JP4281225B2 - Fuel system abnormality detection device for internal combustion engine - Google Patents

Fuel system abnormality detection device for internal combustion engine Download PDF

Info

Publication number
JP4281225B2
JP4281225B2 JP2000210953A JP2000210953A JP4281225B2 JP 4281225 B2 JP4281225 B2 JP 4281225B2 JP 2000210953 A JP2000210953 A JP 2000210953A JP 2000210953 A JP2000210953 A JP 2000210953A JP 4281225 B2 JP4281225 B2 JP 4281225B2
Authority
JP
Japan
Prior art keywords
fuel
air
fuel pressure
pressure
correction value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000210953A
Other languages
Japanese (ja)
Other versions
JP2002021630A (en
Inventor
敬信 森政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2000210953A priority Critical patent/JP4281225B2/en
Publication of JP2002021630A publication Critical patent/JP2002021630A/en
Application granted granted Critical
Publication of JP4281225B2 publication Critical patent/JP4281225B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃料系の異常発生を検出することができる内燃機関の燃料系異常検出装置に関するものである。
【0002】
【従来の技術】
従来、内燃機関の燃料系異常検出装置に関連する先行技術文献としては、特開平10−9028号公報にて開示されたものが知られている。このものでは、燃料噴射期間中でないにもかかわらず、燃圧が設定燃圧を下回る状態が所定時間以上となったときには燃料系に異常が発生していると判定する技術が示されている。
【0003】
また、特開平10−89135号公報にて開示されたものが知られている。このものでは、燃料噴射を挟まない2つの期間における燃圧センサによる燃圧偏差に基づき高圧燃料ポンプ(高圧ポンプ)の異常を検出する技術が示されている。
【0004】
【発明が解決しようとする課題】
ところで、前述の特開平10−9028号公報では、燃料系の異常発生が分かっても、異常箇所を特定することができないという不具合があった。また、前述の特開平10−89135号公報では、燃圧センサ(コモンレール圧センサ)が正常であることが前提条件であり、燃圧センサが正常でないと高圧燃料ポンプの異常を検出することができないという不具合があった。
【0005】
そこで、この発明はかかる不具合を解決するためになされたもので、燃料系の異常発生を検出すると共に、その異常箇所を特定可能な内燃機関の燃料系異常検出装置の提供を課題としている。
【0006】
【課題を解決するための手段】
請求項1の内燃機関の燃料系異常検出装置によれば、燃圧フィードバック制御手段によって少なくとも2つの異なる目標燃圧に切換えたときの燃圧フィードバック制御手段で燃圧検出手段からの燃圧が目標燃圧となるようフィードバック制御する際の燃圧フィードバック補正値と、空燃比検出手段で検出された空燃比に基づき空燃比フィードバック制御手段で燃料噴射弁からの燃料噴射量が目標燃料噴射量となるようフィードバック制御する際の空燃比フィードバック補正値との遷移状態が検出される。これら燃圧フィードバック補正値及び空燃比フィードバック補正値の検出、即ち、目標燃圧を2つの異なる値にて変化させたときの燃圧挙動及び空燃比挙動に基づく簡単な判定処理にて、燃料ポンプまたは燃圧検出手段の燃料系異常を正確に特定することができる。
また、異常検出手段においては、目標燃圧を少なくとも2つの異なる値にて変化させたとき、燃圧フィードバック制御における燃圧フィードバック補正値が所定範囲内にあって大きな挙動変化を伴わず、一方、空燃比フィードバック制御における空燃比フィードバック補正値が所定範囲を超え大きく挙動変化しているとき、燃圧検出手段が異常であるために空燃比フィードバック補正値が所定範囲内になく大きく挙動変化していると考えられる。このため、燃圧検出手段が異常であると正確に判定することができ、燃圧検出手段の異常に伴って燃圧フィードバック制御が停止される。
【0010】
請求項2の内燃機関の燃料系異常検出装置によれば、燃圧フィードバック制御手段によって少なくとも2つの異なる目標燃圧に切換えたときの燃圧フィードバック制御手段で燃圧検出手段からの燃圧が目標燃圧となるようフィードバック制御する際の燃圧フィードバック補正値と、空燃比検出手段で検出された空燃比に基づき空燃比フィードバック制御手段で燃料噴射弁からの燃料噴射量が目標燃料噴射量となるようフィードバック制御する際の空燃比フィードバック補正値との遷移状態が検出される。これら燃圧フィードバック補正値及び空燃比フィードバック補正値の検出、即ち、目標燃圧を2つの異なる値にて変化させたときの燃圧挙動及び空燃比挙動に基づく簡単な判定処理にて、燃料ポンプまたは燃圧検出手段の燃料系異常を正確に特定することができる。
また、上記異常検出手段では、目標燃圧を少なくとも2つの異なる値にて変化させたとき、燃圧フィードバック制御における燃圧フィードバック補正値が所定範囲を超え大きく挙動変化しており、更に、空燃比フィードバック制御における空燃比フィードバック補正値も所定範囲を超え大きく挙動変化しているとき、燃料系が異常と判定できるが、燃圧検出手段または燃料ポンプの異常であるかが特定できないため、誤った燃圧フィードバック制御が続行されることのないよう停止される。
そして、上記異常検出手段では、燃圧フィードバック制御の停止状態において、目標燃圧を少なくとも2つの異なる値にて変化させたとき、空燃比フィードバック制御における空燃比フィードバック補正値が所定範囲内にあって大きな挙動変化を伴わないとき、燃圧検出手段のみが異常であるためと考えられる。このため、燃圧検出手段は異常であるが燃料ポンプは正常であると正確に判定することができる。
更に、上記異常検出手段では、燃圧フィードバック制御の停止状態において、目標燃圧を少なくとも2つの異なる値にて変化させたとき、空燃比フィードバック制御における空燃比フィードバック補正値が所定範囲を超え大きく挙動変化しているときには、燃圧検出手段の異常に加えて燃料ポンプも異常であるためと考えられる。このため、燃圧検出手段及び燃料ポンプが共に異常であると正確に判定することができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を実施例に基づいて説明する。
【0014】
図1は本発明の実施の形態の一実施例にかかる内燃機関の燃料系異常検出装置が適用された内燃機関の全体構成を示す概略図である。
【0015】
図1において、内燃機関10に吸入される空気は、エアクリーナ11の入口部11aから取入れられ、エアフローメータ12を通り、吸気量を制御するスロットルバルブ13が収容されたスロットルボデー14を通りサージタンク15に導入される。この吸入された空気は内燃機関10の各シリンダ10aに接続された各吸気通路16に分配され、内燃機関10の各シリンダ10a内に導入される。また、スロットルバルブ13は電動モータ17により開/閉駆動される。
【0016】
また、ガソリン等の燃料は、燃料タンク21から低圧燃料ポンプ22により1次加圧されたのち、高圧燃料ポンプ23により2次加圧され、インジェクタ(燃料噴射弁)24が配管されている燃料系に供給される。1次加圧された燃料は、燃圧レギュレータ25により一定の圧力(例えば、3〔kgf/cm2 〕)に調圧され、より高い圧力に2次加圧された燃料は燃圧レギュレータ26により一定の圧力(例えば、70〔kgf/cm2 〕)に調圧される。つまり、高圧燃料ポンプ23で2次加圧された燃圧は、燃圧センサ27によって検出され、燃圧レギュレータ26により調圧される。そして、各シリンダ10aに設けられているインジェクタ24からシリンダ10aとピストン10bとで形成される燃焼室10c内に直接、噴射供給された燃料は、点火コイル31で高電圧化された点火信号により点火プラグ32によって着火される。このように、本実施例の内燃機関10としては、シリンダ10a内に直接、燃料噴射供給する所謂、直噴エンジンが想定されている。
【0017】
そして、エアフローメータ12からは吸気量を表す信号が出力され、ECU(Electronic Control Unit:電子制御ユニット)40に入力される。更に、スロットルボデー14にはスロットルバルブ13の開度を検出するスロットル開度センサ18が取付けられ、この出力もECU40に入力される。また、シリンダ10aには内燃機関10の冷却水温を検出する水温センサ28が配設され、この出力もECU40に入力される。そして、燃圧センサ27からの燃圧信号もECU40に入力される。
【0018】
33はカムシャフト34に取付けられたカム角センサでクランクシャフトの回転位置を表す基準角度信号と機関回転数検出用の角度信号とが出力され、これらの信号もECU40に入力される。35は排気通路36中の触媒37の上流側に設けられたA/F(空燃比)センサ、38はアクセル開度センサで、これらの信号もECU40に入力される。
【0019】
ECU40は、周知の各種演算処理を実行する中央処理装置としてのCPU、制御プログラムを格納したROM、各種データを格納するRAM、B/U(バックアップ)RAM、入出力回路及びそれらを接続するバスライン等からなる論理演算回路として構成されている。
【0020】
次に、本発明の実施の形態の一実施例にかかる内燃機関の燃料系異常検出装置で使用されているECU40における燃料系異常判定の処理手順を示す図2及び図3のフローチャートに基づき、図4〜図9を参照して説明する。ここで、図4〜図7は図2の処理に対応する目標燃圧に対する燃圧フィードバック(以下、『F/B』と記す)補正値及び空燃比F/B補正値の遷移状態を示すタイムチャートであり、図8及び図9は図3の処理に対応する目標燃圧に対する空燃比F/B補正値の遷移状態を示すタイムチャートである。なお、この燃料系異常判定ルーチンは所定時間毎にECU40にて繰返し実行される。
【0021】
図2において、まず、ステップS101で、空燃比F/B実行中であるかが判定される。ステップS101の判定条件が成立せず、即ち、内燃機関10の冷間始動時等で空燃比F/Bが実行されていないときには、何もすることなく本ルーチンを終了する。一方、ステップS101の判定条件が成立、即ち、空燃比F/B実行中であるときにはステップS102に移行し、燃圧F/B実行中であるかが判定される。
【0022】
ステップS102の判定条件が成立、即ち、燃圧F/B実行中であるときにはステップS103に移行し、図4〜図7に示すように、目標燃圧を例えば、それまでの12〔MPa 〕から一旦、所定期間だけ10〔MPa 〕に変化させたのち再び12〔MPa 〕に戻すような目標燃圧ステップ変化処理が実行される。次にステップS104に移行して、ステップS103による目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が検出される。
【0023】
次にステップS105に移行して、ステップS103による目標燃圧ステップ変化時の所定期間内における燃圧F/B補正値が、上限ガード値及び下限ガード値にて設定される所定範囲内にあるかが判定される。ステップS105の判定条件が成立、即ち、図4及び図5に示すように、燃圧F/B補正値が所定範囲内にあるときにはステップS106に移行し、目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が、上限ガード値及び下限ガード値にて設定される所定範囲内にあるかが判定される。ステップS106の判定条件が成立、即ち、図4に示すように、空燃比F/B補正値が所定範囲内にあるときにはステップS107に移行し、燃圧センサ27が正常であると判定される。そして、ステップS108に移行し、図4に示すように、燃圧F/B補正値も所定範囲内にあるため、高圧燃料ポンプ23も正常であると判定されたのちに、本ルーチンを終了する。
【0024】
一方、ステップS106の判定条件が成立せず、即ち、図5に示すように、目標燃圧ステップ変化時の所定期間内における燃圧F/B補正値が所定範囲内にあるにもかかわらず空燃比F/B補正値が所定範囲内になく、例えば、上限ガード値にへばりついているときにはステップS109に移行し、燃圧センサ27が異常であると判定される。そして、ステップS110に移行し、燃料系異常判定及び燃圧F/B強制停止処理が実行されたのちに、本ルーチンを終了する。
【0025】
ここで、ステップS105の判定条件が成立せず、即ち、図6及び図7に示すように、目標燃圧ステップ変化時の所定期間内における燃圧F/B補正値が所定範囲内になく、例えば、下限ガード値にへばりついているときにはステップS111に移行する。ステップS111では、目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が、上限ガード値及び下限ガード値にて設定される所定範囲内にあるかが判定される。ステップS111の判定条件が成立、即ち、図6に示すように、空燃比F/B補正値が所定範囲内にあるときにはステップS112に移行し、燃圧センサ27が正常であると判定される。そして、ステップS113に移行し、図6に示すように、空燃比F/B補正値が所定範囲内にあるにもかかわらず燃圧F/B補正値が所定範囲内になく、例えば、下限ガード値にへばりついているときには、高圧燃料ポンプ23が異常であると判定されたのちに、本ルーチンを終了する。
【0026】
一方、ステップS111の判定条件が成立せず、即ち、図7に示すように、目標燃圧ステップ変化時の所定期間内における燃圧F/B補正値が所定範囲内になく、例えば、下限ガード値にへばりついており、かつ、空燃比F/B補正値も所定範囲内になく、例えば、上限ガード値にへばりついているときにはステップS114に移行し、燃料系異常判定及び燃圧F/B強制停止処理が実行されたのち、本ルーチンを終了する。
【0027】
ここで、上述のステップS110またはステップS114で、燃料系異常判定及び燃圧F/B強制停止処理が実行されたときには、次回の処理タイミングではステップS102の判定条件が成立せず、即ち、燃圧F/B実行中でないためステップS115に移行し、後述の高圧燃料ポンプ23に対する劣化検出処理が実行されたのち、本ルーチンを終了する。
【0028】
次に、上述のステップS115における高圧燃料ポンプ23に対する劣化検出の処理手順について図3のフローチャートを参照して説明する。
【0029】
図3において、ステップS201では、空燃比F/B実行中であるかが判定される。ステップS201の判定条件が成立せず、即ち、内燃機関10の冷間始動時等で空燃比F/Bが実行されていないときには、何もすることなく本ルーチンを終了する。一方、ステップS201の判定条件が成立、即ち、空燃比F/B実行中であるときにはステップS202に移行し、図8及び図9に示すように、目標燃圧を例えば、それまでの12〔MPa 〕から一旦、所定期間だけ10〔MPa 〕に変化させたのち再び12〔MPa 〕に戻すような目標燃圧ステップ変化処理が実行される。次にステップS203に移行して、ステップS202による目標燃圧ステップ変化時における空燃比F/B補正値が検出される。
【0030】
次にステップS204に移行して、燃料系異常判定が実行された後であるかが判定される。ステップS204の判定条件が成立せず、即ち、未だ燃料系異常と判定されていないときには、何もすることなく本ルーチンを終了する。一方、ステップS204の判定条件が成立、即ち、既に燃料系異常と判定されているときにはステップS205に移行し、目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が、上限ガード値及び下限ガード値にて設定される所定範囲内にあるかが判定される。ステップS205の判定条件が成立、即ち、図8に示すように、目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が所定範囲内にあるときにはステップS206に移行し、上述の図2のステップS114で燃料系異常判定及び燃圧F/B強制停止処理が実行されているが、ここでの燃圧F/B制御により燃圧が目標燃圧に調整されることで、高圧燃料ポンプ23が正常であると判定される。そして、ステップS207に移行し、燃圧センサ27が異常であると判定されたのちに、本ルーチンを終了する。
【0031】
一方、ステップS205の判定条件が成立せず、即ち、図9に示すように、目標燃圧ステップ変化時の所定期間内における空燃比F/B補正値が所定範囲内になく、例えば、上限ガード値にへばりついているときにはステップS208に移行し、上述の図2のステップS109で既に、燃圧センサ27が異常であると判定されているのに加え、高圧燃料ポンプ23も異常であると判定されたのちに、本ルーチンを終了する。
【0032】
このように、本実施例の内燃機関の燃料系異常検出装置は、内燃機関10の排気通路36に配設され、排気通路36中のガス濃度に基づきシリンダ10a内のA/F(空燃比)を検出する空燃比検出手段としてのA/Fセンサ35と、内燃機関10に燃料噴射供給するインジェクタ(燃料噴射弁)24と、A/Fセンサ35で検出されたA/Fに基づきインジェクタ24からの燃料噴射量が目標燃料噴射量となるようF/B(フィードバック)制御するECU40にて達成される空燃比F/B制御手段と、燃料タンク21から燃料をインジェクタ24に圧送する高圧燃料ポンプ23と、高圧燃料ポンプ23とインジェクタ24との燃料配管中の燃料の圧力である燃圧を検出する燃圧検出手段としての燃圧センサ20と、燃圧センサ27で検出された燃圧が目標燃圧となるようF/B制御するECU40にて達成される燃圧F/B制御手段と、前記燃圧F/B制御手段によって2つの異なる目標燃圧である12〔MPa 〕と10〔MPa 〕とを切換え、このときの燃圧F/B補正値と前記空燃比F/B制御手段による空燃比F/B補正値との遷移状態に基づき高圧燃料ポンプ23または燃圧センサ27の異常を判定するECU40にて達成される異常判定手段とを具備するものである。
【0033】
つまり、目標燃圧を2つの異なる12〔MPa 〕と10〔MPa 〕とでステップ的に切換えたときの燃圧F/B補正値と空燃比F/B補正値との遷移状態が検出される。このように、目標燃圧を2つの異なる値にて変化させたときの燃圧挙動及び空燃比挙動に基づく簡単な判定処理にて、高圧燃料ポンプ23または燃圧センサ27の燃料系異常を正確に特定することができる。
【0034】
また、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B補正値が所定範囲内にあり、かつ空燃比F/B補正値が所定範囲内にあるときには、燃圧センサ27及び高圧燃料ポンプ23を共に正常と判定するものである。つまり、目標燃圧を2つの異なる値にて変化させたとき、燃圧F/B制御における燃圧F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲内にあり、空燃比F/B制御における空燃比F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲内にあって共に大きな挙動変化を伴わないときには、燃圧センサ27及び高圧燃料ポンプ23が共に正常であると正確に判定することができる。
【0035】
そして、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B補正値が所定範囲内にあり、かつ空燃比F/B補正値が所定範囲を超えているときには、燃圧センサ27を異常と判定し、燃圧F/B制御を停止するものである。つまり、目標燃圧を2つの異なる値にて変化させたとき、燃圧F/B制御における燃圧F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲内にあって大きな挙動変化を伴わず、一方、空燃比F/B制御における空燃比F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲を超え大きく挙動変化しているときには、燃圧センサ27が異常であるために空燃比F/B補正値が所定範囲を設定する上限ガード値または下限ガード値にへばりついていると考えられる。このため、燃圧センサ27が異常であると正確に判定することができ、燃圧センサ27の異常に伴って燃圧F/B制御が停止される。
【0036】
更に、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B補正値が所定範囲を超え、かつ空燃比F/B補正値が所定範囲内にあるときには、燃圧センサ27を正常、高圧燃料ポンプ23を異常とそれぞれ判定するものである。つまり、目標燃圧を2つの異なる値にて変化させたとき、燃圧F/B制御における燃圧F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲を超え大きく挙動変化しており、一方、空燃比F/B制御における空燃比F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲内にあって大きな挙動変化を伴わないときには、高圧燃料ポンプ23が異常であるために燃圧F/B補正値が所定範囲を設定する上限ガード値または下限ガード値にへばりついていると考えられる。このため、燃圧センサ27が正常であって、高圧燃料ポンプ23が異常であると正確に判定することができる。
【0037】
また、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B補正値が所定範囲を超え、かつ空燃比F/B補正値が所定範囲を超えているときには、燃圧F/B制御を停止するものである。つまり、目標燃圧を2つの異なる値にて変化させたとき、燃圧F/B制御における燃圧F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲を超え大きく挙動変化しており、更に、空燃比F/B制御における空燃比F/B補正値も上限ガード値及び下限ガード値にて設定される所定範囲を超え大きく挙動変化しているときには、燃料系が異常と判定できるが、燃圧センサ27または高圧燃料ポンプ23の異常であるかが特定できないため、誤った燃圧F/B制御が続行されることのないよう停止される。
【0038】
そして、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B制御を停止後、空燃比F/B補正値が所定範囲内にあるときには、高圧燃料ポンプ23を正常、燃圧センサ27を異常とそれぞれ判定するものである。つまり、燃圧F/B制御の停止状態において、目標燃圧を2つの異なる値にて変化させたとき、空燃比F/B制御における空燃比F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲内にあって大きな挙動変化を伴わないときには、燃圧センサ27のみが異常であるためと考えられる。即ち、燃圧センサ27は異常であるが高圧燃料ポンプ23は正常であると正確に判定することができる。
【0039】
また、本実施例の内燃機関の燃料系異常検出装置のECU40にて達成される異常判定手段は、燃圧F/B制御を停止後、空燃比F/B補正値が所定範囲を超えているときには、燃圧センサ27の異常に加え高圧燃料ポンプ23も異常と判定するものである。つまり、燃圧F/B制御の停止状態において、目標燃圧を2つの異なる値にて変化させたとき、空燃比F/B制御における空燃比F/B補正値が上限ガード値及び下限ガード値にて設定される所定範囲を超え大きく挙動変化しているときには、燃圧センサ27の異常に加えて高圧燃料ポンプ23も異常であるためと考えられる。このため、燃圧センサ27及び高圧燃料ポンプ23が共に異常であると正確に判定することができる。
【0040】
ところで、上記実施例では、インジェクタからシリンダ内に直接、燃料噴射供給する直噴エンジンへの適用について述べたが、本発明を実施する場合には、これに限定されるものではなく、インジェクタから吸気ポートに向けて燃料噴射供給する内燃機関にも適用することができ、同様に、燃料系の異常判定を実施することができる。
【図面の簡単な説明】
【図1】 図1は本発明の実施の形態の一実施例にかかる内燃機関の燃料系異常検出装置が適用された内燃機関の全体構成を示す概略図である。
【図2】 図2は本発明の実施の形態の一実施例にかかる内燃機関の燃料系異常検出装置で使用されているECUにおける燃料系異常判定の処理手順を示すフローチャートである。
【図3】 図3は図2の高圧燃料ポンプ劣化検出の処理手順を示すフローチャートである。
【図4】 図4は図2の処理に対応する目標燃圧に対する燃圧F/B補正値及び空燃比F/B補正値の遷移状態を示すタイムチャートである。
【図5】 図5は図2の処理に対応する目標燃圧に対する燃圧F/B補正値及び空燃比F/B補正値の遷移状態を示すタイムチャートである。
【図6】 図6は図2の処理に対応する目標燃圧に対する燃圧F/B補正値及び空燃比F/B補正値の遷移状態を示すタイムチャートである。
【図7】 図7は図2の処理に対応する目標燃圧に対する燃圧F/B補正値及び空燃比F/B補正値の遷移状態を示すタイムチャートである。
【図8】 図8は図3の処理に対応する目標燃圧に対する空燃比F/B補正値の遷移状態を示すタイムチャートである。
【図9】 図9は図3の処理に対応する目標燃圧に対する空燃比F/B補正値の遷移状態を示すタイムチャートである。
【符号の説明】
10 内燃機関
10a シリンダ
21 燃料タンク
23 高圧燃料ポンプ
24 インジェクタ(燃料噴射弁)
27 燃圧センサ(燃圧検出手段)
35 A/Fセンサ(空燃比検出手段)
40 ECU(電子制御ユニット)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel system abnormality detection device for an internal combustion engine that can detect the occurrence of a fuel system abnormality.
[0002]
[Prior art]
Conventionally, as a prior art document related to a fuel system abnormality detection device for an internal combustion engine, one disclosed in Japanese Patent Laid-Open No. 10-9028 is known. This technique shows a technique for determining that an abnormality has occurred in the fuel system when the fuel pressure is lower than the set fuel pressure for a predetermined time or longer, not during the fuel injection period.
[0003]
Moreover, what was disclosed by Unexamined-Japanese-Patent No. 10-89135 is known. This technique shows a technique for detecting an abnormality of a high-pressure fuel pump (high-pressure pump) based on a fuel pressure deviation by a fuel pressure sensor in two periods in which fuel injection is not sandwiched.
[0004]
[Problems to be solved by the invention]
By the way, in the above-mentioned Japanese Patent Application Laid-Open No. 10-9028, there is a problem that even if the occurrence of an abnormality in the fuel system is known, the abnormal part cannot be specified. Moreover, in the above-mentioned Japanese Patent Application Laid-Open No. 10-89135, it is a precondition that the fuel pressure sensor (common rail pressure sensor) is normal, and the malfunction of the high-pressure fuel pump cannot be detected unless the fuel pressure sensor is normal. was there.
[0005]
Accordingly, the present invention has been made to solve such a problem, and it is an object of the present invention to provide a fuel system abnormality detection device for an internal combustion engine capable of detecting the occurrence of abnormality in the fuel system and identifying the abnormality part.
[0006]
[Means for Solving the Problems]
According to the fuel system abnormality detection device for an internal combustion engine of claim 1, feedback is performed so that the fuel pressure from the fuel pressure detection means becomes the target fuel pressure by the fuel pressure feedback control means when the fuel pressure feedback control means switches to at least two different target fuel pressures. Based on the fuel pressure feedback correction value at the time of control and the air-fuel ratio detected by the air-fuel ratio detection means, the air-fuel ratio feedback control means uses the air-fuel ratio feedback control so that the fuel injection amount from the fuel injection valve becomes the target fuel injection amount. A transition state with the fuel ratio feedback correction value is detected. Detection of the fuel pressure feedback correction value and the air-fuel ratio feedback correction value, that is, a simple determination process based on the fuel pressure behavior and the air-fuel ratio behavior when the target fuel pressure is changed at two different values. The fuel system abnormality of the means can be accurately identified.
Further, in the abnormality detection means, when the target fuel pressure is changed by at least two different values, the fuel pressure feedback correction value in the fuel pressure feedback control is within a predetermined range and does not cause a large behavior change. It is considered that when the air-fuel ratio feedback correction value in the control greatly changes in behavior beyond the predetermined range, the air-fuel ratio feedback correction value does not fall within the predetermined range because the fuel pressure detection means is abnormal. For this reason, it can be accurately determined that the fuel pressure detection means is abnormal, and the fuel pressure feedback control is stopped along with the abnormality of the fuel pressure detection means.
[0010]
According to the fuel system abnormality detection device for an internal combustion engine of claim 2, feedback is performed so that the fuel pressure from the fuel pressure detection means becomes the target fuel pressure by the fuel pressure feedback control means when the fuel pressure feedback control means switches to at least two different target fuel pressures. Based on the fuel pressure feedback correction value at the time of control and the air-fuel ratio detected by the air-fuel ratio detection means, the air-fuel ratio feedback control means uses the air-fuel ratio feedback control so that the fuel injection amount from the fuel injection valve becomes the target fuel injection amount. A transition state with the fuel ratio feedback correction value is detected. Detection of the fuel pressure feedback correction value and the air-fuel ratio feedback correction value, that is, a simple determination process based on the fuel pressure behavior and the air-fuel ratio behavior when the target fuel pressure is changed at two different values. The fuel system abnormality of the means can be accurately identified.
Further, in the abnormality detection means, when the target fuel pressure is changed at at least two different values, the fuel pressure feedback correction value in the fuel pressure feedback control greatly changes beyond the predetermined range, and further in the air-fuel ratio feedback control. When the air-fuel ratio feedback correction value also exceeds the predetermined range and changes significantly, it can be determined that the fuel system is abnormal, but it cannot be determined whether the fuel pressure detection means or the fuel pump is abnormal, so erroneous fuel pressure feedback control continues. Stopped from being done.
In the abnormality detection means, when the target fuel pressure is changed by at least two different values in the stopped state of the fuel pressure feedback control, the air-fuel ratio feedback correction value in the air-fuel ratio feedback control is within a predetermined range and a large behavior is obtained. It is considered that only the fuel pressure detection means is abnormal when there is no change. For this reason, it can be accurately determined that the fuel pressure detection means is abnormal but the fuel pump is normal.
Further, in the abnormality detection means, when the target fuel pressure is changed by at least two different values in the stopped state of the fuel pressure feedback control, the behavior of the air / fuel ratio feedback correction value in the air / fuel ratio feedback control greatly changes beyond the predetermined range. This is because the fuel pump is abnormal in addition to the abnormality of the fuel pressure detecting means. For this reason, it can be accurately determined that both the fuel pressure detecting means and the fuel pump are abnormal.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described based on examples.
[0014]
FIG. 1 is a schematic diagram showing an overall configuration of an internal combustion engine to which a fuel system abnormality detection device for an internal combustion engine according to an example of an embodiment of the present invention is applied.
[0015]
In FIG. 1, air taken into the internal combustion engine 10 is taken in from an inlet portion 11a of an air cleaner 11, passes through an air flow meter 12, passes through a throttle body 14 in which a throttle valve 13 for controlling the intake air amount is housed, and a surge tank 15 To be introduced. The sucked air is distributed to each intake passage 16 connected to each cylinder 10a of the internal combustion engine 10 and introduced into each cylinder 10a of the internal combustion engine 10. The throttle valve 13 is opened / closed by an electric motor 17.
[0016]
Fuel such as gasoline is first pressurized from a fuel tank 21 by a low pressure fuel pump 22 and then secondarily pressurized by a high pressure fuel pump 23, and a fuel system in which an injector (fuel injection valve) 24 is piped. To be supplied. The primary pressurized fuel is regulated to a constant pressure (for example, 3 [kgf / cm 2 ]) by the fuel pressure regulator 25, and the fuel secondarily pressurized to a higher pressure is regulated by the fuel pressure regulator 26. The pressure is adjusted to a pressure (for example, 70 [kgf / cm 2 ]). That is, the fuel pressure secondarily pressurized by the high-pressure fuel pump 23 is detected by the fuel pressure sensor 27 and regulated by the fuel pressure regulator 26. The fuel directly injected from the injector 24 provided in each cylinder 10a into the combustion chamber 10c formed by the cylinder 10a and the piston 10b is ignited by an ignition signal that is increased in voltage by the ignition coil 31. It is ignited by the plug 32. Thus, as the internal combustion engine 10 of the present embodiment, a so-called direct injection engine that supplies fuel directly into the cylinder 10a is assumed.
[0017]
A signal representing the intake air amount is output from the air flow meter 12 and input to an ECU (Electronic Control Unit) 40. Further, a throttle opening sensor 18 for detecting the opening of the throttle valve 13 is attached to the throttle body 14, and this output is also input to the ECU 40. The cylinder 10a is provided with a water temperature sensor 28 for detecting the cooling water temperature of the internal combustion engine 10, and this output is also input to the ECU 40. A fuel pressure signal from the fuel pressure sensor 27 is also input to the ECU 40.
[0018]
A cam angle sensor 33 attached to the camshaft 34 outputs a reference angle signal indicating the rotational position of the crankshaft and an angle signal for detecting the engine speed, and these signals are also input to the ECU 40. 35 is an A / F (air-fuel ratio) sensor provided upstream of the catalyst 37 in the exhaust passage 36, 38 is an accelerator opening sensor, and these signals are also input to the ECU 40.
[0019]
The ECU 40 includes a CPU as a central processing unit that executes various known arithmetic processes, a ROM that stores control programs, a RAM that stores various data, a B / U (backup) RAM, an input / output circuit, and a bus line that connects them. It is configured as a logical operation circuit made up of and the like.
[0020]
Next, based on the flowcharts of FIG. 2 and FIG. 3 showing the processing procedure of the fuel system abnormality determination in the ECU 40 used in the fuel system abnormality detection device of the internal combustion engine according to an example of the embodiment of the present invention. A description will be given with reference to FIGS. 4 to 7 are time charts showing transition states of the fuel pressure feedback (hereinafter referred to as “F / B”) correction value and the air-fuel ratio F / B correction value with respect to the target fuel pressure corresponding to the processing of FIG. FIG. 8 and FIG. 9 are time charts showing the transition state of the air-fuel ratio F / B correction value with respect to the target fuel pressure corresponding to the processing of FIG. This fuel system abnormality determination routine is repeatedly executed by the ECU 40 every predetermined time.
[0021]
In FIG. 2, first, in step S101, it is determined whether the air-fuel ratio F / B is being executed. When the determination condition of step S101 is not satisfied, that is, when the air-fuel ratio F / B is not executed, such as when the internal combustion engine 10 is cold started, this routine is terminated without doing anything. On the other hand, when the determination condition of step S101 is satisfied, that is, when the air-fuel ratio F / B is being executed, the routine proceeds to step S102, where it is determined whether the fuel pressure F / B is being executed.
[0022]
When the determination condition of step S102 is satisfied, that is, when the fuel pressure F / B is being executed, the process proceeds to step S103, and the target fuel pressure is temporarily changed from, for example, 12 [MPa] until then, as shown in FIGS. A target fuel pressure step changing process is executed in which the pressure is changed to 10 [MPa] for a predetermined period and then returned to 12 [MPa] again. Next, the process proceeds to step S104, and the air-fuel ratio F / B correction value within a predetermined period when the target fuel pressure step changes in step S103 is detected.
[0023]
Next, the process proceeds to step S105, where it is determined whether the fuel pressure F / B correction value within a predetermined period when the target fuel pressure step is changed in step S103 is within a predetermined range set by the upper limit guard value and the lower limit guard value. Is done. When the determination condition in step S105 is satisfied, that is, as shown in FIGS. 4 and 5, when the fuel pressure F / B correction value is within the predetermined range, the process proceeds to step S106, and the empty condition within the predetermined period when the target fuel pressure step changes is determined. It is determined whether the fuel ratio F / B correction value is within a predetermined range set by the upper limit guard value and the lower limit guard value. When the determination condition in step S106 is satisfied, that is, as shown in FIG. 4, the air-fuel ratio F / B correction value is within a predetermined range, the process proceeds to step S107, and it is determined that the fuel pressure sensor 27 is normal. Then, the process proceeds to step S108, and as shown in FIG. 4, since the fuel pressure F / B correction value is also within the predetermined range, the routine is terminated after it is determined that the high-pressure fuel pump 23 is also normal.
[0024]
On the other hand, the determination condition of step S106 is not satisfied, that is, as shown in FIG. 5, the air-fuel ratio F is equal to the fuel pressure F / B correction value within the predetermined range within the predetermined period when the target fuel pressure step changes. When the / B correction value is not within the predetermined range, for example, when the value exceeds the upper limit guard value, the routine proceeds to step S109, where it is determined that the fuel pressure sensor 27 is abnormal. Then, the process proceeds to step S110, and after the fuel system abnormality determination and the fuel pressure F / B forced stop process are executed, this routine is finished.
[0025]
Here, the determination condition of step S105 is not satisfied, that is, as shown in FIGS. 6 and 7, the fuel pressure F / B correction value within the predetermined period at the time of the target fuel pressure step change is not within the predetermined range. When it is stuck to the lower limit guard value, the process proceeds to step S111. In step S111, it is determined whether the air-fuel ratio F / B correction value within a predetermined period when the target fuel pressure step changes is within a predetermined range set by the upper limit guard value and the lower limit guard value. When the determination condition in step S111 is satisfied, that is, as shown in FIG. 6, the air-fuel ratio F / B correction value is within a predetermined range, the process proceeds to step S112, and it is determined that the fuel pressure sensor 27 is normal. Then, the process proceeds to step S113, and as shown in FIG. 6, the fuel pressure F / B correction value is not within the predetermined range even though the air-fuel ratio F / B correction value is within the predetermined range. If it is determined that the high pressure fuel pump 23 is abnormal, this routine is terminated.
[0026]
On the other hand, the determination condition of step S111 is not satisfied, that is, as shown in FIG. 7, the fuel pressure F / B correction value within the predetermined period at the time of the target fuel pressure step change is not within the predetermined range. If the air-fuel ratio F / B correction value is not within the predetermined range, for example, if the air-fuel ratio F / B correction value has reached the upper limit guard value, the routine proceeds to step S114, where fuel system abnormality determination and fuel pressure F / B forced stop processing are executed. Then, this routine is terminated.
[0027]
Here, when the fuel system abnormality determination and the fuel pressure F / B forced stop processing are executed in the above-described step S110 or step S114, the determination condition of step S102 is not satisfied at the next processing timing, that is, the fuel pressure F / B Since B is not being executed, the routine proceeds to step S115, where a deterioration detection process for the high pressure fuel pump 23 described later is executed, and then this routine is ended.
[0028]
Next, the processing procedure for detecting the deterioration of the high-pressure fuel pump 23 in step S115 will be described with reference to the flowchart of FIG.
[0029]
In FIG. 3, in step S201, it is determined whether the air-fuel ratio F / B is being executed. When the determination condition of step S201 is not satisfied, that is, when the air-fuel ratio F / B is not executed, such as when the internal combustion engine 10 is cold started, this routine is terminated without doing anything. On the other hand, when the determination condition of step S201 is satisfied, that is, when the air-fuel ratio F / B is being executed, the routine proceeds to step S202, and the target fuel pressure is set to, for example, 12 [MPa] up to that point, as shown in FIGS. Then, the target fuel pressure step changing process is executed in which the pressure is changed to 10 [MPa] for a predetermined period and then returned to 12 [MPa] again. Next, the process proceeds to step S203, and the air-fuel ratio F / B correction value at the time of the target fuel pressure step change in step S202 is detected.
[0030]
Next, the process proceeds to step S204, where it is determined whether or not the fuel system abnormality determination is executed. If the determination condition in step S204 is not satisfied, that is, if it is not yet determined that the fuel system is abnormal, this routine is terminated without doing anything. On the other hand, when the determination condition of step S204 is satisfied, that is, when it is already determined that the fuel system is abnormal, the routine proceeds to step S205, where the air-fuel ratio F / B correction value within the predetermined period when the target fuel pressure step changes is the upper guard value. And it is determined whether it is within a predetermined range set by the lower limit guard value. When the determination condition of step S205 is satisfied, that is, as shown in FIG. 8, when the air-fuel ratio F / B correction value within the predetermined period at the time of the target fuel pressure step change is within the predetermined range, the routine proceeds to step S206, In step S114 of FIG. 2, the fuel system abnormality determination and the fuel pressure F / B forcible stop processing are executed. By adjusting the fuel pressure to the target fuel pressure by the fuel pressure F / B control here, the high-pressure fuel pump 23 is normal. It is determined that And it transfers to step S207, and after determining with the fuel pressure sensor 27 being abnormal, this routine is complete | finished.
[0031]
On the other hand, the determination condition in step S205 is not satisfied, that is, as shown in FIG. 9, the air-fuel ratio F / B correction value within the predetermined period when the target fuel pressure step changes is not within the predetermined range. If it is determined that the fuel pressure sensor 27 is abnormal in addition to the fact that the fuel pressure sensor 27 has already been determined to be abnormal in step S109 of FIG. Finally, this routine ends.
[0032]
As described above, the fuel system abnormality detection device for the internal combustion engine of the present embodiment is disposed in the exhaust passage 36 of the internal combustion engine 10, and the A / F (air-fuel ratio) in the cylinder 10 a based on the gas concentration in the exhaust passage 36. From the A / F sensor 35 as air-fuel ratio detecting means for detecting the fuel, the injector (fuel injection valve) 24 for supplying fuel to the internal combustion engine 10, and the injector 24 based on the A / F detected by the A / F sensor 35 An air-fuel ratio F / B control means that is achieved by an ECU 40 that performs F / B (feedback) control so that the fuel injection amount of the fuel becomes the target fuel injection amount, and a high-pressure fuel pump 23 that pumps fuel from the fuel tank 21 to the injector 24. And a fuel pressure sensor 20 as a fuel pressure detecting means for detecting a fuel pressure that is a pressure of fuel in a fuel pipe between the high pressure fuel pump 23 and the injector 24, and a fuel pressure sensor 27. The fuel pressure F / B control means achieved by the ECU 40 that performs F / B control so that the obtained fuel pressure becomes the target fuel pressure, and two different target fuel pressures 12 [MPa] and 10 [ MPa], and the abnormality of the high-pressure fuel pump 23 or the fuel pressure sensor 27 is determined based on the transition state between the fuel pressure F / B correction value at this time and the air-fuel ratio F / B correction value by the air-fuel ratio F / B control means. And an abnormality determination means achieved by the ECU 40.
[0033]
That is, the transition state between the fuel pressure F / B correction value and the air-fuel ratio F / B correction value when the target fuel pressure is switched stepwise between two different 12 [MPa] and 10 [MPa] is detected. As described above, the fuel system abnormality of the high-pressure fuel pump 23 or the fuel pressure sensor 27 is accurately identified by simple determination processing based on the fuel pressure behavior and the air-fuel ratio behavior when the target fuel pressure is changed at two different values. be able to.
[0034]
Further, the abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment has a fuel pressure F / B correction value within a predetermined range and an air-fuel ratio F / B correction value within a predetermined range. When the fuel pressure is within the range, both the fuel pressure sensor 27 and the high pressure fuel pump 23 are determined to be normal. That is, when the target fuel pressure is changed at two different values, the fuel pressure F / B correction value in the fuel pressure F / B control is within a predetermined range set by the upper limit guard value and the lower limit guard value, and the air-fuel ratio F When the air-fuel ratio F / B correction value in the / B control is within a predetermined range set by the upper limit guard value and the lower limit guard value, and both do not have a large behavior change, both the fuel pressure sensor 27 and the high pressure fuel pump 23 are normal. Can be accurately determined.
[0035]
The abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment has the fuel pressure F / B correction value within a predetermined range and the air-fuel ratio F / B correction value within a predetermined range. When the value exceeds the value, the fuel pressure sensor 27 is determined to be abnormal, and the fuel pressure F / B control is stopped. That is, when the target fuel pressure is changed at two different values, the fuel pressure F / B correction value in the fuel pressure F / B control is within a predetermined range set by the upper limit guard value and the lower limit guard value, and the behavior changes greatly. On the other hand, when the air-fuel ratio F / B correction value in the air-fuel ratio F / B control greatly changes beyond the predetermined range set by the upper limit guard value and the lower limit guard value, the fuel pressure sensor 27 is abnormal. Therefore, it is considered that the air-fuel ratio F / B correction value is stuck to the upper guard value or the lower guard value that sets the predetermined range. Therefore, it can be accurately determined that the fuel pressure sensor 27 is abnormal, and the fuel pressure F / B control is stopped in accordance with the abnormality of the fuel pressure sensor 27.
[0036]
Further, the abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment is such that the fuel pressure F / B correction value exceeds a predetermined range and the air-fuel ratio F / B correction value is within the predetermined range. In this case, the fuel pressure sensor 27 is determined to be normal and the high-pressure fuel pump 23 is determined to be abnormal. That is, when the target fuel pressure is changed at two different values, the fuel pressure F / B correction value in the fuel pressure F / B control greatly changes beyond the predetermined range set by the upper limit guard value and the lower limit guard value. On the other hand, when the air-fuel ratio F / B correction value in the air-fuel ratio F / B control is within a predetermined range set by the upper limit guard value and the lower limit guard value and does not involve a large behavior change, the high pressure fuel pump 23 is It is considered that the fuel pressure F / B correction value is stuck to an upper limit guard value or a lower limit guard value that sets a predetermined range because it is abnormal. Therefore, it can be accurately determined that the fuel pressure sensor 27 is normal and the high-pressure fuel pump 23 is abnormal.
[0037]
Further, the abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment is such that the fuel pressure F / B correction value exceeds the predetermined range and the air-fuel ratio F / B correction value exceeds the predetermined range. When it exceeds, the fuel pressure F / B control is stopped. That is, when the target fuel pressure is changed at two different values, the fuel pressure F / B correction value in the fuel pressure F / B control greatly changes beyond the predetermined range set by the upper limit guard value and the lower limit guard value. In addition, when the air-fuel ratio F / B correction value in the air-fuel ratio F / B control is greatly changed beyond the predetermined range set by the upper limit guard value and the lower limit guard value, it can be determined that the fuel system is abnormal. However, since it cannot be specified whether the fuel pressure sensor 27 or the high-pressure fuel pump 23 is abnormal, the fuel pressure F / B control is stopped so as not to continue.
[0038]
Then, the abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment is that when the air-fuel ratio F / B correction value is within a predetermined range after stopping the fuel pressure F / B control, The high pressure fuel pump 23 is determined to be normal, and the fuel pressure sensor 27 is determined to be abnormal. That is, when the target fuel pressure is changed at two different values in the stop state of the fuel pressure F / B control, the air-fuel ratio F / B correction value in the air-fuel ratio F / B control is the upper limit guard value and the lower limit guard value. It is considered that only the fuel pressure sensor 27 is abnormal when there is no significant behavior change within the predetermined range. That is, it can be accurately determined that the fuel pressure sensor 27 is abnormal but the high-pressure fuel pump 23 is normal.
[0039]
Further, the abnormality determination means achieved by the ECU 40 of the fuel system abnormality detection device for the internal combustion engine of the present embodiment is when the air-fuel ratio F / B correction value exceeds a predetermined range after the fuel pressure F / B control is stopped. In addition to the abnormality of the fuel pressure sensor 27, the high-pressure fuel pump 23 is also determined to be abnormal. That is, when the target fuel pressure is changed at two different values in the stop state of the fuel pressure F / B control, the air-fuel ratio F / B correction value in the air-fuel ratio F / B control is the upper limit guard value and the lower limit guard value. When the behavior is greatly changed beyond the predetermined range, it is considered that the high-pressure fuel pump 23 is abnormal in addition to the abnormality of the fuel pressure sensor 27. For this reason, it can be accurately determined that both the fuel pressure sensor 27 and the high-pressure fuel pump 23 are abnormal.
[0040]
By the way, in the above-described embodiment, the application to the direct injection engine in which the fuel is directly injected from the injector into the cylinder has been described. However, the present invention is not limited to this, and the intake air from the injector is not limited thereto. The present invention can also be applied to an internal combustion engine that injects fuel toward the port, and similarly, abnormality determination of the fuel system can be performed.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an overall configuration of an internal combustion engine to which a fuel system abnormality detection device for an internal combustion engine according to an example of an embodiment of the present invention is applied.
FIG. 2 is a flowchart showing a fuel system abnormality determination processing procedure in an ECU used in an internal combustion engine fuel system abnormality detection device according to an example of an embodiment of the present invention;
FIG. 3 is a flowchart showing a processing procedure for detection of deterioration of the high-pressure fuel pump in FIG. 2;
4 is a time chart showing transition states of a fuel pressure F / B correction value and an air-fuel ratio F / B correction value with respect to a target fuel pressure corresponding to the processing of FIG.
FIG. 5 is a time chart showing transition states of a fuel pressure F / B correction value and an air-fuel ratio F / B correction value with respect to a target fuel pressure corresponding to the processing of FIG.
6 is a time chart showing transition states of a fuel pressure F / B correction value and an air-fuel ratio F / B correction value with respect to a target fuel pressure corresponding to the processing of FIG.
7 is a time chart showing transition states of a fuel pressure F / B correction value and an air-fuel ratio F / B correction value with respect to a target fuel pressure corresponding to the processing of FIG.
FIG. 8 is a time chart showing a transition state of the air-fuel ratio F / B correction value with respect to the target fuel pressure corresponding to the processing of FIG. 3;
FIG. 9 is a time chart showing a transition state of the air-fuel ratio F / B correction value with respect to the target fuel pressure corresponding to the processing of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 10a Cylinder 21 Fuel tank 23 High-pressure fuel pump 24 Injector (fuel injection valve)
27 Fuel pressure sensor (Fuel pressure detection means)
35 A / F sensor (air-fuel ratio detection means)
40 ECU (Electronic Control Unit)

Claims (2)

内燃機関の排気通路に配設され、前記排気通路中のガス濃度に基づきシリンダ内の空燃比を検出する空燃比検出手段と、
前記内燃機関に燃料噴射供給する燃料噴射弁と、
前記空燃比検出手段で検出された前記空燃比に基づき前記燃料噴射弁からの燃料噴射量が目標燃料噴射量となるようフィードバック制御する空燃比フィードバック制御手段と、
燃料タンクから燃料を前記燃料噴射弁に圧送する燃料ポンプと、
前記燃料ポンプと前記燃料噴射弁との燃料配管中の燃料の圧力である燃圧を検出する燃圧検出手段と、
前記燃圧検出手段で検出された前記燃圧が目標燃圧となるようフィードバック制御する燃圧フィードバック制御手段と、
前記燃圧フィードバック制御手段によって、少なくとも、2つの異なる前記目標燃圧に切換え、このときの燃圧フィードバック補正値と前記空燃比フィードバック制御手段による空燃比フィードバック補正値との遷移状態に基づき前記燃料ポンプまたは前記燃圧検出手段の異常を判定する異常判定手段とを具備し、
前記異常判定手段は、前記燃圧フィードバック補正値が所定範囲内にあり、かつ、前記空燃比フィードバック補正値が所定範囲を超えているとき、前記燃圧検出手段を異常と判定し、燃圧フィードバック制御を停止することを特徴とする内燃機関の燃料系異常検出装置。
An air-fuel ratio detecting means which is disposed in an exhaust passage of the internal combustion engine and detects an air-fuel ratio in the cylinder based on a gas concentration in the exhaust passage;
A fuel injection valve for supplying fuel to the internal combustion engine;
Air-fuel ratio feedback control means for performing feedback control so that the fuel injection amount from the fuel injection valve becomes a target fuel injection amount based on the air-fuel ratio detected by the air-fuel ratio detection means;
A fuel pump that pumps fuel from a fuel tank to the fuel injection valve;
Fuel pressure detecting means for detecting a fuel pressure that is a pressure of fuel in a fuel pipe between the fuel pump and the fuel injection valve;
Fuel pressure feedback control means for performing feedback control so that the fuel pressure detected by the fuel pressure detection means becomes a target fuel pressure;
Switching to at least two different target fuel pressures by the fuel pressure feedback control means, and the fuel pump or the fuel pressure based on the transition state between the fuel pressure feedback correction value at this time and the air fuel ratio feedback correction value by the air fuel ratio feedback control means An abnormality determination means for determining an abnormality of the detection means ,
The abnormality determination means determines that the fuel pressure detection means is abnormal when the fuel pressure feedback correction value is within a predetermined range and the air-fuel ratio feedback correction value exceeds a predetermined range, and stops the fuel pressure feedback control. A fuel system abnormality detection device for an internal combustion engine.
内燃機関の排気通路に配設され、前記排気通路中のガス濃度に基づきシリンダ内の空燃比を検出する空燃比検出手段と、
前記内燃機関に燃料噴射供給する燃料噴射弁と、
前記空燃比検出手段で検出された前記空燃比に基づき前記燃料噴射弁からの燃料噴射量が目標燃料噴射量となるようフィードバック制御する空燃比フィードバック制御手段と、
燃料タンクから燃料を前記燃料噴射弁に圧送する燃料ポンプと、
前記燃料ポンプと前記燃料噴射弁との燃料配管中の燃料の圧力である燃圧を検出する燃圧検出手段と、
前記燃圧検出手段で検出された前記燃圧が目標燃圧となるようフィードバック制御する燃圧フィードバック制御手段と、前記燃圧フィードバック制御手段によって、少なくとも、2つの異なる前記目標燃圧に切換え、このときの燃圧フィードバック補正値と前記空燃比フィードバック制御手段による空燃比フィードバック補正値との遷移状態に基づき前記燃料ポンプまたは前記燃圧検出手段の異常を判定する異常判定手段とを具備し、
前記異常判定手段は、前記燃圧フィードバック補正値が所定範囲を超え、かつ、前記空燃比フィードバック補正値が所定範囲を超えているとき、前記燃圧フィードバック制御を停止し、また、前記燃圧フィードバック制御を停止後、前記空燃比フィードバック補正値が所定範囲内にあるとき、前記燃料ポンプを正常、前記燃圧検出手段を異常とそれぞれ判定し、また、前記燃圧フィードバック制御を停止後、前記空燃比フィードバック補正値が所定範囲を超えているとき、前記燃圧検出手段の異常に加え前記燃料ポンプも異常と判定することを特徴とする内燃機関の燃料系異常検出装置。
An air-fuel ratio detecting means which is disposed in an exhaust passage of the internal combustion engine and detects an air-fuel ratio in the cylinder based on a gas concentration in the exhaust passage;
A fuel injection valve for supplying fuel to the internal combustion engine;
Air-fuel ratio feedback control means for performing feedback control so that the fuel injection amount from the fuel injection valve becomes a target fuel injection amount based on the air-fuel ratio detected by the air-fuel ratio detection means;
A fuel pump that pumps fuel from a fuel tank to the fuel injection valve;
Fuel pressure detecting means for detecting a fuel pressure that is a pressure of fuel in a fuel pipe between the fuel pump and the fuel injection valve;
The fuel pressure feedback control means that performs feedback control so that the fuel pressure detected by the fuel pressure detection means becomes the target fuel pressure, and the fuel pressure feedback control means switches to at least two different target fuel pressures, and the fuel pressure feedback correction value at this time And an abnormality determination means for determining an abnormality of the fuel pump or the fuel pressure detection means based on a transition state between the air-fuel ratio feedback correction value by the air-fuel ratio feedback control means ,
The abnormality determination unit stops the fuel pressure feedback control when the fuel pressure feedback correction value exceeds a predetermined range and the air-fuel ratio feedback correction value exceeds a predetermined range, and stops the fuel pressure feedback control. Thereafter, when the air-fuel ratio feedback correction value is within a predetermined range, it is determined that the fuel pump is normal and the fuel pressure detection means is abnormal, and after the fuel pressure feedback control is stopped, the air-fuel ratio feedback correction value is A fuel system abnormality detection device for an internal combustion engine , wherein when it exceeds a predetermined range, the fuel pump is also judged to be abnormal in addition to the abnormality of the fuel pressure detection means .
JP2000210953A 2000-07-12 2000-07-12 Fuel system abnormality detection device for internal combustion engine Expired - Lifetime JP4281225B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000210953A JP4281225B2 (en) 2000-07-12 2000-07-12 Fuel system abnormality detection device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000210953A JP4281225B2 (en) 2000-07-12 2000-07-12 Fuel system abnormality detection device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2002021630A JP2002021630A (en) 2002-01-23
JP4281225B2 true JP4281225B2 (en) 2009-06-17

Family

ID=18707144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000210953A Expired - Lifetime JP4281225B2 (en) 2000-07-12 2000-07-12 Fuel system abnormality detection device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP4281225B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10248626A1 (en) * 2002-10-18 2004-04-29 Robert Bosch Gmbh Method for operating an internal combustion engine and control device therefor
JP4610407B2 (en) * 2005-04-26 2011-01-12 本田技研工業株式会社 Fuel injection device for internal combustion engine
JP5013097B2 (en) * 2007-12-05 2012-08-29 トヨタ自動車株式会社 Engine control apparatus, engine fuel supply system abnormality diagnosis method, computer program, and recording medium
JP2010025102A (en) * 2008-06-16 2010-02-04 Hitachi Ltd Control diagnostic system of internal combustion engine
JP5012713B2 (en) * 2008-07-23 2012-08-29 トヨタ自動車株式会社 Control device for internal combustion engine
JP5287673B2 (en) * 2009-11-11 2013-09-11 株式会社デンソー Abnormal site diagnosis device
JP5191983B2 (en) * 2009-12-16 2013-05-08 日立オートモティブシステムズ株式会社 Diagnostic device for internal combustion engine
JP5825068B2 (en) * 2011-11-18 2015-12-02 いすゞ自動車株式会社 Abnormality determination method for internal combustion engine fuel injection and internal combustion engine

Also Published As

Publication number Publication date
JP2002021630A (en) 2002-01-23

Similar Documents

Publication Publication Date Title
JP3680515B2 (en) Fuel system diagnostic device for internal combustion engine
US7885755B2 (en) Fuel injection amount control apparatus of internal combustion engine
US6732707B2 (en) Control system and method for internal combustion engine
JP3234865B2 (en) Failure detection device for fuel pressure sensor
JP4070961B2 (en) Failure determination device for variable cylinder internal combustion engine
JPH06146867A (en) Abnormality detection device for secondary air supply mechanism
US10054098B2 (en) Ignition timing control device for internal combustion engine
US7637097B2 (en) Control apparatus and control method for internal combustion engine provided with secondary air supply
JP4281225B2 (en) Fuel system abnormality detection device for internal combustion engine
EP2975249B1 (en) Fuel injection control apparatus of internal combustion engine
US6834641B2 (en) Fuel injection system for internal combustion engine
US7721707B2 (en) Abnormality determination apparatus and abnormality determination method for valve
JP4868173B2 (en) Abnormality diagnosis device for internal combustion engine
JP2007303294A (en) Control device for internal combustion engine with supercharger
US20080209992A1 (en) Pressure sensor and pressure control system
JP2002047983A (en) Abnormality diagnostic device for high pressure fuel supply system of internal combustion engine
EP2549083B1 (en) Control device for internal combustion engine
JP2004251208A (en) Fuel injection system
JPH06167236A (en) Trouble detecting device for pressure sensor
US6446499B1 (en) Diagnostic apparatus for assist air supply system of engine
JP2008303827A (en) Fuel injection control device for internal combustion engine
JP2010174745A (en) Device for determining deterioration in sensitivity of cylinder internal pressure sensor
JP2005009448A (en) Atmospheric-pressure detection device of multi-cylinder internal combustion engine
JP3720200B2 (en) Damage detection device for intake manifold of internal combustion engine
JP2007218208A (en) Fuel injector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080902

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081104

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090309

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4281225

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term