JP4282153B2 - Method for producing diol mixture - Google Patents

Method for producing diol mixture Download PDF

Info

Publication number
JP4282153B2
JP4282153B2 JP16782599A JP16782599A JP4282153B2 JP 4282153 B2 JP4282153 B2 JP 4282153B2 JP 16782599 A JP16782599 A JP 16782599A JP 16782599 A JP16782599 A JP 16782599A JP 4282153 B2 JP4282153 B2 JP 4282153B2
Authority
JP
Japan
Prior art keywords
acid
mixture
catalyst
succinic acid
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP16782599A
Other languages
Japanese (ja)
Other versions
JP2000355562A (en
Inventor
満月男 小西
英三郎 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP16782599A priority Critical patent/JP4282153B2/en
Publication of JP2000355562A publication Critical patent/JP2000355562A/en
Application granted granted Critical
Publication of JP4282153B2 publication Critical patent/JP4282153B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術的分野】
本発明はコハク酸、グルタル酸、アジピン酸を含むジカルボン酸混合物を原料としてエステル化工程を経ることなく直接水素化して1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含むジオール混合物を製造する方法に関するものである。ジオール類はポリエステル樹脂、ウレタンフォームやウレタン塗料、接着剤の原料として有用な物質である。
【0002】
【従来の技術】
従来、コハク酸あるいはマレイン酸を水素化し、1,4−ブタンジオールを製造する方法は数多く報告されている。例えば、最も良く知られている方法として銅系の触媒を用いる方法がある。しかしながら、この方法では、コハク酸を直接還元することができず、カルボン酸を一旦エステルに転換後還元しなければならず、製造工程が長くなる。
【0003】
一方、コハク酸あるいはマレイン酸を直接還元して1,4−ブタンジオールを製造する方法もいくつか提案されている。その触媒系のみを列記するとルテニウム−鉄酸化物からなる触媒(米国特許4,827,001号)、ルテニウム−錫をBET表面積2000m2/g以上の多孔質炭素に担持した触媒(特開平5−246915号)、ルテニウム及び錫をチタン及び/又はアルミナで修飾したシリカに担持した触媒(特開平6−116182号)、ルテニウム及び錫、並びにアルカリ金属化合物またはアルカリ土類金属を担体に担持した触媒(特開平6−239778号)、ルテニウムと白金及びロジウムから選ばれた少なくとも1種と錫とを担体に担持した触媒(特開平7−165644号)、ルテニウムと錫を担体に担持してなる触媒を用い、過剰の水素を反応系に流通させ、同伴してくる生成物を系外に除去しながら反応を行う方法(特開平9−12492号)、ルテニウム−錫−白金を担体に担持した触媒(特開平9−59190号)、炭素数5以下のカルボニル化合物が共存した担持成分を含有する溶液を活性炭に含浸して調整したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−15388号)、あらかじめ硝酸と接触した活性炭を使用することにより金属の担持状態を規定したルテニウム−錫−白金を活性炭に担持した触媒(特開平10−71332号)が提案されているが、いずれの触媒を用いる方法においても、1.4−ブタンジオール、テトラヒドロフラン、γ−ブチロラクトンの選択率が十分でなく、1,4−ブタンジオールの収率は不満足なものであった。また特開平7−82190にはパラジウムとレニウム化合物からなる触媒を用い、三級アルコールを溶媒として水素化を行う方法が提案されているが、反応速度が未だ不十分であった。
【0004】
一方、含酸素C4炭化水素原料としては、ブタンの空気酸化で得られる無水マレイン酸あるいはマレイン酸が工業的に製造されていることから好適ではあるが、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するジカルボン酸類に含まれるコハク酸もまた好適な原料である。すなわちこのジカルボン酸を原料として工業的に有用な化合物を得ることができれば、アジピン酸製造に際して発生する廃棄物を減らすことができること、またこのアジピン酸製造の際の副生ジカルボン酸類には一般的にグルタル酸と共にグルタル酸、アジピン酸も含まれており、これらも同時に水素化還元反応に供することによりウレタン材料等の原料として有用な1,5−ペンタンジオール、1,6−ヘキサンジオールを併産できることが期待されるからである。
【0005】
米国特許5,698,749にはパラジウム−銀−レニウムをあらかじめ硝酸酸化処理した活性炭上に担持した触媒を用いてマレイン酸から1,4−ブタンジオールが比較的高収率で得られることが述べられているが、グルタル酸あるいはアジピン酸の水素化還元反応の成績については何も記載されていない。また、特開平10−298123号にはルテニウム−レニウムを水蒸気賦活法で製造された活性炭に担持し、エーテル系溶媒を用いてジカルボン酸を水素化還元する方法が述べられているが、好ましいジカルボン酸としてはグルタル酸以上の炭素数を持つジカルボン酸と述べられており、コハク酸から1,4−ブタンジオールを得る成績については述べられていない。また、特開平11−60523号にはあらかじめ酸処理した活性炭にルテニウム−錫−白金を担持した触媒を用いてアジピン酸から1,6−ヘキサンジオールが高収率で得られることが述べられているが、先に述べたように特開平10−71332号に述べられている同じ触媒を用いたコハク酸の水素化の結果から、上記ジカルボン酸の混合物に含まれるコハク酸から1,4−ブタンジオールを高収率で得ることは困難である。
【0006】
【発明が解決しようとする課題】
本発明の目的は、シクロヘキサノン及び/又はシクロヘキサノールを酸化してアジピン酸を製造する際に副生するコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物から直接水素化還元反応により1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを含有するジオール類の混合物を高収率で得る製造方法を提供することである。
【0007】
【課題を解決するための手段】
上記課題を解決すべく本発明者らが鋭意検討した結果、驚くべきことにあらかじめオゾン水溶液で処理した炭素質担体にルテニウム−錫−白金を担持した触媒を用いることにより、コハク酸及びグルタル酸とアジピン酸を含有するジカルボン酸の混合物から1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールを収率よく製造し得ることを見出し、本発明を完成したものである。
【0008】
すなわち本発明は、以下の[1]〜[5]のジオール類の製造方法である。
[1] コハク酸及び下記式(1)のジカルボン酸からなる混合物をルテニウム及び錫及び白金を炭素質担体に担持した触媒と水の存在下、水素と反応させて1,4−ブタンジオール及び下記式(2)のジオールからなる混合物を製造する方法においてあらかじめオゾン水溶液で処理した炭素質担体にルテニウム及び錫及び白金を担持させて調整した触媒を用いることを特徴とするジオール混合物の製造法。
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH2−R−CH2OH (2)
(式中、Rは、式(1)のRと同じである)
[2] コハク酸及び式(1)のジカルボン酸からなる混合物がコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]に記載のジオール混合物の製造法。
[3] 炭素質担体が活性炭であることを特徴とする[1]または[2]に記載のジオール混合物の製造法。
【0009】
[4] コハク酸及び式(1)のジカルボン酸からなる混合物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする[1]〜[3]のいずれか1項に記載のジオール混合物の製造法。
[5] 温度100℃〜300℃、圧力1MPa〜25MPaの条件下でジカルボン酸の混合物を水素と反応させることを特徴とする[1]〜[3]のいずれか1項に記載のジオール混合物の製造法。
【0010】
以下、本発明を詳細に説明する。
本発明において1,4−ブタンジオールを含むジオール混合物の製造に用いられる原料は、コハク酸及び式(1)のジカルボン酸からなる混合物であり、特にコハク酸、グルタル酸、アジピン酸を含有するジカルボン酸の混合物である。このような原料の1例は、シクロヘキサンノン及び/又はシクロヘキサノールを硝酸酸化してアジピン酸を製造する際に副生するジカルボン酸の混合物であり、例えばアジピン酸を晶析分離した母液である。本発明ではその母液をそのまま用いても良いし、何らかの不純物により触媒の水素還元活性が減じる時には脱触媒、脱水、脱硝酸などの工程を経たものを用いることもできる。
【0011】
本発明で用いる水素還元触媒は、炭素質担体にルテニウム及び錫及び白金を担持させて調整したものである。炭素質担体としては活性炭が好ましいが、カーボンブラック、グラファイトなどを用いることもできる。炭素質担体の表面積に特に制限はないが、処理前の窒素吸着−BET表面積が600〜2,000m2/gの表面積を持つものが好ましい。本発明では炭素質担体はあらかじめ過酸化水素水及び/またはオゾン水溶液で処理する前処理を経てから触媒の調整に用いる。
【0012】
過酸化水素水処理は炭素質担体を過酸化水素水に投入して常温ないし加温下に数分間から数十時間程度保持すればよい。過酸化水素水の濃度は特に制限はないが1〜70重量%、特に5〜60重量%が好ましい。処理温度は、30〜100℃の温度が好ましく、さらに好ましくは80〜95℃である。処理時間は、過酸化水素水の濃度と処理温度にもよるが少なくとも数分から数十時間であり、さらに好ましくは1時間〜20時間である。過酸化水素処理した炭素質担体は十分に水洗して付着している過酸化水素を除去し、触媒調整に用いる。
【0013】
オゾン水溶液処理は例えば炭素質担体を水中に投入して常温ないし加温下に保ち、オゾン発生器から得たオゾンガスを吹き込む。オゾンガスは空気から発生させても良いし、純酸素から発生させたものを用いても良い。また窒素などの不活性ガスで希釈してもよい。オゾンの濃度は0.01〜30g/Nm3の範囲が好ましい。処理温度は30〜100℃が好ましく、さらに好ましくは70〜95℃である。処理時間はオゾンの濃度、処理温度にもよるが数分から数十時間である。オゾン処理した炭素質担体は水洗後、触媒調整に用いる。また過酸化水素水処理を行った炭素質担体をさらにオゾン水溶液処理しても良い。
【0014】
過酸化水素水処理及び/またはオゾン処理した炭素質担体にルテニウム及び錫及び白金を担持する方法としては浸せき法、イオン交換法、含浸法など担持触媒の調整に常用されている任意の方法を用いることができる。浸せき法によるときは担持する金属成分の原料化合物を水などの溶媒に溶解して金属化合物の溶液を調整し、この溶液に過酸化水素処理した炭素質担体を浸せきして担体に担持させる。担体に各金属成分を担持させる順序については特に制限はなく、全ての金属を同時に担持しても、各成分を個別に担持してもよい。
触媒調整に用いる金属成分の原料としては、触媒の調整法にもよるが通常は硝酸塩、硫酸塩、塩酸塩などの鉱酸塩、酢酸塩などの有機酸塩、水酸化物、酸化物、有機金属化合物などを用いることができる。金属成分の原料における金属の価数に特に制限はないが、0〜4価が好ましい。
【0015】
金属成分を担持した炭素質担体は乾燥し、次いで所望により焼成、還元して触媒とする。乾燥は通常200℃以下の温度で減圧下に保持するか、又は窒素、空気などの乾燥気体を流通させて行う。焼成は通常100〜600℃の温度で窒素、空気などの流通させながら行う。また還元は液相還元又は気相還元のいずれで行ってもよい。通常は水素を還元ガスとして、200〜500℃の温度で気相還元する。ルテニウム、錫、白金の担持量は担体に対してそれぞれ金属として0.5〜50重量%、好ましくは1〜10重量%である。ルテニウム、錫の比率は金属として元素比でルテニウム:錫が1:0.1〜1:2が好ましく、さらに好ましくは1:0.2〜1:1である。白金のルテニウムに対する比率に特に制限はないが1:0.1〜1:5の範囲が好ましい。
【0016】
本発明では上記のルテニウム及び錫及び白金を炭素質担体に担持した触媒と水の存在下にコハク酸、グルタル酸、アジピン酸からなるジカルボン酸混合物の水素化還元を行う。反応における水の量はジカルボン酸混合物に対して0.5〜100重量倍である。さらに好ましくは1〜20倍である。水素化還元温度においてジカルボン酸の全量が溶解する水量が好ましい。水素化還元温度は、50〜400℃で行うことができる。さらに100〜300℃の温度が好ましい。圧力は0.5〜40MPa、さらに好ましくは1MPa〜25MPaである。
【0017】
還元反応は連続、回分のいずれで行ってもよい、また反応型式としては液相懸濁反応、固定床流通反応のいずれも用いることができる。
本発明においてジオールとして1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの混合物が得られるが、これらのジオールは通常の精製方法、例えば蒸留分離によって精製することができる。
【0018】
【発明の実施の形態】
以下、本発明を実施例などを用いて更に詳細に説明する。なお、反応成績のうち、原料の転化率は液体クロマトグラフィーの分析値から算出し、ジオール類の収率はガスクロマトグラフィーの分析値から算出した。また、コハク酸、グルタル酸、アジピン酸の混合物はアジピン酸を晶析分離した母液から脱水、脱硝酸処理して得た。組成は液体クロマトグラフィーの分析によりコハク酸23重量%、グルタル酸60重量%、アジピン酸17重量%であった。
【0019】
【参考例】
<活性炭の過酸化水素水処理>
粒状活性炭(粒径10〜20メッシュ、窒素吸着−BET表面積1400m2/g)10gを10%過酸化水素水150gに加え、95℃で攪拌下5時間加熱処理した。冷却後、活性炭を濾過し、100mlの水で5回洗浄した。得られた活性炭を80℃で5時間乾燥した。
<触媒の調整>
100mlのナスフラスコに塩化白金酸6水和物0.48gを入れ、5N−塩酸3.36mlを加えて溶解した。この溶液に塩化錫(II価)2水和物0.51gを入れて溶解し、3塩化ルテニウム3水和物0.84gを入れて溶解させた。この溶液に上記の過酸化水素水処理した活性炭4.53gを加え、室温で15時間振とうした。エバポレーターを用いて70℃、20mmHgで水を留去した後、窒素ガス雰囲気下150℃、2時間焼成処理し、ついで水素雰囲気下450℃で2時間還元処理した。再び窒素ガス雰囲気にし、室温まで冷却した後に0.1%酸素/窒素雰囲気で2時間静置した。上記方法により6.1重量%ルテニウム−5.0重量%錫−3.4重量%白金を活性炭に担持した触媒を調整した。
【0020】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
容量100mlのオートクレーブに、水5g、上記コハク酸、グルタル酸、アジピン酸の混合物2.1gと上記方法で調製した触媒0.15gを仕込み、室温下窒素でオートクレーブ内の雰囲気を置換した後、水素を20kg/cm2圧入し、180℃まで昇温した。180℃に達した時点で水素を圧入し150kg/cm2とした。この圧力で6時間水素化還元反応を行った。反応終了後、デカンテーションにより触媒を分離し、触媒は精製水で洗浄した。デカンテーションにより分離した反応液と触媒洗浄液を合わせて各ジカルボン酸の転化率とジオールの収率を液体クロマトグラフィーとガスクロマトグラフィーによる分析で求めた。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ72%、75%、72%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ68%、73%、70%であった。
【0021】
【実施例
<活性炭のオゾン水溶液処理>
参考例で用いたのと同じ粒状活性炭10gを水150gに加え、90℃で攪拌下、オゾン発生器から空気を用いて発生させたオゾン(オゾン濃度10g/Nm3)を先端にガラスボールフィルターのついたガス導入管から100ミリリットル/分の速度で液中に吹き込み、5時間加熱処理した。冷却後、活性炭を濾過し、100mlの水で5回洗浄した。得られた活性炭を80℃で5時間乾燥し、オゾン水溶液処理した活性炭を得た。
<触媒の調整>
参考例の触媒調整の過酸化水素水処理した活性炭にかえて上記のオゾン処理した活性炭を用いた以外は参考例と同様の操作を行った。
【0022】
<コハク酸、グルタル酸、アジピン酸混合物の水素還元反応>
上記で調整した触媒を用いて参考例と同様の水素化還元反応を行った。その結果、コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ70%、76%、69%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率は、それぞれ64%、74%、67%であった。
【0023】
【比較例1】
過酸化水素水で処理を行わなかった以外は参考例と同じ方法で触媒を調製した。この触媒を用い、参考例と同様の手順で上記ジカルボン酸の混合物の水素化還元反応を行った。その結果コハク酸、グルタル酸、アジピン酸の転化率はそれぞれ76%、72%、62%であり、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオールの収率はそれぞれ20%、21%、18%であった。
【0024】
【発明の効果】
以上述べたように、本発明のオゾン水溶液で処理した炭素質担体を担体とするルテニウム−錫−白金触媒を用いることによりコハク酸を含むジカルボン酸の混合物から1,4−ブタンジオールを含むジオール混合物を高収率で製造することができるものである。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention uses 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol by directly hydrogenating a dicarboxylic acid mixture containing succinic acid, glutaric acid, and adipic acid without going through an esterification step. Relates to a process for producing a diol mixture comprising Diols are useful substances as raw materials for polyester resins, urethane foam, urethane paints, and adhesives.
[0002]
[Prior art]
Conventionally, many methods for producing 1,4-butanediol by hydrogenating succinic acid or maleic acid have been reported. For example, as the most well-known method, there is a method using a copper-based catalyst. However, in this method, succinic acid cannot be directly reduced, and the carboxylic acid must be once converted to an ester and then reduced, resulting in a long production process.
[0003]
On the other hand, several methods for producing 1,4-butanediol by directly reducing succinic acid or maleic acid have been proposed. When only the catalyst system is listed, a catalyst made of ruthenium-iron oxide (US Pat. No. 4,827,001), a catalyst in which ruthenium-tin is supported on porous carbon having a BET surface area of 2000 m 2 / g or more (Japanese Patent Laid-Open No. Hei 5- 246915), a catalyst in which ruthenium and tin are supported on silica modified with titanium and / or alumina (Japanese Patent Laid-Open No. 6-116182), a catalyst in which ruthenium and tin, and an alkali metal compound or alkaline earth metal are supported on a support ( JP-A-6-239778), a catalyst in which at least one selected from ruthenium, platinum and rhodium and tin are supported on a carrier (JP-A-7-165644), and a catalyst in which ruthenium and tin are supported on a carrier. A method in which excess hydrogen is circulated in the reaction system and the reaction is carried out while removing entrained products out of the system (JP-A-9-12). 92), ruthenium-tin-platinum-supported catalyst (Japanese Patent Laid-Open No. 9-59190), and ruthenium prepared by impregnating activated carbon with a solution containing a supporting component in which a carbonyl compound having 5 or less carbon atoms coexists. A catalyst in which tin-platinum is supported on activated carbon (Japanese Patent Laid-Open No. 10-15388), and a catalyst in which ruthenium-tin-platinum in which the supported state of the metal is defined by using activated carbon previously contacted with nitric acid is supported on the activated carbon (Japanese Patent Laid-Open No. 10-71332) has been proposed, but in any of the methods using a catalyst, the selectivity of 1.4-butanediol, tetrahydrofuran and γ-butyrolactone is not sufficient, and the yield of 1,4-butanediol is Was unsatisfactory. Japanese Patent Application Laid-Open No. 7-82190 proposes a method of performing hydrogenation using a catalyst composed of palladium and a rhenium compound and a tertiary alcohol as a solvent, but the reaction rate is still insufficient.
[0004]
On the other hand, as an oxygen-containing C4 hydrocarbon raw material, maleic anhydride or maleic acid obtained by air oxidation of butane is suitable because it is industrially produced. However, cyclohexanone and / or cyclohexanol is oxidized to form adipine. Succinic acid contained in dicarboxylic acids by-produced when producing the acid is also a suitable raw material. That is, if an industrially useful compound can be obtained using this dicarboxylic acid as a raw material, the waste generated during the production of adipic acid can be reduced, and the by-product dicarboxylic acids used in the production of adipic acid are generally Glutaric acid and adipic acid are included together with glutaric acid, and these can also be used in the hydroreduction reaction at the same time to produce 1,5-pentanediol and 1,6-hexanediol useful as raw materials for urethane materials. This is because it is expected.
[0005]
U.S. Pat. No. 5,698,749 states that 1,4-butanediol can be obtained from maleic acid in a relatively high yield using a catalyst supported on activated carbon that has been pretreated with nitric acid in palladium-silver-rhenium. However, nothing is described about the results of the hydroreduction reaction of glutaric acid or adipic acid. Japanese Patent Application Laid-Open No. 10-298123 describes a method in which ruthenium-rhenium is supported on activated carbon produced by a steam activation method, and a dicarboxylic acid is hydroreduced using an ether solvent. Is described as a dicarboxylic acid having a carbon number equal to or greater than that of glutaric acid, and the results of obtaining 1,4-butanediol from succinic acid are not described. Japanese Patent Application Laid-Open No. 11-60523 describes that 1,6-hexanediol can be obtained from adipic acid in a high yield by using a catalyst in which ruthenium-tin-platinum is supported on activated carbon that has been previously acid-treated. As described above, from the result of hydrogenation of succinic acid using the same catalyst described in JP-A-10-71332, 1,4-butanediol was obtained from succinic acid contained in the mixture of dicarboxylic acids. Is difficult to obtain in high yield.
[0006]
[Problems to be solved by the invention]
An object of the present invention is to directly perform hydroreduction reaction from a mixture of dicarboxylic acids containing succinic acid, glutaric acid and adipic acid by-produced in the production of adipic acid by oxidizing cyclohexanone and / or cyclohexanol. An object of the present invention is to provide a production method for obtaining a mixture of diols containing 4-butanediol, 1,5-pentanediol and 1,6-hexanediol in high yield.
[0007]
[Means for Solving the Problems]
The assignment result of the present inventors to solve was examined intensively, ruthenium carbonaceous carrier treated with beforehand Me ozone aqueous surprisingly - tin - with the use of the platinum supported catalysts, and succinic acid The inventors have found that 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol can be produced in high yield from a mixture of dicarboxylic acid containing glutaric acid and adipic acid, and completed the present invention. It is.
[0008]
That is, the present invention is a method for producing the following diols [1] to [5].
[1] A mixture consisting of succinic acid and a dicarboxylic acid of the following formula (1) is reacted with hydrogen in the presence of a catalyst in which ruthenium, tin and platinum are supported on a carbonaceous support and water to give 1,4-butanediol and preparation of diol mixture, which comprises using a catalyst which is adjusted by supporting the mixture ruthenium and tin and platinum carbonaceous carrier treated with beforehand Me ozone aqueous solution in the process of manufacturing consisting of diols of formula (2) Law.
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
[2] The method for producing a diol mixture according to [1], wherein the mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid.
[3] The method for producing a diol mixture according to [1] or [2], wherein the carbonaceous carrier is activated carbon.
[0009]
[4] The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. The method for producing a diol mixture according to any one of [1] to [3].
[5] The diol mixture according to any one of [1] to [3] , wherein the mixture of dicarboxylic acid is reacted with hydrogen under conditions of a temperature of 100 ° C. to 300 ° C. and a pressure of 1 MPa to 25 MPa. Manufacturing method.
[0010]
Hereinafter, the present invention will be described in detail.
In the present invention, the raw material used for the production of the diol mixture containing 1,4-butanediol is a mixture comprising succinic acid and the dicarboxylic acid of the formula (1), and in particular, dicarboxylic acid containing succinic acid, glutaric acid and adipic acid. It is a mixture of acids. One example of such a raw material is a mixture of dicarboxylic acids by-produced when nitric acid is oxidized to cyclohexanenone and / or cyclohexanol to produce adipic acid. For example, it is a mother liquor obtained by crystallization separation of adipic acid. In the present invention, the mother liquor may be used as it is, or when the hydrogen reduction activity of the catalyst is reduced due to some impurities, it may be used after steps such as decatalysis, dehydration, and denitrification.
[0011]
The hydrogen reduction catalyst used in the present invention is prepared by supporting ruthenium, tin and platinum on a carbonaceous support. As the carbonaceous support, activated carbon is preferable, but carbon black, graphite, and the like can also be used. Although there is no restriction | limiting in particular in the surface area of a carbonaceous support | carrier, What has a surface area of nitrogen adsorption-BET surface area before a process of 600-2,000 m < 2 > / g is preferable. In the present invention, the carbonaceous carrier is used for the preparation of the catalyst after pretreatment with a hydrogen peroxide solution and / or an ozone aqueous solution in advance.
[0012]
In the hydrogen peroxide treatment, the carbonaceous carrier may be put into the hydrogen peroxide solution and kept at room temperature or under heating for several minutes to several tens of hours. The concentration of the hydrogen peroxide solution is not particularly limited, but is preferably 1 to 70% by weight, particularly 5 to 60% by weight. The treatment temperature is preferably 30 to 100 ° C, more preferably 80 to 95 ° C. The treatment time is at least several minutes to several tens of hours depending on the concentration of hydrogen peroxide and the treatment temperature, and more preferably 1 to 20 hours. The carbonaceous carrier treated with hydrogen peroxide is thoroughly washed with water to remove the attached hydrogen peroxide and used for catalyst preparation.
[0013]
In the ozone aqueous solution treatment, for example, a carbonaceous carrier is put into water and kept at room temperature or under heating, and ozone gas obtained from an ozone generator is blown in. The ozone gas may be generated from air, or may be generated from pure oxygen. Further, it may be diluted with an inert gas such as nitrogen. The concentration of ozone is preferably in the range of 0.01 to 30 g / Nm 3 . The treatment temperature is preferably 30 to 100 ° C, more preferably 70 to 95 ° C. The treatment time is several minutes to several tens of hours depending on the ozone concentration and treatment temperature. The ozone-treated carbonaceous carrier is used for catalyst preparation after washing with water. The carbonaceous carrier that has been treated with hydrogen peroxide may be further treated with an aqueous ozone solution.
[0014]
As a method for supporting ruthenium, tin, and platinum on a carbonaceous support that has been treated with hydrogen peroxide and / or ozone, any method that is commonly used for adjusting the supported catalyst, such as an immersion method, an ion exchange method, and an impregnation method, is used. be able to. When the immersion method is used, a metal compound raw material compound to be supported is dissolved in a solvent such as water to prepare a solution of the metal compound, and a carbonaceous support treated with hydrogen peroxide is immersed in this solution and supported on the support. There is no particular limitation on the order in which each metal component is supported on the carrier, and all the metals may be supported simultaneously or each component may be individually supported.
Depending on the catalyst preparation method, the metal component materials used for catalyst preparation are usually mineral salts such as nitrates, sulfates and hydrochlorides, organic acid salts such as acetates, hydroxides, oxides and organics. A metal compound or the like can be used. Although there is no restriction | limiting in particular in the metal valence in the raw material of a metal component, 0-4 valence is preferable.
[0015]
The carbonaceous support carrying the metal component is dried and then calcined and reduced as desired to form a catalyst. Drying is usually performed at a temperature of 200 ° C. or lower under reduced pressure or by passing a dry gas such as nitrogen or air. Firing is usually performed at a temperature of 100 to 600 ° C. while circulating nitrogen, air, or the like. The reduction may be performed by either liquid phase reduction or gas phase reduction. Usually, gas phase reduction is performed at a temperature of 200 to 500 ° C. using hydrogen as a reducing gas. The supported amount of ruthenium, tin, and platinum is 0.5 to 50% by weight, preferably 1 to 10% by weight, respectively, as a metal with respect to the support. The ratio of ruthenium and tin is preferably 1: 0.1 to 1: 2 of ruthenium: tin as a metal, more preferably 1: 0.2 to 1: 1. The ratio of platinum to ruthenium is not particularly limited, but a range of 1: 0.1 to 1: 5 is preferable.
[0016]
In the present invention, the dicarboxylic acid mixture composed of succinic acid, glutaric acid, and adipic acid is hydroreduced in the presence of the catalyst having ruthenium, tin and platinum supported on a carbonaceous support and water. The amount of water in the reaction is 0.5 to 100 times by weight with respect to the dicarboxylic acid mixture. More preferably, it is 1 to 20 times. An amount of water in which the entire amount of the dicarboxylic acid dissolves at the hydroreduction temperature is preferred. Hydrogenation reduction temperature can be performed at 50-400 degreeC. Furthermore, the temperature of 100-300 degreeC is preferable. The pressure is 0.5 to 40 MPa, more preferably 1 MPa to 25 MPa.
[0017]
The reduction reaction may be carried out either continuously or batchwise. As the reaction type, either a liquid phase suspension reaction or a fixed bed flow reaction can be used.
In the present invention, a mixture of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol is obtained as the diol. These diols can be purified by an ordinary purification method such as distillation separation. .
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in more detail with reference to examples and the like. Of the reaction results, the conversion rate of the raw material was calculated from the analytical value of liquid chromatography, and the yield of diols was calculated from the analytical value of gas chromatography. A mixture of succinic acid, glutaric acid, and adipic acid was obtained by dehydration and denitration treatment from a mother liquor obtained by crystallization separation of adipic acid. The composition was 23% by weight of succinic acid, 60% by weight of glutaric acid, and 17% by weight of adipic acid by liquid chromatography analysis.
[0019]
[Reference example]
<Hydrogen peroxide treatment of activated carbon>
10 g of granular activated carbon (particle size 10 to 20 mesh, nitrogen adsorption—BET surface area 1400 m 2 / g) was added to 150 g of 10% hydrogen peroxide solution, and heat-treated at 95 ° C. with stirring for 5 hours. After cooling, the activated carbon was filtered and washed 5 times with 100 ml of water. The obtained activated carbon was dried at 80 ° C. for 5 hours.
<Catalyst adjustment>
In a 100 ml eggplant flask, 0.48 g of chloroplatinic acid hexahydrate was placed and dissolved by adding 3.36 ml of 5N hydrochloric acid. In this solution, 0.51 g of tin chloride (II) dihydrate was added and dissolved, and 0.84 g of ruthenium trichloride trihydrate was added and dissolved. To this solution, 4.53 g of activated carbon treated with hydrogen peroxide solution was added and shaken at room temperature for 15 hours. After distilling off water at 70 ° C. and 20 mmHg using an evaporator, it was calcined at 150 ° C. for 2 hours in a nitrogen gas atmosphere, and then reduced at 450 ° C. for 2 hours in a hydrogen atmosphere. The atmosphere was again a nitrogen gas atmosphere, cooled to room temperature, and allowed to stand in a 0.1% oxygen / nitrogen atmosphere for 2 hours. A catalyst having 6.1% by weight of ruthenium-5.0% by weight of tin-3.4% by weight of platinum supported on activated carbon was prepared by the above method.
[0020]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
An autoclave having a capacity of 100 ml was charged with 5 g of water, 2.1 g of a mixture of succinic acid, glutaric acid and adipic acid and 0.15 g of the catalyst prepared by the above method, and the atmosphere in the autoclave was replaced with nitrogen at room temperature. 20 kg / cm 2 was injected, and the temperature was raised to 180 ° C. When the temperature reached 180 ° C., hydrogen was injected to make 150 kg / cm 2 . The hydroreduction reaction was performed at this pressure for 6 hours. After completion of the reaction, the catalyst was separated by decantation, and the catalyst was washed with purified water. The reaction liquid and catalyst washing liquid separated by decantation were combined, and the conversion rate of each dicarboxylic acid and the yield of diol were determined by analysis by liquid chromatography and gas chromatography. As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 72%, 75% and 72%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. Were 68%, 73% and 70%, respectively.
[0021]
[Example 1 ]
<Ozone solution treatment of activated carbon>
Add 10g of the same granular activated carbon used in the reference example to 150g of water, stir at 90 ° C, and generate ozone (ozone concentration 10g / Nm 3 ) using air from an ozone generator at the tip of a glass ball filter. It was blown into the liquid at a rate of 100 milliliters / minute from the connected gas inlet tube and heat-treated for 5 hours. After cooling, the activated carbon was filtered and washed 5 times with 100 ml of water. The obtained activated carbon was dried at 80 ° C. for 5 hours to obtain activated carbon treated with an ozone aqueous solution.
<Catalyst adjustment>
Except for using the activated carbon ozone treatment described above instead of the activated carbon hydrogen peroxide treatment of catalyst preparation of Example was the same procedure as reference example.
[0022]
<Hydrogen reduction reaction of succinic acid, glutaric acid, adipic acid mixture>
The same hydrogen reduction reaction as in the reference example was performed using the catalyst prepared above. As a result, the conversion rates of succinic acid, glutaric acid, and adipic acid were 70%, 76%, and 69%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol, and 1,6-hexanediol were obtained. Were 64%, 74% and 67%, respectively.
[0023]
[Comparative Example 1]
A catalyst was prepared in the same manner as in the Reference Example except that the treatment with hydrogen peroxide was not performed. Using this catalyst, a hydroreduction reaction of the mixture of the dicarboxylic acids was performed in the same procedure as in the reference example . As a result, the conversion rates of succinic acid, glutaric acid and adipic acid were 76%, 72% and 62%, respectively, and the yields of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol were as follows. They were 20%, 21%, and 18%, respectively.
[0024]
【The invention's effect】
As described above, O carbonaceous carrier treated with mometasone aqueous ruthenium and a carrier of the present invention - diol containing 1,4-butanediol from a mixture of dicarboxylic acids comprising succinic acid by using a platinum catalyst - tin The mixture can be produced with high yield.

Claims (5)

コハク酸及び下記式(1)のジカルボン酸からなる混合物をルテニウム及び錫及び白金を炭素質担体に担持した触媒と水の存在下、水素と反応させて1,4−ブタンジオール及び下記式(2)のジオールからなる混合物を製造する方法においてあらかじめオゾン水溶液で処理した炭素質担体にルテニウム及び錫及び白金を担持させて調整した触媒を用いることを特徴とするジオール混合物の製造法。
HOOC−R−COOH (1)
(式中、Rは炭素数が3〜20である飽和の二価の炭化水素基を表す)
HO−CH2−R−CH2OH (2)
(式中、Rは、式(1)のRと同じである)
A mixture of succinic acid and a dicarboxylic acid of the following formula (1) is reacted with hydrogen in the presence of a catalyst in which ruthenium, tin and platinum are supported on a carbonaceous support and water, to give 1,4-butanediol and the following formula (2 preparation of diol mixture, which comprises using a catalyst which is adjusted by supporting the ruthenium and tin and platinum-treated carbonaceous carrier in beforehand Me ozone aqueous solution in the process for producing a mixture of diols).
HOOC-R-COOH (1)
(In the formula, R represents a saturated divalent hydrocarbon group having 3 to 20 carbon atoms)
HO—CH 2 —R—CH 2 OH (2)
(Wherein R is the same as R in formula (1))
コハク酸及び式(1)のジカルボン酸からなる混合物がコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする請求項1に記載のジオール混合物の製造法。 The method for producing a diol mixture according to claim 1, wherein the mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid. 炭素質担体が活性炭であることを特徴とする請求項1または2に記載のジオール混合物の製造法。 The method for producing a diol mixture according to claim 1 or 2, wherein the carbonaceous carrier is activated carbon. コハク酸及び式(1)のジカルボン酸からなる混合物がシクロヘキサノン及び/又はシクロヘキサノールの酸化反応液から回収されたコハク酸、グルタル酸、アジピン酸を含むジカルボン酸の混合物であることを特徴とする請求項1〜3のいずれか1項に記載のジオール混合物の製造法。The mixture comprising succinic acid and the dicarboxylic acid of the formula (1) is a mixture of dicarboxylic acid containing succinic acid, glutaric acid and adipic acid recovered from an oxidation reaction solution of cyclohexanone and / or cyclohexanol. Item 4. A process for producing a diol mixture according to any one of Items 1 to 3. 温度100℃〜300℃、圧力1MPa〜25MPaの条件下でジカルボン酸の混合物を水素と反応させることを特徴とする請求項1〜3のいずれか1項に記載のジオール混合物の製造法。The method for producing a diol mixture according to any one of claims 1 to 3 , wherein the mixture of dicarboxylic acids is reacted with hydrogen under conditions of a temperature of 100 ° C to 300 ° C and a pressure of 1 MPa to 25 MPa.
JP16782599A 1999-06-15 1999-06-15 Method for producing diol mixture Expired - Fee Related JP4282153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16782599A JP4282153B2 (en) 1999-06-15 1999-06-15 Method for producing diol mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16782599A JP4282153B2 (en) 1999-06-15 1999-06-15 Method for producing diol mixture

Publications (2)

Publication Number Publication Date
JP2000355562A JP2000355562A (en) 2000-12-26
JP4282153B2 true JP4282153B2 (en) 2009-06-17

Family

ID=15856804

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16782599A Expired - Fee Related JP4282153B2 (en) 1999-06-15 1999-06-15 Method for producing diol mixture

Country Status (1)

Country Link
JP (1) JP4282153B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001034543A1 (en) * 1999-11-05 2001-05-17 Asahi Kasei Kabushiki Kaisha Process for the preparation of diol mixtures
JP2013146652A (en) * 2012-01-17 2013-08-01 Kitakyushu Foundation For The Advancement Of Industry Science & Technology Fischer-tropsch synthesis catalyst and method for producing the same
CN109776306B (en) * 2019-02-26 2021-12-07 安徽雪郎生物科技股份有限公司 Preparation method of resin-grade succinic acid

Also Published As

Publication number Publication date
JP2000355562A (en) 2000-12-26

Similar Documents

Publication Publication Date Title
JP4472109B2 (en) Carboxylic acid hydrogenation catalyst
KR100460371B1 (en) Catalysts for hydrogenation of carboxylic acid
US4550185A (en) Process for making tetrahydrofuran and 1,4-butanediol using Pd/Re hydrogenation catalyst
JPH10306047A (en) Production of 1,6-hexanediol
KR100546986B1 (en) Process for the preparation of diol mixtures
JPH11502811A (en) Method for producing 1,4-butanediol and tetrahydrofuran from furan
JP6718017B2 (en) Method for producing 1,3-cyclohexanedimethanol
JP4282832B2 (en) Process for producing diols
JP4282153B2 (en) Method for producing diol mixture
JP4472108B2 (en) Carboxylic acid hydrogenation catalyst
JP4282831B2 (en) Production method of diols
US5969194A (en) Process for preparing 1, 6-hexanediol
JP4282830B2 (en) Method for producing diols
JP2000007596A (en) Production of 1,4-cyclohexanedimethanol
JP3921877B2 (en) Method for producing 1,4-cyclohexanedimethanol
JP4282154B2 (en) Method for producing diol mixture
JP4640748B2 (en) Catalyst for direct hydrogenation of carboxylic acid
JP2004538134A (en) Selective preparation of tetrahydrofuran by hydrogenation of maleic anhydride.
JP3726504B2 (en) Catalyst regeneration method and hydrogenation method using regenerated catalyst
JP3744023B2 (en) Process for producing 1,4-butanediol and / or tetrahydrofuran
JP3873389B2 (en) Method for producing 1,6-hexanediol
JP3979702B2 (en) Improved catalyst for hydrogenating aqueous maleic acid to 1,4-butanediol
JP3921788B2 (en) Method for producing 1,6-hexanediol
JP2001097904A (en) Method for producing 1,6-hexanediol
JPH1160524A (en) Production of 1,6-hexanediol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090204

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20090204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090316

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees