JP4278256B2 - Warm plastic working method - Google Patents

Warm plastic working method Download PDF

Info

Publication number
JP4278256B2
JP4278256B2 JP2000004523A JP2000004523A JP4278256B2 JP 4278256 B2 JP4278256 B2 JP 4278256B2 JP 2000004523 A JP2000004523 A JP 2000004523A JP 2000004523 A JP2000004523 A JP 2000004523A JP 4278256 B2 JP4278256 B2 JP 4278256B2
Authority
JP
Japan
Prior art keywords
workpiece
rolling
temperature
magnesium
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000004523A
Other languages
Japanese (ja)
Other versions
JP2001252703A (en
Inventor
喬彬 井ノ口
利之 八代
雅彦 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kinzoku Co Ltd
Original Assignee
Nippon Kinzoku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kinzoku Co Ltd filed Critical Nippon Kinzoku Co Ltd
Priority to JP2000004523A priority Critical patent/JP4278256B2/en
Publication of JP2001252703A publication Critical patent/JP2001252703A/en
Application granted granted Critical
Publication of JP4278256B2 publication Critical patent/JP4278256B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、難加工性金属被加工材の塑性加工方法に関し、特に難加工性金属被加工材の温間圧延方法に関する。
【0002】
【従来の技術】
難加工性軽金属材料、特にマグネシウム又はその合金等の塑性加工、特に温間圧延においては、処理温度まで加熱された被圧延材が、圧延ロールバイトに到達する前に自然冷却されると、変形抵抗の増大により、パス回数の増加が必要となったり、圧延作業そのものが続行不可能となったり、圧延方向に直角な方向(板幅方向)に温度差を生じて材料が割れる等の問題があった。
【0003】
このような問題を回避するため、様々な提案がなされている。例えば、特開平5-293529号公報には、自然冷却を防止するために、中間加熱設備として電気抵抗加熱ヒーターを有する炉を使用し、或いは、さらに、電気抵抗加熱ヒーターにより空気を加熱してその空気を循環しそれにより材料を加熱する空気循環式加熱炉、ガス式加熱炉、高周波誘導加熱炉等を使用して、被圧延材を450℃〜200℃の温度域に加熱して圧延する方法が開示されている。これらの装置では、被圧延材は目標温度に加熱されるものの、被圧延材料の搬送方向に直角方向の温度差が大きく、優れた特性を有する圧延製品が得られないという問題がある。
【0004】
一方、温間圧延装置の中間加熱方法として、特許第2663818号には、ステンレス鋼帯等の難加工性金属材料の温間圧延を行う際、タンデム圧延機入り側にオイルバスを配置して、被圧延材を浸漬・加熱後に圧延する方法が開示されている。この方法では、圧延における中間加熱媒体として圧延油及び圧延油を含む溶液が用いられているが、熱媒体として一般的な圧延油を用いた場合、発火点が180℃前後であり、実用加熱温度が150℃前後に制限される。従って、この方法は、200℃以上での温間圧延には適さない。
【0005】
特開平2-70303号公報には、オーステナイト系ステンレス鋼に直接通電加熱により、被圧延材を50℃〜150℃の温度範囲に加熱し温間圧延する方法が開示されている。この方法も前述の高周波誘導加熱炉の場合と同様に、被圧延材の搬送方向に対して直角な方向(板幅方向)に温度差が発生する。また、被圧延材と給電部との接触面で通板中にスパークが発生し、製品の表面品質を損なうおそれがある。また、加熱温度も50℃〜150℃と制限されているため、難加工性金属被加工材の中間加熱温度としては低過ぎるという問題がある。
【0006】
特開平3-52703号公報には、難加工性金属被圧延材を、加熱された圧延油又は圧延油含有溶液中にあらかじめ浸漬し、被圧延材を100℃前後に加熱した後、圧延機へ移動し、圧延する方法及び装置が開示されている。しかし、100℃前後の加熱温度は前述のとおり、難加工性金属被加工材の中間加熱温度としては低過ぎるという問題がある。
【0007】
特開平5-23724号公報には、タンデムミルのスタンド間に蒸気を噴射するための蒸気噴射ヘッダを配置し、この蒸気噴射ヘッダから蒸気吹きつけることにより鋼板温度を保持しながら圧延する方法が開示されている。しかしこの方法では、蒸気温度はせいぜい110℃前後であり、200℃以上に被圧延材を加熱することは不可能である。
【0008】
マグネシウム及びその合金は比重が小さいこと、放熱性が高いこと、減衰能や電磁波シールド性に優れていることに加え、金属であるためリサイクルが容易であることから、近年MDプレーヤやパソコンの筐体に利用されてきている。
マグネシウム及びその合金は温度の違いによる変形抵抗の差が微妙に変化するため、例えば、幅方向に温度差が大きくなった場合、圧延加工された材料に極端な歪みが生じ、曲がりなどの変形又は極端な場合には破断を起す。こうした金属特有の性質のため、従来マグネシウムの利用に関しては鋼のように容易に圧延によりシート又はコイル状に巻いた板材を得ることができなかった。
【0009】
このため、板をプレスなどで成形する方法は実施されておらす、ダイキャストとしての鋳込又は鍛造による成形が殆どであった。また近年になってはチクソモールド法と呼ばれる成形方法が注目されている。
しかしながら前者は、融点又は融点近傍まで加熱する必要があり、後者でも融点近くまで加熱して半溶融状態とする必要があり、エネルギ消費が大きいという問題がある。
これらの方法では成形品の肉厚を薄く加工することは困難であり、肉厚化(薄くても1.2mm程度まで)は避けられず、軽量化と相反することを余儀なくされていた。また、ダイキャストやチクソモールド法で成形された部品はバリ等を有するためそのまま部品として使用することはできず、バリ除去等に多くの時間と費用を要し、また部品の歩留りも悪いため、コスト高となるという問題があった。
【0010】
以上のとおり、マグネシウム又はその合金等の塑性加工、特に温間圧延においては、圧延時に圧延材料が自然冷却されると材料が割れる等の問題があった。これは、加工時間が長くなった場合に被加工材温度が適正加工温度領域以下に低下することや、加熱装置で加熱された後、圧延ロールバイトで圧延されるまでの間に被圧延材が自然冷却され、被圧延材の温度差、とりわけ幅方向の温度差、特に被圧延材の幅方向中央部と、幅方向端部との温度差が大きくなることがその一因と考えられる。この温度差が大きくなると、形状不良を起こし、最悪の場合、破断に至る。被圧延材の冷却を防止するために前述のとおり従来種々の工夫がなされているが、適正加工温度領域での温度差を充分に小さくすることができるに至っていない。このため、特に加工温度及び温度差の影響を受け易いマグネシウム及びその合金については、圧延方向に充分な長さを持ったコイル状形態のシートは得られていないのが現状である。
【0011】
【発明が解決しようとする課題】
従って本発明の目的は、不良品を生じることなく、難加工性金属被加工材を効率よく塑性加工する方法を提供することである。さらに具体的には、被加工材の幅方向の温度差を充分に小さくし、破断・耳割れ等を防止しつつ、高効率で圧延を行う難加工性金属被加工材の温間圧延方法を提供することである。
本発明の他の目的は、長尺のマグネシウム又はその合金シート、すなわち、コイル状の形態に保持し得るマグネシウム又はその合金シートを提供することである。
【0012】
【課題を解決するための手段】
本発明者は、上記課題を達成するために鋭意検討した結果、被加工材の幅方向の温度差と被加工材の線膨張係数の積が所定値以下となるように温度差を調節することにより、本発明の課題が達成されることを見出し、本発明を完成するに至ったものである。
本発明は、難加工性金属被加工材を、加工手段近傍に設置した加熱液槽で加熱し、被加工材の幅方向の温度差が以下の式1を満足するようにした後、塑性加工を行うことを特徴とする難加工性金属の塑性加工方法を提供するものである。
式1 α・Δt≦400×10-6
式中、αは被加工材の線膨張係数、Δtは被加工材の幅方向の温度差(℃)を示す。
【0013】
本発明の難加工性金属被加工材又は被圧延材の典型的な例としては、マグネシウム、その合金、チタン、その合金、及び珪素鋼が挙げられる。
本発明において、難加工性金属被加工材を加熱液槽で160℃〜550℃、好ましくは160℃〜400℃、さらに好ましくは200℃〜360℃の温度に均一に加熱した後、塑性加工又は温間圧延することが好ましい。被加工材がマグネシウム、又はその合金である場合は、被加工材を加熱液槽で200℃〜400℃、好ましくは250℃〜350℃の温度に均一に加熱した後、塑性加工又は温間圧延することが好ましい。
【0014】
本発明の方法によりマグネシウム又はその合金を温間圧延することにより、従来の方法では不可能であったマグネシウム又はその合金の長尺シート、例えば、板厚が0.4mm未満(例えば、0.399〜0.1mm)、板幅が230mmより大きく(例えば、231〜1500mm)、長さが例えば、30m以上のシートを製造することができる。この長尺シートは、コイル状形態とすることができ産業上の利用性が著しく改善される。
【0015】
【発明の実施の形態】
本発明は、被加工材を加熱装置で加熱した後、圧延ロールバイト等の加工手段に搬送して加工するまでの間に被加工材が自然冷却されることにより生じる被加工材の温度差、とりわけ被加工材の搬送方向に直角な方向の温度差を、加工手段近傍に設けた加熱液槽に被加工材を通過させることによって所定値以下にしてから、加工するようにしたことを特徴とするものである。具体的には、被加工材の幅方向の温度差が式1を満足するようにした後、塑性加工を行うことを特徴とするものである。α・Δtの値は、400×10-6以下、好ましくは200×10-6以下、更に好ましくは100×10-6以下である。
被加工材の加工温度は、一般に160℃〜550℃、好ましくは160℃〜400℃、さらに好ましくは、200℃〜360℃である。
塑性加工としては、圧延加工、プレス加工等が挙げられる。以下、本発明を特に圧延加工を例として説明するが本発明は圧延加工に限定されるものではない。
【0016】
本発明において、被圧延材を160℃〜550℃、好ましくは160℃〜400℃、さらに好ましくは200℃〜360℃の温度域で温間圧延する理由について説明する。
一般に難加工性材料と呼ばれている金属材料、例えば、マグネシウム、その合金、チタン、その合金は、結晶構造が六方稠密構造であり、変形モードが底面滑り系主体であるため、拘束時の変形抵抗が大きい。また、珪素鋼は脆性材料として知られている。これらの金属材料は、常温近傍での冷間圧延では、板切れ・耳割れなどの不具合が発生しやすく、生産性を大きく阻害する。
【0017】
本発明において、AZ31(Al:Zn=3:1))のような被加工材の温度を上昇させる目的は、耐力が低下する温度領域で圧延等の塑性加工することにある。耐力が小さくなることに加え、材料温度が200℃以上になると、滑り系が複数発生してくるため、塑性加工が容易になる。従って200℃以上の温度域で塑性加工を行うことが重要である。
【0018】
本発明において、被加工材を加熱装置で加熱した後、圧延ロールバイト等の加工手段に搬送して加工するまでの間に被加工材が自然冷却されることにより生じる被加工材の温度差を、加工手段近傍に設けた加熱液槽に被加工材を通過させることによって所定値以下にしてから、塑性加工を行う理由についてさらに具体的に説明する。前述のとおり、金属材料、例えばマグネシウム、その合金(AZ31等)は、200℃以上の温度域において急激に機械的特性が変化する。例えばAZ31B合金の場合、200℃と260℃では単軸変形抵抗に約2倍の差が生じる。従って、被加工金属材料に温度差がある状態で被圧延材を圧延ロールバイト内に進入させた場合、圧延後の板形状に多大な影響を与え、最悪の場合は、圧延不能な状態に陥る。従って、被圧延材の温度差、特に被圧延材の搬送方向に直角な方向(板幅方向)の温度差を最小にすることは極めて重要である。
【0019】
次に本発明において、温間圧延する際の加熱液槽について説明する。
加熱液槽は、圧延機の圧延ロールバイトの入り側あるいは出側の一方あるいは両方に設置され、加熱用の液体を用いて被圧延材を、幅方向の温度差が所定値以下となるように加熱するものである。加熱媒体としては、目標加熱温度が160℃〜550℃、好ましくは160℃〜400℃、さらに好ましくは200℃〜360℃であることから、温水、蒸気、圧延油は適さない。よって、発火点が高く、かつ沸点の高い熱媒体を使用する。
このような熱媒体としては、水素化トリフェニル、アルキルジフェニル、ジフェニルとジフェニルエーテルの混合物等の有機系熱媒体、ポリオールエステル、フェニルエーテル等のグリース基油、及び硝石系塩等の無機系熱媒体が挙げられる。熱媒体として無機塩を用いた場合には、さらに高温での圧延加工が可能であり、例えば、硝石系塩を用いた場合には、最高550℃程度の高温での圧延加工が可能である。
【0020】
【実施例1】
熱媒体(水素化トリフェニル:発火点430℃、沸点364℃)を入れた加熱液槽を圧延ロールバイトの入り側及び出側に設けた圧延機を用いて、被圧延材を350℃で圧延した。被圧延材としては、板厚3.0mmの難加工性金属材料(マグネシウム合金AZ31:線膨張係数=25.9×10-6/℃)(寸法3.0mm厚×200mm巾×1800mm長)を用いた。熱媒体温度は350℃とし、目標最終板厚は0.8mm(総圧下率73.3%)とした。
【0021】
350℃での圧延実験結果を表1に示す。目標板厚までは、5パスで達することができ、同系の合金としては良好な効率で圧延が可能であった。また、被圧延材の温度差は、板幅中央部と端部で最大10℃以内であり加熱操作は順調であった。
【0022】
【表1】

Figure 0004278256
【0023】
【実施例2】
次にコイル形態のマグネシウム合金シートの製造について説明する。
マグネシウム合金AZ31に相当する成分系からなる溶湯を50mm厚×600mm巾×2000mm長のプレートに鋳込み、430℃で12時間加熱均熱処理した後、そのまま熱間圧延を施しこのプレートを20mm厚×600mm巾×5000mm長の寸法に仕上げ、再度430℃で12時間加熱均熱処理した後、5パス(20mm→13.4mm→9.0mm→6.0mm→4.1mm→2.9mm)にて、2.9mm厚×620mm巾×34.5m長のホットコイルを製造した。このコイルに両耳切断を実施し600mm巾にした後、350℃までバッチ炉にて加熱し、水素化トリフェニルを入れた熱媒体槽を左右リールとロールスタンド間に有する温間圧延機のリールに装着後、前記実施例と同じく5パスにて0.7mm厚×600mm巾×140m長のコイル状形態のシートに仕上げた。このときの被圧延材の温度差も板巾中央部と端部で最大10℃以内であり極めて順調に作業を終えた。
【0024】
【発明の効果】
本発明によれば、被加工材を160℃〜550℃、好ましくは160℃〜400℃、さらに好ましくは200℃〜360℃の温度域で、幅方向の温度差を所定値以下にした状態で、塑性加工処理、例えば、温間圧延することが可能であり、塑性加工時の、破断・耳割れ、形状不良等のトラブルを生ずることなく塑性加工品、圧延品を適切且つ効率よく生産することが可能となる。また従来不可能であったマグネシウムの長尺シートの製造が可能となり、コイル状形態のマグネシウムシートの供給が可能となる。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plastic working method for a difficult-to-work metal workpiece, and more particularly to a warm rolling method for a difficult-to-work metal workpiece.
[0002]
[Prior art]
In plastic processing of difficult-to-process light metal materials, especially magnesium or its alloys, especially in warm rolling, if the material to be rolled heated to the processing temperature is naturally cooled before reaching the rolling roll bite, the deformation resistance The increase in the number of passes necessitates an increase in the number of passes, the rolling operation itself cannot be continued, or a temperature difference in the direction perpendicular to the rolling direction (sheet width direction) causes the material to break. It was.
[0003]
Various proposals have been made to avoid such problems. For example, in Japanese Patent Laid-Open No. H5-293529, in order to prevent natural cooling, a furnace having an electric resistance heater is used as an intermediate heating facility, or further, air is heated by an electric resistance heater. A method of rolling a material to be rolled in a temperature range of 450 ° C. to 200 ° C. using an air circulation heating furnace, a gas heating furnace, a high frequency induction heating furnace, or the like that circulates air and thereby heats the material. Is disclosed. In these apparatuses, although the material to be rolled is heated to a target temperature, there is a problem that a temperature difference in a direction perpendicular to the conveyance direction of the material to be rolled is large, and a rolled product having excellent characteristics cannot be obtained.
[0004]
On the other hand, as an intermediate heating method of the warm rolling device, in Patent No. 2663818, when performing hot rolling of difficult-to-work metal materials such as stainless steel strip, an oil bath is arranged on the tandem rolling mill entrance side, A method of rolling a material to be rolled after dipping and heating is disclosed. In this method, rolling oil and a solution containing rolling oil are used as an intermediate heating medium in rolling, but when a general rolling oil is used as a heating medium, the ignition point is around 180 ° C., and the practical heating temperature Is limited to around 150 ° C. Therefore, this method is not suitable for warm rolling at 200 ° C. or higher.
[0005]
Japanese Patent Laid-Open No. 2-70303 discloses a method of heating a material to be rolled to a temperature range of 50 ° C. to 150 ° C. by direct current heating to austenitic stainless steel and performing warm rolling. In this method, as in the case of the above-described high-frequency induction heating furnace, a temperature difference occurs in a direction (plate width direction) perpendicular to the conveyance direction of the material to be rolled. In addition, sparks are generated in the plate through the contact surface between the material to be rolled and the power feeding unit, which may impair the surface quality of the product. Moreover, since the heating temperature is also limited to 50 ° C. to 150 ° C., there is a problem that the intermediate heating temperature of the difficult-to-work metal workpiece is too low.
[0006]
In JP-A-3-52703, a difficult-to-work metal rolled material is pre-immersed in a heated rolling oil or a rolling oil-containing solution, and the rolled material is heated to around 100 ° C. and then to a rolling mill. A method and apparatus for moving and rolling is disclosed. However, as described above, there is a problem that the heating temperature around 100 ° C. is too low as the intermediate heating temperature of the difficult-to-work metal workpiece.
[0007]
Japanese Patent Laid-Open No. 5-23724 discloses a method in which a steam injection header for injecting steam is arranged between tandem mill stands, and rolling is performed while maintaining the steel sheet temperature by blowing steam from the steam injection header. Has been. However, with this method, the steam temperature is at most about 110 ° C., and it is impossible to heat the material to be rolled above 200 ° C.
[0008]
Magnesium and its alloys are low in specific gravity, high in heat dissipation, excellent in attenuation and electromagnetic wave shielding properties, and are easy to recycle because they are metal. Has been used.
Magnesium and its alloys have subtle changes in deformation resistance due to differences in temperature.For example, when the temperature difference increases in the width direction, extreme distortion occurs in the rolled material, and deformation such as bending or In extreme cases, it will break. Due to such metal-specific properties, it has not been possible to obtain a sheet material that has been easily rolled into a sheet or a coil like conventional steel with regard to the use of magnesium.
[0009]
For this reason, the method of forming the plate with a press or the like has not been carried out, and most of the methods are casting by die casting or forming by forging. In recent years, a molding method called a thixomold method has attracted attention.
However, the former needs to be heated to the melting point or near the melting point, and the latter also needs to be heated to near the melting point to be in a semi-molten state, resulting in a problem that energy consumption is large.
With these methods, it is difficult to reduce the thickness of the molded product, and it is inevitable to increase the thickness (up to about 1.2 mm even if it is thin), and it is forced to conflict with the weight reduction. In addition, parts molded by die-casting or thixomolding have burrs etc., so they cannot be used as parts as they are, and it takes a lot of time and expense to remove burrs, etc., and the yield of parts is also bad, There was a problem of high costs.
[0010]
As described above, in plastic working of magnesium or an alloy thereof, particularly in warm rolling, there is a problem that the material breaks when the rolled material is naturally cooled during rolling. This is because when the processing time becomes long, the temperature of the work material decreases below the proper processing temperature range, or after the material is heated by the heating device and rolled by the rolling roll bite, One reason is considered to be that the temperature difference of the material to be rolled is increased, and the temperature difference in the width direction, in particular, the temperature difference between the center portion in the width direction of the material to be rolled and the end portion in the width direction becomes large. When this temperature difference becomes large, shape failure occurs, and in the worst case, breakage occurs. In order to prevent cooling of the material to be rolled, various devices have been conventionally made as described above, but the temperature difference in the proper processing temperature region cannot be sufficiently reduced. For this reason, the present condition is that the sheet | seat of the coil form which has sufficient length in the rolling direction is not obtained especially about magnesium and its alloy which are easy to receive to the influence of a processing temperature and a temperature difference.
[0011]
[Problems to be solved by the invention]
Accordingly, an object of the present invention is to provide a method for efficiently plastic working difficult-to-work metal workpieces without producing defective products. More specifically, a method of warm rolling a difficult-to-work metal workpiece that performs rolling with high efficiency while sufficiently reducing the temperature difference in the width direction of the workpiece and preventing breakage, ear cracking, etc. Is to provide.
Another object of the present invention is to provide a long magnesium or alloy sheet thereof, that is, a magnesium or alloy sheet that can be held in a coiled form.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to achieve the above-mentioned problems, the present inventor adjusts the temperature difference so that the product of the temperature difference in the width direction of the workpiece and the linear expansion coefficient of the workpiece becomes a predetermined value or less. Thus, the inventors have found that the object of the present invention can be achieved, and have completed the present invention.
The present invention heats a difficult-to-work metal workpiece in a heating liquid tank installed in the vicinity of the processing means so that the temperature difference in the width direction of the workpiece satisfies the following formula 1, and then plastic working It is intended to provide a plastic working method of a difficult-to-work metal characterized by
Formula 1 α ・ Δt ≦ 400 × 10 -6
In the equation, α represents the linear expansion coefficient of the workpiece, and Δt represents the temperature difference (° C.) in the width direction of the workpiece.
[0013]
Typical examples of the difficult-to-work metal workpiece or rolled material of the present invention include magnesium, its alloys, titanium, its alloys, and silicon steel.
In the present invention, the difficult-to-work metal workpiece is uniformly heated to a temperature of 160 ° C. to 550 ° C., preferably 160 ° C. to 400 ° C., more preferably 200 ° C. to 360 ° C. Warm rolling is preferred. When the workpiece is magnesium or an alloy thereof, the workpiece is uniformly heated to a temperature of 200 ° C. to 400 ° C., preferably 250 ° C. to 350 ° C. in a heating liquid tank, and then plastic working or warm rolling It is preferable to do.
[0014]
By warm-rolling magnesium or an alloy thereof by the method of the present invention, a long sheet of magnesium or an alloy thereof, for example, having a thickness of less than 0.4 mm (for example, 0.399 to 0.1 mm), which was not possible with the conventional method. ), A sheet having a plate width greater than 230 mm (for example, 231 to 1500 mm) and a length of, for example, 30 m or more can be produced. This elongate sheet can be made into a coil-like form, and industrial utility is remarkably improved.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In the present invention, after the workpiece is heated by a heating device, the workpiece is naturally cooled before being processed by being conveyed to a processing means such as a rolling roll bite. In particular, the temperature difference in the direction perpendicular to the conveying direction of the workpiece is reduced to a predetermined value or less by passing the workpiece through a heating liquid tank provided in the vicinity of the processing means, and then processing is performed. To do. Specifically, plastic working is performed after the temperature difference in the width direction of the workpiece satisfies Equation (1). The value of α · Δt is 400 × 10 −6 or less, preferably 200 × 10 −6 or less, more preferably 100 × 10 −6 or less.
The processing temperature of the workpiece is generally 160 ° C to 550 ° C, preferably 160 ° C to 400 ° C, and more preferably 200 ° C to 360 ° C.
Examples of plastic working include rolling and pressing. Hereinafter, the present invention will be described by taking a rolling process as an example, but the present invention is not limited to the rolling process.
[0016]
In the present invention, the reason why the material to be rolled is warm-rolled in a temperature range of 160 ° C. to 550 ° C., preferably 160 ° C. to 400 ° C., more preferably 200 ° C. to 360 ° C. will be described.
Metal materials that are generally called difficult-to-work materials, such as magnesium, its alloys, titanium, and its alloys, have a hexagonal close-packed crystal structure and a deformation mode mainly consisting of bottom sliding systems. Resistance is great. Silicon steel is also known as a brittle material. These metal materials are prone to problems such as sheet breakage and ear cracking during cold rolling near room temperature, which greatly impedes productivity.
[0017]
In the present invention, the purpose of raising the temperature of the workpiece such as AZ31 (Al: Zn = 3: 1)) is to perform plastic working such as rolling in a temperature range where the proof stress is lowered. In addition to the decrease in yield strength, when the material temperature is 200 ° C. or higher, a plurality of sliding systems are generated, which facilitates plastic working. Therefore, it is important to perform plastic working in a temperature range of 200 ° C or higher.
[0018]
In the present invention, after the work material is heated by a heating device, the work material is naturally cooled during the period from when it is conveyed to a processing means such as a rolling roll bite and processed. The reason why the plastic working is performed after the work material is passed through a heating liquid tank provided in the vicinity of the processing means to be equal to or less than a predetermined value will be described more specifically. As described above, the mechanical properties of metal materials such as magnesium and its alloys (such as AZ31) change rapidly in the temperature range of 200 ° C. or higher. For example, in the case of AZ31B alloy, the difference in uniaxial deformation resistance is approximately doubled between 200 ° C and 260 ° C. Accordingly, when the material to be rolled enters the rolling roll bite while there is a temperature difference in the metal material to be processed, the plate shape after rolling is greatly affected, and in the worst case, it falls into a state in which rolling is impossible. . Therefore, it is extremely important to minimize the temperature difference of the material to be rolled, particularly the temperature difference in the direction perpendicular to the conveying direction of the material to be rolled (sheet width direction).
[0019]
Next, in the present invention, a heating liquid tank at the time of warm rolling will be described.
The heating liquid tank is installed on one or both of the entrance side and exit side of the rolling roll bite of the rolling mill, so that the temperature difference in the width direction of the material to be rolled becomes less than a predetermined value using the heating liquid. It is for heating. As the heating medium, the target heating temperature is 160 ° C. to 550 ° C., preferably 160 ° C. to 400 ° C., and more preferably 200 ° C. to 360 ° C., so that hot water, steam and rolling oil are not suitable. Therefore, a heat medium having a high ignition point and a high boiling point is used.
Examples of such heat medium include organic heat medium such as triphenyl hydride, alkyldiphenyl, a mixture of diphenyl and diphenyl ether, grease base oil such as polyol ester and phenyl ether, and inorganic heat medium such as nitrate salt. Can be mentioned. When an inorganic salt is used as the heat medium, rolling at a higher temperature is possible. For example, when a nitrate-based salt is used, the rolling at a high temperature of about 550 ° C. is possible.
[0020]
[Example 1]
Roll the material to be rolled at 350 ° C using a rolling mill equipped with a heating liquid tank containing a heating medium (triphenyl hydride: ignition point 430 ° C, boiling point 364 ° C) on the entrance side and exit side of the rolling roll bite. did. As the material to be rolled, a hard-to-work metal material having a thickness of 3.0 mm (magnesium alloy AZ31: linear expansion coefficient = 25.9 × 10 −6 / ° C.) (size 3.0 mm thickness × 200 mm width × 1800 mm length) was used. The heat medium temperature was 350 ° C., and the target final plate thickness was 0.8 mm (total rolling reduction 73.3%).
[0021]
Table 1 shows the rolling experiment results at 350 ° C. The target plate thickness was reached in 5 passes, and rolling was possible with good efficiency as a similar alloy. Further, the temperature difference of the material to be rolled was within 10 ° C. at the maximum at the center and end portions of the plate width, and the heating operation was smooth.
[0022]
[Table 1]
Figure 0004278256
[0023]
[Example 2]
Next, manufacture of a magnesium alloy sheet in a coil form will be described.
A molten metal composed of the component system corresponding to magnesium alloy AZ31 is cast into a plate of 50mm thickness x 600mm width x 2000mm length, heat soaked at 430 ° C for 12 hours, then hot-rolled as it is, and the plate is 20mm thick x 600mm width Finished to a length of 5,000mm, heat-heated again at 430 ° C for 12 hours, then 2.9mm thick x 620mm wide in 5 passes (20mm → 13.4mm → 9.0mm → 6.0mm → 4.1mm → 2.9mm) A 34.5m long hot coil was manufactured. This coil is cut at both ears to a width of 600 mm, heated in a batch furnace to 350 ° C, and a hot rolling mill reel with a heat medium tank containing hydrogenated triphenyl between the left and right reels and the roll stand. After being mounted on the sheet, it was finished into a sheet having a coil shape of 0.7 mm thickness × 600 mm width × 140 m length by 5 passes in the same manner as in the above example. The temperature difference of the material to be rolled at this time was also within 10 ° C. at the maximum at the center and end portions of the sheet width, and the work was finished very smoothly.
[0024]
【The invention's effect】
According to the present invention, the workpiece is in a temperature range of 160 ° C. to 550 ° C., preferably 160 ° C. to 400 ° C., more preferably 200 ° C. to 360 ° C., and the temperature difference in the width direction is set to a predetermined value or less. Plastic processing, for example, warm rolling is possible, and plastic processing products and rolled products are appropriately and efficiently produced without causing troubles such as breakage, ear cracks, and shape defects during plastic processing. Is possible. Further, it is possible to produce a long magnesium sheet, which has been impossible in the past, and to supply a magnesium sheet in a coiled form.

Claims (6)

難加工性金属被加工材を、加工手段近傍に設置した加熱液槽で加熱し、被加工材の幅方向の温度差が以下の式1を満足するようにした後、塑性加工を行うことを特徴とする難加工性金属の塑性加工方法であって、被加工材が、マグネシウム、その合金、チタン、その合金、及び珪素鋼からなる群から選ばれる、上記方法
式1 α・Δt≦400×10-6
式中、αは被加工材の線膨張係数(単位:℃ -1 、Δtは被加工材の幅方向の温度差(℃)を示す。
The difficult-to-work metal workpiece is heated in a heating liquid tank installed in the vicinity of the processing means so that the temperature difference in the width direction of the workpiece satisfies the following formula 1, and then plastic working is performed. A method for plastic working of a difficult-to-work metal, characterized in that the workpiece is selected from the group consisting of magnesium, alloys thereof, titanium, alloys thereof, and silicon steel .
Formula 1 α ・ Δt ≦ 400 × 10 -6
In the formula, α represents the linear expansion coefficient (unit: ° C −1 ) of the workpiece, and Δt represents the temperature difference (° C.) in the width direction of the workpiece.
塑性加工が、温間圧延である請求項1記載の方法。  The method according to claim 1, wherein the plastic working is warm rolling. 被加工材を160℃以上に加熱した後、160〜550℃の温度で塑性加工する請求項1又は2記載の方法。  The method according to claim 1 or 2, wherein the workpiece is heated to 160 ° C or higher and then plastically processed at a temperature of 160 to 550 ° C. 被加工材がマグネシウム又はその合金であり、且つ被加工材を200℃以上に加熱した後、200〜400℃の温度で塑性加工する請求項1〜3のいずれか1項記載の方法。  The method according to any one of claims 1 to 3, wherein the workpiece is magnesium or an alloy thereof, and the workpiece is heated to 200 ° C or higher and then plastically processed at a temperature of 200 to 400 ° C. 請求項4記載の方法により製造された板厚が0.4mm未満、板幅が230mmより大きい長尺のマグネシウム又はその合金のシート。  A sheet of magnesium or an alloy thereof having a thickness of less than 0.4 mm and a width of more than 230 mm produced by the method according to claim 4. コイル状形態である請求項5記載のマグネシウム又はその合金のシート。  The sheet of magnesium or an alloy thereof according to claim 5, which is in a coiled form.
JP2000004523A 2000-01-06 2000-01-13 Warm plastic working method Expired - Lifetime JP4278256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000004523A JP4278256B2 (en) 2000-01-06 2000-01-13 Warm plastic working method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-999 2000-01-06
JP2000000999 2000-01-06
JP2000004523A JP4278256B2 (en) 2000-01-06 2000-01-13 Warm plastic working method

Publications (2)

Publication Number Publication Date
JP2001252703A JP2001252703A (en) 2001-09-18
JP4278256B2 true JP4278256B2 (en) 2009-06-10

Family

ID=26583203

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000004523A Expired - Lifetime JP4278256B2 (en) 2000-01-06 2000-01-13 Warm plastic working method

Country Status (1)

Country Link
JP (1) JP4278256B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3657217B2 (en) * 2001-10-19 2005-06-08 日本金属株式会社 Method for producing magnesium alloy slab for hot rolling and method for hot rolling magnesium alloy
DE102004048805B3 (en) * 2004-10-07 2006-05-18 Thyssenkrupp Steel Ag Process for producing sheets from a magnesium melt
JP2006239748A (en) * 2005-03-04 2006-09-14 Sumitomo Metal Ind Ltd Method for producing magnesium alloy
KR100671196B1 (en) 2005-04-02 2007-01-25 주식회사 지알로이테크놀로지 Manufacturing method of particle-distributed wrought magnesium alloys and wrought magnesium alloys thereby
JP4692882B2 (en) * 2005-08-11 2011-06-01 住友金属工業株式会社 Magnesium plate and manufacturing method of magnesium plate
TWI389747B (en) * 2007-10-16 2013-03-21 Ihi Metaltech Co Ltd Recoiling facility for magnesium alloy sheet
CN102639260B (en) * 2009-11-24 2015-04-15 住友电气工业株式会社 Magnesium alloy coiled material
CN102049414A (en) * 2010-11-17 2011-05-11 常荣波 High-strength titanium and titanium alloy profile temperature rolling process and dedicated high-speed roll mill
JP5679555B2 (en) * 2010-12-15 2015-03-04 株式会社牛越製作所 Metallic glass plastic forming method and plastic forming apparatus
JP5776874B2 (en) * 2011-02-14 2015-09-09 住友電気工業株式会社 Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
JP5776873B2 (en) * 2011-02-14 2015-09-09 住友電気工業株式会社 Magnesium alloy rolled material, magnesium alloy member, and method for producing magnesium alloy rolled material
EP3790676A1 (en) * 2018-05-08 2021-03-17 Materion Corporation Methods for heating strip product
US11980922B2 (en) 2018-05-08 2024-05-14 Materion Corporation Methods for producing metal matrix composite strip product

Also Published As

Publication number Publication date
JP2001252703A (en) 2001-09-18

Similar Documents

Publication Publication Date Title
EP0576171B1 (en) A method of manufacturing can body sheet
EP0576170B1 (en) A method of manufacturing aluminum alloy sheet
AU670338B2 (en) Method of manufacturing can body sheet using two sequences of continuous, in-line operations
US11590565B2 (en) Metal casting and rolling line
US5496423A (en) Method of manufacturing aluminum sheet stock using two sequences of continuous, in-line operations
JP4278256B2 (en) Warm plastic working method
TWI283613B (en) Procedure and plant for the production of hot-rolled strip from austenitic stainless steel
KR101138711B1 (en) Method and production line for manufacturing metal strips made of copper or copper alloys
GB2027621A (en) Processes for preparing low earing aluminium alloy strip
US6290785B1 (en) Heat treatable aluminum alloys having low earing
EP2505274A1 (en) Method for producing magnesium alloy sheet and magnesium alloy coil material
CN101912876B (en) Production method of magnesium alloy plate
US20040007295A1 (en) Method of manufacturing aluminum alloy sheet
KR100207835B1 (en) Method and plant for the manufacture of special steel blanks
US4066475A (en) Method of producing a continuously processed copper rod
CN106048300B (en) A kind of nickel brass band and preparation method thereof
JPH07100526A (en) Preparation of seamless pipe of nonferrous metal
JP2000140975A (en) Manufacture of deformed bar
RU2106930C1 (en) Metal product manufacture complex
CN117020135A (en) Continuous casting and rolling preparation method of 3102 aluminum alloy round bar
JPH0790246B2 (en) Direct slab rolling method
CN115008141A (en) Casting-rolling manufacturing method of brass pipe and brass pipe
JP3255045B2 (en) Double reduce rolling method
CN115254953A (en) Cast-rolled 3004 checkered plate and preparation method thereof
JPH04105753A (en) Continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090302

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090310

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278256

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term