JP4284030B2 - Failure section locating method and failure section locating system - Google Patents

Failure section locating method and failure section locating system Download PDF

Info

Publication number
JP4284030B2
JP4284030B2 JP2002108273A JP2002108273A JP4284030B2 JP 4284030 B2 JP4284030 B2 JP 4284030B2 JP 2002108273 A JP2002108273 A JP 2002108273A JP 2002108273 A JP2002108273 A JP 2002108273A JP 4284030 B2 JP4284030 B2 JP 4284030B2
Authority
JP
Japan
Prior art keywords
value
line
current sensor
tower
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002108273A
Other languages
Japanese (ja)
Other versions
JP2003302440A (en
Inventor
多喜也 浅井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kouatsu Electric Co
Original Assignee
Nippon Kouatsu Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kouatsu Electric Co filed Critical Nippon Kouatsu Electric Co
Priority to JP2002108273A priority Critical patent/JP4284030B2/en
Publication of JP2003302440A publication Critical patent/JP2003302440A/en
Application granted granted Critical
Publication of JP4284030B2 publication Critical patent/JP4284030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
    • Y04S10/52Outage or fault management, e.g. fault detection or location

Landscapes

  • Locating Faults (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は並列して送電を行う2回線併設送電線路に生じた短絡故障点を含む故障区間を特定することができる故障区間標定方法及び故障区間標定システムに関する。詳しくは、1種類のみのセンサを用いて2回線併設送電線路の1回線短絡事故の故障区間を容易に標定することができる故障区間標定方法及び故障区間標定システムに関する。
【0002】
【従来の技術】
図4に示すように、送電線鉄塔4a、4b、4c…に送電線31、32を並行して2回線配することで冗長性を持たせた送電を行う2回線併設送電線路において、片方の回線のみが雷等によって地絡する地絡事故や、短絡事故が起きることがある。
1回線のみで構成された送電線における短絡事故の場合は、故障点より上流は短絡電流が流れるが、故障点より下流は電流が流れないため、間隔を空けて電流センサを設置し、電流が流れているかどうかで故障点を含む故障区間が容易に判別できる。しかし、2回線送電の1回線短絡事故では、図4に示すように正常回線によって下流52に流れる電流が、並列接続点54から故障した第2送電線32を逆流し、電流62として故障点Pへ流れるために1回線の故障点標定方法を用いることができない。
【0003】
このような2回線併設送電線路で1回線短絡事故が起きた区間を検出するための標定方法として、(1)各回線に電流センサ及び電圧センサを設置し、これらの出力を用いて故障点の方向を求める方法が知られている。
また、(2)特開平5−203693号公報には、一つの回線に対して感度が高くなるように電流センサを配設し、各回線の電流の大きさから故障区間を標定可能とする方法が挙げられている。この方法は、各電流センサによって測定した電流の位相の違いから、測定地点からの故障点の方向を判別している。
【0004】
【発明が解決しようとする課題】
しかし、(1)に示す電流センサ及び電圧センサを用いる方法は、センサ及び増幅回路等が2種類分必要となりコスト高となるため、1種類のセンサのみで求める方法が望まれている。また、(2)に示す電流の位相の違いを用いる方法は、故障箇所等で発生するノイズ等の高調波成分によって電流波形が歪み、容易に位相を比較することができないため、故障点の方向判別が難しいという問題点がある。
本発明は、上記問題点を解決するものであり、1種類のみのセンサを用いて2回線送電線の1回線短絡事故の故障点を容易に標定することができる故障区間標定方法及び故障区間標定システムを提供することを目的とする。
【0005】
【課題を解決するための手段】
本第1発明の故障区間標定方法は、複数の鉄塔に架線され並列して送電を行う2回線併設送電線路において、該鉄塔ごとに各回線につき少なくとも1つの電流センサを設け、該電流センサの少なくとも1つの出力値が所定値を越える過電流を検出したときに、該各回線における該出力値の加算値が所定の範囲以下となる不動作鉄塔と、該不動作鉄塔より上流側であり該加算値が所定の範囲を超える動作鉄塔との間を故障区間と判定することを特徴とする。
また、上記両回線で且つ同じ相の上記電流センサの出力値が所定値を越える過電流を検出したときに上記標定を行うことができる。更に、上記所定値は、同鉄塔の電流センサ出力に対する比率とすることができる。
【0006】
本第4発明の故障区間標定システムは、複数の鉄塔に架線され並列して送電を行う2回線併設送電線路において、親局と該鉄塔ごとに設けられた子局とを備え、該子局は各回線につき少なくとも1つ設けられる電流センサ、各該回線の該電流センサの出力を加算した加算値を少なくとも出力する加算値出力部を備え、該親局は該子局から出力された加算値を受信して故障区間の標定を行う故障区間標定部を備え、該故障区間標定部は、該電流センサの少なくとも1つの出力値が所定値を越える過電流を検出し、且つ該出力値の加算値が所定の範囲以下となる不動作鉄塔の該子局と、該動作鉄塔より上流側であり該加算値が所定の範囲を超える動作鉄塔の該子局との間を故障区間と判定することを特徴とする。
【0007】
【発明の効果】
本故障区間標定方法及び故障区間標定システムによれば、電流センサのみで1回線短絡事故の故障区間を標定することができ、電圧センサ及び電流方向判別回路等が不要であるため、安価な標定システムを作製することができる。また、故障電流の波形が故障箇所等で発生するノイズ等の高調波成分により変形していても容易に故障区間を標定することができる。
更に、故障区間の標定を、過電流が検出している期間に限定することで、故障の誤検出を防止することができる。
【0008】
【発明の実施の形態】
上記「電流センサ」は送電線に流れる電流の絶対値又は相対値を非接触で測定することができればよく、任意の種類を選択することができる。この例として、通電に伴って発生する磁気を測定する磁気センサを用いることを挙げることができる。また、この磁気センサとして、コイルを用いる方法の他、ホール素子や磁気抵抗素子を用いたセンサ等を例示することができる。
【0009】
更に、電流センサの個数は任意の数とすることができる。例えば、同回線の複数相を流れる電流を1つの電流センサで求めることができる。1つの電流センサで複数相の電流を求めることで、低コストで故障区間標定を行うことができる。また、1つの相につき1又は2以上の電流センサを割り当てて電流測定を行うことができる。このように、各相を個別に測定することによって電流の高精度な測定を行うことができ、故障区間標定を行い易くすることができる。
【0010】
過電流を検出するための上記所定値は、負荷電流と区別することができる範囲で任意に設定することができる。また、電流センサ出力に対する上記比率についても、任意に設定することができる。
更に、加算値における上記所定値は、任意に設定することができる。また、過電流による電流値より小さな値が好ましい。
【0011】
上記「子局」は、電流センサ及び加算値出力部を備えるが、これらは一体に設けてもよいし、別々に設けてその間を有線又は無線で接続することができる。電流センサ及び加算値出力部を別体とすることで、電流センサのみを送電線側に近づくよう鉄塔の上方に設け、加算値出力部を鉄塔の任意の位置に設けることができるため、設置作業や点検作業等の各種作業性を高くすることができる。
【0012】
1.故障区間標定方法
本発明の故障区間標定方法は、図2に示すように並列2回線であり、上流51及び下流52の並列接続点53、54間を接続する第1送電線31及び第2送電線32を備えた、2回線併設送電線路において発生した1回線短絡事故を区間単位で標定するための方法である。
また、本故障区間標定方法は、第1送電線31及び第2送電線32の架線を行う鉄塔4a、4b、4c…間をそれぞれ1つの標定区間とし、各鉄塔4a、4b、4c…には第1送電線の所定の相又は相群に流れる電流を測定するための第1電流センサ11a、11b、11c…を備える。更に、各鉄塔4a、4b、4c…には第2送電線の所定の相又は相群に流れる電流を測定するための第2電流センサ12a、12b、12c…を備える。
更に、各電流センサ11、12の出力は鉄塔に設けられた子局1内の加算値出力部により増幅された後、互いに加算されて加算値が得られる。
【0013】
(1)正常時
送電線に短絡事故が起きていない正常時の場合、図3に示すように、加算値に用いられる各送電線31、32の電流センサ11、12の出力値は、略一致する。同じ鉄塔4に各電流センサ11、12が設けられているために位相などのずれが略生じないし、全く別経路で送電するときのように異なるノイズが含まれにくいためである。
また、図3に示すように各回線の加算値は各出力値が重畳した値となる。
【0014】
(2)故障時
次いで、図4に示すように第2送電線32の故障点Pにおいて1回線地絡事故が発生した状態を説明する。
故障点Pで地絡が発生した場合、第1送電線31の上流51側から故障点Pに短絡電流61が流れる。また、第1送電線31を介して第2送電線32の下流52側の並列接続点54から故障点Pに短絡電流62が流れる。
この下流からの故障電流62は検出することには十分な大きさであり、上流から下流に流れる電流と明確に方向が異なる。
【0015】
このため、故障点Pより上流では図3に示すように、第1送電線31及び第2送電線32は同じ方向に電流が流れるため、各電流センサ11、12の出力値は正常時と同じく位相ずれもなく略一致するが、故障点Pより下流では図5に示すように、第1送電線31及び第2送電線32を流れる電流の向きが逆となるため各電流センサ11、12の出力値が異なる。
このため、各第1送電線の電流センサと、第2送電線の電流センサとを加算すると互いに打ち消し合うため、加算値は正常時より大幅に絶対値が小さくなる。
【0016】
本故障区間標定方法はこの正常時と故障時とで大幅に値が異なる加算値に着目し、予め決定した範囲内になった場合に故障と判定することで、容易に故障を判定することができる。また、故障と判定した不動作鉄塔と、この不動作鉄塔より上流で故障でない動作鉄塔との間を故障区間として判断することができる。
【0017】
更に、上記加算値による故障の判定は、予め過電流が流れているかどうかを調べ、過電流が流れている場合のみ判定を行うことができる。過電流かどうかを調べておくことで、正常時の電流値と区別する必要がなくなり、判定処理の条件が容易に決定することができるからである。
この過電流かどうかは、電流センサ11、12の出力値が通常負荷のときに流れる電流値を越えているかどうかを調べることで判断することができる。また、電流センサ11、12が1回線の1鉄塔につき複数備える場合、加算値を求めた相の電流センサ11、12の電流値から過電流かどうかを判断する。
【0018】
更に、故障と判断するときの加算値の範囲は、電流センサ11、12の出力値(どちらか一方でもよいし、両者の平均値でもよい)に対する比率から算出することもできる。例えば、比率を出力値の10分の1とすることで、加算値が出力値の10分の1以下となったときに故障と判定することができる。
尚、第2送電線で1回線短絡事故が発生した場合においても上記説明した内容と同様に故障区間標定方法を適用することができる。
また、図6に示すように、相間の短絡事故が発生した場合であっても、図4に示す地絡の場合と同様に、故障点Pより下流では故障点Pに逆流する電流が生じるため、同じ故障区間標定方法で故障区間を標定することができる。
【0019】
【実施例】
以下、図1〜9を用いて本発明の故障区間標定方法及びこの方法を用いた故障区間標定システムの実施形態について詳しく説明する。
2.故障区間標定システムの構成
本故障区間標定システムは、図1に示すように、第1送電線31及び第2送電線32を架線する鉄塔4a、4b、4c…に設けられる子局1a、1b、1c…と、これら子局1a、1b、1c…に接続される親局2とを備える。
【0020】
子局1は、図7に示すように電流センサ11、12及び加算値出力部13を備える。各電流センサ11、12は、磁気センサであり、第1送電線31及び第2送電線32に電流が流れることによって生じる磁気を検出することができるように設けられている。また、電流センサ11、12は、他方の回線の送電線12、11から生じる磁気に反応しないように向きを調節したり、磁気シールドを施されている。
尚、本電流センサ11、12は1回線の2つの相から発する磁気を検知できるように設けられている。同時に複数相の検出を行っても十分な出力が得られ、故障の判別を行うことができるからである。
【0021】
加算値出力部13は、電流センサ11、12の出力を必要な大きさに増幅した後、加算して加算値を生成し、生成した加算値を親局2に出力する電子回路である。
また、子局1及び親局2間は任意の通信手段によって接続されている。この通信手段は、PHS電話機による専用無線機、携帯電話機及び無線LAN装置等の無線装置を用いて送信する無線出力手段、及び適宜増幅して電線や光ファイバ等経由で出力する有線出力手段等の手段とすることができる。
子局1の電源は、特に限定されず任意に選択することができる。この例として、太陽電池や風力発電機等による充電が行われるバッテリ、送電線からの誘導電力等を挙げることができる。
親局2は、各子局1から送信された加算値を受信し、本故障区間標定方法による故障区間の標定を行う電子回路、又は該標定を行うプログラムを格納したコンピュータである。
【0022】
3.故障区間標定システムの使用方法及び効果
本故障区間標定システムは、各子局1a、1b、1c…がその電流センサ11a…、12a…によって各送電線31、32の電流値を検出し、これらの加算値を加算値出力部13で加算して、親局2に送信する。
親局2は、各子局1が動作鉄塔か不動作鉄塔であるかどうかを判定する。また、不動作鉄塔がある場合は、上流の動作鉄塔を検索して見つかった動作鉄塔及び不動作鉄塔の間を故障区間として出力を行う。
【0023】
このような故障区間標定システムによれば、電流センサのみで故障点を標定することができ、電圧センサ及び電流方向判別回路等が不要であるため、安価な標定装置を作製することができる。また、故障電流波形が故障箇所等で発生するノイズ等の高調波成分により変形していても容易に故障区間を標定することができる。
【0024】
4.各相に電流センサを備える子局
本故障区間標定システムの子局1は、図7に示すように、1つの鉄塔ごとに1回線につき1つの電流センサを設けるに限られず、1つの鉄塔ごとに1回線につき複数の電流センサを設けることができる。例えば、図8に示すように、第1送電線31の各相31A、31B、31Cには電流センサ11A、11B、11Cを設け、第2送電線32の各相32A、32B、32Cには電流センサ12A、12B、12Cを設けることができる。
【0025】
このように、1つの鉄塔ごとに1回線につき複数の電流センサを設ける場合は、同じ相に該当する両送電線31、32の電流センサ11、12について加算値を求め、故障の判断を行う。
また、1つの鉄塔ごとに1回線につき複数の電流センサを設けることによって、どの相が故障したかどうかを判断することができる。
【0026】
更に、図9に示すように、1つの電流センサで2相分の送電線の電流を検出するように2つの電流センサ11D、11E(12D、12E)を設けることができる。また、この2つの電流センサ11D、11E(12D、12E)は、相Bを重複して検出するように設けている。
このような配設を行うことで、電流センサ11D(12D)のみで故障を検出した場合はA相、電流センサ11E(12E)のみで故障を検出した場合はC相、電流センサ11D(12D)及び電流センサ11E(12E)で故障を検出した場合はB相又は全ての相と判断することができ、各相に電流センサを設けた場合と略同様の細かさで相毎の短絡を判断することができる。
【0027】
尚、本発明においては、上記実施例に限らず、目的、用途に応じて本発明の範囲内で種々変更した実施例とすることができる。即ち、本送電線用センサは子局を構成する電流センサ及び加算値出力部が別体となっていたが、加算値出力部をいずれかの電流センサと一体とすることができる。このような子局は配線数及び設置作業数が減ることになり、作業性をより高めることができる。また、加算値出力部を分割して各電流センサ内に設けてもよい。
更に、本故障区間標定システムは、親局2と各子局1が別体となっているが、子局のいずれか一つの中に親局2を設けてもよい。
また、1本の送電線鉄塔に3回線以上の送電線が設けられている線路においても、並列して送電を行う任意の2回線を選択して本故障区間標定方法及び本故障区間標定システムを適用することで、短絡故障点を含む故障区間を特定することができる。
【図面の簡単な説明】
【図1】本故障区間標定システムの構成を説明するための模式図である。
【図2】正常時の2回線併設送電線路を説明するための模式図である。
【図3】正常時の電流センサの出力及び加算値の例を説明するためのグラフである。
【図4】1回線短絡事故時の2回線併設送電線路を説明するための模式図である。
【図5】1回線短絡事故時の電流センサの出力及び加算値の例を説明するためのグラフである。
【図6】1回線短絡事故時の2回線併設送電線路を説明するための模式図である。
【図7】鉄塔に子局を設けた状態の例を説明するための模式図である。
【図8】送電線の各相にそれぞれ電流センサを設けた状態の例を説明するための模式図である。
【図9】送電線の1相が重複するように2つの電流センサを設けた状態の例を説明するための模式図である。
【符号の説明】
1;子局、11;第1電流センサ、12;第2電流センサ、13;加算値出力部、2;親局、31;第1送電線、32;第2送電線、4;鉄塔、51;上流、52;下流、53、54;並列接続点、61、62;短絡電流、P;故障点。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fault section locating method and a fault section locating system that can specify a fault section including a short-circuit fault point generated in a two-line power transmission line that performs power transmission in parallel. Specifically, the present invention relates to a failure section locating method and a failure section locating system capable of easily locating a failure section of a one-line short-circuit accident in a two-line transmission line using only one type of sensor.
[0002]
[Prior art]
As shown in FIG. 4, in a two-line power transmission line that performs power transmission with redundancy by arranging two transmission lines 31 and 32 in parallel on the transmission line towers 4a, 4b, 4c,. There may be a ground fault or a short circuit where only the line is grounded by lightning.
In the case of a short-circuit accident in a transmission line composed of only one line, a short-circuit current flows upstream from the failure point, but current does not flow downstream from the failure point. The failure section including the failure point can be easily determined depending on whether or not it is flowing. However, in the one-line short-circuit accident of two-line power transmission, as shown in FIG. 4, the current flowing downstream 52 through the normal line flows backward through the failed second transmission line 32 from the parallel connection point 54, and becomes the current 62 as the failure point P. Therefore, it is not possible to use the fault location method for one line.
[0003]
As an orientation method for detecting a section where a one-line short circuit accident has occurred in such a two-line transmission line, (1) a current sensor and a voltage sensor are installed on each line, and the output of these points is used A method for obtaining a direction is known.
In addition, (2) Japanese Patent Laid-Open No. 5-203893 discloses a method in which a current sensor is arranged so as to increase sensitivity for one line, and a fault section can be determined from the magnitude of current in each line. Is listed. In this method, the direction of the failure point from the measurement point is determined from the difference in the phase of the current measured by each current sensor.
[0004]
[Problems to be solved by the invention]
However, since the method using the current sensor and the voltage sensor shown in (1) requires two types of sensors, amplifier circuits, and the like, and the cost is high, a method that requires only one type of sensor is desired. In addition, the method using the difference in the phase of the current shown in (2) causes the current waveform to be distorted by harmonic components such as noise generated at the failure location, and the phase cannot be easily compared. There is a problem that it is difficult to distinguish.
The present invention solves the above-described problems, and a failure section locating method and a failure section locating capable of easily locating a failure point of a one-line short circuit accident of a two-line transmission line using only one type of sensor. The purpose is to provide a system.
[0005]
[Means for Solving the Problems]
The failure section locating method according to the first aspect of the present invention provides a two-line power transmission line that is connected to a plurality of towers and transmits power in parallel, and at least one current sensor is provided for each line for each tower. when one output value is detected an overcurrent exceeding a predetermined value, a dead pylons sum value of the output value is equal to or less than a predetermined range in respective lines, an upstream side of said non operating tower the addition It is characterized in that a failure section is determined between an operating tower whose value exceeds a predetermined range.
Further, the orientation can be performed when an overcurrent in which the output value of the current sensor in the same phase on both lines exceeds a predetermined value is detected. Furthermore, the predetermined value can be a ratio to the current sensor output of the steel tower .
[0006]
The failure section locating system according to the fourth aspect of the present invention comprises a master station and a slave station provided for each tower in a two-line power transmission line that is connected to a plurality of towers and transmits power in parallel. and at least one is provided a current sensor for each line, and an addition value output unit for at least outputting an added value obtained by adding the output of the current sensor of the該回lines, adding said parent station output from the child station A failure section locating unit for receiving a value and locating the failure section, wherein the failure section locating unit detects an overcurrent in which at least one output value of the current sensor exceeds a predetermined value, and determining sum is the the child station quiescent pylons equal to or less than a predetermined range, the addition value is upstream side from the dead towers and failure interval between the child station operation pylons exceeds a predetermined range It is characterized by doing.
[0007]
【The invention's effect】
According to the failure section locating method and the failure section locating system, a fault section of a one-line short-circuit fault can be determined by using only a current sensor, and a voltage sensor and a current direction discriminating circuit are not required. Can be produced. Moreover, even if the waveform of the fault current is deformed by a harmonic component such as noise generated at the fault location or the like, the fault section can be easily determined.
Furthermore, it is possible to prevent erroneous detection of a failure by limiting the fault section orientation to a period during which an overcurrent is detected.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The “current sensor” only needs to be able to measure the absolute value or the relative value of the current flowing through the transmission line in a non-contact manner, and any type can be selected. As an example of this, it is possible to use a magnetic sensor that measures magnetism generated by energization. In addition to the method using a coil, examples of the magnetic sensor include a sensor using a Hall element or a magnetoresistive element.
[0009]
Furthermore, the number of current sensors can be any number. For example, the current flowing through a plurality of phases on the same line can be obtained with one current sensor. By obtaining currents of a plurality of phases with one current sensor, fault section orientation can be performed at low cost. Further, current measurement can be performed by assigning one or more current sensors to one phase. In this way, by measuring each phase individually, it is possible to measure the current with high accuracy, and to facilitate fault section orientation.
[0010]
The predetermined value for detecting the overcurrent can be arbitrarily set within a range that can be distinguished from the load current. Further, the ratio with respect to the current sensor output can be arbitrarily set.
Furthermore, the predetermined value in the added value can be arbitrarily set. A value smaller than the current value due to overcurrent is preferable.
[0011]
The above-mentioned “slave station” includes a current sensor and an added value output unit, but these may be provided integrally, or may be provided separately and connected between them by wire or wirelessly. Since the current sensor and the added value output unit are separated, only the current sensor can be provided above the tower so as to approach the transmission line side, and the added value output unit can be provided at an arbitrary position on the tower. And various workability such as inspection work can be enhanced.
[0012]
1. 2. Fault section locating method The fault section locating method of the present invention has two parallel lines as shown in FIG. 2, and the first transmission line 31 and the second transmission line that connect between the parallel connection points 53 and 54 of the upstream 51 and the downstream 52. This is a method for locating a one-line short-circuit accident occurring in a two-line power transmission line provided with an electric wire 32 in section units.
Moreover, this fault section location method makes each between the towers 4a, 4b, 4c ... which perform the overhead line of the 1st power transmission line 31 and the 2nd power transmission line 32 into one orientation section, and each tower 4a, 4b, 4c ... 1st current sensor 11a, 11b, 11c ... for measuring the electric current which flows into the predetermined | prescribed phase or phase group of a 1st power transmission line is provided. Furthermore, each steel tower 4a, 4b, 4c ... is equipped with 2nd current sensor 12a, 12b, 12c ... for measuring the electric current which flows into the predetermined phase or phase group of a 2nd power transmission line.
Further, the outputs of the current sensors 11 and 12 are amplified by an addition value output unit in the slave station 1 provided in the tower 4 and then added together to obtain an addition value.
[0013]
(1) When the normal transmission line does not have a short circuit accident, the output values of the current sensors 11 and 12 of the transmission lines 31 and 32 used for the added value are substantially the same as shown in FIG. To do. This is because the current sensors 11 and 12 are provided in the same steel tower 4 so that a phase shift or the like does not substantially occur, and different noises are unlikely to be included when power is transmitted through a completely different path.
Further, as shown in FIG. 3, the added value of each line is a value obtained by superimposing the output values.
[0014]
(2) At the time of failure Next, a state where a one-line ground fault has occurred at the failure point P of the second power transmission line 32 as shown in FIG. 4 will be described.
When a ground fault occurs at the failure point P, a short-circuit current 61 flows from the upstream 51 side of the first transmission line 31 to the failure point P. In addition, a short-circuit current 62 flows from the parallel connection point 54 on the downstream 52 side of the second power transmission line 32 to the failure point P via the first power transmission line 31.
The fault current 62 from the downstream is sufficiently large to detect, and the direction is clearly different from the current flowing from the upstream to the downstream.
[0015]
For this reason, as shown in FIG. 3 upstream from the failure point P, the current flows in the same direction in the first transmission line 31 and the second transmission line 32, and therefore the output values of the current sensors 11 and 12 are the same as in the normal state. Although they substantially coincide with each other with no phase shift, the direction of the current flowing through the first transmission line 31 and the second transmission line 32 is reversed as shown in FIG. The output value is different.
For this reason, if the current sensor of each 1st power transmission line and the current sensor of the 2nd power transmission line are added, they will cancel each other out, so that the added value will be significantly smaller than the normal value.
[0016]
This failure section locating method pays attention to the added value that is significantly different between normal and failure, and can easily determine failure by determining failure when it falls within a predetermined range. it can. Further, it is possible to determine the dead pylons determined malfunction, between the operating tower not fault upstream from this inoperative tower as a failure period.
[0017]
Further, the determination of the failure by the added value can be made only by checking whether or not an overcurrent is flowing in advance, and only when the overcurrent is flowing. This is because it is not necessary to distinguish from the current value at normal time by checking whether the current is an overcurrent, and the conditions for the determination process can be easily determined.
Whether or not this overcurrent is present can be determined by examining whether or not the output values of the current sensors 11 and 12 exceed the current value that flows when the load is normal. Further, when a plurality of current sensors 11 and 12 are provided per one tower of one line, it is determined whether or not there is an overcurrent from the current values of the phase current sensors 11 and 12 for which the added value is obtained.
[0018]
Furthermore, the range of the added value when determining that there is a failure can be calculated from the ratio to the output values of the current sensors 11 and 12 (either one may be the average value of both). For example, by setting the ratio to 1/10 of the output value, a failure can be determined when the added value is 1/10 or less of the output value.
In addition, even when a one-line short circuit accident occurs in the second power transmission line, the failure section locating method can be applied in the same manner as described above.
Further, as shown in FIG. 6, even when a short-circuit accident occurs between phases, a current that flows backward to the failure point P is generated downstream from the failure point P, as in the case of the ground fault shown in FIG. The fault section can be determined by the same fault section location method.
[0019]
【Example】
Hereinafter, embodiments of a fault section location method and a fault section location system using the method according to the present invention will be described in detail with reference to FIGS.
2. As shown in FIG. 1, the failure section locating system includes slave stations 1 a, 1 b, which are provided in towers 4 a, 4 b, 4 c, which connect the first transmission line 31 and the second transmission line 32. 1c... And a master station 2 connected to these slave stations 1a, 1b, 1c.
[0020]
The slave station 1 includes current sensors 11 and 12 and an added value output unit 13 as shown in FIG. Each of the current sensors 11 and 12 is a magnetic sensor and is provided so as to be able to detect magnetism generated when a current flows through the first power transmission line 31 and the second power transmission line 32. Further, the current sensors 11 and 12 are adjusted in direction so as not to react to the magnetism generated from the power transmission lines 12 and 11 of the other line, and are provided with a magnetic shield.
The current sensors 11 and 12 are provided so as to detect magnetism generated from two phases of one line. This is because a sufficient output can be obtained even if a plurality of phases are detected at the same time, and a failure can be determined.
[0021]
The added value output unit 13 is an electronic circuit that amplifies the outputs of the current sensors 11 and 12 to a required size, adds them to generate an added value, and outputs the generated added value to the master station 2.
The slave station 1 and the master station 2 are connected by an arbitrary communication means. This communication means includes a wireless output means for transmitting using a wireless device such as a dedicated wireless device using a PHS telephone, a mobile phone and a wireless LAN device, and a wired output means for appropriately amplifying and outputting via an electric wire, an optical fiber, etc. It can be a means.
The power supply of the slave station 1 is not particularly limited and can be arbitrarily selected. Examples of this include a battery that is charged by a solar cell, a wind power generator, or the like, induced power from a transmission line, and the like.
The master station 2 is a computer that receives the added value transmitted from each slave station 1 and stores an electronic circuit for locating a failure section by this failure section locating method or a program for performing the locating.
[0022]
3. Usage method and effect of fault section location system In this fault section location system, each slave station 1a, 1b, 1c,... Detects the current value of each transmission line 31, 32 by its current sensor 11a,. The addition value is added by the addition value output unit 13 and transmitted to the master station 2.
The master station 2 determines whether each slave station 1 is an operating tower or a non-operating tower . If there is a non-operational tower , the upstream operation tower is searched and output between the operation tower and the non-operational tower found as a failure section.
[0023]
According to such a fault section location system, a fault point can be determined by using only a current sensor, and a voltage sensor, a current direction discriminating circuit, and the like are not required. Therefore, an inexpensive location apparatus can be manufactured. Further, even if the fault current waveform is deformed by a harmonic component such as noise generated at the fault location, the fault section can be easily determined.
[0024]
4). Slave station 1 of the slave station and the malfunction section locating system includes a current sensor in each phase, as shown in FIG. 7 is not limited to providing a single current sensor per line for each one tower, each one pylon A plurality of current sensors can be provided per line. For example, as shown in FIG. 8, current sensors 11A, 11B, and 11C are provided for the phases 31A, 31B, and 31C of the first power transmission line 31, and currents are provided for the phases 32A, 32B, and 32C of the second power transmission line 32. Sensors 12A, 12B, 12C can be provided.
[0025]
As described above, when a plurality of current sensors are provided for one line for each tower , an addition value is obtained for the current sensors 11 and 12 of both transmission lines 31 and 32 corresponding to the same phase, and a failure is determined.
In addition, by providing a plurality of current sensors per line for each steel tower, it is possible to determine which phase has failed.
[0026]
Furthermore, as shown in FIG. 9, two current sensors 11D and 11E (12D and 12E) can be provided so that the current of the transmission lines for two phases can be detected by one current sensor. The two current sensors 11D and 11E (12D and 12E) are provided so as to detect the phase B in an overlapping manner.
By performing such an arrangement, phase A is detected when a failure is detected only by current sensor 11D (12D), phase C is detected when a failure is detected only by current sensor 11E (12E), and current sensor 11D (12D). When a failure is detected by the current sensor 11E (12E), it can be determined that the phase is B or all phases, and a short circuit for each phase is determined with the same fineness as when a current sensor is provided for each phase. be able to.
[0027]
In addition, in this invention, it can be set as the Example variously changed within the range of this invention not only according to the said Example but according to the objective and the use. That is, although the current line sensor and the added value output unit of the power transmission line sensor are separate from each other, the added value output unit can be integrated with any of the current sensors. In such a slave station, the number of wirings and the number of installation operations are reduced, and the workability can be further improved. Further, the addition value output unit may be divided and provided in each current sensor.
Furthermore, in this fault section location system, the master station 2 and each slave station 1 are separate bodies, but the master station 2 may be provided in any one of the slave stations.
In addition, even in a line in which three or more transmission lines are provided on one transmission line tower, any two lines that perform power transmission in parallel are selected and the fault section location method and the fault section location system are selected. By applying, it is possible to specify a failure section including a short-circuit failure point.
[Brief description of the drawings]
FIG. 1 is a schematic diagram for explaining the configuration of the present fault section locating system.
FIG. 2 is a schematic diagram for explaining a transmission line with two lines in a normal state.
FIG. 3 is a graph for explaining an example of an output and an added value of a current sensor in a normal state.
FIG. 4 is a schematic diagram for explaining a two-line power transmission line at the time of a one-line short circuit accident.
FIG. 5 is a graph for explaining an example of an output and an added value of a current sensor at the time of a one-line short circuit accident.
FIG. 6 is a schematic diagram for explaining a two-line power transmission line at the time of a one-line short circuit accident.
FIG. 7 is a schematic diagram for explaining an example of a state in which a slave station is provided on a steel tower.
FIG. 8 is a schematic diagram for explaining an example of a state in which a current sensor is provided in each phase of a transmission line.
FIG. 9 is a schematic diagram for explaining an example of a state in which two current sensors are provided so that one phase of a power transmission line overlaps.
[Explanation of symbols]
1; slave station, 11; first current sensor, 12; second current sensor, 13; addition value output unit, 2; master station, 31; first transmission line, 32; second transmission line, 4; Upstream, 52; downstream, 53, 54; parallel connection points, 61, 62; short circuit current, P; failure point.

Claims (4)

複数の鉄塔に架線され並列して送電を行う2回線併設送電線路において、該鉄塔ごとに各回線につき少なくとも1つの電流センサを設け、
該電流センサの少なくとも1つの出力値が所定値を越える過電流を検出したときに、該各回線における該出力値の加算値が所定の範囲以下となる不動作鉄塔と、該不動作鉄塔より上流側であり該加算値が所定の範囲を超える動作鉄塔との間を故障区間と判定することを特徴とする故障区間標定方法。
In a two-line power transmission line that is connected to a plurality of towers and transmits power in parallel, at least one current sensor is provided for each line for each tower .
When at least one of the output value of said current sensor detects an overcurrent exceeding a predetermined value, a dead pylons sum value of the output values in the respective line is equal to or less than a predetermined range, upstream from said non operating tower The failure section locating method is characterized in that a failure section is determined between the moving tower and the operating tower whose added value exceeds a predetermined range.
上記両回線で且つ同じ相の上記電流センサの出力値が所定値を越える過電流を検出したときに上記標定を行う請求項1記載の故障区間標定方法。  The fault section locating method according to claim 1, wherein the locating is performed when an overcurrent is detected in which the output value of the current sensor in the same phase on both lines exceeds the predetermined value. 上記所定値は、同鉄塔の電流センサ出力に対する比率である請求項1又は2記載の故障区間標定方法。The fault section locating method according to claim 1 or 2, wherein the predetermined value is a ratio to the current sensor output of the tower . 複数の鉄塔に架線され並列して送電を行う2回線併設送電線路において、親局と該鉄塔ごとに設けられた子局とを備え、該子局は各回線につき少なくとも1つ設けられる電流センサと、各該回線の該電流センサの出力を加算した加算値を少なくとも出力する加算値出力部を備え、該親局は該子局から出力された加算値を受信して故障区間の標定を行う故障区間標定部を備え、
該故障区間標定部は、該電流センサの少なくとも1つの出力値が所定値を越える過電流を検出し、且つ該出力値の加算値が所定の範囲以下となる不動作鉄塔の該子局と、該動作鉄塔より上流側であり該加算値が所定の範囲を超える動作鉄塔の該子局との間を故障区間と判定することを特徴とする故障区間標定システム。
In a two-line transmission line that is connected to a plurality of towers and transmits power in parallel, the transmission line includes a master station and a slave station provided for each of the towers, and the slave station includes at least one current sensor provided for each line ; , and an addition value output unit for at least outputting an added value obtained by adding the output of the current sensor of the該回lines, parent station performs locating fault sections by receiving the added value output from the child station It has a fault section location part,
The failure section locating unit detects an overcurrent in which at least one output value of the current sensor exceeds a predetermined value, and the slave station of the non-operating tower in which the sum of the output values is equal to or less than a predetermined range; fault section locating system, characterized in that said sum value is upstream from said inoperative tower is determined that the failure interval between the child station operation pylons exceeds a predetermined range.
JP2002108273A 2002-04-10 2002-04-10 Failure section locating method and failure section locating system Expired - Fee Related JP4284030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002108273A JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002108273A JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Publications (2)

Publication Number Publication Date
JP2003302440A JP2003302440A (en) 2003-10-24
JP4284030B2 true JP4284030B2 (en) 2009-06-24

Family

ID=29392093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002108273A Expired - Fee Related JP4284030B2 (en) 2002-04-10 2002-04-10 Failure section locating method and failure section locating system

Country Status (1)

Country Link
JP (1) JP4284030B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017212730A1 (en) 2017-07-25 2019-01-31 Siemens Aktiengesellschaft Method and device for fault location along a power supply line in DC systems
CN112505475B (en) * 2020-11-10 2023-09-12 广西电网有限责任公司河池供电局 Low-cost non-contact type overhead transmission line fault interval positioning method and system

Also Published As

Publication number Publication date
JP2003302440A (en) 2003-10-24

Similar Documents

Publication Publication Date Title
CN100536272C (en) Bus bar current detecting apparatus
KR20120093444A (en) Current sensor with a self-test function
JP4942968B2 (en) Fault section locating method and locating apparatus for transmission and distribution lines
JP4284030B2 (en) Failure section locating method and failure section locating system
JP2005257679A (en) Lightning strike and accident position detector in worked transmission line
WO2017150618A1 (en) Collected current monitoring device
CN110231539B (en) Single-pole ground fault detection system for true bipolar direct current transmission and distribution line
SE1550489A1 (en) Method and arrangement for locating short circuits in energy supply systems
JP2002162423A (en) Device for current detection of power transmission/ distribution line and for analysis of electrical conditions thereof
JP2021081240A (en) Electric signal detector
CN105425113A (en) Method and system for fault positioning of contact net
JP4104341B2 (en) Accident location system
JP2003172758A (en) Lightning strike detection section orientation method by transmission line failure section detection system
JP4406143B2 (en) Protective relay device for DC transmission system
JP4121979B2 (en) Non-grounded circuit insulation monitoring method and apparatus
JP2004233255A (en) Disconnection detecting system of distribution line
JP3649660B2 (en) Leakage current exploration device
JP2022084088A (en) Rail breakage detection device and rail breakage detection method
JP6764732B2 (en) Railroad vehicle ground fault detection system
JP3026055B2 (en) Transmission line accident aspect identification method and device
JP2008534344A (en) Protection system
JP2012135150A (en) Digital protective relay device
JP3503491B2 (en) Ground fault fault locating device for two parallel transmission lines
KR102003947B1 (en) Abnormal condition diagnosis system of bolt combination portion
JP2866172B2 (en) Transmission line fault direction locating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050324

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080603

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080715

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080715

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090323

R150 Certificate of patent or registration of utility model

Ref document number: 4284030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees