JP4281083B2 - Steam reformer - Google Patents

Steam reformer Download PDF

Info

Publication number
JP4281083B2
JP4281083B2 JP2003089208A JP2003089208A JP4281083B2 JP 4281083 B2 JP4281083 B2 JP 4281083B2 JP 2003089208 A JP2003089208 A JP 2003089208A JP 2003089208 A JP2003089208 A JP 2003089208A JP 4281083 B2 JP4281083 B2 JP 4281083B2
Authority
JP
Japan
Prior art keywords
layer
high temperature
temperature reaction
steam
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003089208A
Other languages
Japanese (ja)
Other versions
JP2004292268A (en
Inventor
武 桑原
良夫 冨沢
小野  純
靖 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
T.RAD CO., L T D.
Original Assignee
T.RAD CO., L T D.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by T.RAD CO., L T D. filed Critical T.RAD CO., L T D.
Priority to JP2003089208A priority Critical patent/JP4281083B2/en
Priority to EP04719663.9A priority patent/EP1602627B1/en
Priority to KR1020057016318A priority patent/KR101022189B1/en
Priority to CA2517161A priority patent/CA2517161C/en
Priority to US10/547,805 priority patent/US7517507B2/en
Priority to PCT/JP2004/003242 priority patent/WO2004080891A1/en
Publication of JP2004292268A publication Critical patent/JP2004292268A/en
Application granted granted Critical
Publication of JP4281083B2 publication Critical patent/JP4281083B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は原料ガスを水蒸気と酸素の存在下に自己酸化および改質を行って水素リッチな改質ガスを生成する水蒸気改質器に関する。
【0002】
【従来の技術】
メタン等の炭化水素、メタノール等の脂肪族アルコール類、ジメチルエーテル等のエーテル類、天然ガスや都市ガス等の原料ガスと水蒸気の混合物(以下、原料−水蒸気混合物という)を水蒸気改質触媒の存在下に水蒸気改質し、水素リッチな改質ガスを生成する水蒸気改質器が知られている。このような水蒸気改質器としては、水蒸気改質触媒に酸化触媒を共存させ、原料ガスを水蒸気と酸素の存在下に該触媒で自己酸化および改質を行い、水素リッチな改質ガスを生成する自己酸化型の水蒸気改質器が特許文献1で提案されている。
【0003】
【特許文献1】
特開2001−192201号公報
【0004】
特許文献1に提案された技術では、酸化反応による発熱と水蒸気改質反応をそれぞれ酸化触媒と水蒸気改質触媒からなる混合触媒層で同時に行っている。すなわち、酸化発熱層と水蒸気改質反応(吸熱反応)層が共存することにより、加熱部の温度と吸熱部の温度を同等に維持することが可能となり、触媒等の構成部材の温度を所定の改質反応温度以下、例えば700℃近傍に抑制でき,それによって構成部材の寿命短縮も防止でき得るとしている。また水蒸気改質器内部の熱を有効に回収する機能を併せ持っているので高い改質効率を得られるとされている。
【0005】
図3は自己酸化型の水蒸気改質器の1例を示す模式的な断面図である。水蒸気改質器1は内筒2とその周囲に配置された外筒3を備え、内筒2の内部における最上部に水蒸気改質触媒と酸化触媒を混合した混合触媒層4および酸素含有ガス導入部5を設けた高温反応部6が配置され、その下側に伝熱層からなる隣接層7が配置され、更にその隣接層7の下側に高温シフト触媒層8と低温シフト触媒層9が順に配置される。
【0006】
水蒸気改質触媒は原料ガスを水蒸気改質する触媒層であり、例えば、NiS−SiO2 ・Al2 3 などのNi系改質反応触媒や、WS2 −SiO2 ・Al2 3 やNiS−WS2 ・SiO2 ・Al2 3 などの改質反応触媒が使用される。
【0007】
酸化触媒は原料−水蒸気混合物中の原料ガスを酸化発熱させて、水蒸気改質反応に必要な温度を得るものであり、例えば白金(Pt)やパラジウム(Pd)が使用される。水蒸気改質触媒に対する酸化触媒の混合割合は、水蒸気改質すべき原料ガスの種類に応じて1〜5%程度の範囲で選択する。例えば原料ガスとしてメタンを使用する場合は3%±2%程度、メタノールの場合は2%±1%程度の混合割合とされる。
【0008】
高温シフト触媒層7や低温シフト触媒層9を形成するシフト触媒としては、CuO−ZnO2 、Fe2 3 、Fe3 4 または酸化銅の混合物等が使用されるが、700℃以上で反応を行う場合にはCr2 3 を使用することもある。隣接層7を構成する伝熱層は、高温反応部6から流出する改質ガスから熱を吸収して冷却するもので、セラミック粒子などの伝熱性のよい粒子を充填して形成する。なお伝熱粒子を充填する代りに上下にガス流路を形成した耐熱性のセラミック構造体や伝熱フィンで伝熱層を形成することもできる。
【0009】
内筒2に配置した混合触媒層4、隣接層7、高温シフト触媒層8および低温シフト触媒層9の各底部は、通気性の支持体10,11,12,13でそれぞれ支持される。酸素含有ガス導入部5は導入管14とその先端部に設けた噴出部15により構成され、例えば図示しない空気圧縮装置から供給される加圧空気を酸素含有ガスとして導入管14に供給し、噴出部15から混合触媒層4内に吹き込むようになっている。
【0010】
外筒3の内部における最上部に水蒸気改質触媒層16が配置され、その下側に伝熱層17が配置される。そして水蒸気改質触媒層16および伝熱層17の底部はそれぞれ通気性の支持体18,19で支持される。伝熱層17の下方に原料ガス−水蒸気混合物の供給部20が連通し、水蒸気触媒層16の上側に排出部21が連通し、その排出部21は内筒2の高温反応部6の上側に連通する供給部22に連通する。さらに内筒2の最下側に配置した前記低温シフト触媒層9の下方に改質ガスを排出する排出部23が連通する。
【0011】
高温反応部6の内部温度は水蒸気改質反応を促進する高温領域に維持する必要がある。そのためには可能な限り不要な熱拡散を抑制することが重要になり、高温反応部6を配置した内筒2部分と水蒸気触媒層16を配置した外筒3部分の間に中空部を有する断熱部24が設けられる。
図4は断熱部24を含む部分拡大図である。断熱部24は環状の内壁部25と環状の外壁部26を有し、それらの上下は側壁部27で一体化されており、内部に中空部28が形成される。なお内壁部25は内筒2の一部(上側部分)により構成されている。
【0012】
次に上記した水蒸気改質器1により改質操作をする方法を説明する。先ず原料ガス−水蒸気混合物を供給部20に供給すると、その原料ガス−水蒸気混合物は高温シフト触媒層8および低温シフト触媒層9からの伝熱で温度上昇している伝熱層17を通過する間に温度上昇し、次いで水蒸気改質触媒層16に流入して原料ガスの一部が水蒸気改質される。外筒3の排出部21から改質ガスと残りの原料ガス−水蒸気混合物が排出し、内筒2の供給部22から高温反応部6に流入する。
【0013】
高温反応部6では原料ガス−水蒸気混合物に含まれる原料ガスの一部が、混合触媒層4を構成する酸化触媒の存在下に、酸素含有ガス導入部5から供給される酸素含有ガスの酸素により酸化反応し、原料−水蒸気混合物を改質反応に必要な温度範囲、例えば650℃〜750℃程度、標準的には700℃前後まで昇温する。すなわち自己酸化加熱が行われる。それによって原料ガス−水蒸気混合物の水蒸気改質反応が促進され、水素リッチな改質ガスが効率よく生成する。なお前記外筒3の水蒸気改質触媒層16は高温反応部6の予備改質部として機能する。
【0014】
高温反応部6で生成した改質ガスはその下側の隣接層7に流出し、そこで熱交換により温度低下してからその下側の高温シフト触媒層8、低温シフト触媒層9に順に通過し、その間に残留する一酸化炭素の殆どが水素に変換される。そして高純度の改質ガスが低温シフト触媒層9から排出部23を経て図示しない負荷設備、例えば車両搭載用や家庭用の燃料電池に供給される。
【0015】
前記のように高温反応部6の熱は断熱部24により外筒3側に拡散しないように考慮されている。しかし図4に矢印Aで示すように、高温反応部6、すなわち混合触媒層4の熱は断熱部24の内壁部25から内筒2の下流側、すなわち隣接層7を配置した部分に伝熱すると共に、一部は該部分から側壁部27を通って断熱部24の外壁部26側にも伝熱する。さらに図4に矢印Bで示すように、混合触媒層4の熱は導入管14から隣接層7を配置した部分に伝熱する。
【0016】
したがって図3のような伝熱部24を設けただけでは、高温反応部6からの熱拡散抑制効果が十分であるとは言い難い。そこで本出願人は図4の矢印で示すような伝熱を効果的に防止する手段を先に提案している。
【0017】
図5および図6は先に提案した伝熱防止手段を説明する図である。図5は図3に示す水蒸気改質器1の断熱部24付近を分解して示す部分拡大斜視図であり、図6は断熱部付近を組み合わせた状態の断面図である。内筒2の上部断面は拡大され、その拡大部分に断熱部24を図5の矢印のように挿入して組み合わせると図6のようになる。
【0018】
そして内筒2の拡大部分の縦壁が断熱部24の外壁部26を形成し、拡大部分の横壁が断熱部24の下側における側壁部27を形成し、断熱部24を構成する内壁部25の下部に環状のスリットからなる間隙部30が形成され、それによって混合触媒層4から断熱部24下部を経て隣接部7への伝熱が抑制される。
【0019】
さらに、上記内壁部25の下縁部に沿って内側に突起する支持片31が設けられ、それに対向して導入管14部分から外側に環状に突起する支持片32が設けられる。これら突起片31,32の上にパンチングメタル等を環状に加工して作った通気性の支持板10が配置される。そして支持板10に支持された混合触媒層4の底部と、隣接層7との間に空隙層33が形成され、それによって混合触媒層4から隣接層7への直接的な伝熱を抑制している。
【0020】
【発明が解決しようとする課題】
前記提案した水蒸気改質器1は間隙部30を形成することにより、混合触媒層4の熱が断熱部24を経て隣接層7側に伝熱することを抑制し、空隙層33を形成することにより混合触媒層4の熱が直接隣接層7に伝熱することを抑制しており、それらによって高温反応部の熱効率を向上させている。
【0021】
しかし上記提案した水蒸気改質器1では、図4に矢印Bで示すような混合触媒層4から導入管14への伝熱抑制は行っていない。そこで本発明は該部分の伝熱を抑制する手段を設けた水蒸気改質器を提供することを課題とする。
【0022】
【課題を解決するための手段】
前記課題を解決する本発明は、水蒸気改質触媒と酸化触媒を混合した混合触媒層および酸素含有ガス導入部を配置した高温反応部を有する内筒と、内筒の周囲に水蒸気改質触媒層を配置した外筒と、高温反応部を配置した内筒部分とそれに対向する外筒部分の間に配置した中空部を有する断熱部と、を備えた二重筒構造の水蒸気改質器である。そして、高温反応部に配置した酸素含有ガス導入部は、内筒2の軸方向に延長した導入管とその先端部近傍に設けた噴出部を有し、混合触媒層から導入管への伝熱を抑制する伝熱抑制手段を設けたことを特徴とする水蒸気改質器。
【0023】
上記水蒸気改質器において、前記伝熱抑制手段は導入管の外側に間隙層を形成するように設けた筒体、または導入管の外側を覆う断熱材により構成することができる(請求項2)。
【0024】
上記いずれかの水蒸気改質器において、前記断熱部における中空部を構成する内壁部に少なくとも高温反応部に隣接する隣接層側への熱伝導を抑制する間隙部を設けることができる(請求項3)。
【0025】
さらに上記いずれかの水蒸気改質器において、前記内筒における高温反応部とそれに隣接する隣接層を所定間隔で離反させる空隙層を設けることができる(請求項4)。
【0026】
【発明の実施の形態】
次に本発明の実施の形態を図面により説明する。図1は本発明に係る水蒸気改質器における断熱部付近の部分拡大図である。本実施形態の水蒸気改質器の主要部分、および使用する各種触媒層は図3に示したものと同じであるので、その全体構成およびそれに関連する重複した説明は省略する。
【0027】
水蒸気改質器1は、水蒸気改質触媒と酸化触媒を混合した混合触媒層4および酸素含有ガス導入部5を設けた高温反応部6を有する内筒2と、内筒2の周囲に水蒸気改質触媒層16を設けた外筒3(図示せず)とを配置した二重筒構造を有する。そして内筒2の外側に環状の中空部を有する断熱部24が配置される。
【0028】
内筒2と断熱部24は前記した図5の構成部品を組み立てることによって構成される。そして内筒2の拡大部分の縦壁が断熱部24の外壁部26を形成し、拡大部分の横壁が断熱部24の下側における側壁部27を形成し、断熱部24を構成する内壁部25の下部に環状のスリットからなる間隙部30が形成され、それによって混合触媒層4から断熱部24下部を経て隣接部7への伝熱が抑制される。
【0029】
酸素含有ガス導入部5は内筒2の軸方向に延長した導入管14とその先端部近傍に設けた噴出部15を有する。導入管14の外径より大きい内径を有する筒体40が導入管14の周囲に同心円状に配置される。筒体40はその上端部が導入管14の上部、すなわち噴出部15のすぐ下側に連結され、導入管14と所定幅の間隙層41を形成しながら前記内壁部25の下縁部の位置まで延長し、その下端部が開口する。
【0030】
内壁部25の下縁部には内側に突起する環状の支持片31が設けられ、それに対向して筒体40の下縁部には外側に突起する環状の支持片42が設けられ、それらの上にパンチングメタル等からなる円板状で通気性の支持体10が支持される。支持体10の上に高温反応部6に配置した混合触媒層4の底部が支持され、その下流側(図1の下側)に伝熱層からなる隣接層7が配置される。そして混合触媒層4の底面と隣接層7の上面との間に空隙層33が形成される。
【0031】
支持板10に支持された混合触媒層4の外周面は、筒体40の内面に接しており導入管14には接していない。そのため高温反応部6(混合触媒層4)から導入管14への伝熱は大幅に抑制され、結果として高温反応部6の熱効率を高めることができる。そして本実施形態では、導入管14の外側に間隙層41を形成する筒体40により、混合触媒層4から導入管14への伝熱を抑制する伝熱抑制手段50が構成される。
【0032】
また本実施形態では、断熱部24を構成する内壁部25の下部に環状のスリットからなる間隙部30を設けているので、高温反応部6(混合触媒層4)から断熱部24の内壁部25の下部を経て隣接層7側への伝熱を抑制できる。さらに本実施形態では混合触媒層4の底面と隣接層7の上面との間に空隙層33を設けているので、高温反応部6(混合触媒層4)から直接隣接層7への伝熱を抑制できる。
【0033】
このように本実施形態は伝熱抑制手段50、間隙部30および空隙層33を設けており、それらの相乗効果で高温反応部6の熱効率を極めて高くできる。なお場合によっては、間隙部30および空隙層33のいずれか一方を省略することもできる。また本実施形態では、断熱部24を構成する内壁部25の上端から外壁部26の上端部分までの延長部に短いスリットを配列して形成した間隙部30aおよびそれを気密に閉塞する断熱材43を設けているが、この間隙部30aは内壁部25の上端から外壁部26への伝熱を抑制するものであり、場合によっては省略してもよい。
【0034】
図2は図1の変形例である。本実施形態と図1の例と異なる部分は伝熱抑制手段50のみで、そのほかは同様に構成される。従って図1と同じ部分には同一符号を付し重複する説明は省略する。この伝熱抑制手段50は導入管14の外側を覆う断熱材43により構成され、断熱材43は例えば耐熱性および断熱性を有するセラミックファイバ等のような無機繊維材を筒状に成形し、それを導入管14の外周に挿入して取付けられる。
【0035】
断熱材43の上端部は図1の例と同様に導入管14の上部、すなわち噴出部15のすぐ下側まで延長し、下端部は断熱部24を構成する内壁部25の下縁部の位置まで延長する。そして図1の例と同様に内壁部25の下縁部に設けた環状の支持片31とそれに対向して導入管4の外周面に設けた環状の支持片42の上に環状で通気性を有する支持板10が支持されるが、その支持板10の内周面は前記断熱材43の外周面に接触して直接導入管14には接触していないので、混合触媒層4の熱が支持板10を介して導入管14へ伝熱することを効果的に抑制できる。
【0036】
図2の実施形態でも断熱部24を構成する内壁部25の下部に環状のスリットからなる間隙部30を設けているので、高温反応部6(混合触媒層4)から断熱部24の内壁部25の下部を経て隣接層7側への伝熱を抑制できる。さらに混合触媒層4の底面と隣接層7の上面との間に空隙層33を設けているので、高温反応部6(混合触媒層4)から直接隣接層7への伝熱を抑制できる。このように伝熱抑制手段50、間隙部30および空隙層33を設けることによって、それらの相乗効果で高温反応部6の熱効率を極めて高くできる。なお本実施形態においても、場合によっては間隙部30および空隙層33の少なくともいずれか一方を省略できる。
【0037】
【発明の効果】
以上のように本発明の水蒸気改質器は、内筒の軸方向に延長した導入管とその先端部近傍に設けた噴出部を有する酸素含有ガス導入部を高温反応部に配置した構成において、その混合触媒層の熱が導入管へ伝熱することを抑制する伝熱抑制手段を設けたので、高温反応部の熱が導入管を経て隣接層側に伝熱することを効果的に抑制でき、それによって高温反応部の熱効率を高めることができる。
【0038】
上記水蒸気改質器において、前記伝熱抑制手段は導入管の外側に間隙層を形成するように設けた筒体、または導入管の外側を覆う断熱材のいずれかによって構成できる。このような筒体または断熱材を使用することにより、簡単な構造で伝熱抑制効果の高い伝熱抑制手段を構成することができる。
【0039】
上記いずれかの水蒸気改質器において、前記断熱部における中空部を構成する内壁部に少なくとも高温反応部に隣接する隣接層側への熱伝導を抑制する間隙部を設けることができる。このような間隙部を設けることにより高温反応部の熱効率をさらに高めることができる。
【0040】
さらに上記いずれかの水蒸気改質器において、前記内筒における高温反応部とそれに隣接する隣接層を所定間隔で離反させる空隙層を設けることができる。このような空隙層を設けることによっても高温反応部の熱効率をさらに高めることができる。さらに前記間隙部とこの空隙層の両方を設けると、より一層高温反応部の熱効率を高めることができる。
【図面の簡単な説明】
【図1】本発明に係る水蒸気改質器における断熱部付近の部分拡大断面図。
【図2】図1における伝熱抑制手段50を変形した場合の断熱部付近の部分拡大斜視図。
【図3】自己酸化型の水蒸気改質器の1例を示す模式的な断面図。
【図4】図3における断熱部24付近の部分拡大断面図。
【図5】本出願人が先に提案した水蒸気改質器における断熱部付近の部分拡大斜視図。
【図6】図5の組み立て後の断面図。
【符号の説明】
1 水蒸気改質器
2 内筒
3 外筒
4 混合触媒層
5 酸素含有ガス導入部
6 高温反応部
7 隣接層
8 高温シフト触媒層
9 低温シフト触媒層
10〜13 支持体
14 導入管
15 噴出部
16 水蒸気改質触媒層
17 伝熱層
18,19 支持体
20 供給部
21 排出部
22 供給部
23 排出部
24 断熱部
25 内壁部
26 外壁部
27 側壁部
28 中空部
30,30a 間隙部
31,32 支持片
33 空隙層
40 筒体
41 間隙層
42 支持片
43 断熱材
50 伝熱抑制手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steam reformer that generates a hydrogen-rich reformed gas by subjecting a raw material gas to auto-oxidation and reforming in the presence of steam and oxygen.
[0002]
[Prior art]
Hydrocarbons such as methane, aliphatic alcohols such as methanol, ethers such as dimethyl ether, a mixture of raw material gas such as natural gas and city gas and steam (hereinafter referred to as raw material-steam mixture) in the presence of a steam reforming catalyst A steam reformer is known that is steam reformed to produce a hydrogen-rich reformed gas. As such a steam reformer, an oxidation catalyst coexists with a steam reforming catalyst, and a raw material gas is auto-oxidized and reformed in the presence of steam and oxygen to produce a hydrogen-rich reformed gas. A self-oxidizing steam reformer is proposed in Patent Document 1.
[0003]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2001-192201
In the technique proposed in Patent Document 1, heat generation due to an oxidation reaction and a steam reforming reaction are simultaneously performed in a mixed catalyst layer including an oxidation catalyst and a steam reforming catalyst, respectively. That is, the coexistence of the oxidation exothermic layer and the steam reforming reaction (endothermic reaction) layer makes it possible to maintain the temperature of the heating portion and the temperature of the endothermic portion equal to each other, and the temperature of the constituent member such as the catalyst is set to a predetermined level. It can be suppressed to a temperature lower than the reforming reaction temperature, for example, in the vicinity of 700 ° C., thereby shortening the life of the constituent members. In addition, since it has a function of effectively recovering heat inside the steam reformer, it is said that high reforming efficiency can be obtained.
[0005]
FIG. 3 is a schematic cross-sectional view showing an example of a self-oxidizing steam reformer. The steam reformer 1 includes an inner cylinder 2 and an outer cylinder 3 disposed around the inner cylinder 2, and a mixed catalyst layer 4 in which a steam reforming catalyst and an oxidation catalyst are mixed and an oxygen-containing gas introduction at the uppermost part in the inner cylinder 2 The high temperature reaction part 6 provided with the part 5 is disposed, the adjacent layer 7 made of a heat transfer layer is disposed below the high temperature reaction part 6, and the high temperature shift catalyst layer 8 and the low temperature shift catalyst layer 9 are further disposed below the adjacent layer 7. Arranged in order.
[0006]
The steam reforming catalyst is a catalyst layer for steam reforming the raw material gas. For example, a Ni-based reforming reaction catalyst such as NiS-SiO 2 · Al 2 O 3 , WS 2 -SiO 2 · Al 2 O 3 or NiS. -A reforming reaction catalyst such as WS 2 · SiO 2 · Al 2 O 3 is used.
[0007]
The oxidation catalyst is a catalyst that generates a temperature necessary for the steam reforming reaction by oxidizing the raw material gas in the raw material-steam mixture, and for example, platinum (Pt) or palladium (Pd) is used. The mixing ratio of the oxidation catalyst to the steam reforming catalyst is selected in the range of about 1 to 5% depending on the type of the raw material gas to be steam reformed. For example, when methane is used as the raw material gas, the mixing ratio is about 3% ± 2%, and when methanol is used, the mixing ratio is about 2% ± 1%.
[0008]
As the shift catalyst for forming the high temperature shift catalyst layer 7 or the low temperature shift catalyst layer 9, CuO—ZnO 2 , Fe 2 O 3 , Fe 3 O 4 or a mixture of copper oxides is used. In some cases, Cr 2 O 3 may be used. The heat transfer layer constituting the adjacent layer 7 absorbs heat from the reformed gas flowing out from the high temperature reaction section 6 and cools it, and is formed by filling particles with good heat transfer properties such as ceramic particles. Instead of filling the heat transfer particles, the heat transfer layer can also be formed with a heat-resistant ceramic structure or heat transfer fins in which gas channels are formed above and below.
[0009]
The bottoms of the mixed catalyst layer 4, the adjacent layer 7, the high temperature shift catalyst layer 8, and the low temperature shift catalyst layer 9 disposed on the inner cylinder 2 are supported by air-permeable supports 10, 11, 12, and 13, respectively. The oxygen-containing gas introduction part 5 is composed of an introduction pipe 14 and a jet part 15 provided at the tip thereof. For example, pressurized air supplied from an air compression device (not shown) is supplied as an oxygen-containing gas to the introduction pipe 14 and jetted. A portion 15 is blown into the mixed catalyst layer 4.
[0010]
The steam reforming catalyst layer 16 is disposed at the uppermost part inside the outer cylinder 3, and the heat transfer layer 17 is disposed below the steam reforming catalyst layer 16. The bottoms of the steam reforming catalyst layer 16 and the heat transfer layer 17 are supported by breathable supports 18 and 19, respectively. A source gas-steam mixture supply unit 20 communicates below the heat transfer layer 17, a discharge unit 21 communicates above the steam catalyst layer 16, and the discharge unit 21 is located above the high temperature reaction unit 6 of the inner cylinder 2. It communicates with the supply section 22 that communicates. Further, a discharge unit 23 for discharging the reformed gas communicates below the low-temperature shift catalyst layer 9 disposed on the lowermost side of the inner cylinder 2.
[0011]
The internal temperature of the high temperature reaction section 6 needs to be maintained in a high temperature region that promotes the steam reforming reaction. For that purpose, it is important to suppress unnecessary thermal diffusion as much as possible, and heat insulation having a hollow portion between the inner cylinder 2 portion where the high temperature reaction portion 6 is arranged and the outer cylinder 3 portion where the steam catalyst layer 16 is arranged. A portion 24 is provided.
FIG. 4 is a partially enlarged view including the heat insulating portion 24. The heat insulating part 24 has an annular inner wall part 25 and an annular outer wall part 26, and the upper and lower parts thereof are integrated by a side wall part 27, and a hollow part 28 is formed inside. The inner wall portion 25 is constituted by a part (upper portion) of the inner cylinder 2.
[0012]
Next, a method for performing the reforming operation with the steam reformer 1 will be described. First, when the source gas-steam mixture is supplied to the supply unit 20, the source gas-steam mixture passes through the heat transfer layer 17 where the temperature is increased by heat transfer from the high temperature shift catalyst layer 8 and the low temperature shift catalyst layer 9. Then, the temperature rises, and then flows into the steam reforming catalyst layer 16 to partially steam reform the raw material gas. The reformed gas and the remaining raw material gas-water vapor mixture are discharged from the discharge part 21 of the outer cylinder 3 and flow into the high temperature reaction part 6 from the supply part 22 of the inner cylinder 2.
[0013]
In the high temperature reaction unit 6, a part of the source gas contained in the source gas-steam mixture is caused by oxygen in the oxygen-containing gas supplied from the oxygen-containing gas introduction unit 5 in the presence of the oxidation catalyst constituting the mixed catalyst layer 4. An oxidation reaction is performed, and the temperature of the raw material-steam mixture is raised to a temperature range necessary for the reforming reaction, for example, about 650 ° C. to 750 ° C., typically around 700 ° C. That is, auto-oxidation heating is performed. Thereby, the steam reforming reaction of the raw material gas-steam mixture is promoted, and a hydrogen-rich reformed gas is efficiently generated. Note that the steam reforming catalyst layer 16 of the outer cylinder 3 functions as a preliminary reforming section of the high temperature reaction section 6.
[0014]
The reformed gas generated in the high-temperature reaction section 6 flows out to the lower adjacent layer 7 where the temperature is lowered by heat exchange, and then passes through the lower high-temperature shift catalyst layer 8 and the low-temperature shift catalyst layer 9 in that order. , Most of the carbon monoxide remaining in the meantime is converted to hydrogen. Then, the high-purity reformed gas is supplied from the low temperature shift catalyst layer 9 to the load equipment (not shown), for example, a vehicle-mounted fuel cell or a household fuel cell via the discharge unit 23.
[0015]
As described above, it is considered that the heat of the high temperature reaction part 6 is not diffused to the outer cylinder 3 side by the heat insulating part 24. However, as indicated by arrow A in FIG. 4, the heat of the high temperature reaction part 6, that is, the mixed catalyst layer 4, is transferred from the inner wall part 25 of the heat insulating part 24 to the downstream side of the inner cylinder 2, that is, the part where the adjacent layer 7 is disposed. At the same time, a part of the heat is transferred from the portion to the outer wall portion 26 side of the heat insulating portion 24 through the side wall portion 27. Further, as indicated by an arrow B in FIG. 4, the heat of the mixed catalyst layer 4 is transferred from the introduction pipe 14 to the portion where the adjacent layer 7 is disposed.
[0016]
Therefore, it is difficult to say that the heat diffusion suppression effect from the high temperature reaction unit 6 is sufficient only by providing the heat transfer unit 24 as shown in FIG. Therefore, the present applicant has previously proposed means for effectively preventing heat transfer as indicated by the arrows in FIG.
[0017]
5 and 6 are diagrams for explaining the previously proposed heat transfer preventing means. FIG. 5 is a partially enlarged perspective view showing the vicinity of the heat insulating portion 24 of the steam reformer 1 shown in FIG. 3, and FIG. 6 is a cross-sectional view of the state where the vicinity of the heat insulating portion is combined. The upper cross section of the inner cylinder 2 is enlarged, and when the heat insulating portion 24 is inserted into the enlarged portion as shown by the arrow in FIG.
[0018]
The vertical wall of the enlarged portion of the inner cylinder 2 forms the outer wall portion 26 of the heat insulating portion 24, and the horizontal wall of the enlarged portion forms the side wall portion 27 on the lower side of the heat insulating portion 24, and the inner wall portion 25 constituting the heat insulating portion 24. A gap portion 30 formed of an annular slit is formed at the lower portion of the substrate, whereby heat transfer from the mixed catalyst layer 4 to the adjacent portion 7 through the lower portion of the heat insulating portion 24 is suppressed.
[0019]
Further, a support piece 31 projecting inward along the lower edge of the inner wall portion 25 is provided, and a support piece 32 projecting annularly outward from the introduction tube 14 portion is provided. A breathable support plate 10 made by processing a punching metal or the like into an annular shape is disposed on the protruding pieces 31 and 32. A gap layer 33 is formed between the bottom of the mixed catalyst layer 4 supported by the support plate 10 and the adjacent layer 7, thereby suppressing direct heat transfer from the mixed catalyst layer 4 to the adjacent layer 7. ing.
[0020]
[Problems to be solved by the invention]
The proposed steam reformer 1 forms the gap layer 30, thereby suppressing the heat of the mixed catalyst layer 4 from being transferred to the adjacent layer 7 through the heat insulating portion 24, thereby forming the void layer 33. This suppresses the heat of the mixed catalyst layer 4 from being directly transferred to the adjacent layer 7, thereby improving the thermal efficiency of the high temperature reaction part.
[0021]
However, the proposed steam reformer 1 does not suppress heat transfer from the mixed catalyst layer 4 to the introduction pipe 14 as indicated by an arrow B in FIG. Then, this invention makes it a subject to provide the steam reformer which provided the means which suppresses the heat transfer of this part.
[0022]
[Means for Solving the Problems]
The present invention that solves the above-described problems includes an inner cylinder having a mixed catalyst layer in which a steam reforming catalyst and an oxidation catalyst are mixed, and a high-temperature reaction section in which an oxygen-containing gas introduction section is disposed, and a steam reforming catalyst layer around the inner cylinder And a heat insulating part having a hollow part arranged between the inner cylinder part in which the high-temperature reaction part is arranged and the outer cylinder part opposite to the inner cylinder part. . The oxygen-containing gas introduction part arranged in the high temperature reaction part has an introduction pipe extending in the axial direction of the inner cylinder 2 and a jet part provided in the vicinity of the tip part, and heat transfer from the mixed catalyst layer to the introduction pipe A steam reformer characterized in that it is provided with heat transfer suppression means for suppressing heat.
[0023]
In the steam reformer, the heat transfer suppression means can be constituted by a cylindrical body provided so as to form a gap layer outside the introduction pipe, or a heat insulating material covering the outside of the introduction pipe (Claim 2). .
[0024]
In any one of the above steam reformers, a gap portion that suppresses heat conduction to at least the adjacent layer side adjacent to the high-temperature reaction portion can be provided in the inner wall portion constituting the hollow portion in the heat insulating portion. ).
[0025]
Further, in any one of the above steam reformers, a void layer that separates the high-temperature reaction portion in the inner cylinder and the adjacent layer adjacent thereto at a predetermined interval can be provided.
[0026]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a partially enlarged view of the vicinity of a heat insulating portion in a steam reformer according to the present invention. The main part of the steam reformer of this embodiment and the various catalyst layers to be used are the same as those shown in FIG. 3, and therefore, the entire configuration and redundant explanation related thereto are omitted.
[0027]
The steam reformer 1 includes a mixed catalyst layer 4 in which a steam reforming catalyst and an oxidation catalyst are mixed, an inner cylinder 2 having a high temperature reaction section 6 provided with an oxygen-containing gas introduction section 5, and steam reforming around the inner cylinder 2. It has a double cylinder structure in which an outer cylinder 3 (not shown) provided with a porous catalyst layer 16 is arranged. And the heat insulation part 24 which has a cyclic | annular hollow part is arrange | positioned on the outer side of the inner cylinder 2. As shown in FIG.
[0028]
The inner cylinder 2 and the heat insulating part 24 are configured by assembling the components shown in FIG. The vertical wall of the enlarged portion of the inner cylinder 2 forms the outer wall portion 26 of the heat insulating portion 24, and the horizontal wall of the enlarged portion forms the side wall portion 27 on the lower side of the heat insulating portion 24, and the inner wall portion 25 constituting the heat insulating portion 24. A gap portion 30 formed of an annular slit is formed at the lower portion of the substrate, whereby heat transfer from the mixed catalyst layer 4 to the adjacent portion 7 through the lower portion of the heat insulating portion 24 is suppressed.
[0029]
The oxygen-containing gas introduction part 5 has an introduction pipe 14 extending in the axial direction of the inner cylinder 2 and a jet part 15 provided in the vicinity of the tip part. A cylindrical body 40 having an inner diameter larger than the outer diameter of the introduction pipe 14 is disposed concentrically around the introduction pipe 14. The upper end portion of the cylindrical body 40 is connected to the upper portion of the introduction pipe 14, that is, immediately below the ejection portion 15, and the position of the lower edge portion of the inner wall portion 25 is formed while forming a gap layer 41 having a predetermined width with the introduction pipe 14. And its lower end opens.
[0030]
An annular support piece 31 projecting inward is provided at the lower edge of the inner wall portion 25, and an annular support piece 42 projecting outward is provided at the lower edge of the cylinder 40 so as to oppose them. A disc-shaped and breathable support 10 made of punching metal or the like is supported on the top. The bottom of the mixed catalyst layer 4 disposed in the high-temperature reaction section 6 is supported on the support 10, and the adjacent layer 7 made of a heat transfer layer is disposed on the downstream side (lower side in FIG. 1). A gap layer 33 is formed between the bottom surface of the mixed catalyst layer 4 and the top surface of the adjacent layer 7.
[0031]
The outer peripheral surface of the mixed catalyst layer 4 supported by the support plate 10 is in contact with the inner surface of the cylindrical body 40 and is not in contact with the introduction pipe 14. Therefore, the heat transfer from the high temperature reaction part 6 (mixed catalyst layer 4) to the introduction pipe 14 is significantly suppressed, and as a result, the thermal efficiency of the high temperature reaction part 6 can be increased. In the present embodiment, the cylindrical body 40 that forms the gap layer 41 outside the introduction pipe 14 constitutes the heat transfer suppression means 50 that suppresses heat transfer from the mixed catalyst layer 4 to the introduction pipe 14.
[0032]
Moreover, in this embodiment, since the gap | interval part 30 which consists of a cyclic | annular slit is provided in the lower part of the inner wall part 25 which comprises the heat insulation part 24, the inner wall part 25 of the heat insulation part 24 from the high temperature reaction part 6 (mixed catalyst layer 4). It is possible to suppress heat transfer to the adjacent layer 7 side through the lower part. Furthermore, in this embodiment, since the gap layer 33 is provided between the bottom surface of the mixed catalyst layer 4 and the upper surface of the adjacent layer 7, heat transfer from the high temperature reaction part 6 (mixed catalyst layer 4) directly to the adjacent layer 7 is performed. Can be suppressed.
[0033]
As described above, the present embodiment is provided with the heat transfer suppressing means 50, the gap 30 and the gap layer 33, and the thermal efficiency of the high temperature reaction section 6 can be extremely increased by their synergistic effect. In some cases, one of the gap 30 and the gap layer 33 can be omitted. In the present embodiment, the gap 30a formed by arranging short slits in the extension from the upper end of the inner wall 25 constituting the heat insulation 24 to the upper end of the outer wall 26, and the heat insulating material 43 for airtightly closing the gap 30a. However, the gap portion 30a suppresses heat transfer from the upper end of the inner wall portion 25 to the outer wall portion 26, and may be omitted in some cases.
[0034]
FIG. 2 is a modification of FIG. The only difference between the present embodiment and the example of FIG. 1 is the heat transfer suppression means 50, and the rest is similarly configured. Therefore, the same parts as those in FIG. The heat transfer suppression means 50 is constituted by a heat insulating material 43 covering the outside of the introduction pipe 14, and the heat insulating material 43 is formed by, for example, forming an inorganic fiber material such as a ceramic fiber having heat resistance and heat insulation into a cylindrical shape, Is inserted into the outer periphery of the introduction pipe 14 and attached.
[0035]
As in the example of FIG. 1, the upper end portion of the heat insulating material 43 extends to the upper portion of the introduction pipe 14, that is, just below the ejection portion 15, and the lower end portion is the position of the lower edge portion of the inner wall portion 25 constituting the heat insulating portion 24. To extend. As in the example of FIG. 1, the annular support piece 31 provided at the lower edge of the inner wall portion 25 and the annular support piece 42 provided on the outer peripheral surface of the introduction pipe 4 so as to face the annular support piece 31 are annular and air-permeable. The supporting plate 10 is supported, but the inner peripheral surface of the supporting plate 10 is in contact with the outer peripheral surface of the heat insulating material 43 and is not directly in contact with the introduction pipe 14, so that the heat of the mixed catalyst layer 4 is supported. Heat transfer to the introduction pipe 14 via the plate 10 can be effectively suppressed.
[0036]
In the embodiment of FIG. 2, since the gap portion 30 formed of an annular slit is provided below the inner wall portion 25 that constitutes the heat insulating portion 24, the high temperature reaction portion 6 (mixed catalyst layer 4) to the inner wall portion 25 of the heat insulating portion 24. It is possible to suppress heat transfer to the adjacent layer 7 side through the lower part. Further, since the gap layer 33 is provided between the bottom surface of the mixed catalyst layer 4 and the upper surface of the adjacent layer 7, heat transfer from the high temperature reaction unit 6 (mixed catalyst layer 4) directly to the adjacent layer 7 can be suppressed. Thus, by providing the heat transfer suppression means 50, the gap | interval part 30, and the gap | interval layer 33, the thermal efficiency of the high temperature reaction part 6 can be made very high by those synergistic effects. In this embodiment, at least one of the gap 30 and the gap layer 33 can be omitted depending on circumstances.
[0037]
【The invention's effect】
As described above, the steam reformer of the present invention has a configuration in which the oxygen-containing gas introduction part having the introduction pipe extending in the axial direction of the inner cylinder and the ejection part provided in the vicinity of the tip part thereof is disposed in the high-temperature reaction part. Since the heat transfer suppression means is provided to suppress the heat of the mixed catalyst layer from being transferred to the introduction pipe, it is possible to effectively suppress the heat of the high temperature reaction section from being transferred to the adjacent layer side through the introduction pipe. Thereby, the thermal efficiency of the high temperature reaction part can be increased.
[0038]
In the steam reformer, the heat transfer suppression means can be constituted by either a cylindrical body provided so as to form a gap layer outside the introduction pipe or a heat insulating material covering the outside of the introduction pipe. By using such a cylinder or a heat insulating material, a heat transfer suppressing means having a simple structure and a high heat transfer suppressing effect can be configured.
[0039]
In any of the steam reformers described above, a gap portion that suppresses heat conduction to at least the adjacent layer side adjacent to the high-temperature reaction portion can be provided in the inner wall portion constituting the hollow portion in the heat insulating portion. By providing such a gap, the thermal efficiency of the high temperature reaction part can be further increased.
[0040]
Furthermore, in any of the above steam reformers, a void layer that separates the high-temperature reaction part in the inner cylinder and the adjacent layer adjacent thereto at a predetermined interval can be provided. By providing such a void layer, the thermal efficiency of the high temperature reaction part can be further increased. Furthermore, if both the gap and the gap layer are provided, the thermal efficiency of the high temperature reaction part can be further enhanced.
[Brief description of the drawings]
FIG. 1 is a partially enlarged sectional view in the vicinity of a heat insulating part in a steam reformer according to the present invention.
FIG. 2 is a partially enlarged perspective view of the vicinity of a heat insulating portion when the heat transfer suppressing means 50 in FIG. 1 is modified.
FIG. 3 is a schematic cross-sectional view showing an example of a self-oxidizing steam reformer.
4 is a partially enlarged cross-sectional view in the vicinity of a heat insulating portion 24 in FIG. 3;
FIG. 5 is a partially enlarged perspective view in the vicinity of a heat insulating part in a steam reformer previously proposed by the present applicant.
6 is a cross-sectional view after assembly of FIG. 5;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Steam reformer 2 Inner cylinder 3 Outer cylinder 4 Mixed catalyst layer 5 Oxygen containing gas introduction part 6 High temperature reaction part 7 Adjacent layer 8 High temperature shift catalyst layer 9 Low temperature shift catalyst layer 10-13 Support body 14 Introducing pipe 15 Injection part 16 Steam reforming catalyst layer 17 Heat transfer layer 18, 19 Support 20 Supply part 21 Discharge part 22 Supply part 23 Discharge part 24 Heat insulation part 25 Inner wall part 26 Outer wall part 27 Side wall part 28 Hollow part 30, 30a Gap part 31, 32 Support Piece 33 gap layer 40 cylinder 41 gap layer 42 support piece 43 heat insulating material 50 heat transfer suppressing means

Claims (4)

水蒸気改質触媒と酸化触媒を混合した混合触媒層4および酸素含有ガス導入部5を配置した高温反応部6を有する内筒2と、内筒2の周囲に水蒸気改質触媒層16を配置した外筒3と、高温反応部6を配置した内筒2部分とそれに対向する外筒3部分の間に配置した中空部を有する断熱部24と、を備えた二重筒構造の水蒸気改質器1において、
高温反応部6に配置した酸素含有ガス導入部5は、内筒2の軸方向に延長した導入管14とその先端部近傍に設けた噴出部15を有し、混合触媒層4から導入管14への伝熱を抑制する伝熱抑制手段50を設けたことを特徴とする水蒸気改質器。
An inner cylinder 2 having a high temperature reaction part 6 in which a mixed catalyst layer 4 in which a steam reforming catalyst and an oxidation catalyst are mixed and an oxygen-containing gas introduction part 5 is arranged, and a steam reforming catalyst layer 16 is arranged around the inner cylinder 2 A double-cylinder steam reformer comprising an outer cylinder 3 and a heat insulating part 24 having a hollow part arranged between the inner cylinder 2 part in which the high temperature reaction part 6 is arranged and the outer cylinder 3 part facing it. In 1,
The oxygen-containing gas introduction part 5 arranged in the high temperature reaction part 6 has an introduction pipe 14 extending in the axial direction of the inner cylinder 2 and a jet part 15 provided in the vicinity of the tip part. A steam reformer characterized in that a heat transfer suppressing means 50 for suppressing heat transfer to the water is provided.
請求項1において、
前記伝熱抑制手段50は、導入管14の外側に間隙層41を形成するように設けた筒体40、または導入管14の外側を覆う断熱材43により構成されることを特徴とする水蒸気改質器。
In claim 1,
The heat transfer suppression means 50 includes a cylinder 40 provided so as to form a gap layer 41 on the outside of the introduction pipe 14 or a heat insulating material 43 covering the outside of the introduction pipe 14. A genitalia.
請求項1または請求項2において、
前記断熱部24における中空部を構成する内壁部25に少なくとも高温反応部6に隣接する隣接層7側への熱伝導を抑制する間隙部30を設けたことを特徴とする水蒸気改質器。
In claim 1 or claim 2,
A steam reformer characterized in that a gap portion (30) that suppresses heat conduction to at least the adjacent layer (7) side adjacent to the high temperature reaction portion (6) is provided in the inner wall portion (25) constituting the hollow portion in the heat insulating portion (24).
請求項1ないし請求項3のいずれかにおいて、
前記内筒2における高温反応部6とそれに隣接する隣接層7を所定間隔で離反させる空隙層33を設けたことを特徴とする水蒸気改質器。
In any one of Claims 1 thru | or 3,
A steam reformer comprising a gap layer 33 for separating the high temperature reaction section 6 and the adjacent layer 7 adjacent to the high temperature reaction section 6 in the inner cylinder 2 at a predetermined interval.
JP2003089208A 2003-03-13 2003-03-27 Steam reformer Expired - Fee Related JP4281083B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2003089208A JP4281083B2 (en) 2003-03-27 2003-03-27 Steam reformer
EP04719663.9A EP1602627B1 (en) 2003-03-13 2004-03-11 Steam reformer
KR1020057016318A KR101022189B1 (en) 2003-03-13 2004-03-11 Steam reformer
CA2517161A CA2517161C (en) 2003-03-13 2004-03-11 Steam reformer
US10/547,805 US7517507B2 (en) 2003-03-13 2004-03-11 Steam reformer
PCT/JP2004/003242 WO2004080891A1 (en) 2003-03-13 2004-03-11 Steam reformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003089208A JP4281083B2 (en) 2003-03-27 2003-03-27 Steam reformer

Publications (2)

Publication Number Publication Date
JP2004292268A JP2004292268A (en) 2004-10-21
JP4281083B2 true JP4281083B2 (en) 2009-06-17

Family

ID=33403144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003089208A Expired - Fee Related JP4281083B2 (en) 2003-03-13 2003-03-27 Steam reformer

Country Status (1)

Country Link
JP (1) JP4281083B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5250885B2 (en) * 2008-03-05 2013-07-31 アイシン精機株式会社 Gas treatment device for fuel cell
CN105517701B (en) * 2013-07-18 2018-11-02 瓦特燃料电池公司 Device and method for mixing reformable fuel and oxygen-containing gas and/or steam

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6089235U (en) * 1983-11-24 1985-06-19 三菱重工業株式会社 fuel reformer
DE68905891T2 (en) * 1988-07-22 1993-10-14 Ici Plc Generation of hydrogen which includes carbon monoxide conversion using water vapor.
JPH11199201A (en) * 1998-01-09 1999-07-27 Ishikawajima Harima Heavy Ind Co Ltd Partial oxidation reformer

Also Published As

Publication number Publication date
JP2004292268A (en) 2004-10-21

Similar Documents

Publication Publication Date Title
CA2633814C (en) Oxidative autothermal reformer and oxidative autothermal reforming method using the same
AU2010253491B2 (en) Gas generator and processes for the conversion of a fuel into an oxygen-depleted gas and/or hydrogen-enriched gas
US7517507B2 (en) Steam reformer
JP5154272B2 (en) Fuel cell reformer
JP4281083B2 (en) Steam reformer
KR101152586B1 (en) fuel reformer
JP4387677B2 (en) Steam reformer
JP4069621B2 (en) Reformer
JP4281084B2 (en) Steam reformer
JP2007204343A (en) Reformer and its manufacturing method
JP2005281097A (en) Reforming apparatus
JP2005239525A (en) Steam reformer
JP2006248863A (en) Hydrogen production apparatus and fuel cell system
JP4920311B2 (en) Oxidation autothermal reformer
JP2004182493A (en) Inner heat type steam reforming apparatus
JP5243839B2 (en) Oxidation autothermal reformer and solid oxide fuel cell system start-up method
JP2007186389A (en) Method for starting oxidation autothermal reforming apparatus
JP2007227237A (en) Solid oxide fuel battery module
JP2005314210A (en) Reforming device
JP4813169B2 (en) Reformer
JP4804883B2 (en) Reformer
JP5231857B2 (en) Oxidation autothermal reformer and solid oxide fuel cell system
JP2009084077A (en) Reforming apparatus for fuel cell
JP4804900B2 (en) Oxygen supply pipe structure of reformer
JP2009084078A (en) Reforming apparatus for fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090306

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150327

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees