JP4270546B2 - Highly corrosion-resistant stainless steel sintered member and method for producing the same - Google Patents

Highly corrosion-resistant stainless steel sintered member and method for producing the same Download PDF

Info

Publication number
JP4270546B2
JP4270546B2 JP2003306735A JP2003306735A JP4270546B2 JP 4270546 B2 JP4270546 B2 JP 4270546B2 JP 2003306735 A JP2003306735 A JP 2003306735A JP 2003306735 A JP2003306735 A JP 2003306735A JP 4270546 B2 JP4270546 B2 JP 4270546B2
Authority
JP
Japan
Prior art keywords
stainless steel
powder
germanium
corrosion resistance
sintering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003306735A
Other languages
Japanese (ja)
Other versions
JP2005076072A (en
Inventor
善三 石島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Powdered Metals Co Ltd
Original Assignee
Hitachi Powdered Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Powdered Metals Co Ltd filed Critical Hitachi Powdered Metals Co Ltd
Priority to JP2003306735A priority Critical patent/JP4270546B2/en
Publication of JP2005076072A publication Critical patent/JP2005076072A/en
Application granted granted Critical
Publication of JP4270546B2 publication Critical patent/JP4270546B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

本発明は、耐食性に優れており、広く使用されているステンレス鋼の改良に係り、特に耐食性をより一層改良したステンレス焼結部材に関する。
The present invention relates to an improvement in stainless steel that is excellent in corrosion resistance and is widely used, and more particularly, to a sintered stainless member having further improved corrosion resistance.

JIS規格には、ステンレス鋼として、1)組成が、質量比で、Cr:15〜26%、Ni:3.5〜28%、C:0.15%以下を必須成分とするオーステナイト系ステンレス鋼、2)組成が、質量比で、Cr:11〜32%、C:0.12%以下を必須成分とし、Niを含有しないフェライト系ステンレス鋼、3)組成が、質量比で、Cr:11.5〜18%、C:1.2%以下を必須成分とするマルテンサイト系ステンレス鋼、および4)組成が、質量比で、Cr:15〜18%、Ni:3〜7.75%、C:0.09%以下を必須成分とし、Cu、Al等を添加した析出硬化系ステンレス鋼が規定されている。
これらのステンレス鋼には、耐食性、耐酸性向上のためMo、Si等を添加したり、耐粒界腐食、溶接性向上のためTi、Nb等を添加したり、快削性向上のためS、Se、P等を添加したものも含まれる。
According to JIS standards, as a stainless steel, 1) austenitic stainless steel whose composition is essential components such as Cr: 15-26%, Ni: 3.5-28%, C: 0.15% or less by mass ratio 2) The composition is a mass ratio of Cr: 11 to 32%, C: 0.12% or less as an essential component, Ni-free ferritic stainless steel 3) The composition is a mass ratio of Cr: 11 5-18%, C: martensitic stainless steel whose essential component is 1.2% or less, and 4) the composition is Cr: 15-18%, Ni: 3-7.75%, C: Precipitation hardening stainless steel having 0.09% or less as an essential component and Cu, Al, etc. added thereto is defined.
To these stainless steels, Mo, Si, etc. are added for improving corrosion resistance and acid resistance, intergranular corrosion resistance, Ti, Nb, etc. are added for improving weldability, and S, The thing to which Se, P, etc. were added is also included.

上記のようなステンレス鋼は、耐食性に優れているので広く使用されているが、より一層の耐食性の向上が望まれている。   Stainless steel as described above is widely used because it is excellent in corrosion resistance, but further improvement in corrosion resistance is desired.

また、ステンレス部品として、ニアネットシェイプの製品が得られ、加工ロスの少ない粉末冶金法によるものは、粉末どうしの相互拡散により強固に接合するが、気孔が残留するため、溶解法により製造された同一組成の合金よりも耐食性が劣ることとなり、あまり実用化されていない。この欠点を解消するため、原料として用いるステンレス鋼粉末として微細な粉末を用い、バインダーとともに混練したものを金型内に射出成形し、脱バインダー処理の後、焼結により緻密化させ、気孔量を大幅に減少させたものが実用化されている。しかし、脱バインダー工程で、急激に加熱するとバインダーが揮発膨張して製品の型くずれが生じるためバインダーを完全に除去する手間がかかるとともに、寸法収縮量が大きくかつ寸法精度が悪いためニアネットシェイプの製品が得難く、コストがかるという欠点を有している。このような理由から通常の粉末冶金法、すなわち原料粉末を圧粉成形し、得られた圧粉体を焼結するのみの簡単な製法により、実用レベルの耐食性の優れた焼結合金が得られれば、低コストであるためその用途拡大が見込めることから、そのような素材の登場が待ち望まれている。   Also, as a stainless steel part, a product with a near net shape is obtained, and the one by the powder metallurgy method with little processing loss is firmly joined by mutual diffusion between powders, but the pores remain, so it was manufactured by the melting method Corrosion resistance is inferior to alloys of the same composition, and it has not been practically used. In order to eliminate this drawback, a fine powder is used as a stainless steel powder used as a raw material, and a material kneaded with a binder is injection-molded in a mold, and after debinding, it is densified by sintering, and the amount of pores is reduced. What has been greatly reduced has been put to practical use. However, when heated rapidly in the binder removal process, the binder volatilizes and the product loses its shape, so it takes time to completely remove the binder, and the dimensional shrinkage is large and the dimensional accuracy is poor. Are difficult to obtain and costly. For this reason, it is possible to obtain a sintered alloy with a practical level of corrosion resistance by a simple powder metallurgy method, that is, by simply compacting the raw material powder and sintering the resulting green compact. For example, because of its low cost, its use can be expected to expand, so the advent of such materials is awaited.

なお上記のような圧粉成形による焼結体の耐食性を向上する試みはほとんど見られず、Cr含有鉄基合金に少量のPあるいはこれに代えてGe、Asを配合した組成とすることにより、耐摩耗性を向上した合金組成物が特許文献1に開示されている程度である。
特開平7−278756号公報
In addition, there is almost no attempt to improve the corrosion resistance of the sintered body by compacting as described above, and by making a composition containing a small amount of P or Ge, As instead of Cr-containing iron-based alloy, To the extent that Patent Document 1 discloses an alloy composition with improved wear resistance.
JP-A-7-278756

本発明は、ステンレス鋼の耐食性を改善したステンレス部材を提供することにある。また、本発明のステンレス部材を一般の粉末冶金法に適用することにより、ステンレス焼結合金の耐食性を向上させ、ステンレス焼結合金の耐食性を実用レベルにまで引き上げることにある。また、これにより、一般の粉末冶金法による製品の用途拡大を目指すものである。   It is an object of the present invention to provide a stainless steel member having improved corrosion resistance of stainless steel. Further, by applying the stainless steel member of the present invention to a general powder metallurgy method, the corrosion resistance of the sintered stainless alloy is improved, and the corrosion resistance of the sintered stainless alloy is increased to a practical level. In addition, this aims to expand the use of products by general powder metallurgy.

本発明は上記のステンレス鋼の耐食性を向上させるため、上記のステンレス鋼にゲルマニウムを0.5〜20質量%含有させたことを特徴とする。   The present invention is characterized in that 0.5 to 20% by mass of germanium is contained in the stainless steel in order to improve the corrosion resistance of the stainless steel.

また、本発明のステンレス部材の製造方法は、ステンレス鋼粉末に、質量比で、0.5〜20%のゲルマニウム粉末を添加し混合した粉末を、所望の形状に圧粉成形し、1000〜1300℃の焼結保持温度で焼結するとともに、800℃から前記焼結保持温度までの温度範囲における昇温速度を、10℃/min以下としたことを特徴とする。
Moreover, the manufacturing method of the stainless steel member of this invention compacts the powder which added and mixed the germanium powder of 0.5-20% by mass ratio to stainless steel powder to a desired shape, 1000-1300 In addition to sintering at a sintering holding temperature of 0 ° C., a temperature increase rate in a temperature range from 800 ° C. to the sintering holding temperature is set to 10 ° C./min or less .

本発明のステンレス部材は、従来のステンレス鋼部材にゲルマニウムを0.5〜20質量%含有させたもので、Cr不動態をゲルマニウムが強固にする結果、耐食性をさらに向上させた優れた部材である。
また、本発明のステンレス部材の製造方法は、ステンレス鋼粉末にゲルマニウム粉末を添加混合した原料粉末を圧粉成形および焼結するのみの粉末冶金法によるステンレス鋼部材の製造方法であり、従来の粉末冶金法によるものよりも耐食性を向上でき、実用レベルの耐食性焼結合金の製造を可能にするものである。
The stainless steel member of the present invention contains 0.5 to 20% by mass of germanium in a conventional stainless steel member, and is an excellent member with further improved corrosion resistance as a result of germanium strengthening Cr passivation. .
In addition, the method for producing a stainless steel member of the present invention is a method for producing a stainless steel member by a powder metallurgy method by simply compacting and sintering a raw material powder obtained by adding germanium powder to stainless steel powder. Corrosion resistance can be improved as compared with the metallurgical method, and a practical level of corrosion-resistant sintered alloy can be produced.

本発明におけるゲルマニウムは、ステンレス部材の基地中に固溶し、不銹性を与えるCrの不動態を強固にする作用を有する。この作用は含有量が0.5質量%に満たないと効果が乏しい。一方、20質量%を超えると、基地が硬くなるとともに、脆化するため好ましくない。   In the present invention, germanium has a function of solidifying in the base of the stainless steel member and strengthening the passivity of Cr giving sterility. This effect is poor when the content is less than 0.5% by mass. On the other hand, if it exceeds 20% by mass, the base becomes hard and becomes brittle, which is not preferable.

このゲルマニウム添加による耐食性向上の効果は、フェライト系やオーステナイト系ステンレス鋼において、その効果が特に顕著である。また、マルテンサイト系や、析出分散系ステンレス鋼は、析出物が分散する結果、硬くなり、耐摩耗性は向上するが、異相共存となるため、フェライト系やオーステナイト系ステンレス鋼よりも耐食性は低下するが、このような耐食性マルテンサイト系や、析出分散系ステンレス鋼においてもゲルマニウム添加の効果は認められる。   The effect of improving the corrosion resistance by adding germanium is particularly remarkable in ferritic and austenitic stainless steels. In addition, martensitic and precipitation-dispersed stainless steels become harder as a result of the dispersion of precipitates, and wear resistance is improved. However, because they coexist in different phases, the corrosion resistance is lower than that of ferritic and austenitic stainless steels. However, the effect of adding germanium is recognized also in such corrosion-resistant martensite series and precipitation-dispersed stainless steel.

本発明のステンレス鋼部材の製造方法においては、ゲルマニウムを単味の粉末の形態で付与することを特徴とするが、ゲルマニウムは、ステンレス鋼粉末基地に極めて拡散しやすく、拡散したゲルマニウムは上記のようにステンレス鋼中のCrの不動態を強固にして、耐食性を向上させる。また、ゲルマニウムは936℃程度で液相となるため、単味で粉末の形態で付与しても、焼結の昇温過程で発生した液相が、ステンレス鋼粉末表面を濡らしステンレス鋼粉末表面を覆うことにより、より均一にゲルマニウムが拡散することに寄与する。このゲルマニウム液相は、毛細管力によりステンレス鋼粉末間に引きつけられ、気孔を球状化するとともに表面に連通する気孔を閉鎖して、独立気孔(閉鎖気孔)とすることで、多孔質であることに起因する孔食腐食の発生を抑制する効果も有する。   The method for producing a stainless steel member of the present invention is characterized in that germanium is provided in the form of a simple powder, but germanium is very easy to diffuse into the stainless steel powder matrix, and the diffused germanium is as described above. In addition, the passivation of Cr in the stainless steel is strengthened to improve the corrosion resistance. In addition, since germanium becomes a liquid phase at about 936 ° C., even if it is applied in a simple powder form, the liquid phase generated during the heating process of sintering wets the surface of the stainless steel powder and causes the surface of the stainless steel powder to become wet. Covering contributes to more uniform diffusion of germanium. This germanium liquid phase is attracted between stainless steel powders by capillary force, spheroidizes the pores and closes the pores communicating with the surface to form independent pores (closed pores). It also has the effect of suppressing the occurrence of pitting corrosion.

上記ゲルマニウム粉末の添加による耐食性向上の効果は、0.5質量%以上の添加で顕著である。一方、ゲルマニウム粉末は硬い粉末であるため、20質量%を超える添加は、粉末の圧縮性を損ない、圧粉体密度を低下させ、焼結しても緻密化しにくくなることから耐食性がかえって低下することとなる。また、硬質なゲルマニウム粉末が成形金型を傷つけ、金型寿命が短くなる。よって、ゲルマニウム粉末の添加量の上限を20質量%とした。   The effect of improving the corrosion resistance due to the addition of the germanium powder is remarkable when 0.5% by mass or more is added. On the other hand, since germanium powder is a hard powder, addition exceeding 20% by mass impairs the compressibility of the powder, lowers the density of the green compact, and becomes difficult to be densified even when sintered, so that the corrosion resistance decreases. It will be. In addition, hard germanium powder damages the mold and shortens the mold life. Therefore, the upper limit of the amount of germanium powder added is set to 20% by mass.

上記のゲルマニウム粉末は、焼結時に液相となって溶出してしまうため、粗大な粉末を用いた場合、粗大な気孔が残留しやすく、ステンレス鋼部材表面にこのような粗大気孔が露出した場合、孔食腐食の基点となるため好ましくない。そのため、ゲルマニウム粉末としては、平均粒径が100μm以下のものを用いることが好ましい。   The germanium powder elutes as a liquid phase during sintering, so when coarse powder is used, coarse pores are likely to remain, and when such coarse pores are exposed on the stainless steel member surface. This is not preferable because it becomes a base point of pitting corrosion. Therefore, it is preferable to use a germanium powder having an average particle size of 100 μm or less.

上記のようにゲルマニウムの液相を利用することによって、より均一なゲルマニウムのステンレス鋼基地への拡散が達成され、気孔を閉鎖することによる孔食腐食の抑制の作用は、焼結保持温度がゲルマニウムの液相発生温度(936℃程度)以上であることが要件となる。したがって、焼結保持温度は1000℃以上であることが好ましい。   By using the germanium liquid phase as described above, more uniform diffusion of germanium into the stainless steel matrix is achieved, and the effect of suppressing pitting corrosion by closing the pores is that the sintering holding temperature is germanium. The liquid phase generation temperature (about 936 ° C.) or higher is a requirement. Therefore, the sintering holding temperature is preferably 1000 ° C. or higher.

焼結する際の昇温速度は速いほうが能率的であるが、速すぎるとゲルマニウムの液相が急激に発生してブリスターを生ずるため、800℃から焼結保持温度までの範囲においては、10℃/min以下の速度にすることが好ましい。   It is more efficient if the heating rate during sintering is faster, but if it is too fast, the liquid phase of germanium is generated abruptly and blisters are formed. Therefore, in the range from 800 ° C. to the sintering holding temperature, 10 ° C. / Min or less is preferable.

<第1実施例>
平均粒径を100μm以下に調整したゲルマニウム粉末を用意し、オーステナイト系ステンレス鋼粉末として、SUS304L粉末およびSUS316L粉末、フェライト系ステンレス鋼粉末として、SUS410L粉末、SUS430L粉末を用意し、表1に示す割合で配合し、成形圧力686MPaで各試料につき100個連続成形し、その後、金型の状態を観察した。次いで、得られた成形体について、焼結保持温度1250℃、焼結保持時間30分、水素ガス雰囲気中で焼結して、試料01〜20を得た。なお、焼結における昇温は、800℃までの昇温速度は20℃/min、800℃から焼結保持温度(1250℃)までの昇温速度は7℃/minで行った。
<First embodiment>
A germanium powder having an average particle size adjusted to 100 μm or less is prepared. As austenitic stainless steel powder, SUS304L powder and SUS316L powder, and ferritic stainless steel powder as SUS410L powder and SUS430L powder are prepared. After mixing, 100 pieces were continuously formed for each sample at a forming pressure of 686 MPa, and then the state of the mold was observed. Next, the obtained molded body was sintered in a hydrogen gas atmosphere with a sintering holding temperature of 1250 ° C. and a sintering holding time of 30 minutes to obtain samples 01 to 20. The temperature increase during the sintering was performed at a temperature increase rate of up to 800 ° C. at 20 ° C./min, and at a temperature increase rate of from 800 ° C. to the sintering holding temperature (1250 ° C.) at 7 ° C./min.

得られた各試料10個づつと、乳酸50g/l(リットル)および塩化ナトリウム100g/lからなる水溶液を入れたビーカーを、各試料とビーカーを離して恒温保持槽内に配置し、密封した状態で55℃で8時間保持した後、各試料を取り出して錆の発生を確認した。その結果を表1に併せて示す。   Each of the 10 samples obtained and a beaker containing an aqueous solution of 50 g / l (liter) of lactic acid and 100 g / l of sodium chloride were placed in a constant temperature holding tank with each sample separated from the beaker and sealed. After holding at 55 ° C. for 8 hours, each sample was taken out and the occurrence of rust was confirmed. The results are also shown in Table 1.

Figure 0004270546
Figure 0004270546

表1より、オーステナイト系ステンレス鋼およびフェライト系ステンレス鋼に関わらず、ゲルマニウム粉末を25質量%添加したものでは、100個の連続成形後、金型に摩耗が見られた。このため、ゲルマニウム粉末20質量%を超える添加は、量産に適さないと判断し、耐食性試験の対象より除外した。
耐食性試験の結果より、ゲルマニウム粉末を添加しない試料は、オーステナイト系ステンレス鋼およびフェライト系ステンレス鋼に関わらず、錆が発生していた。一方、ゲルマニウム粉末を0.5〜20質量%添加した試料では、鋼種によらず錆は発生しておらず、良好な耐食性を示すことが確認された。また、これらの耐食性が良好な試料について、金属組織を観察したところ、いずれもゲルマニウムがステンレス基地中に固溶されていることが確認された。以上の結果から、ステンレス鋼にゲルマニウム0.5〜20質量%を含有させることにより耐食性が改善されることを確認した。
From Table 1, regardless of austenitic stainless steel and ferritic stainless steel, with the addition of 25% by mass of germanium powder, wear was observed in the mold after 100 continuous moldings. For this reason, it was judged that the addition over 20 mass% of germanium powder was not suitable for mass production, and was excluded from the object of the corrosion resistance test.
From the results of the corrosion resistance test, rust was generated in the sample to which no germanium powder was added regardless of the austenitic stainless steel and the ferritic stainless steel. On the other hand, in the sample to which germanium powder was added in an amount of 0.5 to 20% by mass, rust was not generated regardless of the steel type, and it was confirmed that the sample exhibited good corrosion resistance. Moreover, when the metal structure was observed about these samples with good corrosion resistance, it was confirmed that germanium was dissolved in the stainless steel matrix in all cases. From the above results, it was confirmed that the corrosion resistance was improved by adding 0.5 to 20% by mass of germanium to the stainless steel.

<第2実施例>
第1実施例の試料番号07および17の試料と同じ粉末および配合比の原料粉末を用い、成形圧力686MPで、各試料につき10個成形し、得られた成形体について、表2に示す昇温速度(800℃から焼結保持温まで)および焼結保持温度で、焼結保持時間30分、水素ガス雰囲気中で焼結して、試料21〜38を得た。なお、800℃までの昇温速度は第1実施例と同じく20℃/minで行った。得られた各試料について、外観を観察した後、第1実施例と同様の耐食性試験を行い、焼結条件が耐食性に与える影響を調べた。その結果を表2に併せて示す。
<Second embodiment>
Using the same powders and raw material powders with the same mixing ratio as the samples Nos. 07 and 17 in the first example, 10 pieces were formed for each sample at a forming pressure of 686 MP. Samples 21 to 38 were obtained by sintering in a hydrogen gas atmosphere at a speed (from 800 ° C. to sintering holding temperature) and sintering holding temperature for a sintering holding time of 30 minutes. The rate of temperature increase up to 800 ° C. was 20 ° C./min as in the first example. About each obtained sample, after observing an external appearance, the same corrosion resistance test as 1st Example was done, and the influence which sintering conditions have on corrosion resistance was investigated. The results are also shown in Table 2.

Figure 0004270546
Figure 0004270546

表2より、焼結保持温度が1300℃を超える試料番号27および36の試料は、ステンレス鋼種によらず収縮量が大きくなりすぎて型くずれが発生している。また、焼結保持温度が1000℃に満たない試料番号21、22、30および31の試料は、焼結による緻密化が不十分で耐食性試験後発錆が認められた。以上より、焼結保持温度は、ステンレス鋼種によらず1000〜1300℃の温度範囲が適していることが確認された。   From Table 2, the samples Nos. 27 and 36 having a sintering holding temperature exceeding 1300 ° C. have a large amount of shrinkage regardless of the type of stainless steel, resulting in a shape loss. Samples Nos. 21, 22, 30 and 31 having a sintering holding temperature of less than 1000 ° C. were insufficiently densified by sintering, and rusting was observed after the corrosion resistance test. From the above, it was confirmed that the temperature range of 1000 to 1300 ° C. is suitable for the sintering holding temperature regardless of the stainless steel type.

また、800℃から焼結保持温度までの昇温速度が10℃/minを超える試料番号29および38の試料は、ゲルマニウム液相が急激に発生したことにより、焼結後ブリスターが発生している。一方、800℃から焼結保持温度までの昇温速度が10℃/min以下の試料についてはいずれも正常な外観を呈しており、耐食性試験後も発錆が認められなかった。   In addition, in the samples Nos. 29 and 38 in which the heating rate from 800 ° C. to the sintering holding temperature exceeds 10 ° C./min, blisters are generated after sintering due to the rapid generation of the germanium liquid phase. . On the other hand, all the samples having a heating rate from 800 ° C. to the sintering holding temperature of 10 ° C./min or less had a normal appearance, and no rusting was observed after the corrosion resistance test.

本発明のステンレス部材は通常の粉末冶金法により製造することができ、特に高い耐食性を有するため、例えばギヤー、ジョイント、ブッシングをはじめ各種産業用、家庭用の機械部品等、特に高い耐食性の要求される各種部材の材料として有用である。
The stainless steel member of the present invention can be manufactured by a normal powder metallurgy method, and has particularly high corrosion resistance. For example, gears, joints, bushings and various industrial and household machine parts are required to have particularly high corrosion resistance. It is useful as a material for various members.

Claims (4)

ステンレス鋼に、ゲルマニウムを質量比で、5〜20%含むことを特徴とする高耐食性ステンレス焼結部材。 A highly corrosion-resistant stainless steel sintered member characterized by containing germanium in a mass ratio of 5 to 20% in stainless steel. 前記ステンレス鋼が、オーステナイト系またはフェライト系のステンレス鋼であることを特徴とする請求項1に記載の高耐食性ステンレス焼結部材。 The high corrosion resistance stainless sintered member according to claim 1, wherein the stainless steel is an austenitic or ferritic stainless steel. ステンレス鋼粉末に、質量比で、0.5〜20%のゲルマニウム粉末を添加し混合した粉末を、所望の形状に圧粉成形し、1000〜1300℃の焼結保持温度で焼結するとともに、800℃から前記焼結保持温度までの温度範囲における昇温速度を、10℃/min以下としたことを特徴とする高耐食性ステンレス焼結部材の製造方法。 A powder obtained by adding 0.5 to 20% germanium powder in a mass ratio to a stainless steel powder, and compacting the powder into a desired shape and sintering at a sintering holding temperature of 1000 to 1300 ° C, A method for producing a highly corrosion-resistant stainless steel sintered member, characterized in that a temperature rising rate in a temperature range from 800 ° C. to the sintering holding temperature is 10 ° C./min or less. 前記ゲルマニウム粉末の平均粒径が100μm以下であることを特徴とする請求項3に記載の高耐食性ステンレス焼結部材の製造方法。 The method for producing a highly corrosion-resistant stainless sintered member according to claim 3, wherein the germanium powder has an average particle size of 100 μm or less.
JP2003306735A 2003-08-29 2003-08-29 Highly corrosion-resistant stainless steel sintered member and method for producing the same Expired - Fee Related JP4270546B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003306735A JP4270546B2 (en) 2003-08-29 2003-08-29 Highly corrosion-resistant stainless steel sintered member and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003306735A JP4270546B2 (en) 2003-08-29 2003-08-29 Highly corrosion-resistant stainless steel sintered member and method for producing the same

Publications (2)

Publication Number Publication Date
JP2005076072A JP2005076072A (en) 2005-03-24
JP4270546B2 true JP4270546B2 (en) 2009-06-03

Family

ID=34409745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003306735A Expired - Fee Related JP4270546B2 (en) 2003-08-29 2003-08-29 Highly corrosion-resistant stainless steel sintered member and method for producing the same

Country Status (1)

Country Link
JP (1) JP4270546B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI529253B (en) * 2015-02-17 2016-04-11 國立清華大學 Germanium-bearing ferritic stainless steels

Also Published As

Publication number Publication date
JP2005076072A (en) 2005-03-24

Similar Documents

Publication Publication Date Title
JP5902091B2 (en) Nitrogen-containing low nickel sintered stainless steel
JP7028875B2 (en) Stainless steel powder for producing duplex stainless steel sintered bodies
CN101353768B (en) Nitrogen-containing nickel-free stainless steel and metallurgy forming process for powder thereof
JP2009542905A (en) Manufacturing method of alloy parts by metal injection molding and alloy parts thereof
Kazior et al. Properties of precipitation hardening 17-4 PH stainless steel manufactured by powder metallurgy technology
JP2017504717A (en) Method for manufacturing sintered member and sintered member
Ali et al. Investigation of Boron addition and compaction pressure on the compactibility, densification and microhardness of 316L Stainless Steel
CN101516549A (en) Iron-based powder
JP2010215951A (en) Sintered composite sliding component and manufacturing method therefor
JP2011094187A (en) Method for producing high strength iron based sintered compact
Wang et al. Effect of silicon content and aging time on density, hardness, toughness and corrosion resistance of sintered 303LSC–Si stainless steels
JP4270546B2 (en) Highly corrosion-resistant stainless steel sintered member and method for producing the same
Gülsoy et al. Effect of FeB additions on sintering characteristics of injection moulded 17-4PH stainless steel powder
Gülsoy et al. Microstructures and mechanical properties of injection molded 17-4PH stainless steel powder with nickel boride additions
Rosso et al. High density sintered stainless steels with improved properties
US20050163646A1 (en) Method of forming articles from alloys of tin and/or titanium
RU2327547C1 (en) Method of producing iron base powder (variants)
Samal et al. Processing and properties of PM 440C stainless steel
Ornato High density sintering of duplex stainless steels
Cui et al. Preparation of high nitrogen and nickel-free austenitic stainless steel by powder injection molding
Toro et al. P/M Processing routes for high nitrogen martensitic stainless steels
JP6804777B2 (en) Method for manufacturing metal test piece for corrosion resistance evaluation
Dobrzański et al. Sinter-hardening process applicable to stainless steels
JP2009114542A (en) Method for improving ductility and strength of lightweight heat-resistant intermetallic compound by adding particle of third element
RU2327548C1 (en) Method of producing iron base powder (its variants)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees