JP4272316B2 - Free form drilling shield machine - Google Patents

Free form drilling shield machine Download PDF

Info

Publication number
JP4272316B2
JP4272316B2 JP29871899A JP29871899A JP4272316B2 JP 4272316 B2 JP4272316 B2 JP 4272316B2 JP 29871899 A JP29871899 A JP 29871899A JP 29871899 A JP29871899 A JP 29871899A JP 4272316 B2 JP4272316 B2 JP 4272316B2
Authority
JP
Japan
Prior art keywords
shaft
planetary
shield machine
support shaft
cutter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29871899A
Other languages
Japanese (ja)
Other versions
JP2001115779A (en
Inventor
徹 渡辺
啓一 宮崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nishimatsu Construction Co Ltd
Original Assignee
Nishimatsu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nishimatsu Construction Co Ltd filed Critical Nishimatsu Construction Co Ltd
Priority to JP29871899A priority Critical patent/JP4272316B2/en
Publication of JP2001115779A publication Critical patent/JP2001115779A/en
Application granted granted Critical
Publication of JP4272316B2 publication Critical patent/JP4272316B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Excavating Of Shafts Or Tunnels (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、断面形状が例えば矩形や楕円形のトンネルをシールド工法で掘削する為に用いられる自由形状掘削シールド機に関する。
【0002】
【従来の技術】
地下鉄道や上下水道などのトンネルや坑道を構築する方法の一つであるシールド工法は、トンネルなどの切羽面に当接するシールド掘削機を用いて穴を掘進し、さらに、穴の内壁をセグメントリングで覆ってトンネルを構築する工法であり、安全かつ確実に作業を行えるという特徴がある。
このシールド工法に用いられるシールド掘削機は、カッタを前面に設けたヘッドを油圧モータなどの駆動機構を用いて回転させながら押し進むことにより、カッタを用いて地山を掘削する機械である。
【0003】
通常、シールド工法により構築されるトンネルの断面は円形であるが、近年は、工事条件上、断面が楕円形や矩形のトンネルをシールド工法で構築する必要が出てきている。
楕円形や矩形の断面のトンネルを掘削する自由形状掘削シールド機の従来例としては、例えば特開平10−61382号に開示されたシールド掘削機がある。このシールド機は、断面が円形のトンネルを掘削するための周知の円形シールド掘削機の周囲に、遊星カッタと呼ばれる補助カッタを設け、この補助カッタの正面視における輪郭形状を遊星カッタの自転回転数と公転回転数との比に応じて形成し、その自転回転数と公転回転数との比を適切に設定することで例えば矩形のトンネルを掘削する構成となっている。
【0004】
【発明が解決しようとする課題】
しかし、上述した従来例は、円形に掘削するためのメインカッタの他に補助カッタを別個に制御、駆動する必要があり、制御系統が複雑になるとともに、消費エネルギーが多くなっていた。
また、遊星カッタの正面視における輪郭形状を遊星カッタの自転回転数と公転回転数との比に応じて形成する必要があるが、この輪郭形状をトンネルの断面形状から直接導き出すことはできなかった。
すなわち、従来は、経済性がいい自由形状掘削シールド機はなかった。
【0005】
上記事情に鑑み、本発明は、任意の形状のトンネルを掘削でき、経済性のよい自由形状掘削シールド機を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記問題点を解決するため、本発明は、請求項1に記載するように、切羽に当接して当該切羽を掘削する遊星カッタ(22)と、この遊星カッタを前端部で支持する支持軸(30)と、この支持軸の後端側に連結し、当該支持軸を介して前記遊星カッタを自転させるモータと、前記支持軸を所定の公転軌道に沿って公転させる公転手段と、を備え、前記遊星カッタを自転させつつ公転させて、前記公転軌道に概略相似した断面形状のトンネルを掘削する、自由形状掘削シールド機であって、前記支持軸は、前記外歯車を外周に有する中空の外軸(31)と、この外軸を貫通して回転自在に設けられ、先端側に遊星カッタを設けた内軸(32)と、前記外軸を自転させる外軸自転手段(例えば外軸モータ33)と、前記内軸を自転させる内軸自転手段(例えば内軸モータ34)と、を備え、前記公転手段は、公転軌道(44)に沿って設けられた内歯車(43a)と、前記外軸外周に設けられ、前記内歯車と噛み合う外歯車(31a)と、を備え、前記外軸の回転を駆動源として当該支持軸を前記公転軌道に沿って公転させることを特徴とする。
【0007】
本発明において、遊星カッタは自転することによって切羽を掘削し、公転により掘削場所を移動する。すなわち、遊星カッタを自転させつつ公転させると、当該遊星カッタは、公転軌道に沿って当該遊星カッタ自身が通過する部分を掘削しながら公転する。この掘削範囲は、公転軌道を基準として遊星カッタの半径分(遊星カッタが楕円形である場合は長径分)ほど内外に広げた範囲である。
【0008】
すなわち、本発明に係る自由形状掘削シールド機によれば、公転軌道を、掘削すべきトンネルの形状から遊星カッタの半径分ほど内側(遊星カッタが楕円形である場合は長径分)に設定することにより、円形は勿論、楕円形、矩形といった任意の形状のトンネルを掘削できる。
【0009】
また、遊星カッタの径は、最大(遊星カッタ数が1つの場合)でも従来の円形シールド掘削機や自由形状掘削シールド機のメインカッタと比べて半分強でよいため、カッタ駆動用のモータは従来と比べて格段に小さくて済む。従って、掘削時の消費エネルギーも格段に小さくなる。
【0010】
また、簡単な構成であるにもかかわらず、掘削時の負荷が大きくても確実に支持軸を公転できる機構となる。
【0011】
更に、遊星カッタの自転速度と公転速度とを別個に制御できるため、切羽の性状に合わせて掘削できる。
【0012】
また、本発明は、請求項に記載するように、遊星カッタは、軸に直接取り付けられたカッタ保持軸(21)の端部側に、周方向に複数設けた構成にしてもよく、また、請求項に記載するように、遊星カッタを前端部に備えた支持軸を、周方向に複数備えた構成にしてもよい。これらの場合は、遊星カッタ数が増すため、より効率よく切羽を掘削できる。
【0016】
【発明の実施の形態】
以下、図を用いて本発明の一実施例である自由形状掘削シールド機1について詳細に説明する。
図1は自由形状掘削シールド機1の長手方向の断面概略図である。図2は支持軸30の構成を説明する断面概略図であり、図3は遊星カッタ部20の構成を説明する正面概略図である。図4は公転軌道44の形状を支持軸30の動きと合わせて説明する正面概略図であり、図5は自由形状掘削シールド機1が掘削するトンネルの断面形状を説明する概略図である。図6は、自由形状掘削シールド機1が掘削するトンネルの断面形状の変形例を説明する図である。
【0017】
自由形状掘削シールド機1は、例えば断面が楕円のトンネルを掘削する泥水式のシールド機であり、図1に示すように、円筒状の胴部材1aの隔壁1bより先端側に位置して切羽に面する遊星カッタ部20と、遊星カッタ部20を先端にて支持しており隔壁1bを貫いている支持軸30と、隔壁1bの内側に設けられていて支持軸30を楕円状に公転させる隔壁状の公転案内手段40と、支持軸30を支持すると共に公転案内手段40と隔壁1bとの間に設けられた回転板50(押さえ手段)とにより概略構成される。
【0018】
ここで、隔壁1bには、支持軸30の公転軌道44(詳細は後述)に面するように、公転軌道44と同形状かつ幅広の輪状開口部1cを設ける。輪状開口部1cは支持軸30を公転可能かつ自転可能に通すための開口部である。
さらに、隔壁1bと切羽との間に泥水を送水する送泥管2と、掘削土を送水された泥水と共に外部に排泥する排泥管3とを備える。
【0019】
遊星カッタ部20は、図1および図2に示すように、支持軸30に一端を取り付けられた3本のカッタ支持軸21の他端に、遊星カッタ22をそれぞれ取り付けた構成となっている。カッタ支持軸21…の取り付け角度は支持軸30を中心に120゜おきに設定されており、その結果、遊星カッタ22は図2中点線で示した正三角形の頂点に位置している。
ここで、支持軸30と遊星カッタ22との距離や、遊星カッタ22の径は、詳細を後述する遊星カッタ22…の軌跡が掘削すべきトンネルの断面に一致するように設定する。
また、遊星カッタ部20の自転により形成される自転円20bの直径が、掘削すべきトンネルの断面(楕円形)の長径の半分以上にする。
【0020】
支持軸30は、図3に示すように、公転案内手段40に直接接している中空の外軸31と、外軸31の中に回転自在に挿入されていて遊星カッタ部20を先端部で支持する内軸32と、外軸31を回転させる外軸モータ33と、内軸32を回転させる内軸モータ34とにより概略構成されている。
また、外軸31は、中央部近辺であり公転案内手段40と接する部分の外周に外歯車31aを備えている。
ここで、外軸モータ33,内軸モータ34は公転案内手段40より内側に設けられている。
【0021】
公転案内手段40は、図3に示すように、隔壁1bの中心に胴部材1aの内側に突出して固定された中心軸41と、中心軸41によって隔壁1bの内側に支持されている楕円形の内ガイド壁42と、内ガイド壁42を納めるための開口部43bを有していて内ガイド壁42と面一になるように胴部材1aの内壁に取り付けられた外ガイド壁43と、により概略構成されている。
ここで、内ガイド壁42の外周部および外ガイド壁43の開口部43bの周部は強固な構造になっており、さらに、開口部43bの周部には外歯車31aに噛み合う内歯車43aを設けている。また、内ガイド壁42の外周端と内歯車43aとの間隔は外歯車31aの外径よりやや大きい程度とする。すなわち、内ガイド壁42の外周部よび開口部43bの周部の間で支持軸30および遊星カッタ部20の公転軌道44(図4参照)を形成している。
【0022】
回転板50は、中心軸41に回転自在に貫通支持された板であり、周縁部には、支持軸30を貫通させるための貫通孔51(止水パッキン付孔)を備えている。
また、切羽からの泥水の浸入を防止するため、貫通孔51の内周面には止水パッキン51aを支持軸30の側周面に圧接するように設けている。
【0023】
また、回転板50と隔壁1bとの間には、輪状開口部1cの内周端、外周端に沿って止水パッキン52,52がそれぞれ支持軸30に圧接するように設けられているが、回転板50は止水パッキン52,52を隔壁1bに押しつける役割も有する。この止水パッキン52,52は貫通孔51より手前で切羽からの泥水の浸入を防止するものである。
【0024】
すなわち、支持軸30は、外歯車31aが内歯車43aに噛み合うことにより内ガイド壁42,外ガイド壁43に支持され、止水パッキン51aを介して回転板50によっても支持され、また隔壁1bの輪状開口部1cを公転可能に貫いている。
【0025】
このような構成の自由形状掘削シールド機1において、外軸モータ33を駆動させて外軸31および外歯車31aを回転させると、外歯車31aが内歯車43aに噛み合っているため、支持軸30および遊星カッタ部20は公転軌道44に沿って公転する。この際、回転板50は支持軸30を保持しながら支持軸30と共に中心軸41を中心に自転する。
また、内軸モータ34を駆動させて内軸32を回転させると、遊星カッタ部20が回転して切羽を掘削する。
従って、外軸モータ33と内軸モータ34との双方を同時に回転させると、遊星カッタ部20は切羽を掘削しながら公転する。
【0026】
また、図5に概略を記載するように、公転軌道44は楕円形であるため、遊星カッタ部20の軌跡20aすなわち掘削面の形状は楕円となり、その大きさは、概略、長径が、公転軌道44の長径と、自転円20bの半径との和であり、短径が、公転軌道44の短径と自転円20bの半径との和になる。また、公転軌道44および遊星カッタ部20の大きさは、切羽全面を覆うように設計している。
従って、遊星カッタ部20は楕円形の切羽全面を掘削する。
【0027】
ここで、公転案内手段40の内ガイド壁42の外形や外ガイド壁43の開口部43bの形状を矩形状にすると、公転軌道44は矩形状になるため、図6に示すように、遊星カッタ部20の軌跡20aすなわち掘削面の形状は矩形状となり、その大きさは公転軌道44から外側に自転円20bの半径分ほど膨らんだ程度になる。
同様に、内ガイド壁42の外形や外ガイド壁43の開口部43bの形状を変えることにより、掘削面を任意の形状に設定できる。
【0028】
従って、自由形状掘削シールド機1によれば、簡単な機械的構成や制御方式で任意の断面形状のトンネルを掘削することが可能であるため、シールド掘削機の製造コストを低減できる。
【0029】
また、遊星カッタ部20が公転しながら切羽を掘削するため、自転円20bの大きさが掘削面より小さくても掘り残しを生じない。すなわち、従来と比べて自転するカッタ部の大きさが小さいため、カッタ部自転用のモータの出力を小さくできる。従って、掘削に必要な消費エネルギーを低減できる。
【0030】
また、公転軌道44に内歯車43aを設け、さらに支持軸30に外歯車31aを取り付け、支持軸30を回転させて遊星カッタ部20を公転軌道44に沿って公転させるため、遊星カッタ部20は大負荷時にも確実に公転する。
また、支持軸30を、外歯車31aを有する外軸31の中に内軸32を回転自在に設け、内軸32の先端に遊星カッタ部20を固定し、外軸31と内軸32とを別個に回転させる構成としたので、切羽の性状に合わせて、公転速度と、自転速度すなわち掘削速度との比を調節できる。
【0031】
なお、本発明は本実施例に限定されるものではなく、発明の趣旨を逸脱しない範囲で任意に変形できる。
例えば、遊星カッタ部20は3つの遊星カッタ22を備えた構成としたが、その数は任意でよく、例えば自転円20bと同程度の大きさのカッタを用いてその数を1つにすることも可能である。
さらに、同一の公転軌道44上に複数の遊星カッタ部20を支持軸30と共に設けて掘削効率を高めてもよい。この場合は、好ましくはすべての遊星カッタ部20の公転速度を一致させる。
また、自由形状掘削シールド機1を泥水式としたが、周知のスクリューコンベア式の排土機構を公転案内手段40を避けて設置することにより、土圧式のシールド掘削機とすることも可能である。
【0032】
【発明の効果】
以上より、本発明に係る自由形状掘削シールド機によれば、公転軌道を、掘削すべきトンネルの形状から遊星カッタの半径分ほど内側(遊星カッタが楕円形である場合は長径分)に設定することにより、円形は勿論、楕円形、矩形といった任意の形状のトンネルを掘削できる。
【0033】
また、遊星カッタの径は、最大(遊星カッタ数が1つの場合)でも従来の円形シールド掘削機、自由形状掘削シールド機のメインカッタと比べて半分強でよいため、カッタ駆動用のモータは従来と比べて格段に小さくて済む。従って、掘削時の消費エネルギーも格段に小さくなる。
【0034】
更に、遊星カッタの自転速度と公転速度とを別個に制御できるため、切羽の性状に合わせて掘削できる。
【0035】
また、請求項記載の構成にすると、遊星カッタ数が増すため、より効率よく切羽を掘削できる。
【図面の簡単な説明】
【図1】本発明の一実施例である自由形状掘削シールド機の長手方向の断面概略図である。
【図2】遊星カッタ部の構成を説明する正面概略図である。
【図3】支持軸の構成を説明する断面概略図である。
【図4】公転軌道の形状を支持軸の動きと合わせて説明する正面概略図である。
【図5】自由形状掘削シールド機が掘削するトンネルの断面形状を説明する概略図である。
【図6】自由形状掘削シールド機が掘削するトンネルの断面形状の変形例を説明する図である。
【符号の説明】
1 自由形状掘削シールド機
1b 隔壁
1c 輪状開口部
21 カッタ保持軸
22 遊星カッタ
30 支持軸
31 外軸
31a 外歯車
32 内軸
33 外軸モータ(外軸自転手段)
34 内軸モータ(内軸自転手段)
43a 内歯車
50 回転板(押さえ手段)
51 貫通孔51(止水パッキン付孔)
52 止水パッキン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a free-form excavation shield machine used for excavating a tunnel having a cross-sectional shape of, for example, a rectangle or an ellipse by a shield method.
[0002]
[Prior art]
The shield method, which is one of the methods for constructing tunnels and tunnels such as subways and waterworks and sewers, drills holes using a shield excavator that abuts the face of the tunnel and further segments the inner walls of the holes. It is a construction method that constructs a tunnel by covering with, and has the feature that it can work safely and reliably.
The shield excavator used in this shield construction method is a machine that excavates natural ground using a cutter by pushing a head provided with a cutter on the front surface while rotating it using a drive mechanism such as a hydraulic motor.
[0003]
Normally, the tunnel constructed by the shield method has a circular cross section, but recently, due to the construction conditions, it has become necessary to construct an elliptical or rectangular tunnel by the shield method.
As a conventional example of a free-form excavation shield machine for excavating an elliptical or rectangular cross-section tunnel, for example, there is a shield excavator disclosed in JP-A-10-61382. In this shield machine, an auxiliary cutter called a planetary cutter is provided around a known circular shield excavator for excavating a tunnel having a circular cross section, and the contour shape of the auxiliary cutter in the front view is set to the rotation speed of the planetary cutter. For example, a rectangular tunnel is excavated by appropriately setting the ratio between the rotation speed and the revolution speed.
[0004]
[Problems to be solved by the invention]
However, in the above-described conventional example, it is necessary to separately control and drive the auxiliary cutter in addition to the main cutter for excavating in a circular shape, which complicates the control system and increases energy consumption.
In addition, it is necessary to form the contour shape of the planetary cutter in front view according to the ratio of the rotational speed and revolution speed of the planetary cutter, but this contour shape could not be derived directly from the cross-sectional shape of the tunnel. .
That is, conventionally, there has been no free-form excavation shield machine with good economic efficiency.
[0005]
In view of the above circumstances, an object of the present invention is to provide a free-form excavation shield machine capable of excavating a tunnel having an arbitrary shape and having good economic efficiency.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, as described in claim 1, the present invention provides a planetary cutter (22) that abuts the face and excavates the face, and a support shaft that supports the planetary cutter at the front end ( 30), a motor connected to the rear end side of the support shaft and rotating the planetary cutter via the support shaft, and a revolving means for revolving the support shaft along a predetermined revolving trajectory, wherein by revolving while rotating the planetary cutter and excavating a tunnel outline similar cross-sectional shape on the orbit, I freeform excavating shield machine der, the support shaft is a hollow with the external gear on the outer periphery An outer shaft (31), an inner shaft (32) provided rotatably through the outer shaft, and provided with a planetary cutter on the tip side, and outer shaft rotation means (for example, an outer shaft motor) for rotating the outer shaft 33) and the inner shaft itself that rotates the inner shaft. Means (for example, an inner shaft motor 34), and the revolution means includes an inner gear (43a) provided along the revolution track (44), and an outer gear provided on the outer periphery of the outer shaft and meshing with the inner gear. a gear (31a), provided with, characterized Rukoto the support shaft is revolved along the orbit of rotation of the outer shaft as a drive source.
[0007]
In the present invention, the planetary cutter rotates to excavate the face, and moves around the excavation site by revolution. That is, when the planetary cutter is revolved while rotating, the planetary cutter revolves while excavating a portion along which the planetary cutter itself passes along the revolution trajectory. This excavation range is a range that is expanded inward and outward as much as the radius of the planetary cutter (or the major axis if the planetary cutter is elliptical) with respect to the revolution orbit.
[0008]
That is, according to the free-form excavation shield machine according to the present invention, the revolution trajectory is set to the inner side by the radius of the planetary cutter from the shape of the tunnel to be excavated (or the major axis if the planetary cutter is elliptical). Thus, a tunnel having an arbitrary shape such as an ellipse or a rectangle as well as a circle can be excavated.
[0009]
Also, the maximum diameter of the planetary cutter (when the number of planetary cutters is one) may be slightly more than half that of the main cutter of the conventional circular shield excavator or free-form excavation shield machine. Compared to, it is much smaller. Therefore, the energy consumption during excavation is significantly reduced.
[0010]
In addition , despite the simple configuration, the support shaft can be reliably revolved even if the load during excavation is large.
[0011]
Furthermore , since the rotation speed and revolution speed of the planetary cutter can be controlled separately, excavation can be performed in accordance with the properties of the face.
[0012]
Further, according to the present invention, as described in claim 2 , a plurality of planetary cutters may be provided in the circumferential direction on the end portion side of the cutter holding shaft (21) directly attached to the inner shaft, Further, as described in claim 3 , a configuration may be adopted in which a plurality of support shafts each having a planetary cutter at the front end portion are provided in the circumferential direction. In these cases, since the number of planetary cutters increases, the face can be excavated more efficiently.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the free-form excavation shield machine 1 which is one Example of this invention is demonstrated in detail using figures.
FIG. 1 is a schematic cross-sectional view of a free-form excavation shield machine 1 in the longitudinal direction. FIG. 2 is a schematic cross-sectional view illustrating the configuration of the support shaft 30, and FIG. 3 is a schematic front view illustrating the configuration of the planetary cutter unit 20. FIG. 4 is a schematic front view for explaining the shape of the revolving track 44 together with the movement of the support shaft 30, and FIG. 5 is a schematic diagram for explaining the cross-sectional shape of the tunnel excavated by the free-form excavation shield machine 1. FIG. 6 is a diagram for explaining a modification of the cross-sectional shape of the tunnel excavated by the free-form excavation shield machine 1.
[0017]
The free-form excavation shield machine 1 is, for example, a muddy-type shield machine that excavates a tunnel having an elliptical cross section. As shown in FIG. 1, the free-form excavation shield machine 1 is positioned on the leading end side from the partition wall 1b of the cylindrical body member 1a. A planetary cutter unit 20 facing the support shaft 30, a support shaft 30 supporting the planetary cutter unit 20 at the tip and passing through the partition wall 1b, and a partition wall provided inside the partition wall 1b and revolving the support shaft 30 in an elliptical shape. And a rotating plate 50 (pressing means) provided between the revolution guiding means 40 and the partition wall 1b while supporting the support shaft 30.
[0018]
Here, the partition wall 1b is provided with a ring-shaped opening 1c having the same shape as the revolution track 44 and a wide width so as to face the revolution track 44 (details will be described later) of the support shaft 30. The ring-shaped opening 1c is an opening through which the support shaft 30 can revolve and rotate.
Further, a mud pipe 2 for feeding mud water between the partition wall 1b and the face and a mud pipe 3 for discharging mud to the outside together with the mud water fed to the excavated soil are provided.
[0019]
As shown in FIGS. 1 and 2, the planetary cutter unit 20 has a configuration in which a planetary cutter 22 is attached to the other end of three cutter support shafts 21 each having one end attached to a support shaft 30. The attachment angles of the cutter support shafts 21 are set every 120 ° around the support shaft 30. As a result, the planetary cutter 22 is located at the apex of the equilateral triangle indicated by the dotted line in FIG.
Here, the distance between the support shaft 30 and the planetary cutter 22 and the diameter of the planetary cutter 22 are set so that the trajectory of the planetary cutters 22.
Further, the diameter of the rotation circle 20b formed by the rotation of the planetary cutter unit 20 is set to be more than half the major axis of the cross section (ellipse) of the tunnel to be excavated.
[0020]
As shown in FIG. 3, the support shaft 30 includes a hollow outer shaft 31 that is in direct contact with the revolution guide means 40, and is rotatably inserted into the outer shaft 31 to support the planetary cutter unit 20 at the tip. An inner shaft 32 that rotates, an outer shaft motor 33 that rotates the outer shaft 31, and an inner shaft motor 34 that rotates the inner shaft 32.
The outer shaft 31 is provided with an external gear 31 a on the outer periphery of the portion in the vicinity of the center and in contact with the revolution guide means 40.
Here, the outer shaft motor 33 and the inner shaft motor 34 are provided inside the revolution guide means 40.
[0021]
As shown in FIG. 3, the revolution guide means 40 has a central axis 41 that protrudes and is fixed inside the body member 1a at the center of the partition wall 1b, and an elliptical shape that is supported inside the partition wall 1b by the central axis 41. The inner guide wall 42 and the outer guide wall 43 having an opening 43b for accommodating the inner guide wall 42 and attached to the inner wall of the body member 1a so as to be flush with the inner guide wall 42 are schematically illustrated. It is configured.
Here, the outer peripheral part of the inner guide wall 42 and the peripheral part of the opening part 43b of the outer guide wall 43 have a strong structure, and the peripheral part of the opening part 43b has an internal gear 43a meshing with the external gear 31a. Provided. The distance between the outer peripheral end of the inner guide wall 42 and the inner gear 43a is set to be slightly larger than the outer diameter of the outer gear 31a. That is, the revolution shaft 44 (see FIG. 4) of the support shaft 30 and the planetary cutter unit 20 is formed between the outer periphery of the inner guide wall 42 and the periphery of the opening 43b.
[0022]
The rotary plate 50 is a plate that is rotatably supported by the central shaft 41, and includes a through hole 51 (a hole with water blocking packing) for allowing the support shaft 30 to pass through at the peripheral edge.
Further, in order to prevent the infiltration of muddy water from the face, a water stop packing 51 a is provided on the inner peripheral surface of the through hole 51 so as to be in pressure contact with the side peripheral surface of the support shaft 30.
[0023]
Further, between the rotating plate 50 and the partition wall 1b, the water stop packings 52 and 52 are provided so as to be in pressure contact with the support shaft 30 along the inner and outer peripheral ends of the ring-shaped opening 1c, respectively. The rotating plate 50 also has a role of pressing the water stop packings 52, 52 against the partition wall 1b. The water-stop packings 52 and 52 prevent intrusion of muddy water from the face before the through hole 51.
[0024]
That is, the support shaft 30 is supported by the inner guide wall 42 and the outer guide wall 43 when the outer gear 31a meshes with the inner gear 43a, and is also supported by the rotating plate 50 via the water stop packing 51a. It penetrates the ring-shaped opening 1c so that it can revolve.
[0025]
In the free form excavation shield machine 1 having such a configuration, when the outer shaft motor 33 is driven to rotate the outer shaft 31 and the outer gear 31a, the outer gear 31a meshes with the inner gear 43a. The planetary cutter unit 20 revolves along the revolution trajectory 44. At this time, the rotating plate 50 rotates around the center axis 41 together with the support shaft 30 while holding the support shaft 30.
Further, when the inner shaft motor 34 is driven to rotate the inner shaft 32, the planetary cutter unit 20 rotates and excavates the face.
Therefore, when both the outer shaft motor 33 and the inner shaft motor 34 are simultaneously rotated, the planetary cutter unit 20 revolves while excavating the face.
[0026]
Further, as outlined in FIG. 5, since the revolution trajectory 44 is elliptical, the trajectory 20 a of the planetary cutter unit 20, that is, the shape of the excavation surface is elliptical. 44 is the sum of the major axis of 44 and the radius of the rotating circle 20b, and the minor axis is the sum of the minor axis of the revolution track 44 and the radius of the rotating circle 20b. The size of the revolution orbit 44 and the planetary cutter unit 20 is designed to cover the entire face.
Therefore, the planetary cutter unit 20 excavates the entire surface of the elliptical face.
[0027]
Here, if the outer shape of the inner guide wall 42 of the revolution guide means 40 and the shape of the opening 43b of the outer guide wall 43 are made rectangular, the revolution trajectory 44 becomes rectangular, and as shown in FIG. The trajectory 20a of the portion 20, that is, the shape of the excavation surface is rectangular, and the size of the portion 20 is expanded outwardly from the revolution track 44 by the radius of the rotation circle 20b.
Similarly, by changing the outer shape of the inner guide wall 42 and the shape of the opening 43b of the outer guide wall 43, the excavation surface can be set to an arbitrary shape.
[0028]
Therefore, according to the free-form excavation shield machine 1, it is possible to excavate a tunnel having an arbitrary cross-sectional shape with a simple mechanical configuration and control method, so that the manufacturing cost of the shield excavator can be reduced.
[0029]
Further, since the planetary cutter unit 20 excavates the face while revolving, even if the size of the rotation circle 20b is smaller than the excavation surface, no digging remains. That is, since the size of the cutter part that rotates in comparison with the conventional one is small, the output of the motor for rotating the cutter part can be reduced. Therefore, the energy consumption required for excavation can be reduced.
[0030]
Further, the planetary cutter unit 20 is provided with an internal gear 43 a on the revolution track 44, and an external gear 31 a is attached to the support shaft 30, and the planetary cutter unit 20 revolves along the revolution track 44 by rotating the support shaft 30. Revolves reliably even under heavy loads.
Further, the support shaft 30 is rotatably provided in the outer shaft 31 having the outer gear 31a, the planetary cutter unit 20 is fixed to the tip of the inner shaft 32, and the outer shaft 31 and the inner shaft 32 are connected. Since it is configured to rotate separately, the ratio between the revolution speed and the rotation speed, that is, the excavation speed can be adjusted according to the properties of the face.
[0031]
In addition, this invention is not limited to a present Example, It can change arbitrarily in the range which does not deviate from the meaning of invention.
For example, the planetary cutter unit 20 includes three planetary cutters 22, but the number thereof may be arbitrary. For example, the number of cutters may be one using a cutter having the same size as the rotation circle 20 b. Is also possible.
Furthermore, the excavation efficiency may be improved by providing a plurality of planetary cutter portions 20 together with the support shaft 30 on the same revolution trajectory 44. In this case, the revolution speeds of all the planetary cutter units 20 are preferably matched.
Moreover, although the free-form excavation shield machine 1 is a muddy water type, it is possible to make an earth pressure type shield excavator by installing a well-known screw conveyor type earth removal mechanism avoiding the revolution guide means 40. .
[0032]
【The invention's effect】
As described above, according to the free-form excavation shield machine according to the present invention, the revolution trajectory is set to the inner side by the radius of the planetary cutter from the shape of the tunnel to be excavated (or the major axis if the planetary cutter is elliptical). Thus, it is possible to excavate a tunnel having an arbitrary shape such as an ellipse or a rectangle as well as a circle.
[0033]
In addition, the maximum diameter of the planetary cutter (when the number of planetary cutters is one) may be slightly more than half that of the main cutter of the conventional circular shield excavator and free-form excavation shield machine. Compared to, it is much smaller. Therefore, the energy consumption during excavation is significantly reduced.
[0034]
Furthermore , since the rotation speed and revolution speed of the planetary cutter can be controlled separately, excavation can be performed in accordance with the properties of the face.
[0035]
Moreover, since the number of planetary cutters will increase if it is set as the structure of Claim 2 or 3 , a face can be excavated more efficiently.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view in the longitudinal direction of a free-form excavation shield machine according to an embodiment of the present invention.
FIG. 2 is a schematic front view illustrating a configuration of a planetary cutter unit.
FIG. 3 is a schematic cross-sectional view illustrating the configuration of a support shaft.
FIG. 4 is a schematic front view illustrating the shape of the revolution track together with the movement of the support shaft.
FIG. 5 is a schematic diagram illustrating a cross-sectional shape of a tunnel excavated by a free-form excavation shield machine.
FIG. 6 is a diagram illustrating a modification of the cross-sectional shape of a tunnel excavated by a free-form excavation shield machine.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Free-form excavation shield machine 1b Bulkhead 1c Ring-shaped opening 21 Cutter holding shaft 22 Planetary cutter 30 Support shaft 31 Outer shaft 31a Outer gear 32 Inner shaft 33 Outer shaft motor (outer shaft rotation means)
34 Inner shaft motor (inner shaft rotation means)
43a Internal gear 50 Rotating plate (pressing means)
51 Through hole 51 (Hole with water seal)
52 Water stop packing

Claims (3)

切羽に当接して当該切羽を掘削する遊星カッタと、この遊星カッタを前端部で支持する支持軸と、この支持軸の後端側に連結し、当該支持軸を介して前記遊星カッタを自転させるモータと、前記支持軸を所定の公転軌道に沿って公転させる公転手段と、を備え、前記遊星カッタを自転させつつ公転させて、前記公転軌道に概略相似した断面形状のトンネルを掘削する自由形状掘削シールド機であって、
前記支持軸は、前記外歯車を外周に有する中空の外軸と、この外軸を貫通して回転自在に設けられ、先端側に遊星カッタを設けた内軸と、前記外軸を自転させる外軸自転手段と、前記内軸を自転させる内軸自転手段と、を備え、前記公転手段は、公転軌道に沿って設けられた内歯車と、前記軸外周に設けられ、前記内歯車と噛み合う外歯車と、を備え、前記軸の回転を駆動源として当該支持軸を前記公転軌道に沿って公転させることを特徴とする自由形状掘削シールド機。
A planetary cutter that abuts the face and excavates the face, a support shaft that supports the planetary cutter at the front end, and a rear end side of the support shaft, and the planetary cutter rotates through the support shaft. A free shape comprising a motor and revolving means for revolving the support shaft along a predetermined revolving orbit, revolving while rotating the planetary cutter, and excavating a tunnel having a cross-sectional shape substantially similar to the revolving orbit A drilling shield machine,
The support shaft includes a hollow outer shaft having the outer gear on the outer periphery, an inner shaft that is rotatably provided through the outer shaft, and has a planetary cutter on the tip side, and an outer shaft that rotates the outer shaft. comprising a shaft rotating means, an inner shaft rotating means for rotating said inner shaft, said revolving means comprises a gear inner provided along the orbit, is provided in the outer Jikugaishu, meshes with the internal gear And a free-form excavation shield machine characterized in that the support shaft is revolved along the revolving track using the rotation of the outer shaft as a drive source.
請求項に記載の自由形状掘削シールド機において、遊星カッタは、軸に直接取り付けられたカッタ保持軸の端部側に、周方向に複数設けられることを特徴とする自由形状掘削シールド機。The free-form excavation shield machine according to claim 1 , wherein a plurality of planetary cutters are provided in a circumferential direction on an end side of a cutter holding shaft directly attached to the inner shaft. 請求項1または2に記載の自由形状掘削シールド機において、遊星カッタを前端部に備えた支持軸を、周方向に複数備えることを特徴とする自由形状掘削シールド機。The free-form excavation shield machine according to claim 1 or 2 , wherein a plurality of support shafts provided with a planetary cutter at a front end thereof are provided in the circumferential direction.
JP29871899A 1999-10-20 1999-10-20 Free form drilling shield machine Expired - Fee Related JP4272316B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29871899A JP4272316B2 (en) 1999-10-20 1999-10-20 Free form drilling shield machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29871899A JP4272316B2 (en) 1999-10-20 1999-10-20 Free form drilling shield machine

Publications (2)

Publication Number Publication Date
JP2001115779A JP2001115779A (en) 2001-04-24
JP4272316B2 true JP4272316B2 (en) 2009-06-03

Family

ID=17863387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29871899A Expired - Fee Related JP4272316B2 (en) 1999-10-20 1999-10-20 Free form drilling shield machine

Country Status (1)

Country Link
JP (1) JP4272316B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112664218B (en) * 2021-02-05 2022-02-22 中铁工程装备集团有限公司 Cutting system for dead zone of cutterhead of tunneling machine

Also Published As

Publication number Publication date
JP2001115779A (en) 2001-04-24

Similar Documents

Publication Publication Date Title
JP3560941B2 (en) Shield machine
JP4272316B2 (en) Free form drilling shield machine
JP3161509B2 (en) Polygon hole drilling rig
JPH0266295A (en) Excavator for rectangular cross-section tunnel
JP2009035968A (en) Rectangular boring machine
JP2000008781A (en) Shield machine for free cross section tunnel
JP2002295183A (en) Shield machine for free section tunnel
JP3883370B2 (en) Excavator for shield tunneling machine for rectangular tunnel
JPH02213593A (en) Shield drilling machine
JP3306338B2 (en) Shield machine
JP3954528B2 (en) Excavator
JP2865990B2 (en) Rectangular shield excavator
JP2898966B1 (en) Shield excavator for rectangular tunnel
JP2943096B2 (en) Tunnel machine used for large section tunnel construction method
JP2539025B2 (en) Shield excavator
JPH0533583A (en) Rectangular shield excavator
JP2600932Y2 (en) Shield machine
JP3333152B2 (en) Shield machine
JP2002038882A (en) Excavating device of shield machine and parent-child shield machine
JPH1018759A (en) Shield excavator
JPS60105717A (en) Underground continuous groove excavator
JP2662629B2 (en) Shield excavator
JP2915159B2 (en) Shield machine
JPH01163395A (en) Shield excavator
JP3667008B2 (en) Shield method and shield machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080305

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080311

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090126

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090224

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090227

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150306

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees