JP4279772B2 - Manufacturing method of optical waveguide - Google Patents

Manufacturing method of optical waveguide Download PDF

Info

Publication number
JP4279772B2
JP4279772B2 JP2004329310A JP2004329310A JP4279772B2 JP 4279772 B2 JP4279772 B2 JP 4279772B2 JP 2004329310 A JP2004329310 A JP 2004329310A JP 2004329310 A JP2004329310 A JP 2004329310A JP 4279772 B2 JP4279772 B2 JP 4279772B2
Authority
JP
Japan
Prior art keywords
optical waveguide
groove
curable resin
ultraviolet curable
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004329310A
Other languages
Japanese (ja)
Other versions
JP2006139119A (en
Inventor
英司 篠原
章三 高村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2004329310A priority Critical patent/JP4279772B2/en
Publication of JP2006139119A publication Critical patent/JP2006139119A/en
Application granted granted Critical
Publication of JP4279772B2 publication Critical patent/JP4279772B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

本発明は、光導波路の製造方法に係り、特に、光導波路の形成時における紫外線硬化樹脂の展伸工程と硬化工程の改善に関する。   The present invention relates to a method for manufacturing an optical waveguide, and more particularly, to an improvement process of a UV curable resin extending process and a curing process when forming an optical waveguide.

従来より、低コストで光導波路を形成する方法として、スタンパにより光導波路を形成するための溝が形成されたクラッド基板を複製し、前記溝内にコア材料である透明樹脂を充填して硬化する、スタンパ法或いは複製法と呼ばれる技術が知られている。この光導波路の製造方法のうち、最も簡単で低コストな方法は、クラッド基板に形成された溝内にコア材料を塗布し、塗布されたコア材料をそのままの状態で硬化する方法、及びクラッド基板の溝形成面に滴下されたコア材料を板状部材にて均一に展伸させ、溝内にコア材料を均一に充填させた後に硬化する方法である。   Conventionally, as a method for forming an optical waveguide at a low cost, a clad substrate in which a groove for forming an optical waveguide is formed by a stamper is duplicated, and a transparent resin as a core material is filled in the groove and cured. A technique called a stamper method or a duplication method is known. Among the optical waveguide manufacturing methods, the simplest and low-cost method is a method in which a core material is applied in a groove formed in a cladding substrate, and the applied core material is cured as it is, and a cladding substrate. In this method, the core material dropped on the groove forming surface is uniformly spread by a plate-like member, and the core material is uniformly filled in the groove, followed by curing.

しかし、これらの光導波路の製造方法のうち、前者は、コアの表面を平滑に形成することができないので、形成されたコアの表面にて光の乱反射が生じ、コア表面から光が漏れ出しやすくなる。一方、後者は、板状部材にてコアの表面を平滑に成形するので、コア表面からの光の漏れ出しは解消できるが、コア材料の展伸時にクラッド基板の表面部分(溝形成面における溝の内面を除く部分)と板状部材との間にコア材料層が形成されるため、形成されたコアの側面部分からコア材料層を通って光が漏れ出しやすくなる。このため、これらの各製造方法により製造された光導波路は、光信号のS/N比が低いなど高い光学特性が得られず、高性能が要求される用途には適用することができないという不都合がある。   However, among these methods of manufacturing an optical waveguide, the former cannot form the core surface smoothly, so that irregular reflection of light occurs on the formed core surface, and light easily leaks from the core surface. Become. On the other hand, in the latter, since the surface of the core is formed smoothly with a plate-like member, light leakage from the core surface can be eliminated. However, when the core material is expanded, the surface portion of the clad substrate (the groove on the groove forming surface) Since the core material layer is formed between the plate member and the portion excluding the inner surface of the core, light easily leaks from the side surface portion of the formed core through the core material layer. For this reason, the optical waveguide manufactured by each of these manufacturing methods cannot obtain high optical characteristics such as a low S / N ratio of an optical signal, and cannot be applied to applications requiring high performance. There is.

かかる不都合を改善するため、従来より、クラッド基板に形成された溝内にコア材料を充填し、これを硬化した後、溝内からはみ出した余剰のコア材料を機械的に削り取る方法(例えば、特許文献1参照。)、クラッド基板に形成された溝内にコア材料を充填した後、コア材料が硬化する前に、ゴム製のへらやスクレイパ等によって溝内からはみ出した余剰のコア材料を掻き取る方法(例えば、特許文献2参照。)、それに、クラッド基板の表面部分に余剰のコア材料を逃がすためのくぼみを設け、クラッド基板の表面部分と板状部材との間に形成されるコア材料層を薄肉化する方法(例えば、特許文献3参照。)が提案されている。
特開昭63−281351号公報 特開平9−281351号公報 特開2003−172841号公報
In order to improve such inconvenience, conventionally, a core material is filled in a groove formed in a clad substrate, and after hardening, a surplus core material protruding from the groove is mechanically scraped off (for example, patents). Refer to Document 1.) After filling the core material into the groove formed in the clad substrate, before the core material is cured, scrape off the excess core material protruding from the groove with a rubber spatula or scraper. A core material layer formed between the surface portion of the clad substrate and the plate-like member by providing a method (for example, refer to Patent Document 2), and a recess for releasing excess core material in the surface portion of the clad substrate. Has been proposed (see, for example, Patent Document 3).
JP 63-281351 A JP-A-9-281351 JP 2003-172841 A

しかしながら、溝内からはみ出した硬化後のコア材料層を機械的に削り取る方法は、クラッド基板とコアとの屈折率差があまり大きくなく、クラッド基板とコアとの境界面を精密に検出することが困難であることから、コアの表面をクラッド基板との境界面まで正確に削り取ることが困難で、高性能の光導波路を高能率に製造することができないと問題がある。即ち、所望の光学特性を有する光導波路を製造するためには、クラッド基板とコアとの境界面を精密に検出しつつコアの加工を慎重に行う必要があるが、このようにすると光導波路の加工に長時間を要し、製品コストが高価になる。反対に、光導波路の生産性を高めるため、クラッド基板とコアとの境界面を精密に検出することなくコアの定量加工を行うと、コアの加工量が不足してクラッド基板の表面にコア材料層が残存した光導波路が製造されたり、コアの加工量が過大になってクラッド基板の表面まで削り取られた光導波路が製造され、所要の光学特性を有する光導波路を高い歩留まりで製造することが困難になる。   However, the method of mechanically scraping the hardened core material layer that protrudes from the groove does not have a large refractive index difference between the clad substrate and the core, and can accurately detect the interface between the clad substrate and the core. Since it is difficult, it is difficult to accurately scrape the surface of the core to the boundary surface with the clad substrate, and there is a problem that a high-performance optical waveguide cannot be manufactured with high efficiency. That is, in order to manufacture an optical waveguide having desired optical characteristics, it is necessary to carefully process the core while accurately detecting the interface between the clad substrate and the core. Processing takes a long time, resulting in high product costs. On the other hand, in order to increase the productivity of the optical waveguide, if the quantitative processing of the core is performed without accurately detecting the interface between the cladding substrate and the core, the amount of processing of the core is insufficient and the core material is formed on the surface of the cladding substrate. An optical waveguide with a remaining layer is manufactured, or an optical waveguide that is scraped to the surface of the clad substrate due to excessive processing of the core is manufactured, and an optical waveguide having the required optical characteristics can be manufactured with a high yield. It becomes difficult.

また、溝内からはみ出した未硬化の余剰コア材料をゴム製のへらやスクレイパ等によって掻き取る方法は、クラッド基板の表面部分に付着したコア材料を完全に取り除くことが実際上困難で、側面方向からの光漏れを生じない高性能の光導波路を製造することが困難である。また、クラッド基板の表面部分に付着したコア材料を完全に掻き取ろうとすると、表面張力により溝内に充填されたコア材料の表面部分が凹状に窪んだ形状となり、コアの表面部分からの光漏れが生じやすくなるので、この点からも高性能の光導波路を製造することが困難である。   In addition, it is practically difficult to completely remove the core material adhering to the surface portion of the clad substrate by scraping off the uncured surplus core material protruding from the groove with a rubber spatula or scraper. It is difficult to manufacture a high-performance optical waveguide that does not cause light leakage from. In addition, if the core material adhering to the surface portion of the clad substrate is completely scraped off, the surface portion of the core material filled in the groove due to surface tension becomes a concave shape, and light leakage from the core surface portion occurs. From this point, it is difficult to manufacture a high-performance optical waveguide.

さらに、クラッド基板の表面部分に余剰のコア材料を逃がすためのくぼみを設ける方法では、光導波路を形成するための溝を小さなピッチで配列することができないので、光導波路のチャンネル数の増加及びそれによる光導波路の集積化が困難になる。   Furthermore, in the method of providing a recess for allowing excess core material to escape on the surface portion of the clad substrate, the grooves for forming the optical waveguide cannot be arranged at a small pitch. Therefore, it becomes difficult to integrate the optical waveguide.

本発明は、かかる従来技術の不備を解決するためになされたものであり、その目的は、小型かつ高性能にして多チャンネルの光導波路を容易に製造可能な光導波路の製造方法を提供することにある。   The present invention has been made to solve such deficiencies of the prior art, and an object of the present invention is to provide a method of manufacturing an optical waveguide that can easily manufacture a multi-channel optical waveguide with a small size and high performance. It is in.

本発明は、前記の課題を解決するため、光導波路を形成するための溝が片面に形成された溝付き部材の溝形成面に前記光導波路の形成材料である紫外線硬化樹脂を滴下する工程と、前記溝付き部材に滴下された紫外線硬化樹脂を板状部材にて展伸し、前記溝内に前記紫外線硬化樹脂を充填する工程と、前記溝内に充填された紫外線硬化樹脂に所定波長の樹脂硬化光を照射してこれを硬化する工程とを含む光導波路の製造方法において、
前記板状部材として、前記溝の内面を除く前記溝形成面の表面部分に対応する形状の遮光部が片面に形成されたものを用い、前記溝形成面への紫外線硬化樹脂の滴下と前記板状部材による当該紫外線硬化樹脂の展伸と、前記板状部材の前記遮光部と前記溝付き部材の前記溝形成面の表面部分とが対応するよう前記板状部材と前記溝付き部材との位置合わせとを行った後、前記板状部材の外面側から前記所定波長の樹脂硬化光を照射し、前記溝の内面部分を除く前記溝形成面の表面部分に付着した紫外線硬化樹脂の硬化を防止しつつ、前記溝内に充填された紫外線硬化樹脂の硬化を行うという構成にした。
In order to solve the above problems, the present invention includes a step of dripping an ultraviolet curable resin, which is a material for forming the optical waveguide, onto a groove forming surface of a grooved member in which a groove for forming an optical waveguide is formed on one side; The step of spreading the ultraviolet curable resin dropped on the grooved member with a plate-like member, and filling the groove with the ultraviolet curable resin; and the ultraviolet curable resin filled in the groove with a predetermined wavelength. In the manufacturing method of the optical waveguide including the step of irradiating resin curing light and curing it,
As the plate-like member, used as a light shielding portion having a shape corresponding to the surface portion of the groove forming surface except the inner surface of the groove is formed on one side, and dropping of the UV curable resin to the groove forming surface, the The expansion of the ultraviolet curable resin by the plate-shaped member and the plate-shaped member and the grooved member so that the light shielding portion of the plate-shaped member and the surface portion of the groove forming surface of the grooved member correspond to each other. After the alignment , the resin curing light of the predetermined wavelength is irradiated from the outer surface side of the plate-like member, and the ultraviolet curable resin attached to the surface portion of the groove forming surface excluding the inner surface portion of the groove is cured. In this configuration, the UV curable resin filled in the groove is cured.

かかる構成によると、光導波路の形成材料である紫外線硬化樹脂を展伸するための板状部材として、溝付き部材の溝形成面の表面部分(溝形成面における溝の内面を除く部分)に対応する形状の遮光部が片面に形成されたものを用いるので、紫外線硬化樹脂の展伸時に溝付き部材の溝形成面の表面部分と板状部材の遮光部とを対向に位置合わせすることにより、樹脂硬化光の照射時において、遮光部と接する部分の紫外線硬化樹脂の硬化を防止することができる。よって、溝内に充填された紫外線硬化樹脂の硬化を行った後に未硬化の紫外線硬化樹脂を除去することにより、表面部分が平滑で側面部分に紫外線硬化樹脂層を有さず、したがって光の漏れ出しがない光導波路を形成することができる。また、硬化後の光導波路に機械加工を施す必要がないので、高性能の光導波路を高能率に製造することができる。さらには、溝付き部材の表面部分に余剰のコア材料を逃がすためのくぼみを設ける必要がないので、溝付き部材に光導波路を形成するための溝を小さなピッチで配列することができ、光導波路の多チャンネル化及びそれによる光導波路の集積化を図ることができる。   According to this configuration, as a plate-like member for expanding the UV curable resin that is the material for forming the optical waveguide, it corresponds to the surface portion of the groove forming surface of the grooved member (the portion excluding the inner surface of the groove on the groove forming surface). Since the light shielding part of the shape to be formed on one side is used, by aligning the surface part of the groove forming surface of the grooved member and the light shielding part of the plate-like member at the time of expansion of the ultraviolet curable resin, At the time of irradiation with resin curing light, it is possible to prevent the UV curable resin from being cured at a portion in contact with the light shielding portion. Therefore, by removing the uncured UV-curing resin after curing the UV-curing resin filled in the groove, the surface portion is smooth and the side surface portion does not have the UV-curing resin layer. An optical waveguide that does not protrude can be formed. Moreover, since it is not necessary to machine the optical waveguide after curing, a high-performance optical waveguide can be manufactured with high efficiency. Furthermore, since it is not necessary to provide a recess for releasing excess core material in the surface portion of the grooved member, the grooves for forming the optical waveguide in the grooved member can be arranged at a small pitch. It is possible to increase the number of channels and thereby integrate the optical waveguide.

また、本発明は、前記構成の光導波路の製造方法において、前記溝付き部材を前記光導波路の形成材料である紫外線硬化樹脂よりもやや屈折率の低いクラッド材にて形成すると共に、前記溝内に充填された紫外線硬化樹脂の硬化と前記溝付き部材からの前記板状部材の剥離とを行った後、前記溝付き部材の溝形成面を前記クラッド材と同種のクラッド材にて覆うという構成にした。   Further, the present invention provides the method for manufacturing an optical waveguide having the above-described configuration, wherein the grooved member is formed of a clad material having a refractive index slightly lower than that of an ultraviolet curable resin that is a material for forming the optical waveguide. After the curing of the ultraviolet curable resin filled in and the peeling of the plate member from the grooved member, the groove forming surface of the grooved member is covered with the same clad material as the clad material I made it.

かかる構成によると、2つのクラッド材の間に紫外線硬化樹脂よりなるコアが配置された光導波路が得られる。   With this configuration, an optical waveguide in which a core made of an ultraviolet curable resin is disposed between two clad materials can be obtained.

また、本発明は、前記構成の光導波路の製造方法において、前記溝付き部材に形成された光導波路を形成するための溝の一端に光入射用の傾斜面を形成すると共に、前記溝付き部材の溝形成面を覆うクラッド材にマイクロレンズを形成又は設定するという構成にした。   According to the present invention, in the method of manufacturing an optical waveguide having the above structure, an inclined surface for light incidence is formed at one end of a groove for forming the optical waveguide formed on the grooved member, and the grooved member is formed. The microlens is formed or set on the clad material covering the groove forming surface.

かかる構成によると、光導波路が形成された光学部品自体に光入射用の傾斜面とマイクロレンズとを形成したので、光入射用の傾斜面を有する他の光学部品及びマイクロレンズを備えた他の光学部品を光導波路が形成された光学部品に組み合わせる必要がなく、光導波路を含む光学回路の集約化を図ることができる。   According to such a configuration, since the light incident inclined surface and the microlens are formed on the optical component itself on which the optical waveguide is formed, the other optical component having the light incident inclined surface and the other microlens provided with the microlens. There is no need to combine the optical component with the optical component on which the optical waveguide is formed, and the optical circuit including the optical waveguide can be integrated.

また、本発明は、前記構成の光導波路の製造方法において、前記溝付き部材として金型を用いると共に、前記溝内に充填された紫外線硬化樹脂の硬化と前記溝付き部材からの前記板状部材の剥離とを行った後、前記溝内にて硬化された紫外線硬化樹脂の表面にプリント配線板を接着し、前記溝付き部材と前記プリント配線板に接着された紫外線硬化樹脂との界面から前記溝付き部材を剥離し、光導波路付きのプリント配線板を得るという構成にした。   Further, the present invention uses a mold as the grooved member in the method of manufacturing an optical waveguide having the above-described configuration, and cures the ultraviolet curable resin filled in the groove and the plate-like member from the grooved member. After peeling, the printed wiring board is bonded to the surface of the ultraviolet curable resin cured in the groove, and the interface between the grooved member and the ultraviolet curable resin bonded to the printed wiring board is used. The grooved member was peeled off to obtain a printed wiring board with an optical waveguide.

かかる構成によると、金型にて形成された光導波路をそのままプリント配線板に転写することができるので、光導波路とプリント配線板とを別個に形成し、しかる後にプリント配線板の所望の位置に光導波路を1つずつ設定する場合に比べて、光導波路付きのプリント配線板を容易に製造することができる。   According to such a configuration, since the optical waveguide formed by the mold can be transferred as it is to the printed wiring board, the optical waveguide and the printed wiring board are formed separately, and then placed at a desired position on the printed wiring board. Compared with the case of setting one optical waveguide at a time, a printed wiring board with an optical waveguide can be easily manufactured.

本発明の光導波路の製造方法は、光導波路を形成するための溝が片面に形成された溝付き部材又は光導波路の形成材料である紫外線硬化樹脂を展伸するための板状部材のいずれかに所要の遮光部を形成したので、樹脂硬化光の照射時において遮光部と接する部分の紫外線硬化樹脂の硬化を防止することができ、光の漏れ出しがない高性能の光導波路を形成することができる。また、硬化後の光導波路に機械加工を施す必要がないので、高性能の光導波路を高能率に製造することができる。さらには、溝付き部材の表面部分に余剰のコア材料を逃がすためのくぼみを設ける必要がないので、溝付き部材に光導波路を形成するための溝を小さなピッチで配列することができ、光導波路の多チャンネル化及びそれによる光導波路の集積化を図ることができる。   The optical waveguide manufacturing method of the present invention is either a grooved member in which a groove for forming an optical waveguide is formed on one side or a plate-like member for expanding an ultraviolet curable resin that is a material for forming an optical waveguide. Since the required light-shielding part is formed, it is possible to prevent the curing of the UV-curing resin in the part in contact with the light-shielding part during irradiation of the resin curing light, and to form a high-performance optical waveguide that does not leak light Can do. Moreover, since it is not necessary to machine the optical waveguide after curing, a high-performance optical waveguide can be manufactured with high efficiency. Furthermore, since it is not necessary to provide a recess for releasing excess core material in the surface portion of the grooved member, the grooves for forming the optical waveguide in the grooved member can be arranged at a small pitch. It is possible to increase the number of channels and thereby integrate the optical waveguide.

以下、本発明に係る光導波路の製造方法を、各実施形態ごとに項を分けて説明する。   Hereinafter, a method for manufacturing an optical waveguide according to the present invention will be described for each embodiment.

〈第1実施形態〉
図1は第1実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図、図2は第1実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図、図3は第1実施形態に係る光導波路の製造方法を示すフロー図である。本例の光導波路の製造方法は、遮光部を有する板状部材を用いて光導波路の形成材料である紫外線硬化樹脂の展伸を行い、樹脂硬化光の照射範囲を光導波路の形成範囲にのみ規制することを特徴とする。
<First Embodiment>
1 is a perspective view of a grooved member applied to the optical waveguide manufacturing method according to the first embodiment as viewed from the groove forming surface side, and FIG. 2 is applied to the optical waveguide manufacturing method according to the first embodiment. The perspective view seen from the light-shielding part formation surface side of a plate-shaped member, FIG. 3 is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 1st Embodiment. The optical waveguide manufacturing method of this example uses a plate-shaped member having a light-shielding portion to expand an ultraviolet curable resin, which is a material for forming an optical waveguide, so that the irradiation range of resin-cured light is limited to the optical waveguide forming range. It is characterized by regulation.

図1乃至図3に示すように、本例の光導波路の製造方法には、片面に光導波路を形成するための溝1aが複数本平行に形成された溝付き部材1と、片面に遮光部2aが形成された板状部材2とが用いられる。   As shown in FIGS. 1 to 3, the optical waveguide manufacturing method of this example includes a grooved member 1 in which a plurality of grooves 1 a for forming an optical waveguide are formed on one side, and a light shielding portion on one side. A plate-like member 2 on which 2a is formed is used.

本例の溝付き部材1は、光導波路のクラッド基板となるものであって、所要の屈折率を有する樹脂材料をもってスタンパ法或いは複製法と呼ばれる技術により作製される。溝1aのサイズ及び本数は、作製しようとする光導波路の特性及びチャンネル数に応じて適宜調整される。   The grooved member 1 of this example serves as a clad substrate of an optical waveguide, and is manufactured by a technique called a stamper method or a replication method using a resin material having a required refractive index. The size and number of the grooves 1a are appropriately adjusted according to the characteristics of the optical waveguide to be manufactured and the number of channels.

一方、本例の板状部材2は、樹脂硬化光のマスク部材となるものであって、透光性材料をもって平面サイズが溝付き部材1とほぼ同等の平行平板状に形成される。遮光部2aは、図2に示すように、溝付き部材1の溝形成面の表面部分(溝形成面における溝1aの内面を除く部分)1bに対応する形状に形成される。なお、この遮光部2aは、印刷やフォトリソグラフィなどによって形成することができる。   On the other hand, the plate-like member 2 of this example is a mask member for resin-cured light, and is formed in a parallel plate shape having a translucent material and having a planar size substantially equal to that of the grooved member 1. As shown in FIG. 2, the light shielding portion 2 a is formed in a shape corresponding to the surface portion (the portion excluding the inner surface of the groove 1 a on the groove forming surface) 1 b of the groove forming surface of the grooved member 1. The light shielding portion 2a can be formed by printing, photolithography, or the like.

光導波路の製造に際しては、図3(a)に示すように、まず溝付き部材1の溝形成面上に光導波路(コア)の形成材料である適量の紫外線硬化樹脂3を滴下する。紫外線硬化樹脂3としては、硬化後の屈折率が溝付き部材1の構成材料よりもやや高いものが用いられる。次に、図3(b)に示すように、溝付き部材1の溝形成面と板状部材2の遮光部形成面との間で溝付き部材1の溝形成面上に滴下された紫外線硬化樹脂3を展伸し、溝1a内に紫外線硬化樹脂3を充填する。また、溝付き部材1の溝形成面の表面部分1bと板状部材2の遮光部2aとが対向に配置されるように溝付き部材1に対する板状部材2の位置合わせを行う。この段階においては、溝付き部材1の表面部分1bと板状部材2に形成された遮光部2aとの間にも、紫外線硬化樹脂3が介在されている。次に、図3(c)に示すように、板状部材2の外面から所定波長の樹脂硬化光4を照射し、溝1a内に充填された紫外線硬化樹脂3を硬化する。このとき、溝付き部材1の表面部分1bと板状部材2に形成された遮光部2aとの間に介在された紫外線硬化樹脂3については、遮光部2aによって樹脂硬化光4が遮断されるため、未硬化のままの状態で残る。次に、紫外線硬化樹脂3と板状部材2との界面から板状部材2を剥離し、未硬化の紫外線硬化樹脂3をリンスにより除去する。これにより、図3(d)に示すように、溝1a内に紫外線硬化樹脂3からなる光導波路(コア)5が形成されたものが得られる。最後に、図3(e)に示すように、溝付き部材1の溝形成面上にコア5を覆うクラッド材の上ハーフ6を被着して、2つのクラッド材1,6の間に紫外線硬化樹脂よりなるコア5が配置された光導波路を得る。なお、クラッド材の上ハーフ6は、溝付き部材1の構成材料と屈折率が同一の材料をもって形成される。   When manufacturing the optical waveguide, as shown in FIG. 3A, first, an appropriate amount of the ultraviolet curable resin 3 which is a material for forming the optical waveguide (core) is dropped onto the groove forming surface of the grooved member 1. As the ultraviolet curable resin 3, a resin having a slightly higher refractive index after curing than the constituent material of the grooved member 1 is used. Next, as shown in FIG. 3 (b), the ultraviolet curing dripped on the groove forming surface of the grooved member 1 between the groove forming surface of the grooved member 1 and the light shielding part forming surface of the plate-like member 2 The resin 3 is expanded, and the ultraviolet curable resin 3 is filled in the groove 1a. Further, the plate-like member 2 is aligned with the grooved member 1 so that the surface portion 1b of the groove-forming surface of the grooved member 1 and the light-shielding portion 2a of the plate-like member 2 are arranged to face each other. At this stage, the ultraviolet curable resin 3 is also interposed between the surface portion 1 b of the grooved member 1 and the light shielding portion 2 a formed on the plate-like member 2. Next, as shown in FIG. 3C, the resin curing light 4 having a predetermined wavelength is irradiated from the outer surface of the plate-like member 2 to cure the ultraviolet curable resin 3 filled in the groove 1a. At this time, for the ultraviolet curable resin 3 interposed between the surface portion 1b of the grooved member 1 and the light shielding portion 2a formed on the plate-like member 2, the resin curing light 4 is blocked by the light shielding portion 2a. It remains uncured. Next, the plate-like member 2 is peeled off from the interface between the ultraviolet curable resin 3 and the plate-like member 2, and the uncured ultraviolet curable resin 3 is removed by rinsing. As a result, as shown in FIG. 3 (d), an optical waveguide (core) 5 made of an ultraviolet curable resin 3 is formed in the groove 1a. Finally, as shown in FIG. 3 (e), the upper half 6 of the clad material that covers the core 5 is deposited on the groove-forming surface of the grooved member 1, and ultraviolet rays are placed between the two clad materials 1 and 6. An optical waveguide having a core 5 made of a cured resin is obtained. The upper half 6 of the clad material is formed of a material having the same refractive index as the constituent material of the grooved member 1.

本例の光導波路の製造方法は、光導波路(コア)5の形成材料である紫外線硬化樹脂3を展伸するための板状部材2として、溝付き部材1の溝形成面の表面部分1bに対応する形状の遮光部2aが片面に形成されたものを用いるので、樹脂硬化光4の照射時において遮光部2aと接する部分の紫外線硬化樹脂3の硬化を防止することができ、隣接して配置された複数本のコア5をそれぞれ光学的に独立した形状に形成することができる。また、溝付き部材1の溝形成面上に滴下された紫外線硬化樹脂3を板状部材2にて展伸するので、コア5の表面を平坦に形成することができる。よって、コア5の表面部分及び側面部分からの光の漏れ出しがない光導波路を形成することができる。また、硬化後の光導波路に機械加工を施す必要がないので、高性能の光導波路を高能率に製造することができる。さらには、溝付き部材1の表面部分に余剰のコア材料を逃がすためのくぼみを設ける必要がないので、溝付き部材1に光導波路を形成するための溝1aを小さなピッチで配列することができ、光導波路の多チャンネル化及びそれによる光導波路の集積化を図ることができる。   The optical waveguide manufacturing method of the present example is applied to the surface portion 1b of the groove forming surface of the grooved member 1 as a plate-like member 2 for expanding the ultraviolet curable resin 3 that is a material for forming the optical waveguide (core) 5. Since the light shielding part 2a having a corresponding shape is formed on one side, it is possible to prevent the ultraviolet curable resin 3 from being in contact with the light shielding part 2a when irradiated with the resin curing light 4 and to be disposed adjacent to it. The plurality of cores 5 can be formed into optically independent shapes. Moreover, since the ultraviolet curable resin 3 dripped on the groove forming surface of the grooved member 1 is spread by the plate-like member 2, the surface of the core 5 can be formed flat. Therefore, it is possible to form an optical waveguide that does not leak light from the surface portion and the side surface portion of the core 5. Moreover, since it is not necessary to machine the optical waveguide after curing, a high-performance optical waveguide can be manufactured with high efficiency. Furthermore, since it is not necessary to provide a recess for releasing excess core material in the surface portion of the grooved member 1, the grooves 1a for forming the optical waveguides in the grooved member 1 can be arranged at a small pitch. Further, it is possible to increase the number of optical waveguides and thereby integrate the optical waveguides.

〈第2実施形態〉
図4は第2実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図、図5は図4のA−A断面図、図6は第2実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図、図7は第2実施形態に係る光導波路の製造方法を示すフロー図、図8は第2実施形態に係る光導波路の製造方法にて製造される光導波路の断面図である。本例の光導波路の製造方法は、一端に光入射用の傾斜面とマイクロレンズとを備えた光導波路を製造することを特徴とする。
Second Embodiment
4 is a perspective view of the grooved member applied to the optical waveguide manufacturing method according to the second embodiment as seen from the groove forming surface side, FIG. 5 is a cross-sectional view taken along the line AA in FIG. 4, and FIG. The perspective view seen from the light-shielding part formation surface side of the plate-shaped member applied to the manufacturing method of the optical waveguide which concerns on a form, FIG. 7 is the flowchart which shows the manufacturing method of the optical waveguide which concerns on 2nd Embodiment, FIG. It is sectional drawing of the optical waveguide manufactured with the manufacturing method of the optical waveguide which concerns on 2 embodiment. The optical waveguide manufacturing method of this example is characterized in that an optical waveguide having a light incident inclined surface and a microlens at one end is manufactured.

図4乃至図7に示すように、本例の光導波路の製造方法には、片面に光導波路を形成するための溝11aが複数本平行に形成された溝付き部材11と、片面に遮光部12aが形成された板状部材12とが用いられる。   As shown in FIGS. 4 to 7, the optical waveguide manufacturing method of this example includes a grooved member 11 in which a plurality of grooves 11a for forming an optical waveguide are formed on one side, and a light shielding portion on one side. A plate-like member 12 on which 12a is formed is used.

本例の溝付き部材11は、光導波路のクラッド基板となるものであって、所要の屈折率を有する樹脂材料をもってスタンパ法或いは複製法と呼ばれる技術により作製される。溝11aの一端には、図4及び図5に示すように、溝11aの軸線方向に対して直交する方向から入射された光信号を溝11aの軸線方向に反射するための傾斜面11cが形成されている。溝11aのサイズ及び本数は、作製しようとする光導波路の特性及びチャンネル数に応じて適宜調整される。   The grooved member 11 of this example serves as a clad substrate of an optical waveguide, and is manufactured by a technique called a stamper method or a replication method using a resin material having a required refractive index. As shown in FIGS. 4 and 5, an inclined surface 11c is formed at one end of the groove 11a to reflect an optical signal incident from a direction orthogonal to the axial direction of the groove 11a in the axial direction of the groove 11a. Has been. The size and number of the grooves 11a are appropriately adjusted according to the characteristics of the optical waveguide to be manufactured and the number of channels.

一方、本例の板状部材12は、樹脂硬化光のマスク部材となるものであって、透光性材料をもって平面サイズが溝付き部材11とほぼ同等の平行平板状に形成される。遮光部12aは、図6に示すように、溝付き部材11の溝形成面の表面部分(溝形成面における溝11aの内面を除く部分)11bに対応する形状に形成される。この遮光部12aは、印刷やフォトリソグラフィなどによって形成される。   On the other hand, the plate-like member 12 of this example serves as a mask member for resin-cured light, and is formed in a parallel plate shape having a translucent material and having a plane size substantially equal to that of the grooved member 11. As shown in FIG. 6, the light shielding portion 12a is formed in a shape corresponding to the surface portion of the groove forming surface of the grooved member 11 (the portion excluding the inner surface of the groove 11a on the groove forming surface) 11b. The light shielding portion 12a is formed by printing or photolithography.

光導波路の製造に際しては、図7(a)に示すように、まず溝付き部材11の溝形成面上に光導波路(コア)の形成材料である適量の紫外線硬化樹脂3を滴下する。紫外線硬化樹脂3としては、硬化後の屈折率が溝付き部材1の構成材料よりもやや高いものが用いられる。次に、図7(b)に示すように、溝付き部材11の溝形成面と板状部材12の遮光部形成面との間で溝付き部材11の溝形成面上に滴下された紫外線硬化樹脂3を展伸し、溝11a内に紫外線硬化樹脂3を充填する。また、溝付き部材11の溝形成面の表面部分11bと板状部材12の遮光部12aとが対向に配置されるように溝付き部材11に対する板状部材12の位置合わせを行う。この段階においては、溝付き部材11の表面部分11bと板状部材12に形成された遮光部12aとの間にも、紫外線硬化樹脂3が介在されている。次に、図7(c)に示すように、板状部材12の外面から所定波長の樹脂硬化光4を照射し、溝11a内に充填された紫外線硬化樹脂3を硬化する。このとき、溝付き部材11の表面部分11bと板状部材12に形成された遮光部12aとの間に介在された紫外線硬化樹脂3については、遮光部12aによって樹脂硬化光4が遮断されるため、未硬化のままの状態で残る。次に、紫外線硬化樹脂3と板状部材12との界面から板状部材12を剥離し、未硬化の紫外線硬化樹脂3をリンスにより除去する。これにより、図7(d)に示すように、溝11a内に紫外線硬化樹脂3からなる光導波路(コア)15が形成されたものが得られる。ここまでの工程に関しては、第1実施形態に係る光導波路の製造方法と同じである。最後に、図7(e)に示すように、溝付き部材11の溝形成面上にコア15を覆うクラッド材の上ハーフ16を被着して、2つのクラッド材11,16の間に紫外線硬化樹脂よりなるコア15が配置された光導波路を得る。本例の光導波路の製造方法が第1実施形態に係る光導波路の製造方法と異なるのは、図8に示すように、上ハーフ16の傾斜面11cと対向する部分に、マイクロレンズ17が形成又は設定されたクラッド材の上ハーフ16を被着することである。これにより、光導波路15と光入射用のマイクロレンズ17と光路変更用の傾斜面11cとが一体に備えられた光学部品が得られる。   When manufacturing the optical waveguide, as shown in FIG. 7A, first, an appropriate amount of the ultraviolet curable resin 3 as a material for forming the optical waveguide (core) is dropped onto the groove forming surface of the grooved member 11. As the ultraviolet curable resin 3, a resin having a slightly higher refractive index after curing than the constituent material of the grooved member 1 is used. Next, as shown in FIG. 7B, UV curing dripped on the groove forming surface of the grooved member 11 between the groove forming surface of the grooved member 11 and the light shielding portion forming surface of the plate-like member 12. The resin 3 is expanded, and the ultraviolet curable resin 3 is filled in the groove 11a. Further, the plate-like member 12 is aligned with the grooved member 11 so that the surface portion 11b of the groove-forming surface of the grooved member 11 and the light shielding portion 12a of the plate-like member 12 are arranged to face each other. At this stage, the ultraviolet curable resin 3 is also interposed between the surface portion 11 b of the grooved member 11 and the light shielding portion 12 a formed on the plate-like member 12. Next, as shown in FIG. 7C, the resin curing light 4 having a predetermined wavelength is irradiated from the outer surface of the plate-like member 12 to cure the ultraviolet curable resin 3 filled in the groove 11a. At this time, for the ultraviolet curable resin 3 interposed between the surface portion 11b of the grooved member 11 and the light shielding portion 12a formed on the plate-like member 12, the resin curing light 4 is blocked by the light shielding portion 12a. It remains uncured. Next, the plate member 12 is peeled from the interface between the ultraviolet curable resin 3 and the plate member 12, and the uncured ultraviolet curable resin 3 is removed by rinsing. As a result, as shown in FIG. 7 (d), an optical waveguide (core) 15 made of the ultraviolet curable resin 3 is formed in the groove 11a. The steps up to here are the same as those in the method of manufacturing the optical waveguide according to the first embodiment. Finally, as shown in FIG. 7 (e), the upper half 16 of the clad material that covers the core 15 is deposited on the groove-forming surface of the grooved member 11, and the ultraviolet light is applied between the two clad materials 11 and 16. An optical waveguide having a core 15 made of a cured resin is obtained. The optical waveguide manufacturing method of this example is different from the optical waveguide manufacturing method according to the first embodiment in that a microlens 17 is formed in a portion of the upper half 16 facing the inclined surface 11c as shown in FIG. Alternatively, the upper half 16 of the set clad material is applied. As a result, an optical component in which the optical waveguide 15, the light incident microlens 17 and the optical path changing inclined surface 11 c are integrally provided is obtained.

本例の光導波路の製造方法は、第1実施形態に係る光導波路の製造方法と同様の効果を有するほか、光導波路15と光入射用のマイクロレンズ17と光路変更用の傾斜面11cとが一体に備えられた光学部品が得られるので、光導波路が形成された光学部品に光入射用の傾斜面を有する他の光学部品及びマイクロレンズを備えた他の光学部品を組み合わせる必要がなく、光導波路を含む光学回路の集約化を図ることができる。   The optical waveguide manufacturing method of the present example has the same effects as the optical waveguide manufacturing method according to the first embodiment, and the optical waveguide 15, the light incident microlens 17, and the inclined surface 11 c for changing the optical path are provided. Since an optical component provided integrally is obtained, there is no need to combine another optical component having a light incident inclined surface and another optical component having a microlens with the optical component on which the optical waveguide is formed. The optical circuit including the waveguide can be consolidated.

〈第3実施形態〉
図9は第3実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図、図10は第3実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図、図11は第3実施形態に係る光導波路の製造方法を示すフロー図である。本例の光導波路の製造方法は、金型を用いて光導波路を形成すること、及び形成された光導波路をプリント配線板と一体化することを特徴とする。
<Third Embodiment>
FIG. 9 is a perspective view of the grooved member applied to the optical waveguide manufacturing method according to the third embodiment as viewed from the groove forming surface side, and FIG. 10 is applied to the optical waveguide manufacturing method according to the third embodiment. The perspective view seen from the light-shielding part formation surface side of a plate-shaped member, FIG. 11: is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 3rd Embodiment. The optical waveguide manufacturing method of this example is characterized in that an optical waveguide is formed using a mold, and the formed optical waveguide is integrated with a printed wiring board.

図9乃至図11に示すように、本例の光導波路の製造方法には、片面に光導波路を形成するための溝21aが複数本平行に形成された溝付き部材21と、片面に遮光部22aが形成された板状部材22とが用いられる。   As shown in FIGS. 9 to 11, the optical waveguide manufacturing method of this example includes a grooved member 21 in which a plurality of grooves 21 a for forming an optical waveguide are formed on one side, and a light shielding portion on one side. A plate-like member 22 on which 22a is formed is used.

本例の溝付き部材21は、光導波路を形成するための金型であって、ニッケルなどの金属材料をもって形成される。この金属材料よりなる溝付き部材21は、機械的な切削加工のほか、電解加工やエッチングそれに電鋳などの物理的又は化学的な加工方法を応用することにより製造することができる。溝21aのサイズ及び本数は、作製しようとする光導波路の特性及びチャンネル数に応じて適宜調整される。   The grooved member 21 of this example is a mold for forming an optical waveguide, and is formed of a metal material such as nickel. The grooved member 21 made of the metal material can be manufactured by applying physical or chemical processing methods such as electrolytic processing, etching, and electroforming in addition to mechanical cutting. The size and number of the grooves 21a are appropriately adjusted according to the characteristics of the optical waveguide to be manufactured and the number of channels.

一方、本例の板状部材22は、第1実施形態に係る板状部材1と同様のものであって、透光性材料をもって平面サイズが溝付き部材21とほぼ同等の平行平板状に形成される。遮光部22aは、図10に示すように、溝付き部材21の溝形成面の表面部分(溝形成面における溝21aの内面を除く部分)21bに対応する形状に形成される。この遮光部22aは、印刷やフォトリソグラフィなどによって形成される。   On the other hand, the plate-like member 22 of this example is the same as the plate-like member 1 according to the first embodiment, and is formed in a parallel plate shape having a translucent material and having a planar size substantially equal to the grooved member 21. Is done. As shown in FIG. 10, the light shielding portion 22a is formed in a shape corresponding to the surface portion of the groove forming surface of the grooved member 21 (the portion excluding the inner surface of the groove 21a on the groove forming surface) 21b. The light shielding portion 22a is formed by printing or photolithography.

光導波路の製造に際しては、図11(a)に示すように、まず溝付き部材21の溝形成面上に光導波路(コア)の形成材料である適量の紫外線硬化樹脂3を滴下する。紫外線硬化樹脂3としては、任意の屈折率を有するものを用いることができる。次に、図11(b)に示すように、溝付き部材21の溝形成面と板状部材22の遮光部形成面との間で溝付き部材21の溝形成面上に滴下された紫外線硬化樹脂3を展伸し、溝21a内に紫外線硬化樹脂3を充填する。また、溝付き部材21の溝形成面の表面部分21bと板状部材22の遮光部22aとが対向に配置されるように溝付き部材21に対する板状部材22の位置合わせを行う。この段階においては、溝付き部材21の表面部分21bと板状部材22に形成された遮光部22aとの間にも、紫外線硬化樹脂3が介在されている。次に、図11(c)に示すように、板状部材22の外面から所定波長の樹脂硬化光4を照射し、溝21a内に充填された紫外線硬化樹脂3を硬化する。このとき、溝付き部材21の表面部分21bと板状部材22に形成された遮光部22aとの間に介在された紫外線硬化樹脂3については、遮光部22aによって樹脂硬化光4が遮断されるため、未硬化のままの状態で残る。次に、紫外線硬化樹脂3と板状部材22との界面から板状部材22を剥離し、未硬化の紫外線硬化樹脂3をリンスにより除去する。これにより、図11(d)に示すように、溝21a内に紫外線硬化樹脂3からなる光導波路25が形成されたものが得られる。ここまでの工程に関しては、第1実施形態及び第2実施形態に係る光導波路の製造方法と同じである。次に、図11(e)に示すように、溝21a内に形成された光導波路25の表面に、図示しない接着剤を介してプリント配線板26を接着する。最後に、接着剤が固化するのを待って、図11(f)に示すように、溝付き部材21と光導波路25との界面から光導波路25を剥離し、プリント配線板26の片面に光導波路25が一体に形成された製品を得る。なお、プリント配線板26への搭載部品の実装は、光導波路25の接着前でも光導波路25の接着後でも良い。   When manufacturing the optical waveguide, as shown in FIG. 11A, first, an appropriate amount of the ultraviolet curable resin 3 that is a material for forming the optical waveguide (core) is dropped onto the groove forming surface of the grooved member 21. As the ultraviolet curable resin 3, one having an arbitrary refractive index can be used. Next, as shown in FIG. 11B, the ultraviolet ray cured on the groove forming surface of the grooved member 21 between the groove forming surface of the grooved member 21 and the light shielding portion forming surface of the plate-like member 22. The resin 3 is expanded, and the ultraviolet curable resin 3 is filled in the groove 21a. Further, the plate-like member 22 is aligned with the grooved member 21 so that the surface portion 21b of the groove-forming surface of the grooved member 21 and the light-shielding portion 22a of the plate-like member 22 are arranged to face each other. At this stage, the ultraviolet curable resin 3 is also interposed between the surface portion 21 b of the grooved member 21 and the light shielding portion 22 a formed on the plate-like member 22. Next, as shown in FIG. 11C, the resin curing light 4 having a predetermined wavelength is irradiated from the outer surface of the plate-like member 22 to cure the ultraviolet curable resin 3 filled in the groove 21a. At this time, with respect to the ultraviolet curable resin 3 interposed between the surface portion 21b of the grooved member 21 and the light shielding part 22a formed on the plate-like member 22, the resin curing light 4 is blocked by the light shielding part 22a. It remains uncured. Next, the plate member 22 is peeled from the interface between the ultraviolet curable resin 3 and the plate member 22, and the uncured ultraviolet curable resin 3 is removed by rinsing. As a result, as shown in FIG. 11D, the optical waveguide 25 made of the ultraviolet curable resin 3 is formed in the groove 21a. The steps up to here are the same as those of the optical waveguide manufacturing method according to the first and second embodiments. Next, as shown in FIG. 11E, a printed wiring board 26 is bonded to the surface of the optical waveguide 25 formed in the groove 21a through an adhesive (not shown). Finally, after the adhesive is solidified, the optical waveguide 25 is peeled off from the interface between the grooved member 21 and the optical waveguide 25 as shown in FIG. A product in which the waveguide 25 is integrally formed is obtained. The mounting component may be mounted on the printed wiring board 26 before or after the optical waveguide 25 is bonded.

本例の光導波路の製造方法は、第1実施形態に係る光導波路の製造方法と同様の効果を有するほか、金型21にて形成された光導波路25をそのままプリント配線板26に転写することができるので、光導波路とプリント配線板とを別個に形成し、しかる後にプリント配線板の所望の位置に光導波路を1つずつ設定する場合に比べて、光導波路付きのプリント配線板を容易に製造することができる。   The optical waveguide manufacturing method of this example has the same effect as the optical waveguide manufacturing method according to the first embodiment, and the optical waveguide 25 formed by the mold 21 is transferred to the printed wiring board 26 as it is. Compared to the case where the optical waveguide and the printed wiring board are separately formed and then the optical waveguide is set at a desired position of the printed wiring board one by one, the printed wiring board with the optical waveguide can be easily formed. Can be manufactured.

〈第4実施形態〉
図12は第4実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図、図13は第4実施形態に係る光導波路の製造方法に適用される板状部材の斜視図、図14は第4実施形態に係る光導波路の製造方法を示すフロー図である。本例の光導波路の製造方法は、透光性の材料にて形成された溝付き部材の表面部分に遮光部を形成したことを特徴とする。
<Fourth embodiment>
12 is a perspective view of a grooved member applied to the optical waveguide manufacturing method according to the fourth embodiment as viewed from the groove forming surface side, and FIG. 13 is applied to the optical waveguide manufacturing method according to the fourth embodiment. FIG. 14 is a flowchart showing a method for manufacturing an optical waveguide according to the fourth embodiment. The manufacturing method of the optical waveguide of this example is characterized in that a light shielding portion is formed on a surface portion of a grooved member formed of a light transmissive material.

図12乃至図14に示すように、本例の光導波路の製造方法には、片面に光導波路を形成するための溝31aが複数本平行に形成された溝付き部材31と、片面に遮光部32aが形成された板状部材32とが用いられる。本例にあっては、板状部材として、プリント配線板が用いられる。   As shown in FIGS. 12 to 14, the optical waveguide manufacturing method of this example includes a grooved member 31 in which a plurality of grooves 31 a for forming an optical waveguide are formed on one side, and a light shielding portion on one side. A plate-like member 32 formed with 32a is used. In this example, a printed wiring board is used as the plate member.

本例の溝付き部材31は、光導波路を形成するための型材であって、ガラスなどの透光性材料をもって形成されており、溝形成面の表面部分(溝形成面における溝31aの内面を除く部分)に遮光部31bが形成されている。この透光性材料よりなる溝付き部材31は、機械的な切削加工のほか、エネルギビーム加工やエッチングなどの物理的又は化学的な加工方法を応用することにより製造することができる。また、遮光部31bは、印刷などによって形成することができる。溝31aのサイズ及び本数は、作製しようとする光導波路の特性及びチャンネル数に応じて適宜調整される。   The grooved member 31 of this example is a mold material for forming an optical waveguide, and is formed of a light-transmitting material such as glass, and the surface portion of the groove forming surface (the inner surface of the groove 31a on the groove forming surface is A light-shielding portion 31b is formed in the (excluding portion). The grooved member 31 made of the translucent material can be manufactured by applying a physical or chemical processing method such as energy beam processing or etching in addition to mechanical cutting. The light shielding part 31b can be formed by printing or the like. The size and number of the grooves 31a are appropriately adjusted according to the characteristics of the optical waveguide to be manufactured and the number of channels.

一方、板状部材であるプリント配線板32は、シート状に形成された絶縁基板に所要の回路パターンを形成してなる。   On the other hand, the printed wiring board 32 which is a plate-like member is formed by forming a required circuit pattern on an insulating substrate formed in a sheet shape.

光導波路の製造に際しては、図14(a)に示すように、まず溝付き部材31の溝形成面上に光導波路の形成材料である適量の紫外線硬化樹脂3を滴下する。紫外線硬化樹脂3としては、任意の屈折率を有するものを用いることができる。次に、図14(b)に示すように、溝付き部材31の溝形成面とプリント配線板32との間で溝付き部材31の溝形成面上に滴下された紫外線硬化樹脂3を展伸し、溝31a内に紫外線硬化樹脂3を充填する。また、溝付き部材31に対する板状部材32の位置合わせを行う。この段階においては、溝付き部材31の表面部分に形成された遮光部31bとプリント配線板32との間にも、紫外線硬化樹脂3が介在されている。次に、図14(c)に示すように、溝付き部材31の外面から所定波長の樹脂硬化光4を照射し、溝31a内に充填された紫外線硬化樹脂3を硬化する。このとき、遮光部31bとプリント配線板32との間に介在された紫外線硬化樹脂3については、遮光部31bによって樹脂硬化光4が遮断されるため、未硬化のままの状態で残る。最後に、図14(d)に示すように、溝付き部材31と紫外線硬化樹脂3との界面から溝付き部材31を剥離し、未硬化の紫外線硬化樹脂3をリンスにより除去する。これにより、プリント配線板32の片面に光導波路35が一体に形成された製品が得られる。なお、プリント配線板32への搭載部品の実装は、紫外線硬化樹脂3を展伸前でも光導波路35の形成後でも良い。   In manufacturing the optical waveguide, as shown in FIG. 14A, first, an appropriate amount of the ultraviolet curable resin 3 that is a material for forming the optical waveguide is dropped onto the groove forming surface of the grooved member 31. As the ultraviolet curable resin 3, one having an arbitrary refractive index can be used. Next, as shown in FIG. 14B, the ultraviolet curable resin 3 dropped on the groove forming surface of the grooved member 31 between the groove forming surface of the grooved member 31 and the printed wiring board 32 is expanded. Then, the ultraviolet curable resin 3 is filled in the groove 31a. Further, the plate-like member 32 is aligned with the grooved member 31. At this stage, the ultraviolet curable resin 3 is also interposed between the light shielding portion 31 b formed on the surface portion of the grooved member 31 and the printed wiring board 32. Next, as shown in FIG. 14C, the resin curing light 4 having a predetermined wavelength is irradiated from the outer surface of the grooved member 31 to cure the ultraviolet curable resin 3 filled in the groove 31 a. At this time, the ultraviolet curable resin 3 interposed between the light shielding part 31b and the printed wiring board 32 remains uncured because the resin curing light 4 is blocked by the light shielding part 31b. Finally, as shown in FIG. 14D, the grooved member 31 is peeled off from the interface between the grooved member 31 and the ultraviolet curable resin 3, and the uncured ultraviolet curable resin 3 is removed by rinsing. Thereby, a product in which the optical waveguide 35 is integrally formed on one surface of the printed wiring board 32 is obtained. The mounting component may be mounted on the printed wiring board 32 before the UV curable resin 3 is spread or after the optical waveguide 35 is formed.

本例の光導波路の製造方法は、第1実施形態に係る光導波路の製造方法と同様の効果を有するほか、プリント配線板32への光導波路35の転写を光導波路35の形成工程で行うことができるので、板状部材を用いて所要の光導波路を形成した後に、形成された光導波路をプリント配線板に転写する場合に比べて、光導波路付きのプリント配線板の製造をより容易化することができる。   The optical waveguide manufacturing method of this example has the same effects as the optical waveguide manufacturing method according to the first embodiment, and the optical waveguide 35 is transferred to the printed wiring board 32 in the process of forming the optical waveguide 35. Therefore, it is easier to manufacture a printed wiring board with an optical waveguide than when a formed optical waveguide is formed on a plate-shaped member and then the formed optical waveguide is transferred to the printed wiring board. be able to.

第1実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図である。It is the perspective view seen from the groove formation surface side of the member with a groove | channel applied to the manufacturing method of the optical waveguide which concerns on 1st Embodiment. 第1実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図である。It is the perspective view seen from the light-shielding part formation surface side of the plate-shaped member applied to the manufacturing method of the optical waveguide which concerns on 1st Embodiment. 第1実施形態に係る光導波路の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 1st Embodiment. 第2実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図である。It is the perspective view seen from the groove formation surface side of the member with a groove | channel applied to the manufacturing method of the optical waveguide which concerns on 2nd Embodiment. 図4のA−A断面図である。It is AA sectional drawing of FIG. 第2実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図である。It is the perspective view seen from the light-shielding part formation surface side of the plate-shaped member applied to the manufacturing method of the optical waveguide which concerns on 2nd Embodiment. 第2実施形態に係る光導波路の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 2nd Embodiment. 第2実施形態に係る光導波路の製造方法にて製造される光導波路の断面図である。It is sectional drawing of the optical waveguide manufactured with the manufacturing method of the optical waveguide which concerns on 2nd Embodiment. 第3実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図である。It is the perspective view seen from the groove formation surface side of the member with a groove | channel applied to the manufacturing method of the optical waveguide which concerns on 3rd Embodiment. 第3実施形態に係る光導波路の製造方法に適用される板状部材の遮光部形成面側から見た斜視図である。It is the perspective view seen from the light-shielding part formation surface side of the plate-shaped member applied to the manufacturing method of the optical waveguide which concerns on 3rd Embodiment. 第3実施形態に係る光導波路の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 3rd Embodiment. 第4実施形態に係る光導波路の製造方法に適用される溝付き部材の溝形成面側から見た斜視図である。It is the perspective view seen from the groove formation surface side of the member with a groove | channel applied to the manufacturing method of the optical waveguide which concerns on 4th Embodiment. 第4実施形態に係る光導波路の製造方法に適用される板状部材の斜視図である。It is a perspective view of the plate-shaped member applied to the manufacturing method of the optical waveguide concerning a 4th embodiment. 第4実施形態に係る光導波路の製造方法を示すフロー図である。It is a flowchart which shows the manufacturing method of the optical waveguide which concerns on 4th Embodiment.

符号の説明Explanation of symbols

1,11,21,31 溝付き部材
1a,11a,21a,31a 溝
2,12,22 板状部材
32 板状部材(プリント配線板)
2a,12a,22a,31b 遮光部
3 紫外線硬化樹脂
4 樹脂硬化光
5,15,25,35 光導波路(コア)
6 クラッド材の上ハーフ
26 プリント配線板
1,11,21,31 Grooved member 1a, 11a, 21a, 31a Groove 2,12,22 Plate member 32 Plate member (printed wiring board)
2a, 12a, 22a, 31b Light-shielding part 3 UV curable resin 4 Resin cured light 5, 15, 25, 35 Optical waveguide (core)
6 Upper half of clad material 26 Printed wiring board

Claims (4)

光導波路を形成するための溝が片面に形成された溝付き部材の溝形成面に前記光導波路の形成材料である紫外線硬化樹脂を滴下する工程と、前記溝付き部材に滴下された紫外線硬化樹脂を板状部材にて展伸し、前記溝内に前記紫外線硬化樹脂を充填する工程と、前記溝内に充填された紫外線硬化樹脂に所定波長の樹脂硬化光を照射してこれを硬化する工程とを含む光導波路の製造方法において、
前記板状部材として、前記溝の内面を除く前記溝形成面の表面部分に対応する形状の遮光部が片面に形成されたものを用い、前記溝形成面への紫外線硬化樹脂の滴下と前記板状部材による当該紫外線硬化樹脂の展伸と、前記板状部材の前記遮光部と前記溝付き部材の前記溝形成面の表面部分とが対応するよう前記板状部材と前記溝付き部材との位置合わせとを行った後、前記板状部材の外面側から前記所定波長の樹脂硬化光を照射し、前記溝の内面部分を除く前記溝形成面の表面部分に付着した紫外線硬化樹脂の硬化を防止しつつ、前記溝内に充填された紫外線硬化樹脂の硬化を行うことを特徴とする光導波路の製造方法。
A step of dropping an ultraviolet curable resin, which is a material for forming the optical waveguide, onto a groove forming surface of a grooved member in which a groove for forming an optical waveguide is formed on one side; and an ultraviolet curable resin dropped on the grooved member A step of spreading the substrate with a plate-like member, filling the groove with the ultraviolet curable resin, and irradiating the ultraviolet curable resin filled in the groove with resin curing light having a predetermined wavelength to cure the groove. In an optical waveguide manufacturing method including:
As the plate-like member, used as a light shielding portion having a shape corresponding to the surface portion of the groove forming surface except the inner surface of the groove is formed on one side, and dropping of the UV curable resin to the groove forming surface, the The expansion of the ultraviolet curable resin by the plate-shaped member and the plate-shaped member and the grooved member so that the light shielding portion of the plate-shaped member and the surface portion of the groove forming surface of the grooved member correspond to each other. After the alignment , the resin curing light of the predetermined wavelength is irradiated from the outer surface side of the plate-like member, and the ultraviolet curable resin attached to the surface portion of the groove forming surface excluding the inner surface portion of the groove is cured. A method for producing an optical waveguide, comprising: curing an ultraviolet curable resin filled in the groove while preventing the groove.
前記溝付き部材を前記光導波路の形成材料である紫外線硬化樹脂よりもやや屈折率の低いクラッド材にて形成すると共に、前記溝内に充填された紫外線硬化樹脂の硬化と前記溝付き部材からの前記板状部材の剥離とを行った後、前記溝付き部材の溝形成面を前記クラッド材と同種のクラッド材にて覆うことを特徴とする請求項1に記載の光導波路の製造方法。   The grooved member is formed of a clad material having a refractive index slightly lower than that of the ultraviolet curable resin that is a material for forming the optical waveguide, and the ultraviolet curable resin filled in the groove is cured and the grooved member is 2. The method of manufacturing an optical waveguide according to claim 1, wherein after the peeling of the plate-like member, the groove forming surface of the grooved member is covered with the same clad material as the clad material. 前記溝付き部材に形成された光導波路を形成するための溝の一端に光入射用の傾斜面を形成すると共に、前記溝付き部材の溝形成面を覆うクラッド材にマイクロレンズを形成又は設定することを特徴とする請求項2に記載の光導波路の製造方法。   An inclined surface for light incidence is formed at one end of a groove for forming an optical waveguide formed in the grooved member, and a microlens is formed or set on a clad material covering the groove forming surface of the grooved member The method of manufacturing an optical waveguide according to claim 2. 前記溝付き部材として金型を用いると共に、前記溝内に充填された紫外線硬化樹脂の硬化と前記溝付き部材からの前記板状部材の剥離とを行った後、前記溝内にて硬化された紫外線硬化樹脂の表面にプリント配線板を接着し、前記溝付き部材と前記プリント配線板に接着された紫外線硬化樹脂との界面から前記溝付き部材を剥離し、光導波路付きのプリント配線板を得ることを特徴とする請求項1に記載の光導波路の製造方法。   A mold was used as the grooved member, and the ultraviolet curable resin filled in the groove was cured and the plate member was peeled from the grooved member, and then cured in the groove. A printed wiring board is bonded to the surface of the ultraviolet curable resin, and the grooved member is peeled off from the interface between the grooved member and the ultraviolet curable resin bonded to the printed wiring board to obtain a printed wiring board with an optical waveguide. The method of manufacturing an optical waveguide according to claim 1.
JP2004329310A 2004-11-12 2004-11-12 Manufacturing method of optical waveguide Expired - Fee Related JP4279772B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004329310A JP4279772B2 (en) 2004-11-12 2004-11-12 Manufacturing method of optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004329310A JP4279772B2 (en) 2004-11-12 2004-11-12 Manufacturing method of optical waveguide

Publications (2)

Publication Number Publication Date
JP2006139119A JP2006139119A (en) 2006-06-01
JP4279772B2 true JP4279772B2 (en) 2009-06-17

Family

ID=36619982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004329310A Expired - Fee Related JP4279772B2 (en) 2004-11-12 2004-11-12 Manufacturing method of optical waveguide

Country Status (1)

Country Link
JP (1) JP4279772B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4974917B2 (en) 2008-01-29 2012-07-11 新光電気工業株式会社 Manufacturing method of optical waveguide

Also Published As

Publication number Publication date
JP2006139119A (en) 2006-06-01

Similar Documents

Publication Publication Date Title
EP1542045B1 (en) Method of manufacturing an optical waveguide
US7658877B2 (en) Manufacturing micro-structured elements
JP2004071587A (en) Stamper, method of transferring pattern using it, and method of forming structure by transferring pattern
JP2968508B2 (en) Manufacturing method of optical waveguide device
JP2005275405A5 (en)
US7010199B2 (en) Optical coupling device and method for fabricating the same, and master used in fabricating optical coupling device and method for fabricating the same
JPH11305055A (en) Production of optical waveguide and production of master raw glass for production of optical waveguide
JP2008281624A (en) Waveguide element for mounting optical fiber, and method for manufacturing the same
JP4371777B2 (en) Resin curing method and resin molded product manufacturing method
JPH09281351A (en) Production of high-polymer optical waveguide
JP4279772B2 (en) Manufacturing method of optical waveguide
WO2019216342A1 (en) Light control filter
JPH1090532A (en) Optical waveguide and its production
JP2008058530A (en) Method of manufacturing waveguide by extrusion lamination, and method of manufacturing mold
JP2006023661A (en) Film optical waveguide and its manufacturing method, and base material for film optical waveguide
KR100678342B1 (en) Fabrication method for optical waveguide device
JP3609685B2 (en) Manufacturing method of optical waveguide
JP2008122474A (en) Optical waveguide, manufacturing method of optical waveguide, mold for manufacturing waveguide, and method for manufacturing mold
JP4306212B2 (en) Optical waveguide core manufacturing method
JP3705083B2 (en) Optical memory device manufacturing method and optical memory device
JP6820969B2 (en) Optical control filter
JP2006106361A (en) Method for manufacturing light guide plate, and light guide plate
JP2001264557A (en) Optical memory device
JP2005205804A (en) Shape transfer mold, light transmission way array, method for producing light transmission array, and image enlargement display element
KR100294538B1 (en) Optical waveguide manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090303

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090312

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees