]
For this reason, in many contact materials in practical use, those having excellent characteristics have been developed by combining two or more contact materials that can mutually compensate for the insufficient performance. For example, in the devices described in Japanese Patent Application Laid-Open Nos. Sho 62-64012 and Hei 4-242029, contacts having a two-layer structure are disclosed. That is, specific applications that require a low surge and withstand voltage characteristics by improving the withstand voltage characteristics with a Cu-Cr alloy with good thermal characteristics while maintaining a low surge function by reducing the cutting current value with an Ag-WC alloy It is supposed to be suitable for.
[0009]
[Problems to be solved by the invention]
As described above, the application of vacuum circuit breakers has been expanded, but expectations for recent vacuum circuit breakers have further increased, and the demand for expansion of specific applications has become severe. For example, an application example of a vacuum circuit breaker in a capacitor bank will be described.
[0010]
When trying to open and close the circuit connected to the power factor improving capacitor bank C as shown in FIG. 9 and the series reactor L to suppress the high frequency surge by the vacuum circuit breaker VCB, the vacuum circuit breaker VCB has a severe resistance. A voltage characteristic and a cutoff characteristic are required. That is, as shown in FIG. 10, when the vacuum circuit breaker VCB is turned on, dielectric breakdown occurs immediately before the two contacts 4 and 5 come into contact, and a pre-arc is generated between the contacts 4-5. This pre-arc becomes a large inrush current obtained by combining the high frequency inrush current Im due to the capacitance of the capacitor bank C and the inductance of the series reactor L and the load current I of the capacitor bank C.
[0011]
Due to such a large inrush current, the contacts 4 and 5 are damaged and energized. However, when the vacuum circuit breaker VCB is turned off, the recovery voltage V can be withstood depending on the degree of damage. Disappear. In particular, immediately before the contacts 4 and 5 are brought into contact with each other, a short gap region is formed and dielectric breakdown always occurs. Therefore, a contact material that is not easily damaged by pre-arcing due to the dielectric breakdown is required. Here, when the Cr content is increased, the Cu—Cr alloy is less likely to be damaged and has better withstand voltage characteristics. However, since the electrical conductivity is increased, the interruption characteristics are inferior, and these are contradictory characteristics.
[0012]
For this reason, there has been a demand for a vacuum valve provided with a contact which is not easily damaged, has an excellent withstand voltage characteristic, has a low conductivity, and has an excellent cut-off characteristic.
[0013]
The object of the present invention has been made in view of the above problems, and has two contradictory characteristics of a breaking characteristic and a withstand voltage characteristic in order to expand the application of the vacuum circuit breaker, and in particular, improves the characteristic at the time of inrush current. It is to provide a vacuum valve having contacts that can be used.
[0014]
[Means for Solving the Problems]
In order to achieve the above object, a vacuum valve according to the present invention is a vacuum valve that is disposed in a vacuum insulating container and has a pair of contacts that are detachable from each other and fixed to a current-carrying shaft. The contact surface is divided into two regions having a first contact member in the central region and a second contact member that forms the outer peripheral region, and the first contact member is Cu having a Cr content of 40 wt% to 60 wt%. -A Cr alloy and a disc shape with a convex longitudinal section, and the second contact member is a Cu-Cr alloy having a Cr content of 10 wt% to 30 wt%, and the height of the convex small diameter portion The second contact member is fixed to the outer peripheral portion of the convex small-diameter portion by brazing, and the convex portion is fixed to the outer peripheral portion of the bottom surface of the large-diameter portion. Magnetic field with an inner diameter larger than the outer diameter With arranging a control coil, characterized by being fixed to the power shaft in the center.
[0016]
According to the configuration of the present invention , the first contact member that causes dielectric breakdown earliest when the vacuum circuit breaker is turned on uses a Cu-Cr alloy that has a high Cr content and is difficult to melt. Less withstand voltage characteristics can be obtained.
[0017]
In addition, since the second contact member where the arc spreads when the vacuum circuit breaker is OFF is made of a Cu—Cr alloy having a low Cr content and a low conductivity, an excellent breaking characteristic can be obtained.
[0018]
Therefore, since the withstand voltage characteristic is excellent and the interruption characteristic is excellent, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
[0020]
(First embodiment)
First, the contact part of the vacuum valve according to the first embodiment of the present invention will be described with reference to FIG. 1 and FIG. FIG. 1 is a longitudinal sectional view of a contact portion which is a main part of the vacuum valve according to the first embodiment of the present invention, and FIG. 2 is a main part of the vacuum valve according to the first embodiment of the present invention. It is a top view of a certain contact part.
[0021]
As shown in FIG. 1, a pair of contact points 4 and 5 that are arranged in a vacuum insulating container and that can be separated from each other are connected to a disk-shaped first contact member 11 in a central region provided on each contact surface. In the shape of a disc forming an outer peripheral region, the first contact member 11 and the second contact member 12 arranged coaxially are divided into two regions. Here, although the said contacts 4 and 5 are opposingly arranged, when the both contacts 4 and 5 contact, the said 1st contact member 11 will contact.
[0022]
The first contact member 11 is fixed to one surface of the second contact member 12, for example, the upper surface by brazing or the like, and the other surface of the second contact member 12, for example, the lower surface. The one surface of the electrode member 13 for energization is fixed. Further, a magnetic field control coil 14 having an inner diameter larger than the outer diameter of the first contact member 11 and diffusing an arc by controlling the magnetic field is disposed on the other surface of the electrode member 13, for example, the outer peripheral portion of the lower surface. In addition, a current-carrying shaft 15 is fixed to the center portion.
[0023]
The first contact member 11 and the second contact member 12 constituting the contact points 4 and 5 are each made of a Cu—Cr alloy, and the Cr content is further changed from the second contact member 12 to the first contact. The number of members 11 is increased.
[0024]
This is because the Cu—Cr alloy, which is known to have good thermal characteristics, exhibits characteristics in which the withstand voltage characteristics and the cutoff characteristics are contradictory depending on the Cr content. FIG. 3 shows the contradictory characteristics. When the Cr content is changed and the Cr content is increased, the withstand voltage characteristics are improved, and conversely, when the Cr content is decreased, the breaking characteristics are improved. These characteristic changes are said to be such that when the Cr content is high, Cr is hardly melted by the arc, so that the surface breakdown is small and the withstand voltage characteristic is improved. Further, when the Cr content is low, the electrical conductivity is small, so that the internal heat generation due to the arc current is suppressed and the interruption characteristic is improved.
[0025]
From these two characteristics, first, in the first contact member 11, the Cr content is in the range of 40 wt% to 60 wt%. This is because in the range of Cr content of 40 wt% to 50 wt%, the withstand voltage characteristic is slightly lower than the interruption characteristic, but the discharge point of the pre-arc varies, the pre-arc does not concentrate on one point on the electrode surface, and the degree of damage is This is because there is no practical problem. It should be noted that if the Cr content is 40 wt% or less, the withstand voltage characteristics are greatly deteriorated due to damage caused by pre-arcing, which is not preferable.
[0026]
Further, when the Cr content is in the range of 50 wt% to 60 wt%, the breaking characteristics are slightly lower than the withstand voltage characteristics, but the rate of decline of the breaking characteristics is small and does not cause any practical problems. If the Cr content is 60 wt% or more, the hardness of the material increases and becomes brittle, so that it is not suitable for a frequently-breaking vacuum circuit breaker.
[0027]
Next, in the second contact member 12, the Cr content is in the range of 10 wt% to 30 wt%. This is because when the Cr content is 30 wt% or less, the breaking characteristics can be maintained sufficiently higher than the withstand voltage characteristics, the rate of decrease in the withstand voltage characteristics is small, and the arc voltage at the time of breaking can be appropriately maintained. A Cr content of 10 wt% or less is not preferable because damage to the contacts 4 and 5 increases due to the arc current diffused during interruption. On the other hand, if the Cr content is 30 wt% or more, the interruption characteristic is greatly lowered, and an excellent interruption characteristic cannot be obtained.
[0028]
The optimum value of the Cr content is 50 wt% in the first contact member 11 where the withstand voltage characteristic and the breaking characteristic intersect, and the second contact member 12 has the breaking characteristic. The Cr content is 25 wt% at which the improvement rate is refracted and decreases.
[0029]
Therefore, the first contact member 11 that contacts the earliest when the vacuum circuit breaker is turned on and generates a pre-arc due to an inrush current has a high Cr content and suppresses surface damage. Further, when the vacuum circuit breaker is OFF, the arc generated by the first contact member 11 is controlled by the magnetic field control coil 14 and spreads outward in the radial direction, and as a result, the second contact member having a low Cr content. 12 can provide excellent blocking characteristics.
[0030]
In addition, since the first contact member 11 has a disk shape and is provided coaxially with the second contact member 12, the stability of the contact state of the contacts 4, 5 is preferably increased.
[0031]
By using the contacts 4 and 5 of the vacuum valve of the first embodiment, the first contact member 11 that causes dielectric breakdown most quickly when the vacuum circuit breaker is turned on has a high Cr content and is difficult to melt. Since a Cu—Cr alloy is used, excellent withstand voltage characteristics can be obtained with little surface damage.
[0032]
Further, since the second contact member 12 in which the arc spreads when the vacuum circuit breaker is OFF is made of a Cu—Cr alloy having a low Cr content and a low conductivity, an excellent breaking characteristic can be obtained.
[0033]
Therefore, since the withstand voltage characteristic is excellent and the interruption characteristic is excellent, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[0034]
(Second Embodiment)
Next, a vacuum valve according to a second embodiment of the present invention will be described with reference to the plan view of the contact shown in FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0035]
As shown in FIG. 4, the pair of contact points 4 and 5 that can be brought into and out of contact with each other has a disk-shaped first contact member 16 distributed at three points of each vertex of the equilateral triangle on the contact surface. The plate-like second contact member 12 is fixed to one surface, for example, the upper surface by brazing or the like. Each of the first contact members 16 dispersed in the three positions is disposed so as to be located inside the inner diameter of the magnetic field control coil 14 disposed in the electrode member 13 for energization in FIG. 2 described above. Has been.
[0036]
The first contact member 16 and the second contact member 12 constituting the contact points 4 and 5 are each made of a Cu—Cr alloy, and the Cr content is higher than that of the second contact member 12. 16 is more.
[0037]
This is because, as described in the first embodiment, the withstand voltage characteristics are improved when the Cr content is increased, and the interruption characteristics are improved when the Cr content is decreased. The first contact member 16 has a Cr content of 40 wt% to 60 wt%, and the second contact member 12 has a Cr content of 10 wt% to 30 wt%.
[0038]
Therefore, the first contact member 16 that contacts the earliest when the vacuum circuit breaker is turned on and generates a pre-arc due to an inrush current has a high Cr content and suppresses surface damage. Further, since the first contact member 16 is dispersed at the three locations, the pre-arc is dispersed, and the surface damage of the contacts 4 and 5 is further suppressed as compared with the first embodiment. Further, when the vacuum circuit breaker is turned off, the arc is controlled by the magnetic field control coil 14 and spreads outward in the radial direction. As a result, excellent breaking characteristics can be obtained with the second contact member 12 having a low Cr content.
[0039]
In addition, the said 1st contact member 16 is not limited to three places, If it is at least two places or more, a pre-arc can be disperse | distributed. Further, at three or more locations, the contact points 4 and 5 are arranged at the vertices of the regular polygon, and the contact points 4 and 5 are opposed to each other.
[0040]
According to the vacuum valve provided with the contacts 4 and 5 of the second embodiment, in addition to the effects of the first embodiment, a plurality of the first contact members 16 that cause dielectric breakdown earlier are provided. Since the pre-arcs are dispersed at the locations, the surface damage is further reduced, and excellent withstand voltage characteristics can be obtained.
[0041]
Therefore, since the withstand voltage characteristic is further improved and the interruption characteristic is excellent, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[0042]
(Third embodiment)
Next, a vacuum valve according to a third embodiment of the present invention will be described with reference to the contact plan view shown in FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0043]
As shown in FIG. 5, a pair of contacts 4 and 5 that can be brought into and out of contact with each other has a disk in which an annular first contact member 17 is arranged coaxially with the first contact member 17 on the contact surface. The second contact member 12 is fixed to one surface, for example, the upper surface by brazing or the like. The first contact member 17 is disposed so as to be positioned inside the inner diameter of the magnetic field control coil 14 disposed in the electrode member 13 for energization in FIG. 2 described above.
[0044]
The first contact member 17 and the second contact member 12 constituting the contacts 4 and 5 are each made of a Cu—Cr alloy, and the Cr content is higher than that of the second contact member 12. The number of members 17 is increased.
[0045]
This is because, as described in the first embodiment, the withstand voltage characteristics are improved when the Cr content is increased, and the interruption characteristics are improved when the Cr content is decreased. The first contact member 17 has a Cr content of 40 wt% to 60 wt%, and the second contact member 12 has a Cr content of 10 wt% to 30 wt%.
[0046]
Therefore, the first contact member 17 that contacts the earliest when the vacuum circuit breaker is turned on and generates a pre-arc due to an inrush current has a high Cr content and suppresses surface damage. Furthermore, a pre-arc spreads in the annular first contact member 17 along the circumferential direction, and surface damage is further suppressed as compared with the first embodiment. Further, when the vacuum circuit breaker is turned off, the arc is controlled by the magnetic field control coil 14 and spreads outward in the radial direction. As a result, excellent breaking characteristics can be obtained with the second contact member 12 having a low Cr content.
[0047]
The first contact member 17 having an annular shape is preferable because the contacts 4 and 5 are annularly arranged with the same shape and are opposed to each other.
[0048]
According to the vacuum valve provided with the contacts 4 and 5 of the third embodiment, in addition to the effects of the first embodiment, the first contact member 17 that causes dielectric breakdown earliest is annular. Therefore, the pre-arc spreads along the circumferential direction, and the surface damage is further reduced, and excellent voltage resistance characteristics can be obtained.
[0049]
Therefore, since the withstand voltage characteristic is further improved and the interruption characteristic is excellent, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[0050]
(Fourth embodiment)
Next, a vacuum valve according to a fourth embodiment of the present invention will be described with reference to the longitudinal sectional view of the contact shown in FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0051]
As shown in FIG. 6, the pair of contact points 4 and 5 that can be brought into contact with and separated from each other includes a first contact member 18 that forms a central region provided on each contact surface, and a second contact member that forms an outer peripheral region. 19 is divided into two regions.
[0052]
That is, the second contact member 19 has a disk shape with a trapezoidal cross section, and the disk-like first contact member 18 projects from the top surface of the second contact member 19. It is embedded without the step so as not to. The two are fixed by brazing or the like. Further, an electrode member 13 for energization is fixed to the bottom surface of the second contact member 19. A magnetic field control coil 14 for diffusing an arc is disposed on the outer peripheral portion of the lower surface of the electrode member 13 in the figure, and has an inner diameter larger than the outer diameter of the first contact member 18.
[0053]
The first contact member 18 and the second contact member 19 constituting the contacts 4 and 5 are each made of a Cu—Cr alloy, and the Cr content is the first contact of the second contact member 19. The number of members 18 is increased.
[0054]
This is because, as described in the first embodiment, the withstand voltage characteristics are improved when the Cr content is increased, and the interruption characteristics are improved when the Cr content is decreased. The first contact member 18 has a Cr content of 40 wt% to 60 wt%, and the second contact member 19 has a Cr content of 10 wt% to 30 wt%.
[0055]
Therefore, the first contact member 18 that contacts the earliest when the vacuum circuit breaker is turned on and generates a pre-arc due to an inrush current has a high Cr content and suppresses surface damage. Furthermore, since the first contact member 18 has no step at the boundary with the second contact member 19, the pre-arc does not concentrate on the end surface portion, and the surface of the first contact member 18 is smaller than that of the first embodiment. Damage is further suppressed. Further, when the vacuum circuit breaker is turned off, the arc is controlled by the magnetic field control coil 14 and spreads outward in the radial direction. As a result, excellent breaking characteristics can be obtained with the second electrode member 19 having a low Cr content.
[0056]
According to the vacuum valve provided with the contacts 4 and 5 of the fourth embodiment, in addition to the effects of the first embodiment, the first contact member 18 that causes dielectric breakdown first is the Since it does not protrude from the surface of the second contact member 19, the pre-arc does not concentrate on the end surface portion, and the surface damage is further reduced, and an excellent withstand voltage characteristic can be obtained.
[0057]
Therefore, since the withstand voltage characteristic is further improved and the interruption characteristic is excellent, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[0058]
(Fifth embodiment)
Next, a vacuum valve according to a fifth embodiment of the present invention will be described with reference to the longitudinal sectional view of the contact shown in FIG. Note that the same components as those in the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted.
[0059]
As shown in FIG. 7, the pair of contact points 4 and 5 that can be brought into and out of contact with each other includes a first contact member 20 that forms a central region provided on each contact surface, and a second contact member that forms an outer peripheral region. 21 is divided into two regions.
[0060]
That is, the first contact member 20 has a disk shape with a convex longitudinal section, and has a height lower than the height of the small-diameter portion 20a so as to be positioned on the outer periphery of the small-diameter portion 20a forming the convex portion. An annular second contact member 21 having a thickness is arranged. The two are fixed by brazing or the like. Further, a magnetic field control coil 14 for diffusing an arc is disposed on the outer peripheral portion of the bottom surface of the large diameter portion 20b of the first contact member 20, and has an inner diameter larger than the outer diameter of the small diameter portion 20a. ing. An energizing shaft 15 is fixed to the center portion.
[0061]
The first contact member 20 and the second contact member 21 constituting the contacts 4 and 5 are each made of a Cu—Cr alloy, and the Cr content is the first contact than that of the second contact member 21. The number of members 20 is increased.
[0062]
This is because, as described in the first embodiment, the withstand voltage characteristics are improved when the Cr content is increased, and the interruption characteristics are improved when the Cr content is decreased. The first contact member 20 has a Cr content of 40 wt% to 60 wt%, and the second contact member 21 has a Cr content of 10 wt% to 30 wt%.
[0063]
Therefore, the small diameter portion 20a of the first contact member that contacts the earliest when the vacuum circuit breaker is turned on and generates a pre-arc due to an inrush current has a high Cr content and suppresses surface damage. Furthermore, since the first contact member 20 is fixed to the energizing shaft 15 in a direct connection, the number of connecting portions is smaller than that of the first to fourth embodiments, and an increase in contact resistance is suppressed. Further, when the vacuum circuit breaker is turned off, the arc is controlled by the magnetic field control coil 14 and spreads outward in the radial direction, and as a result, excellent interrupting characteristics can be obtained with the second electrode member 21 having a low Cr content.
[0064]
According to the vacuum valve provided with the contacts 4 and 5 of the fifth embodiment, in addition to the effects of the first embodiment, the distance between the first contact member 20 and the energizing shaft 15 is Therefore, the increase in contact resistance can be suppressed, so that the temperature rise due to the energization current can be suppressed.
[0065]
Therefore, it has excellent withstand voltage characteristics and interrupting characteristics, and suppresses temperature rise due to energizing current. Therefore, it is possible to expand the application of vacuum circuit breakers to large capacity circuits that are responsible for inrush current, such as capacitor bank circuits. it can.
[0066]
【The invention's effect】
As described above, the vacuum valve having contacts according to the present invention includes the first contact member in the central region made of Cu-Cr alloy on the contact surface and the second contact member forming the outer peripheral region. The first contact member is divided and configured to have a Cr content higher than that of the second contact member. For this reason, when the vacuum circuit breaker is turned on, damage to the surface of the first contact member that causes the first dielectric breakdown is reduced, and the withstand voltage characteristic can be improved. Further, when the vacuum circuit breaker is OFF, an arc is diffused in the second contact member, so that the interruption characteristic can be improved. Accordingly, since the withstand voltage characteristic and the breaking characteristic can be contradictory, the application of the vacuum circuit breaker to a circuit having a duty of inrush current such as a capacitor bank circuit can be expanded.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a contact portion of a vacuum valve according to a first embodiment of the present invention.
FIG. 2 is a plan view showing a contact portion of the vacuum valve according to the first embodiment of the present invention.
FIG. 3 is a characteristic diagram for explaining a withstand voltage characteristic and a breaking characteristic of a contact portion of the vacuum valve according to the first embodiment of the present invention.
FIG. 4 is a plan view showing a contact portion of a vacuum valve according to a second embodiment of the present invention.
FIG. 5 is a plan view showing a contact portion of a vacuum valve according to a third embodiment of the present invention.
FIG. 6 is a longitudinal sectional view showing a contact portion of a vacuum valve according to a fourth embodiment of the present invention.
FIG. 7 is a longitudinal sectional view showing a contact portion of a vacuum valve according to a fifth embodiment of the present invention.
FIG. 8 is a longitudinal sectional view showing a configuration of a conventional vacuum valve.
FIG. 9 is a circuit diagram of a vacuum circuit breaker applied to a capacitor bank.
FIG. 10 is an explanatory diagram for explaining the responsibilities of a vacuum circuit breaker applied to a capacitor bank.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Insulation container 2a Fixed side sealing metal fitting 2b Movable side sealing metal fitting 3 Fixed energizing shaft 4 Fixed side contact 5 Movable side contact 6 Movable energizing shaft 7 Bellows 8 Arc shield 11, 16, 17, 18, 20 First contact member 12, 19, 21 Second contact member 13 Electrode member 14 Magnetic field control coil 15 Current-carrying shaft 20a Small-diameter portion 20b of the convex portion of the first contact member Large-diameter portion of the convex portion of the first contact member

Claims (1)

真空の絶縁容器内に配置され、且つ通電軸に固着された互いに接離自在の一対の接点を有する真空バルブにおいて、
前記接点の互いの接触面を中央領域の第1の接触部材と、外周領域を形成する第2の接触部材を有する2つの領域に分割構成し、
前記第1の接触部材をCr含有率40wt%〜60wt%のCu−Cr合金とするとともに、縦断面凸状の円板状とし、
前記第2の接触部材をCr含有率10wt%〜30wt%のCu−Cr合金とするとともに、前記凸状の細径部の高さより低い高さを持った環状とし、
前記凸状の細径部の外周部に前記第2の接触部材をロウ付けによって固着し、
前記凸状の太径部の底部面の外周部に、前記凸状の細径部の外径よりも大きい内径を持った磁界制御コイルを配設するとともに、中央部に前記通電軸を固着したことを特徴とする真空バルブ。
In a vacuum valve having a pair of contact points that are arranged in a vacuum insulating container and fixed to a current-carrying shaft and can be separated from each other,
The contact surfaces of the contacts are divided into two regions having a first contact member in a central region and a second contact member forming an outer peripheral region,
The first contact member is a Cu-Cr alloy having a Cr content of 40 wt% to 60 wt%, and has a disk shape with a convex longitudinal section.
The second contact member is a Cu-Cr alloy having a Cr content of 10 wt% to 30 wt%, and an annular shape having a height lower than the height of the convex small-diameter portion,
The second contact member is fixed to the outer peripheral portion of the convex small-diameter portion by brazing ,
A magnetic field control coil having an inner diameter larger than the outer diameter of the convex thin-diameter portion is disposed on the outer peripheral portion of the bottom surface of the convex thick-diameter portion, and the energizing shaft is fixed to the central portion. A vacuum valve characterized by that.
JP2002133487A 2002-05-09 2002-05-09 Vacuum valve Expired - Fee Related JP4284033B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133487A JP4284033B2 (en) 2002-05-09 2002-05-09 Vacuum valve

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133487A JP4284033B2 (en) 2002-05-09 2002-05-09 Vacuum valve

Publications (2)

Publication Number Publication Date
JP2003331699A JP2003331699A (en) 2003-11-21
JP4284033B2 true JP4284033B2 (en) 2009-06-24

Family

ID=29696453

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133487A Expired - Fee Related JP4284033B2 (en) 2002-05-09 2002-05-09 Vacuum valve

Country Status (1)

Country Link
JP (1) JP4284033B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4939918B2 (en) * 2006-12-22 2012-05-30 株式会社東芝 Vacuum valve
US8450630B2 (en) * 2007-06-05 2013-05-28 Cooper Technologies Company Contact backing for a vacuum interrupter
JP5525316B2 (en) * 2010-04-19 2014-06-18 株式会社東芝 Vacuum valve

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6148633U (en) * 1984-09-03 1986-04-01
JPS6193524A (en) * 1984-10-15 1986-05-12 株式会社明電舎 Vacuum interrupter
JPS63301439A (en) * 1987-05-29 1988-12-08 Mitsubishi Electric Corp Vacuum switch
JPH07111856B2 (en) * 1987-03-25 1995-11-29 株式会社明電舎 Vacuum interrupter
JP2643037B2 (en) * 1991-06-17 1997-08-20 三菱電機株式会社 Vacuum switch tube
JP2890999B2 (en) * 1992-10-30 1999-05-17 三菱電機株式会社 Vacuum valve
JPH09115397A (en) * 1995-10-20 1997-05-02 Toshiba Corp Vacuum valve
JPH1083746A (en) * 1996-09-05 1998-03-31 Shibafu Eng Kk Electrode for vacuum valve and its manufacture
JPH11162302A (en) * 1997-12-01 1999-06-18 Shibafu Engineering Kk Vacuum bulb

Also Published As

Publication number Publication date
JP2003331699A (en) 2003-11-21

Similar Documents

Publication Publication Date Title
Slade Advances in material development for high power, vacuum interrupter contacts
JP3733537B2 (en) Sealed relay device
KR100525219B1 (en) Vacuum interrupter with arc diffusing contact design
US3182156A (en) Vacuum-type circuit interrupter
US4553002A (en) Axial magnetic field vacuum-type circuit interrupter
US3008022A (en) Contact structure for a vacuum-type circuit interrupter
US4471184A (en) Vacuum interrupter
KR920006060B1 (en) Vacuum switch tube
JPS6059620A (en) High current switch contact and electric switch unit using same contact
JP4284033B2 (en) Vacuum valve
Fink et al. Future trends in vacuum technology applications
JPH038050B2 (en)
JPS6388721A (en) Electrode structure for vacuum breaker
JP2002319341A (en) Vacuum valve
JP3101329B2 (en) Vacuum valve
CA1084565A (en) High-current vacuum switch with reduced contact erosion
Falkingham A brief history showing trends in vacuum interrupter technology
US3239635A (en) Disc shaped arcing contact structure producing predetermined arc blowout characteristic
US10410813B1 (en) Vacuum switching apparatus and electrical contact therefor
JPH11162302A (en) Vacuum bulb
US6326573B1 (en) Vacuum switching device
US5952636A (en) Vacuum type switch gear device having L shaped stationary and movable conductors arrangement
JP5525316B2 (en) Vacuum valve
US4695688A (en) Electrical contact construction
JPH03230436A (en) Vacuum valve

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050224

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050415

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071212

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080107

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080725

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees