JP4283372B2 - Grinding equipment - Google Patents

Grinding equipment Download PDF

Info

Publication number
JP4283372B2
JP4283372B2 JP10220199A JP10220199A JP4283372B2 JP 4283372 B2 JP4283372 B2 JP 4283372B2 JP 10220199 A JP10220199 A JP 10220199A JP 10220199 A JP10220199 A JP 10220199A JP 4283372 B2 JP4283372 B2 JP 4283372B2
Authority
JP
Japan
Prior art keywords
grinding
groove
flanges
grinding fluid
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10220199A
Other languages
Japanese (ja)
Other versions
JP2000288931A (en
Inventor
明男 福沢
友彦 中西
芳康 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Soken Inc
Original Assignee
Denso Corp
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Nippon Soken Inc filed Critical Denso Corp
Priority to JP10220199A priority Critical patent/JP4283372B2/en
Publication of JP2000288931A publication Critical patent/JP2000288931A/en
Application granted granted Critical
Publication of JP4283372B2 publication Critical patent/JP4283372B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、押出成形用金型等の細溝を研削加工する際に使用される研削装置に関し、詳しくは、砥石に研削液を供給する研削液供給機構を有する研削装置に関するものである。
【0002】
【従来の技術】
研削砥石によって押出成形用金型等の溝加工を行う場合には、通常、砥石の冷却や加工屑を排除する目的で、砥石と加工物が接する加工部位に研削液を供給しながら研削を行っている。図6は研削液を供給する一般的な方法を示すもので、砥石91を支持するフランジ93、94の外側に研削液供給ノズル92を開口し、該ノズル92より砥石91の両側面に向けて研削液を噴出させて、加工部位に吹き付けるようにしている。
【0003】
上記従来の方法は、砥石91が厚く十分強度がある場合には有効であったが、0.5mm程度以下の細溝を加工する場合には、砥石91も0.5mm程度以下に薄くなるために強度が低下し、高圧で研削液を吹き付けると砥石91が撓んで加工が困難になる。これを回避するには、研削液の供給圧力を下げる必要があるが、加工中の砥石軸は約6000rpmで回転しているため、砥石91の側面に図6に示すような空気流が発生し、これに阻まれて、研削液が砥石91表面に達しにくくなる問題があった。
【0004】
一方、実開平3−109765号公報には、図7に示すように、砥石91を挟持するフランジ93、94と砥石91とで液溜95が形成されるよう、砥石保持面93a、94aに、リング状の凹部93b、94bを形成し、さらに凹部93b、94bの内周側に液溜95に研削液を供給するための連通穴96を、外周側に液溜95より外方に研削液を吐出するための複数の溝部97を設けた砥石フランジが提案されている。この砥石フランジでは、砥石軸98内部の供給路98aから連通穴96、液溜95、溝部97を経て、砥石1側面に直接研削液が供給されるために、外部に研削液供給ノズルを有する上記従来の方法のような空気流の問題は生じない。
【0005】
【発明が解決しようとする課題】
しかしながら、上記砥石フランジは、液溜95を形成するために砥石保持面93a、94aの両面にリング状の凹部93b、94bを形成しており、この部分において砥石91が無拘束となっている(図中に×印で示す部分91a)。このように広い範囲で砥石91の無拘束部分91aが存在する砥石フランジを、0.5mm以下、例えば、数10μm程度の細溝加工に適用した場合、砥石91を十分支持することができず、研削液の圧力で砥石91がバラバラに割れてしまうおそれがある。また、割れた砥石91が研削液吐出用の溝部97を塞ぎ、洗浄力の低下を招くばかりか、砥石91の破片が加工部位へ運ばれ、砥石割れの原因になる。
【0006】
また、図7の構成では、先端がテーパ状の砥石軸98を使用し、該テーパ部内に液溜95へ研削液を供給するための供給路98aを形成しているが、砥石軸98に直接穴加工が施されているため、機械本体への穴加工による軸精度不良や剛性力低下等の問題が生じるおそれがある。
【0007】
そこで、本発明は、細溝研削用の薄い研削砥石を使用した場合でも砥石割れを生じることがなく、加工部位へ確実に研削液を供給して、研削砥石の目詰まりや研削焼けを防止し、0.5ミリ程度以下の細溝研削を可能にすること、また、砥石軸の軸精度不良や剛性力低下を防止することの可能な研削装置の実現を目的とするものである。
【0008】
【課題を解決するための手段】
請求項1の構成における研削装置は、回転駆動される軸部材の先端部外周に一対のフランジを装着して、該一対のフランジ間に研削砥石を挟持し、上記一対のフランジに研削液供給用の通路を設けてなる。上記一対のフランジの、上記研削砥石を支持する両支持面には、それぞれ上記通路として内周縁から外周縁に至る複数の溝部が放射状に設けてあり、上記軸部材の先端部外周に複数の軸方向に延びる研削液供給溝を形成して、上記両支持面の上記複数の溝部に連通させ、かつ、上記軸部材の先端部外周に、上記複数の研削液供給溝の流れ方向の先端部を互いに連通する周方向の溝を形成して、該周方向の溝により上記一対のフランジの両支持面への通液バランスを保つ構成としている。
【0009】
上記構成によれば、研削液供給用の複数の溝部を放射状に設けた上記一対のフランジの両支持面間に上記研削砥石を支持しており、従来のように広い範囲で砥石の未拘束部分を形成せずに、上記フランジ内に研削液供給用の通路を設けることができる。よって、砥石の割れを防止しつつ加工部位に確実に研削液を供給して、0.5ミリ程度以下の細溝研削を効率よく行い、加工品質、加工精度および加工速度を向上させることができる。また、上記複数の溝部には、上記軸部材の外周に軸方向に設けた複数の研削液供給溝から研削液を供給するようにしたので、砥石軸内部に穴加工等を施す必要がなく、軸精度や剛性力の低下を防止することができる。
また、上記軸部材の先端部外周に、上記複数の研削液供給溝の流れ方向の先端部を互いに連通する周方向の溝を形成したので、この周方向の溝の幅を適切に調整することで、上記研削液供給溝から上記一対のフランジの両支持面に供給される研削液の通液バランスを良好に保って、両支持面間に保持される上記研削砥石の両側面に均等に研削液を供給することができる。
【0010】
請求項2の構成では、上記複数の研削液供給溝を、上記軸部材の回転力を受ける研削液の流れ方向と一致するように、軸方向に対し斜めに形成し、上記複数の溝部は、外周端部を細く絞り込んだ形状とする。
【0011】
請求項3の構成では、上記一対のフランジの上記両支持面に、上記複数の溝部を互いに連通する環状溝を形成する。これにより、上記複数の溝部を流れる研削液の圧力を一定として、上記複数の溝部の端部から研削液が均等に噴出されるようにすることができる。
【0012】
請求項4の構成では、上記フランジから突出する上記軸部材の先端に、内部を上記研削液供給溝に連通する研削液供給路とする筒状部材を装着する。このようにして、上記研削液供給路から上記軸部材外周の上記研削液供給溝に研削液を容易に供給することができる。
【0013】
【発明の実施の形態】
以下、本発明の一実施の形態を図面に基づいて詳細に説明する。図1(a)は本発明の研削装置の全体構成図、図1(b)はその分解図である。図1(a)において、図略の駆動源に連結される砥石軸1には軸部材たるシャフト2が同軸状に設けられて、一体に回転駆動されるようになしてある。該シャフト2の先端部(図の左端部)外周には、一対のフランジたるフロントフランジ3、リヤフランジ4が装着してあり、これらフランジ3、4間に研削砥石5が挟持してある。
【0014】
シャフト2の基端(図の右端)に設けたフランジ21と、リヤフランジ4の間には、筒状のスペーサ部材22が介設され、フロントフランジ3の左方に突出するシャフト2の先端(図の左端)23には、内部を研削液の供給路63とする筒状部材6が装着してある。筒状部材6は、図1(b)のように、内周にねじ部61aを有する筒状の締結部材61と、その左端側に配設され右端部にねじ部62aを有する筒状のベアリングホルダ62とからなる。一方、シャフト2の先端23外周には、これらに対応するねじ部23a、23bが形成してあり、シャフト2にスペーサ部材22を介してリヤフランジ4、フロントフランジ3を順に嵌着し、フロントフランジ3より突出する上記先端23に、上記締結部材61とベアリングホルダ62を順に螺挿することで締付け固定されるようになしてある。
【0015】
研削砥石5を保持するフロントフランジ3、リヤフランジ4の両支持面31、41には、図2(a)〜(c)に示すように、内周縁から外周縁に至る多数の溝部32、42が、ほぼ等間隔で放射状に設けられて、研削砥石5の側面に研削液を供給する通路を形成している。これら溝部32、42の外周端部32a、42aは溝幅をやや小さく形成してあって、絞り効果により研削液が高圧で噴出するようにしてある。また、各支持面31、41には、複数の環状溝33、43が設けられており、多数の溝部32、42間をそれぞれ連通している。この環状溝33、43は、溝部32、42を流れる研削液の圧力を一定にするためのもので、溝部32、42と同幅に形成される。ここでは、各支持面31、41に2つの溝部32、42を形成しているが、必ずしもこれに限るものではなく、研削液の圧力を一定にすることが可能であれば、単数としてもよい。研削液としては、通常、水溶性の液が使用される。
【0016】
なお、一般に知られるように、研削砥石5を、フランジ3、4の支持面31、41の全体で保持固定しようとすると、フランジ3、4の先端が開いてしまい、砥石保持力が低下してしまう。このため、通常、砥石支持面31、41の中央部を外周部に対し僅かに凹陥させる逃がし加工を行うが、本発明のような細溝研削では研削砥石5が薄く(0.5mm程度以下)、強度が低いため、逃がし量が多いとフランジ3、4間を通る研削液の圧力で、逃がし部の砥石が割れてしまう。これを避けるための適当な逃がし量として、本実施の形態では、各支持面31、41において、外周側の環状溝33、43より内側の表面を0.02mm程度、逃がし加工することによってこれを防止している。
【0017】
図3(a)、(b)に示すように、シャフト2の先端部(左端部)外周には、軸方向に延びる多数の研削液供給溝24が形成してあり、その外周に装着されるフランジ3、4の多数の溝部32、42に連通して、これら溝部32、42に研削液を供給するようになしてある。各研削液供給溝24は、シャフト2の回転力を受ける研削液の流れ方向と一致するように、軸方向に対しやや斜めに形成されている。これにより、シャフト2の回転に伴い、多数の研削液供給溝24のそれぞれにスムーズに研削液が吸入され、研削液の供給が良好になされる。
【0018】
また、研削液供給溝24の流れ方向の端部において、シャフト2の外周に周方向の溝25を形成して、該溝25により各研削液供給溝24を互いに連通するようにしている。この溝25は、フロントフランジ3とリヤフランジ4の通液バランスを保つためのものであり、この溝25がないと約2:1の割合でフロントフランジ3側の通液量が多くなるが、溝25を設けることによってリヤフランジ4側の通液量を増すことができ、研削液供給溝24と溝25の幅を調整することによって通液バランスを良好に保つことができる。
【0019】
図1(b)において、筒状部材6の締結部材61は、右端面に環状溝61bを有するとともに、左右端面間を連通する貫通穴61cを有している。また、ベアリングホルダ62は内部の液溜まり62dと右端面の環状溝62bを連通する貫通穴62cを有しており、液溜まり62dと、ベアリング64が嵌着される凹部62eとは貫通穴62fで連通している。かくして、これら締結部材61およびベアリングホルダ62を、シャフト2の先端23にねじ固定すると、貫通穴62f、液溜まり62d、貫通穴62c、環状溝62b、貫通穴61c、環状溝61bにて、図1(a)に示す研削液供給路63が形成される。ベアリング64に嵌着されるホースジョイント65には、研削液供給ポンプ7に連通するホース71が接続してある。
【0020】
この時、好ましくは、図5(a)に示すように、研削液供給ポンプ7に接続されるホース71の途中に、研削液濾過用のフィルター8を配設するとよい。研削液濾過用のフィルター8としては、図5(b)に示すように、カートリッジ式の容器81内にフィルター82を内蔵する公知のワインドカートリッジフィルターを用いることができ、研削液を循環使用する場合に、タンク内の研削液に混入する研削加工時の切り粉、砥粒をフィルター8で濾過した後に、研削装置に供給することができる。
【0021】
上記構成の研削装置において、ポンプ7から供給される研削液は、研削液供給路63を経て、シャフト2外周の研削液供給溝24に供給される。ここで、図1(b)のように、フロントフランジ3の左端面には、締結部材61の環状溝61bに対向する環状溝3aが形成されており、研削液供給路63を通過した研削液は、この環状溝3aから研削液供給溝24へ流入し、さらに、フランジ3、4の溝部31、41へ供給される。研削液は、図4(a)〜(c)に示すように、砥石軸1の回転による遠心力によって外方に移動し、フランジ3、4の外周縁より研削砥石5の側面に沿って噴出する。
【0022】
上記構成によれば、フランジ3、4の両支持面31、41に研削液供給用の多数の溝部32、42を均等に設けて、広い面積で砥石の未拘束部分が存在しないようにしたので、研削砥石5が0.5mm程度以下と薄い場合でも、研削砥石5に割れや撓みが生じることがない。また、両支持面31、41の溝部32、42に、シャフト2外周の研削液供給溝24を連通させるとともに、周方向の溝25を設けたことで、両支持面31、41にバランスよく研削液を供給することができる。さらに、フランジ3、4の溝部32、42をそれぞれ連通する環状溝33、43を設けて、複数の溝部32、42が同圧になるようにしたので、フランジ3の溝部31およびフランジ4の溝部41へ均等に研削液が流入する。
【0023】
これにより、図4(c)のように、フランジ3、4の内部から研削砥石5の両側面に沿って研削液を均等にかつ高圧で噴出させることができる。研削砥石5の一方の側面の通液量が他方より少ないと、砥石側面の目詰まりが増殖されて、切削抵抗バランスが崩れ、砥石は抵抗の少ない方へ進もうとするために溝の曲がりや、砥石の割れが発生するおそれがあるが、本発明の構成とすることでこれを防止し、加工精度を高めることができる。また、研削部位へ確実に研削液を供給することができるので、研削砥石5の目詰まりや研削焼けを防止することができ、0.5mm程度以下の細溝加工を良好に行うことができる。また、多数の溝部32、42の外周端部32a、42aを細く絞り込んだ形状としたのでより強い液圧が得られ、洗浄、冷却効果が向上し、研削砥石5の側面に沿って研削液が高圧で供給されるので、研削液の動圧効果で砥石強度が向上する。さらに、研削液供給溝24をシャフト2の外周に設けており、穴加工を施す必要がないので、軸精度の不良や剛性力の低下を防止することができる。
【0024】
次に、上記構成の研削装置を使用して、実際に細溝加工を行った。研削装置の研削砥石5の幅0.06mm、フランジ3、4からの研削砥石5の突き出し量3mmとし、加工時の砥石回転数6000rpm、砥石周速1885mm/min、水溶性の研削液を使用して、溝幅0.06mm、溝深さ2.3mmの細溝加工を実施した。加工する金型の材質はSKD−61とした。
【0025】
まず、細溝加工に先立って、研削液供給溝24と溝25の溝幅の調整を行った。調整は、両フランジ3、4に研削砥石5を挟持させた状態で、通水テストを行い、フロントフランジ3側の通水量が多い場合には研削液供給溝24の幅を広げ、逆の場合には溝25の幅を広げて、フロントフランジ3とリヤフランジ4の通水量のバランスが取りながら溝幅の調整を行った。なお、通液バランスの確認方法は、両フランジ3、4に研削砥石5を挟持させた状態で、円周方向にフランジの片側を5度程度ずらし、両フランジ3、4の溝が交互に並ぶ形として、その際の水柱の高さを目視で確認した。
【0026】
その後、上記条件で細溝加工を実施したところ、研削部位へ良好に研削液が供給され、目詰まりや焼き付き、砥石の割れ等の不具合を生じることなく、細溝加工を行うことができた。以上のように、本発明の研削装置によれば、砥石軸への穴加工を行うことなく両フランジ3、4へバランスよく通水することが可能であり、砥石軸強度を確保し、砥石割れを防止しつつ、従来不可能であった数10μm程度の細溝の研削が可能である。
【図面の簡単な説明】
【図1】(a)は本発明の研削装置の全体構成図、(b)はその分解図である。
【図2】(a)はフランジの支持面側の正面図、(b)はフランジの側面断面図で(a)のA−A線断面図、(c)はフランジの側面断面図で(a)のB−B線断面図である。
【図3】(a)はシャフトの正面図、(b)はシャフトの側面図である。
【図4】(a)は本発明の研削装置に研削液濾過用フィルタを取り付けた構成を示す図、(b)は研削液濾過用フィルタの概略構成図である。
【図5】本発明の研削装置の作動を説明するための図で、(a)はフランジへの通液状態を示す部分断面図、(b)はフランジからの研削液の噴出状態を示す図、(c)は研削砥石側面への研削液の供給状態を示す図である。
【図6】従来の研削装置の研削液の供給状態を示す図である。
【図7】従来の研削装置の全体構成図である。
【符号の説明】
1 砥石軸
2 シャフト(軸部材)
23 先端
24 研削液供給溝
25 周方向の溝
3、4 一対のフランジ
31、41 支持面
32、42 複数の溝部
5 研削砥石
6 筒状部材
61 締結部材
62 ベアリングホルダ
63 研削液供給路
7 研削液供給ポンプ
8 研削液濾過用フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a grinding device used when grinding a narrow groove such as an extrusion mold, and more particularly to a grinding device having a grinding fluid supply mechanism for supplying a grinding fluid to a grindstone.
[0002]
[Prior art]
When a grinding wheel is used to form a groove in an extrusion mold or the like, grinding is usually performed while supplying the grinding liquid to the processing area where the grinding wheel and workpiece are in contact with each other in order to cool the grinding wheel or eliminate processing waste. ing. FIG. 6 shows a general method of supplying the grinding fluid. A grinding fluid supply nozzle 92 is opened outside the flanges 93 and 94 for supporting the grinding wheel 91, and the nozzle 92 is directed toward both sides of the grinding stone 91. Grinding fluid is ejected and sprayed onto the processing site.
[0003]
The above conventional method was effective when the grindstone 91 was thick and sufficiently strong, but the grindstone 91 was also thinned to about 0.5 mm or less when processing a narrow groove of about 0.5 mm or less. However, when the grinding liquid is sprayed at a high pressure, the grindstone 91 is bent and the processing becomes difficult. In order to avoid this, it is necessary to lower the supply pressure of the grinding fluid, but since the grinding wheel shaft being rotated is rotating at about 6000 rpm, an air flow as shown in FIG. This prevents the grinding liquid from reaching the surface of the grindstone 91.
[0004]
On the other hand, in Japanese Utility Model Laid-Open No. 3-109765, as shown in FIG. 7, the grindstone holding surfaces 93a and 94a are formed so that a liquid reservoir 95 is formed by the flanges 93 and 94 sandwiching the grindstone 91 and the grindstone 91. Ring-shaped recesses 93b and 94b are formed, and further, a communication hole 96 for supplying the grinding liquid to the liquid reservoir 95 is provided on the inner peripheral side of the concave portions 93b and 94b, and the grinding liquid is supplied outward from the liquid reservoir 95 on the outer peripheral side. A grindstone flange provided with a plurality of grooves 97 for discharging has been proposed. In this grinding wheel flange, the grinding fluid is directly supplied to the side surface of the grinding stone 1 from the supply path 98a inside the grinding wheel shaft 98 through the communication hole 96, the liquid reservoir 95, and the groove 97. There is no air flow problem as in conventional methods.
[0005]
[Problems to be solved by the invention]
However, the grindstone flange has ring-shaped recesses 93b and 94b formed on both surfaces of the grindstone holding surfaces 93a and 94a in order to form the liquid reservoir 95, and the grindstone 91 is unconstrained in this portion ( A portion 91a) indicated by a cross in the figure. When the grindstone flange in which the unconstrained portion 91a of the grindstone 91 exists in such a wide range is applied to narrow groove processing of 0.5 mm or less, for example, about several tens of μm, the grindstone 91 cannot be sufficiently supported, The grindstone 91 may be broken apart by the pressure of the grinding fluid. In addition, the broken grindstone 91 closes the groove 97 for discharging the grinding liquid, leading to a decrease in cleaning power, and the debris of the grindstone 91 is carried to the processing site, causing cracks in the grindstone.
[0006]
In the configuration of FIG. 7, a grindstone shaft 98 having a tapered tip is used, and a supply path 98 a for supplying the grinding liquid to the liquid reservoir 95 is formed in the tapered portion. Since drilling is performed, problems such as poor shaft accuracy and reduced rigidity due to drilling in the machine body may occur.
[0007]
Therefore, the present invention does not cause grinding wheel cracks even when a thin grinding wheel for fine groove grinding is used, and reliably supplies the grinding fluid to the machining site to prevent clogging or grinding burn of the grinding wheel. The purpose of the present invention is to realize a grinding apparatus that enables fine groove grinding of about 0.5 mm or less and prevents the shaft accuracy of the grindstone shaft from being deteriorated and the rigidity of the grindstone is reduced.
[0008]
[Means for Solving the Problems]
The grinding apparatus according to claim 1 has a pair of flanges mounted on the outer periphery of the tip of the shaft member that is rotationally driven, a grinding wheel is sandwiched between the pair of flanges, and a grinding fluid is supplied to the pair of flanges. The passage is provided. The pair of flanges, on both the support surface for supporting the grinding wheel, a plurality of grooves extending in the outer periphery from the inner periphery to the said passage, each is provided with radially plurality tip outer periphery of the shaft member A grinding fluid supply groove extending in the axial direction is formed, communicated with the plurality of groove portions of the both support surfaces, and the tip in the flow direction of the plurality of grinding fluid supply grooves on the outer periphery of the distal end portion of the shaft member A circumferential groove that communicates with each other is formed, and the circumferential groove keeps the liquid flow balance to both support surfaces of the pair of flanges .
[0009]
According to the above configuration, the grinding wheel is supported between the two support surfaces of the pair of flanges provided with a plurality of grooves for supplying the grinding fluid in a radial manner. Without forming the groove, a passage for supplying a grinding fluid can be provided in the flange. Therefore, it is possible to reliably supply the grinding fluid to the processing site while preventing the grinding of the grindstone, efficiently perform the fine groove grinding of about 0.5 mm or less, and improve the processing quality, processing accuracy and processing speed. . In addition, since the grinding fluid is supplied to the plurality of grooves from the plurality of grinding fluid supply grooves provided in the axial direction on the outer periphery of the shaft member, it is not necessary to perform drilling or the like inside the grinding wheel shaft. A reduction in shaft accuracy and rigidity can be prevented.
Moreover, since the circumferential groove | channel which connects the flow direction front-end | tip part of these grinding fluid supply groove | channels mutually was formed in the front-end | tip part outer periphery of the said shaft member, adjusting the width | variety of this circumferential groove | channel appropriately The grinding fluid supplied from the grinding fluid supply groove to the two support surfaces of the pair of flanges is maintained in a good balance, and grinding is evenly performed on both side surfaces of the grinding wheel held between the support surfaces. Liquid can be supplied.
[0010]
In the configuration of claim 2, the plurality of grinding fluid supply grooves are formed obliquely with respect to the axial direction so as to coincide with the flow direction of the grinding fluid that receives the rotational force of the shaft member , The outer peripheral end is narrowed down .
[0011]
According to a third aspect of the present invention, an annular groove that communicates the plurality of groove portions with each other is formed on both the support surfaces of the pair of flanges. Thereby, the pressure of the grinding fluid flowing through the plurality of grooves can be kept constant, and the grinding fluid can be ejected from the ends of the plurality of grooves evenly.
[0012]
According to a fourth aspect of the present invention, a cylindrical member having a grinding fluid supply path communicating with the grinding fluid supply groove is attached to the tip of the shaft member protruding from the flange. In this way, the grinding liquid can be easily supplied from the grinding liquid supply path to the grinding liquid supply groove on the outer periphery of the shaft member.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1A is an overall configuration diagram of the grinding apparatus of the present invention, and FIG. 1B is an exploded view thereof. In FIG. 1A, a grindstone shaft 1 connected to a drive source (not shown) is provided with a shaft 2 as a shaft member so as to be integrally rotated. A front flange 3 and a rear flange 4 as a pair of flanges are mounted on the outer periphery of the tip portion (left end portion in the figure) of the shaft 2, and a grinding wheel 5 is sandwiched between the flanges 3 and 4.
[0014]
A cylindrical spacer member 22 is interposed between the flange 21 provided at the base end (right end in the drawing) of the shaft 2 and the rear flange 4, and the tip end of the shaft 2 protruding to the left of the front flange 3 ( At the left end (23 in the figure), a cylindrical member 6 having the inside as a grinding fluid supply path 63 is mounted. As shown in FIG. 1B, the cylindrical member 6 includes a cylindrical fastening member 61 having a threaded portion 61a on the inner periphery, and a cylindrical bearing having a threaded portion 62a disposed on the left end side thereof. It consists of a holder 62. On the other hand, threaded portions 23a and 23b corresponding to these are formed on the outer periphery of the tip 23 of the shaft 2, and the rear flange 4 and the front flange 3 are sequentially fitted to the shaft 2 via the spacer member 22, and the front flange is fitted. The fastening member 61 and the bearing holder 62 are sequentially screwed into the tip 23 protruding from 3 to be fastened and fixed.
[0015]
As shown in FIGS. 2 (a) to 2 (c), a large number of grooves 32, 42 extending from the inner peripheral edge to the outer peripheral edge are formed on both the support surfaces 31, 41 of the front flange 3 and the rear flange 4 that hold the grinding wheel 5. However, they are provided radially at substantially equal intervals to form a passage for supplying the grinding liquid to the side surface of the grinding wheel 5. The outer peripheral end portions 32a and 42a of the groove portions 32 and 42 are formed so as to have a slightly narrow groove width, so that the grinding liquid is ejected at a high pressure by a drawing effect. Each support surface 31, 41 is provided with a plurality of annular grooves 33, 43, and communicates between the plurality of groove portions 32, 42. The annular grooves 33 and 43 are for making the pressure of the grinding fluid flowing through the groove portions 32 and 42 constant, and are formed to have the same width as the groove portions 32 and 42. Here, the two groove portions 32 and 42 are formed on the respective support surfaces 31 and 41, but the present invention is not necessarily limited thereto, and may be singular as long as the pressure of the grinding fluid can be made constant. . As the grinding liquid, a water-soluble liquid is usually used.
[0016]
As is generally known, when the grinding wheel 5 is held and fixed by the entire support surfaces 31 and 41 of the flanges 3 and 4, the ends of the flanges 3 and 4 are opened, and the holding power of the grinding wheel is reduced. End up. For this reason, usually, relief processing is performed in which the central portions of the grindstone support surfaces 31 and 41 are slightly recessed with respect to the outer peripheral portion. However, in the fine groove grinding as in the present invention, the grinding stone 5 is thin (about 0.5 mm or less). Since the strength is low, if the escape amount is large, the grindstone at the relief portion is broken by the pressure of the grinding fluid passing between the flanges 3 and 4. As an appropriate escape amount for avoiding this, in the present embodiment, in each of the support surfaces 31, 41, the inner surface of the annular grooves 33, 43 on the outer peripheral side is escaped by about 0.02 mm. It is preventing.
[0017]
As shown in FIGS. 3A and 3B, a large number of grinding fluid supply grooves 24 extending in the axial direction are formed on the outer periphery of the tip portion (left end portion) of the shaft 2 and are attached to the outer periphery thereof. The grooves 3 and 4 are communicated with a large number of grooves 32 and 42 so that a grinding fluid is supplied to these grooves 32 and 42. Each grinding fluid supply groove 24 is formed slightly oblique to the axial direction so as to coincide with the flow direction of the grinding fluid that receives the rotational force of the shaft 2. As a result, as the shaft 2 rotates, the grinding fluid is smoothly sucked into each of the numerous grinding fluid supply grooves 24, so that the grinding fluid can be supplied satisfactorily.
[0018]
Further, a circumferential groove 25 is formed on the outer periphery of the shaft 2 at the end of the grinding liquid supply groove 24 in the flow direction, and the respective grinding liquid supply grooves 24 are communicated with each other by the groove 25. The groove 25 is for maintaining the fluid flow balance between the front flange 3 and the rear flange 4. Without the groove 25, the liquid flow rate on the front flange 3 side increases at a ratio of about 2: 1. Providing the groove 25 can increase the amount of liquid passing on the rear flange 4 side, and adjusting the width of the grinding liquid supply groove 24 and the groove 25 can maintain a good liquid flow balance.
[0019]
In FIG.1 (b), the fastening member 61 of the cylindrical member 6 has the annular groove 61b in the right end surface, and has the through-hole 61c which connects between right-and-left end surfaces. The bearing holder 62 has a through hole 62c that communicates with the internal liquid reservoir 62d and the annular groove 62b on the right end surface. The liquid reservoir 62d and the recess 62e to which the bearing 64 is fitted are a through hole 62f. Communicate. Thus, when the fastening member 61 and the bearing holder 62 are screwed to the tip 23 of the shaft 2, the through hole 62f, the liquid reservoir 62d, the through hole 62c, the annular groove 62b, the through hole 61c, and the annular groove 61b are used as shown in FIG. A grinding fluid supply path 63 shown in FIG. A hose 71 connected to the grinding fluid supply pump 7 is connected to the hose joint 65 fitted to the bearing 64.
[0020]
At this time, preferably, as shown in FIG. 5A, a filter 8 for filtering the grinding fluid is disposed in the middle of the hose 71 connected to the grinding fluid supply pump 7. As the filter 8 for grinding fluid filtration, as shown in FIG. 5B, a known wind cartridge filter having a filter 82 built in a cartridge-type container 81 can be used, and the grinding fluid is circulated and used. In addition, the chips and abrasive grains in the grinding process mixed in the grinding liquid in the tank can be supplied to the grinding apparatus after being filtered by the filter 8.
[0021]
In the grinding apparatus having the above configuration, the grinding fluid supplied from the pump 7 is supplied to the grinding fluid supply groove 24 on the outer periphery of the shaft 2 through the grinding fluid supply path 63. Here, as shown in FIG. 1B, an annular groove 3 a facing the annular groove 61 b of the fastening member 61 is formed on the left end surface of the front flange 3, and the grinding fluid that has passed through the grinding fluid supply path 63. Flows into the grinding fluid supply groove 24 from the annular groove 3a and is further supplied to the groove portions 31, 41 of the flanges 3, 4. As shown in FIGS. 4 (a) to 4 (c), the grinding fluid moves outward by centrifugal force due to the rotation of the grinding wheel shaft 1, and is ejected from the outer peripheral edges of the flanges 3 and 4 along the side surface of the grinding stone 5. To do.
[0022]
According to the above configuration, the grooves 32 and 42 for supplying the grinding fluid are evenly provided on the support surfaces 31 and 41 of the flanges 3 and 4 so that there is no unconstrained portion of the grindstone in a wide area. Even when the grinding wheel 5 is as thin as about 0.5 mm or less, the grinding wheel 5 is not cracked or bent. Further, the grinding liquid supply groove 24 on the outer periphery of the shaft 2 is communicated with the groove portions 32 and 42 of the both support surfaces 31 and 41, and the circumferential grooves 25 are provided so that both the support surfaces 31 and 41 are ground in a balanced manner. Liquid can be supplied. Furthermore, since the annular grooves 33 and 43 that respectively communicate the groove portions 32 and 42 of the flanges 3 and 4 are provided so that the plurality of groove portions 32 and 42 have the same pressure, the groove portion 31 of the flange 3 and the groove portion of the flange 4 are provided. The grinding fluid flows evenly into 41.
[0023]
As a result, as shown in FIG. 4C, the grinding liquid can be ejected from the inside of the flanges 3 and 4 along both side surfaces of the grinding wheel 5 evenly and at a high pressure. If the amount of liquid passing through one side of the grinding wheel 5 is less than the other, clogging of the side of the grinding wheel will increase, the cutting resistance balance will be lost, and the grinding wheel will move to the side with less resistance. Although there is a possibility that the grinding stone is cracked, the configuration of the present invention can prevent this and increase the processing accuracy. Further, since the grinding liquid can be reliably supplied to the grinding site, clogging and grinding burn of the grinding wheel 5 can be prevented, and fine groove processing of about 0.5 mm or less can be performed satisfactorily. In addition, since the outer peripheral end portions 32a and 42a of the large number of groove portions 32 and 42 are narrowed down, a stronger hydraulic pressure is obtained, the cleaning and cooling effect is improved, and the grinding fluid flows along the side surface of the grinding wheel 5 Since it is supplied at a high pressure, the grinding wheel strength is improved by the dynamic pressure effect of the grinding fluid. Furthermore, since the grinding fluid supply groove 24 is provided on the outer periphery of the shaft 2 and it is not necessary to perform drilling, it is possible to prevent the shaft accuracy from being poor and the rigidity force from being lowered.
[0024]
Next, using the grinding apparatus having the above-described configuration, a narrow groove was actually processed. The width of the grinding wheel 5 of the grinding device is 0.06 mm, the protruding amount of the grinding wheel 5 from the flanges 3 and 4 is 3 mm, the grinding wheel rotation speed is 6000 rpm, the grinding wheel peripheral speed is 1885 mm / min, and a water-soluble grinding fluid is used. Then, narrow groove processing with a groove width of 0.06 mm and a groove depth of 2.3 mm was performed. The mold material to be processed was SKD-61.
[0025]
First, prior to the narrow groove processing, the groove widths of the grinding liquid supply groove 24 and the groove 25 were adjusted. In the adjustment, a water flow test is performed with the grinding wheel 5 held between the flanges 3 and 4, and when the water flow rate on the front flange 3 side is large, the width of the grinding fluid supply groove 24 is widened, and vice versa. The width of the groove 25 was widened, and the groove width was adjusted while balancing the amount of water flow between the front flange 3 and the rear flange 4. The method for checking the liquid flow balance is such that one side of the flange is shifted about 5 degrees in the circumferential direction with the grinding stone 5 sandwiched between the flanges 3 and 4, and the grooves of the flanges 3 and 4 are alternately arranged. As the shape, the height of the water column at that time was visually confirmed.
[0026]
After that, when the narrow groove processing was performed under the above conditions, the grinding liquid was satisfactorily supplied to the grinding site, and the narrow groove processing could be performed without causing problems such as clogging, seizure, and cracking of the grindstone. As described above, according to the grinding device of the present invention, it is possible to pass water in a balanced manner to both flanges 3 and 4 without drilling holes in the grinding wheel shaft, ensuring the strength of the grinding wheel shaft, and cracking the grinding wheel. It is possible to grind fine grooves of about several tens of μm, which has been impossible in the past.
[Brief description of the drawings]
1A is an overall configuration diagram of a grinding apparatus of the present invention, and FIG. 1B is an exploded view thereof.
2 (a) is a front view of the supporting surface side of the flange, (b) is a side sectional view of the flange, is a sectional view taken along line AA of (a), and (c) is a side sectional view of the flange (a FIG.
3A is a front view of a shaft, and FIG. 3B is a side view of the shaft.
4A is a diagram showing a configuration in which a grinding fluid filtration filter is attached to the grinding apparatus of the present invention, and FIG. 4B is a schematic configuration diagram of a grinding fluid filtration filter.
FIGS. 5A and 5B are diagrams for explaining the operation of the grinding apparatus of the present invention, in which FIG. 5A is a partial cross-sectional view showing a state of liquid passing through the flange, and FIG. 5B is a view showing a state of jetting of the grinding liquid from the flange; (C) is a figure which shows the supply state of the grinding fluid to the grinding wheel side surface.
FIG. 6 is a view showing a supply state of a grinding fluid of a conventional grinding apparatus.
FIG. 7 is an overall configuration diagram of a conventional grinding apparatus.
[Explanation of symbols]
1 Grinding wheel shaft 2 Shaft (shaft member)
23 Tip 24 Grinding liquid supply groove 25 Circumferential groove 3, 4 Pair of flanges 31, 41 Support surface 32, 42 Multiple grooves 5 Grinding wheel 6 Cylindrical member 61 Fastening member 62 Bearing holder 63 Grinding liquid supply path 7 Grinding liquid Supply pump 8 Filter for grinding fluid filtration

Claims (4)

回転駆動される軸部材の先端部外周に一対のフランジを装着して、該一対のフランジ間に研削砥石を挟持し、上記一対のフランジに研削液供給用の通路を設けた研削装置において、上記一対のフランジの、上記研削砥石を支持する両支持面にそれぞれ上記通路として内周縁から外周縁に至る複数の溝部を放射状に設けるとともに、上記軸部材の先端部外周に複数の軸方向に延びる研削液供給溝を形成して、上記両支持面の上記複数の溝部に連通させ、かつ、上記軸部材の先端部外周に、上記複数の研削液供給溝の流れ方向の先端部を互いに連通する周方向の溝を形成して、該周方向の溝により上記一対のフランジの両支持面への通液バランスを保つ構成としたことを特徴とする研削装置。In a grinding apparatus in which a pair of flanges are mounted on the outer periphery of the tip end of a shaft member that is rotationally driven, a grinding wheel is sandwiched between the pair of flanges, and a passage for supplying a grinding fluid is provided in the pair of flanges. a pair of flanges, a plurality of grooves provided with radially extending the outer peripheral edge from the inner peripheral edge on both the support surface for supporting the grinding wheel and with the passage, a plurality of axially at the distal end outer periphery of the shaft member An extended grinding fluid supply groove is formed and communicated with the plurality of groove portions of the both support surfaces, and the distal ends of the plurality of grinding fluid supply grooves are communicated with each other on the outer periphery of the distal end portion of the shaft member. A grinding apparatus characterized in that a circumferential groove is formed to maintain a fluid flow balance to both support surfaces of the pair of flanges by the circumferential groove. 上記複数の研削液供給溝を、上記軸部材の回転力を受ける研削液の流れ方向と一致するように、軸方向に対し斜めに形成し、上記複数の溝部は、外周端部を細く絞り込んだ形状とした請求項1記載の研削装置。The plurality of grinding fluid supply grooves are formed obliquely with respect to the axial direction so as to coincide with the flow direction of the grinding fluid that receives the rotational force of the shaft member, and the plurality of groove portions are narrowed down at the outer peripheral ends. grinding device according to claim 1, wherein a shape. 上記一対のフランジの上記両支持面に、上記複数の溝部を互いに連通する環状溝を形成した請求項1または2記載の研削装置。  The grinding apparatus according to claim 1 or 2, wherein annular grooves for communicating the plurality of groove portions with each other are formed on both support surfaces of the pair of flanges. 上記フランジから突出する上記軸部材の先端に、内部を上記研削液供給溝に連通する研削液供給路とする筒状部材を装着した請求項1または2記載の研削装置。  The grinding device according to claim 1 or 2, wherein a cylindrical member having a grinding fluid supply path communicating with the grinding fluid supply groove inside is attached to a tip of the shaft member protruding from the flange.
JP10220199A 1999-04-09 1999-04-09 Grinding equipment Expired - Fee Related JP4283372B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10220199A JP4283372B2 (en) 1999-04-09 1999-04-09 Grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10220199A JP4283372B2 (en) 1999-04-09 1999-04-09 Grinding equipment

Publications (2)

Publication Number Publication Date
JP2000288931A JP2000288931A (en) 2000-10-17
JP4283372B2 true JP4283372B2 (en) 2009-06-24

Family

ID=14321062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10220199A Expired - Fee Related JP4283372B2 (en) 1999-04-09 1999-04-09 Grinding equipment

Country Status (1)

Country Link
JP (1) JP4283372B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389623B1 (en) 2012-05-03 2014-04-29 홍성용 Water cooled hand grinder

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6408830B2 (en) * 2014-08-20 2018-10-17 株式会社ディスコ Cutting equipment

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101389623B1 (en) 2012-05-03 2014-04-29 홍성용 Water cooled hand grinder

Also Published As

Publication number Publication date
JP2000288931A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
US5290135A (en) Rotary ring cutter having coolant distribution and discharge means
US5993297A (en) Superabrasive grinding wheel with integral coolant passage
JP2010284791A5 (en)
EP0340026B1 (en) Arbor for mounting a tool to a spindle of a machine tool and a machining method of employing the same
EP3260236B1 (en) Method and system for feeding a cooling fluid during machining of a workpiece by means of a cup grinding wheel, and cup grinding wheel used therein
EP1319469B1 (en) Grinding Wheels
JPH0386464A (en) Honing device for machining running surface for hole wall part especially cylinder hole for internal combustion engine
JP4283372B2 (en) Grinding equipment
JP3122341B2 (en) Cup-shaped whetstone
JP3907900B2 (en) Boring processing apparatus and processing method
WO2009116620A1 (en) Rotary flow-through joint and grinding apparatus
JP4057863B2 (en) Deep hole cutting equipment
JP3328060B2 (en) Rotary grinding wheel
WO2010062850A1 (en) Coolant delivery system in rotating cutting tool
US7377839B2 (en) Cover for guiding a medium in an abrasive disk
JPH03239409A (en) Coring method of plate like body and device thereof
JPH0683257U (en) Liquid-type grinding wheel
JPS6288570A (en) Grinding wheel
US20020173247A1 (en) Machining device and methods
JPH0929529A (en) Composite tool
JPS60167769A (en) Coolant process for grinding wheel
JP2004025344A (en) Rotary cutter
JP4008074B2 (en) Grinding equipment
JP2001198822A (en) Grinding fluid supplying device
KR101322285B1 (en) Oil skimmer with air pressure drive

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090317

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090319

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees