JP4269397B2 - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP4269397B2
JP4269397B2 JP07369999A JP7369999A JP4269397B2 JP 4269397 B2 JP4269397 B2 JP 4269397B2 JP 07369999 A JP07369999 A JP 07369999A JP 7369999 A JP7369999 A JP 7369999A JP 4269397 B2 JP4269397 B2 JP 4269397B2
Authority
JP
Japan
Prior art keywords
expansion valve
electric expansion
sub
main
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07369999A
Other languages
Japanese (ja)
Other versions
JP2000274859A (en
Inventor
明紀 中井
徹 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP07369999A priority Critical patent/JP4269397B2/en
Publication of JP2000274859A publication Critical patent/JP2000274859A/en
Application granted granted Critical
Publication of JP4269397B2 publication Critical patent/JP4269397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、過冷却回路とインジェクション回路を備えた冷凍装置に関する。
【0002】
【従来の技術】
従来、この種の冷凍装置としては、図4に示すものがある。この冷凍装置は、圧縮機51と凝縮器52と過冷却熱交換器53と主電動膨張弁54と蒸発器55とアキュムレータ56が順に接続された主回路57を有する。上記凝縮器52と過冷却熱交換器53との間で主回路57から分岐した分岐管60は、上記過冷却熱交換器53の内管53Aに接続されている。
【0003】
この内管53Aは、外管61内を主流の下流から上流へ延びて、インジェクション配管62に接続されている。上記分岐管60は副電動膨張弁63を有している。上記インジェクション配管62は、圧縮機51の中間圧の部分51Aに接続されている。
【0004】
この冷凍装置は、過冷却熱交換器53,分岐管60,副電動膨張弁63が構成する過冷却回路によって、凝縮器52から主電動膨張弁54に向かう冷媒を過冷却して、冷凍効率の向上を図る。さらに、過冷却熱交換器53で吸熱した分岐管60からの分岐冷媒をインジェクション配管62から圧縮機51の中間圧の部分51Aに注入することによって、冷凍効率の向上を図っている。
【0005】
【発明が解決しようとする課題】
ところで、インジェクション回路に電動弁などの減圧機構を持つ冷媒回路によって冷媒制御を行う場合、インジェクション用副電動膨張弁63が流す流量を主電動膨張弁54が流す流量より少なくする必要がある。何故ならば、副電動膨張弁63が流す冷媒量が、主電動膨張弁54が流す冷媒量よりも多いと、過冷却熱交換器53で冷媒が蒸発しきれず、過度の液冷媒が圧縮機51に注入されるからである。過度の液冷媒が圧縮機51に注入されると、液圧縮の恐れがあり、また、メイン側熱交換器である蒸発器55への流量減となり、性能ダウンにつながる。
【0006】
上記従来の冷凍装置では、主電動膨張弁54と副電動膨張弁63を、運転周波数やサーミスタ温度によって、各々独立して制御していたので、過渡状態では上記のような過度のインジェクションが発生する恐れがあった。
【0007】
そこで、この発明の目的は、過度のインジェクションを防止できる過冷却回路とインジェクション回路を備えた冷凍装置を提供することにある。
【0008】
【課題を解決するための手段】
上記目的を達成するため、この発明の請求項1の発明の冷凍装置は、凝縮器と主膨張機構との間に順に設けた副膨張機構と過冷却熱交換器を有する過冷却回路と、上記過冷却熱交換器からのガス冷媒を圧縮機の中間圧部分に注入するインジェクション回路を備える冷凍装置であって、
上記主,副膨張機構は、主,副電動膨張弁からなり、
上記副電動膨張弁が冷媒を流す能力が、上記主電動膨張弁が冷媒を流す能力よりも小さくなるように、副電動膨張弁の上限の開度を制御する膨張弁制御手段を備え、
上記膨張弁制御手段は、
上記過冷却回路における冷媒温度に基づいて、上記副電動膨張弁の目標開度を算出し、
上記主電動膨張弁の開度よりも小さな上記副電動膨張弁の上限開度を算出し、
上記副電動膨張弁の目標開度と上記上限開度とを比較し、上記副電動膨張弁の目標開度が上記上限開度よりも大きいときは、上記副電動膨張弁の上記目標開度を上記上限開度に修正して、上記副電動膨張弁の開度を上記上限開度に修正した目標開度にすることを特徴としている。
【0009】
この請求項1の発明の冷凍装置では、膨張弁制御手段が、副電動膨張弁の上限の開度を制御して、副電動膨張弁が冷媒を流す能力を、主電動膨張弁が冷媒を流す能力よりも小さくする。したがって、この発明によれば、過度のインジェクションを回避して圧縮機の信頼性向上を果たしつつ、過冷却回路とインジェクション回路によって冷凍効率を向上できる。
【0010】
また、請求項2の発明は、請求項1に記載の冷凍装置において、上記主電動膨張弁と副電動膨張弁は、構造,寸法が同一の電動膨張弁からなることを特徴としている。
【0011】
この請求項2の発明では、主電動膨張弁と副電動膨張弁は、構造,寸法が同一の電動膨張弁からなるから、部品を共通化でき、コストダウンを図れる。
【0012】
【発明の実施の形態】
以下、この発明を図示の実施の形態により詳細に説明する。
【0013】
図1に、この発明の冷凍装置の実施の形態としての空気調和機を示す。この実施形態は、圧縮機1,四路切換弁2,室外熱交換器3,整流回路5,室内熱交換器6が順に接続された冷媒回路を有する。上記室内熱交換器6は、アキュムレータ7a,7bを経由して圧縮機1の吸入側に接続されている。
【0014】
上記整流回路5は、第1,第2逆止弁11,12の直列接続回路と第3,第4逆止弁13,14の直列接続回路とが並列に接続された回路である。第1逆止弁11と第2逆止弁12は、それらの接続点P1に向かって順方向になるように接続されており、第3逆止弁13と第4逆止弁14は、それらの接続点P2に向かって逆方向になるように接続されている。
【0015】
そして、上記整流回路5の接続点P1とP2の間に、過冷却回路8と主電動膨張弁9およびインジェクション回路10が接続されている。
【0016】
過冷却回路8は、過冷却熱交換器15とインジェクション用副電動膨張弁16とで構成されている。この過冷却熱交換器15は、接続点P1と主電動弁9の間に接続されている。また、インジェクション用副電動膨張弁16は、接続点P1から分岐して過冷却熱交換器15内の内管21の入口21aに接続されている。そして、この内管21の出口21bはインジェクション配管22に接続されており、このインジェクション配管22は、上記圧縮機1の中間圧の箇所1aに接続されている。
【0017】
次に、上記構成の空気調和機の基本動作を説明する。なお、図3には、図1の冷媒回路の各部Q1〜Q8でのモリエル線図上での状態を示している。まず、四路切換弁2が、図1に破線で示す経路を連通させ、冷房位置にあるときには、圧縮機1が吐出した冷媒は、室外熱交換器3で凝縮されて、整流回路5の第1逆止弁11に流入し、接続点P1でインジェクション用副電動膨張弁16へのサブ流と過冷却熱交換器15へのメイン流とに分かれる。上記メイン流は、この過冷却熱交換器15で過冷却されてから、主電動弁9で膨張して、接続点P2,第4逆止弁14を通って、室内熱交換器6に至る。そして、室内熱交換器6で蒸発したメイン流は、四路切換弁2,アキュムレータ7a,7bを経て、圧縮機1の吸入側に戻る。
【0018】
一方、上記サブ流は、上記インジェクション用副電動膨張弁16で膨張されてから、過冷却熱交換器15の内管21を通って、吸熱してから、インジェクション配管22を通って、圧縮機1の中間圧の箇所1aに注入される。
【0019】
また、上記四路切換弁2が、図1に実線で示す経路を連通させて、暖房位置にあるときには、圧縮機1が吐出した冷媒は、室内熱交換器6で凝縮されて、整流回路5の第2逆止弁12に流入し、接続点P1でインジェクション用副電動膨張弁16へのサブ流と過冷却熱交換器15へのメイン流とに分かれる。上記メイン流は、過冷却熱交換器15で過冷却されてから、主電動膨張弁9で膨張して、接続点P2,第3逆止弁13を通って、室外熱交換器3に至る。そして、室外熱交換器3で蒸発したメイン流は、四路切換弁2,アキュムレータ7a,7bを経て、圧縮機1の吸入側に戻る。一方、上記サブ流は、インジェクション用副電動膨張弁16で膨張されてから、過冷却熱交換器15の内管21を通って吸熱してから、インジェクション配管22を通って、圧縮機1の中間圧の箇所1aに注入される。
【0020】
このように、この実施の形態によれば、整流回路5の働きによって、冷房時にも暖房時にも、過冷却および、圧縮機1の中間圧の箇所1aへのガス冷媒の注入を行える。したがって、冷暖両方において、過冷却とガスインジェクションによる効率の向上を図ることができる。
【0021】
また、この実施形態によれば、インジェクション用副電動膨張弁16を全閉にすることで、インジェクション回路10のインジェクション動作をオフにできる。また、副電動膨張弁16の開度を所望の開度に制御することによって、過冷却回路8による過冷却度およびインジェクション回路10による注入量を所望の値に設定できる。
【0022】
次に、この実施形態でのインジェクション用副電動膨張弁16の制御動作を、図2のフローチャートを参照しながら説明する。なお、この制御を行う装置としては、ここでは、マイクロコンピュータで構成した制御部101を用いた。
【0023】
まず、ステップS1では、制御部101は、過冷却熱交換器15の内管21の入口に接続された配管31に取り付けられた温度センサ33から内管21の入口付近の冷媒温度t1を得て、この冷媒温度t1に基づいて、副電動膨張弁16の目標開度EVMKBを算出する。次に、ステップS2に進み、制御部101は、主電動膨張弁9の現在の開度EVRLAを読み込む。この主電動膨張弁9の開度EVRLAは、圧縮機1の吐出管に取り付けた温度センサ35,室内熱交換器6に取り付けた温度センサ36,室外熱交換器3に取り付けた温度センサ37からそれぞれ得た温度t2,t3,t4に基づいて制御される。
【0024】
次に、ステップS3に進み、副電動膨張弁16の開度上限値を、次式(1)で算出する。
【0025】
上限開度=(EVRLA)×α+β ………(1)
α<1,βは、上限開度を(EVRLA)よりも小さくするような値
次に、ステップS4に進み、目標開度EVMKBが、上記上限開度よりも大きいか否かを判断する。目標開度EVMKBが、上記上限開度よりも大きいと判断すれば、ステップS5に進み、上記目標開度EVMKBを上記上限開度に修正する。一方、目標開度EVMKBが、上記上限開度よりも大きくないと判断すれば、ステップS6に進み、制御部101は、副電動膨張弁16に信号を送り、目標開度EVMKBにする。
【0026】
この実施形態では、膨張弁制御部101が、副電動膨張弁16の上限の開度を制御して、副電動膨張弁16が冷媒を流す能力を、主電動膨張弁9が冷媒を流す能力よりも小さくする。したがって、この実施形態によれば、副電動膨張弁16の開き過ぎによる過度のインジェクションを回避して圧縮機1の故障を回避しつつ、過冷却回路8とインジェクション回路によって空気調和効率を向上できる。
【0027】
なお、上記主電動膨張弁9と副電動膨張弁16を、構造,寸法が同一の電動膨張弁で構成した場合には、部品を共通化でき、コストダウンを図れる。
【0028】
【発明の効果】
以上より明らかなように、この請求項1の発明の冷凍装置は、凝縮器と主膨張機構との間に順に設けた副膨張機構と過冷却熱交換器を有する過冷却回路と、上記過冷却熱交換器からのガス冷媒を圧縮機の中間圧部分に注入するインジェクション回路を備える冷凍装置であって、主,副膨張機構は、主,副電動膨張弁からなり、副電動膨張弁が冷媒を流す能力が、主電動膨張弁が冷媒を流す能力よりも小さくなるように、副電動膨張弁の上限の開度を制御する膨張弁制御手段を備えた。
【0029】
この請求項1の発明の冷凍装置では、膨張弁制御手段が、副電動膨張弁の上限の開度を制御して、副電動膨張弁が冷媒を流す能力を、主電動膨張弁が冷媒を流す能力よりも小さくする。したがって、この発明によれば、過度のインジェクションを回避して圧縮機の信頼性向上を果たしつつ、過冷却回路とインジェクション回路によって冷凍効率を向上できる。
【0030】
また、請求項2の発明は、請求項1に記載の冷凍装置において、上記主電動膨張弁と副電動膨張弁は、構造,寸法が同一の電動膨張弁からなる。この請求項2の発明では、主電動膨張弁と副電動膨張弁は、構造,寸法が同一の電動膨張弁からなるから、部品を共通化でき、コストダウンを図れる。
【図面の簡単な説明】
【図1】 この発明の冷凍装置の実施の形態としての空気調和機の冷媒回路図である。
【図2】 上記空気調和機のインジェクション用電動式膨張弁の制御動作を説明するフローチャートである。
【図3】 上記空気調和機の動作を説明するモリエル線図である。
【図4】 従来の冷凍装置の冷媒回路図である。
【符号の説明】
1…圧縮機、1a…中間圧の箇所、2…四路切換弁、3…室外熱交換器、
5…整流回路、6…室内熱交換器、7…アキュムレータ、8…過冷却回路、
9…主電動弁、10…インジェクション回路、11…第1逆止弁、
12…第2逆止弁、13…第3逆止弁、14…第4逆止弁、
15…過冷却熱交換器、16…インジェクション用電動式膨張弁、
21…内管、21a…入口、21b…出口、22…インジェクション配管、
P1,P2…接続点、33,35,36,37…温度センサ、
101…膨張弁制御部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a refrigeration apparatus including a supercooling circuit and an injection circuit.
[0002]
[Prior art]
Conventionally, this type of refrigeration apparatus is shown in FIG. This refrigeration apparatus has a main circuit 57 in which a compressor 51, a condenser 52, a supercooling heat exchanger 53, a main electric expansion valve 54, an evaporator 55, and an accumulator 56 are connected in order. A branch pipe 60 branched from the main circuit 57 between the condenser 52 and the supercooling heat exchanger 53 is connected to the inner pipe 53 </ b> A of the supercooling heat exchanger 53.
[0003]
The inner pipe 53 </ b> A extends in the outer pipe 61 from the mainstream downstream to the upstream, and is connected to the injection pipe 62. The branch pipe 60 has a sub electric expansion valve 63. The injection pipe 62 is connected to the intermediate pressure portion 51 </ b> A of the compressor 51.
[0004]
This refrigeration apparatus supercools the refrigerant from the condenser 52 to the main electric expansion valve 54 by the subcooling circuit formed by the subcooling heat exchanger 53, the branch pipe 60, and the auxiliary electric expansion valve 63, thereby improving the refrigeration efficiency. Improve. Furthermore, the refrigeration efficiency is improved by injecting the branched refrigerant from the branch pipe 60 that has absorbed heat in the supercooling heat exchanger 53 into the intermediate pressure portion 51A of the compressor 51 from the injection pipe 62.
[0005]
[Problems to be solved by the invention]
By the way, when the refrigerant control is performed by a refrigerant circuit having a pressure reducing mechanism such as an electric valve in the injection circuit, it is necessary to make the flow rate of the auxiliary electric expansion valve 63 for injection smaller than the flow rate of the main electric expansion valve 54. This is because if the amount of refrigerant flowing through the auxiliary electric expansion valve 63 is larger than the amount of refrigerant flowing through the main electric expansion valve 54, the refrigerant cannot evaporate in the supercooling heat exchanger 53, and excessive liquid refrigerant flows into the compressor 51. It is because it is injected into. If excessive liquid refrigerant is injected into the compressor 51, there is a risk of liquid compression, and the flow rate to the evaporator 55, which is the main heat exchanger, is reduced, leading to performance degradation.
[0006]
In the conventional refrigeration apparatus, the main electric expansion valve 54 and the sub electric expansion valve 63 are controlled independently by the operating frequency and the thermistor temperature, and thus excessive injection as described above occurs in the transient state. There was a fear.
[0007]
Therefore, an object of the present invention is to provide a supercooling circuit capable of preventing excessive injection and a refrigeration apparatus including the injection circuit.
[0008]
[Means for Solving the Problems]
In order to achieve the above object, a refrigeration apparatus according to claim 1 of the present invention includes a subcooling circuit having a sub-expansion mechanism and a subcooling heat exchanger provided in this order between a condenser and a main expansion mechanism, A refrigeration apparatus comprising an injection circuit for injecting gas refrigerant from a supercooling heat exchanger into an intermediate pressure portion of a compressor,
The main and sub expansion mechanisms consist of main and sub electric expansion valves,
Ability to the secondary electric expansion valve flow refrigerant, so that the main electric expansion valve is smaller than the capability of flowing a coolant, Bei example an expansion valve control means for controlling the upper limit of the degree of opening of the sub-electric expansion valve,
The expansion valve control means includes
Based on the refrigerant temperature in the supercooling circuit, calculate the target opening of the auxiliary electric expansion valve,
Calculate the upper limit opening of the auxiliary electric expansion valve smaller than the opening of the main electric expansion valve,
The target opening of the sub electric expansion valve is compared with the upper limit opening, and when the target opening of the sub electric expansion valve is larger than the upper limit opening, the target opening of the sub electric expansion valve is The opening degree of the auxiliary electric expansion valve is corrected to the upper limit opening degree so that the opening degree is set to the target opening degree corrected to the upper limit opening degree .
[0009]
In the refrigeration apparatus according to the first aspect of the present invention, the expansion valve control means controls the upper opening of the auxiliary electric expansion valve so that the auxiliary electric expansion valve can flow the refrigerant, and the main electric expansion valve allows the refrigerant to flow. Make it smaller than ability. Therefore, according to the present invention, the refrigeration efficiency can be improved by the supercooling circuit and the injection circuit while avoiding excessive injection and improving the reliability of the compressor.
[0010]
According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect, the main electric expansion valve and the auxiliary electric expansion valve are composed of electric expansion valves having the same structure and dimensions.
[0011]
In the second aspect of the invention, the main electric expansion valve and the sub electric expansion valve are made of electric expansion valves having the same structure and dimensions, so that the parts can be made common and the cost can be reduced.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the illustrated embodiments.
[0013]
FIG. 1 shows an air conditioner as an embodiment of the refrigeration apparatus of the present invention. This embodiment has a refrigerant circuit in which a compressor 1, a four-way switching valve 2, an outdoor heat exchanger 3, a rectifier circuit 5, and an indoor heat exchanger 6 are connected in order. The indoor heat exchanger 6 is connected to the suction side of the compressor 1 via accumulators 7a and 7b.
[0014]
The rectifier circuit 5 is a circuit in which a series connection circuit of the first and second check valves 11 and 12 and a series connection circuit of the third and fourth check valves 13 and 14 are connected in parallel. The 1st check valve 11 and the 2nd check valve 12 are connected so that it may become a forward direction toward those connection points P1, and the 3rd check valve 13 and the 4th check valve 14 are those Are connected in the opposite direction toward the connection point P2.
[0015]
A supercooling circuit 8, a main electric expansion valve 9, and an injection circuit 10 are connected between connection points P1 and P2 of the rectifying circuit 5.
[0016]
The supercooling circuit 8 includes a supercooling heat exchanger 15 and an auxiliary electric expansion valve 16 for injection. The supercooling heat exchanger 15 is connected between the connection point P1 and the main motor-operated valve 9. The injection sub electric expansion valve 16 is branched from the connection point P <b> 1 and connected to the inlet 21 a of the inner pipe 21 in the supercooling heat exchanger 15. The outlet 21 b of the inner pipe 21 is connected to an injection pipe 22, and the injection pipe 22 is connected to the intermediate pressure location 1 a of the compressor 1.
[0017]
Next, the basic operation of the air conditioner having the above configuration will be described. FIG. 3 shows a state on the Mollier diagram at each part Q1 to Q8 of the refrigerant circuit of FIG. First, when the four-way switching valve 2 communicates the path indicated by the broken line in FIG. 1 and is in the cooling position, the refrigerant discharged from the compressor 1 is condensed in the outdoor heat exchanger 3 and the second rectifier circuit 5 1 flows into the check valve 11 and is divided into a sub-flow to the injection auxiliary electric expansion valve 16 and a main flow to the supercooling heat exchanger 15 at the connection point P1. The main flow is supercooled by the supercooling heat exchanger 15, then expanded by the main electric valve 9, and reaches the indoor heat exchanger 6 through the connection point P <b> 2 and the fourth check valve 14. The main flow evaporated in the indoor heat exchanger 6 returns to the suction side of the compressor 1 through the four-way switching valve 2 and the accumulators 7a and 7b.
[0018]
On the other hand, the sub-flow is expanded by the injection sub-electric expansion valve 16, passes through the inner pipe 21 of the supercooling heat exchanger 15, absorbs heat, passes through the injection pipe 22, and then passes through the compressor 1. The intermediate pressure is injected into the location 1a.
[0019]
Further, when the four-way switching valve 2 communicates the path shown by the solid line in FIG. 1 and is in the heating position, the refrigerant discharged from the compressor 1 is condensed in the indoor heat exchanger 6, and the rectifier circuit 5. The second check valve 12 is divided into a sub-flow to the injection sub-electric expansion valve 16 and a main flow to the supercooling heat exchanger 15 at the connection point P1. The main flow is supercooled by the supercooling heat exchanger 15, then expanded by the main electric expansion valve 9, and reaches the outdoor heat exchanger 3 through the connection point P <b> 2 and the third check valve 13. The main flow evaporated in the outdoor heat exchanger 3 returns to the suction side of the compressor 1 through the four-way switching valve 2 and the accumulators 7a and 7b. On the other hand, the sub-flow is expanded by the injection sub-electric expansion valve 16, then absorbs heat through the inner pipe 21 of the supercooling heat exchanger 15, passes through the injection pipe 22, and passes through the middle of the compressor 1. It is injected into the location 1a of pressure.
[0020]
Thus, according to this embodiment, the function of the rectifier circuit 5 allows supercooling and injection of gas refrigerant into the intermediate pressure location 1a of the compressor 1 during cooling and heating. Therefore, in both cooling and heating, it is possible to improve efficiency by supercooling and gas injection.
[0021]
Moreover, according to this embodiment, the injection operation of the injection circuit 10 can be turned off by fully closing the injection auxiliary electric expansion valve 16. Further, by controlling the opening degree of the auxiliary electric expansion valve 16 to a desired opening degree, the degree of supercooling by the supercooling circuit 8 and the injection amount by the injection circuit 10 can be set to desired values.
[0022]
Next, the control operation of the injection auxiliary electric expansion valve 16 in this embodiment will be described with reference to the flowchart of FIG. Here, as a device for performing this control, a control unit 101 constituted by a microcomputer is used.
[0023]
First, in step S1, the control unit 101 obtains the refrigerant temperature t1 near the inlet of the inner pipe 21 from the temperature sensor 33 attached to the pipe 31 connected to the inlet of the inner pipe 21 of the supercooling heat exchanger 15. Based on the refrigerant temperature t1, the target opening degree EVMKB of the auxiliary electric expansion valve 16 is calculated. Next, it progresses to step S2 and the control part 101 reads the present opening degree EVRLA of the main electric expansion valve 9. FIG. The opening EVRLA of the main electric expansion valve 9 is determined by a temperature sensor 35 attached to the discharge pipe of the compressor 1, a temperature sensor 36 attached to the indoor heat exchanger 6, and a temperature sensor 37 attached to the outdoor heat exchanger 3, respectively. Control is performed based on the obtained temperatures t2, t3, and t4.
[0024]
Next, it progresses to step S3 and the opening degree upper limit of the sub electric expansion valve 16 is calculated by following Formula (1).
[0025]
Upper limit opening = (EVRLA) × α + β (1)
α <1, β is a value that makes the upper limit opening smaller than (EVRLA). Then, the process proceeds to step S4, where it is determined whether the target opening EVMKB is larger than the upper limit opening. If it is determined that the target opening degree EVMKB is larger than the upper limit opening degree, the process proceeds to step S5, and the target opening degree EVMKB is corrected to the upper limit opening degree. On the other hand, if it is determined that the target opening degree EVMKB is not larger than the upper limit opening degree, the process proceeds to step S6, and the control unit 101 sends a signal to the auxiliary electric expansion valve 16 to set the target opening degree EVMKB.
[0026]
In this embodiment, the expansion valve control unit 101 controls the opening degree of the upper limit of the auxiliary electric expansion valve 16 so that the auxiliary electric expansion valve 16 allows the refrigerant to flow, and the main electric expansion valve 9 allows the refrigerant to flow. Also make it smaller. Therefore, according to this embodiment, air conditioning efficiency can be improved by the subcooling circuit 8 and the injection circuit while avoiding excessive injection due to excessive opening of the auxiliary electric expansion valve 16 and avoiding a failure of the compressor 1.
[0027]
If the main electric expansion valve 9 and the sub electric expansion valve 16 are constituted by electric expansion valves having the same structure and dimensions, the parts can be shared and the cost can be reduced.
[0028]
【The invention's effect】
As apparent from the above, the refrigeration apparatus according to the first aspect of the present invention includes a subcooling circuit having a sub-expansion mechanism and a subcooling heat exchanger provided in this order between the condenser and the main expansion mechanism, and the subcooling circuit. A refrigeration system including an injection circuit for injecting gas refrigerant from a heat exchanger into an intermediate pressure portion of a compressor, wherein the main and sub expansion mechanisms are composed of main and sub electric expansion valves, and the sub electric expansion valve is supplying refrigerant. Expansion valve control means for controlling the upper limit opening of the auxiliary electric expansion valve is provided so that the flow capacity is smaller than the capacity of the main electric expansion valve to flow the refrigerant.
[0029]
In the refrigeration apparatus according to the first aspect of the present invention, the expansion valve control means controls the upper opening of the auxiliary electric expansion valve so that the auxiliary electric expansion valve can flow the refrigerant, and the main electric expansion valve allows the refrigerant to flow. Make it smaller than ability. Therefore, according to the present invention, the refrigeration efficiency can be improved by the supercooling circuit and the injection circuit while avoiding excessive injection and improving the reliability of the compressor.
[0030]
According to a second aspect of the present invention, in the refrigeration apparatus according to the first aspect, the main electric expansion valve and the sub electric expansion valve are electric expansion valves having the same structure and dimensions. In the second aspect of the invention, the main electric expansion valve and the sub electric expansion valve are made of electric expansion valves having the same structure and dimensions, so that the parts can be made common and the cost can be reduced.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram of an air conditioner as an embodiment of a refrigeration apparatus according to the present invention.
FIG. 2 is a flowchart for explaining a control operation of an electric expansion valve for injection of the air conditioner.
FIG. 3 is a Mollier diagram illustrating the operation of the air conditioner.
FIG. 4 is a refrigerant circuit diagram of a conventional refrigeration apparatus.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Compressor, 1a ... Location of intermediate pressure, 2 ... Four-way switching valve, 3 ... Outdoor heat exchanger,
5 ... Rectifier circuit, 6 ... Indoor heat exchanger, 7 ... Accumulator, 8 ... Supercooling circuit,
9 ... Main motor operated valve, 10 ... Injection circuit, 11 ... First check valve,
12 ... 2nd check valve, 13 ... 3rd check valve, 14 ... 4th check valve,
15 ... Supercooling heat exchanger, 16 ... Electric expansion valve for injection,
21 ... Inner pipe, 21a ... Inlet, 21b ... Outlet, 22 ... Injection pipe,
P1, P2 ... connection point, 33, 35, 36, 37 ... temperature sensor,
101: Expansion valve control unit.

Claims (2)

凝縮器(3,6)と主膨張機構(9)との間に順に設けた副膨張機構(16)と過冷却熱交換器(15)を有する過冷却回路(8)と、上記過冷却熱交換器(15)からのガス冷媒を圧縮機(1)の中間圧部分(1a)に注入するインジェクション回路(10)を備える冷凍装置であって、
上記主,副膨張機構は、主,副電動膨張弁(9,16)からなり、
上記副電動膨張弁(16)が冷媒を流す能力が、上記主電動膨張弁(9)が冷媒を流す能力よりも小さくなるように、副電動膨張弁(16)の上限の開度を制御する膨張弁制御手段(101)を備え、
上記膨張弁制御手段 ( 101 ) は、
上記過冷却回路における冷媒温度に基づいて、上記副電動膨張弁の目標開度を算出し、
上記主電動膨張弁の開度よりも小さな上記副電動膨張弁の上限開度を算出し、
上記副電動膨張弁の目標開度と上記上限開度とを比較し、上記副電動膨張弁の目標開度が上記上限開度よりも大きいときは、上記副電動膨張弁の上記目標開度を上記上限開度に修正して、上記副電動膨張弁の開度を上記上限開度に修正した目標開度にすることを特徴とする冷凍装置。
A sub-cooling circuit (8) having a sub-expansion mechanism (16) and a sub-cooling heat exchanger (15) provided in order between the condenser (3, 6) and the main expansion mechanism (9); A refrigeration apparatus comprising an injection circuit (10) for injecting gas refrigerant from an exchanger (15) into an intermediate pressure part (1a) of a compressor (1),
The main and sub expansion mechanisms are composed of main and sub electric expansion valves (9, 16).
The upper opening of the auxiliary electric expansion valve (16) is controlled so that the ability of the auxiliary electric expansion valve (16) to flow refrigerant is smaller than the ability of the main electric expansion valve (9) to flow refrigerant. e Bei expansion valve control means (101),
The expansion valve control means (101),
Based on the refrigerant temperature in the supercooling circuit, calculate the target opening of the auxiliary electric expansion valve,
Calculate the upper limit opening of the auxiliary electric expansion valve smaller than the opening of the main electric expansion valve,
The target opening of the sub electric expansion valve is compared with the upper limit opening, and when the target opening of the sub electric expansion valve is larger than the upper limit opening, the target opening of the sub electric expansion valve is The refrigeration apparatus , wherein the opening degree is corrected to the upper limit opening degree, and the opening degree of the auxiliary electric expansion valve is set to the target opening degree corrected to the upper limit opening degree .
請求項1に記載の冷凍装置において、
上記主電動膨張弁(9)と副電動膨張弁(16)は、構造,寸法が同一の電動膨張弁からなることを特徴とする冷凍装置。
The refrigeration apparatus according to claim 1,
The main electric expansion valve (9) and the auxiliary electric expansion valve (16) are electric expansion valves having the same structure and dimensions.
JP07369999A 1999-03-18 1999-03-18 Refrigeration equipment Expired - Fee Related JP4269397B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07369999A JP4269397B2 (en) 1999-03-18 1999-03-18 Refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07369999A JP4269397B2 (en) 1999-03-18 1999-03-18 Refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2000274859A JP2000274859A (en) 2000-10-06
JP4269397B2 true JP4269397B2 (en) 2009-05-27

Family

ID=13525734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07369999A Expired - Fee Related JP4269397B2 (en) 1999-03-18 1999-03-18 Refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4269397B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005195258A (en) * 2004-01-07 2005-07-21 Shin Meiwa Ind Co Ltd Refrigeration system and vacuum deposition device
JP4459776B2 (en) 2004-10-18 2010-04-28 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP2007240025A (en) * 2006-03-06 2007-09-20 Daikin Ind Ltd Refrigerating device
CN100554820C (en) 2006-03-27 2009-10-28 三菱电机株式会社 Refrigerating air-conditioning
JP4716935B2 (en) * 2006-06-27 2011-07-06 三洋電機株式会社 Refrigeration cycle apparatus and heat pump water heater
JP2009243881A (en) * 2009-07-30 2009-10-22 Mitsubishi Electric Corp Heat pump device and outdoor unit of heat pump device
JP4550153B2 (en) * 2009-07-30 2010-09-22 三菱電機株式会社 Heat pump device and outdoor unit of heat pump device
JP4767340B2 (en) * 2009-07-30 2011-09-07 三菱電機株式会社 Heat pump control device
JP5235925B2 (en) * 2010-03-03 2013-07-10 日立アプライアンス株式会社 Refrigeration equipment
JP2010159967A (en) * 2010-04-19 2010-07-22 Mitsubishi Electric Corp Heat pump device and outdoor unit for the heat pump device
CN102869929B (en) * 2010-04-30 2015-01-28 大金工业株式会社 Heat pump system
JP2012073008A (en) * 2010-09-30 2012-04-12 Toshiba Carrier Corp Refrigeration cycle device
CN103090579B (en) * 2011-10-31 2015-10-28 中国科学院理化技术研究所 The air conditioner heat pump system of electric automobile
EP3163217B1 (en) 2014-06-27 2022-08-17 Mitsubishi Electric Corporation Refrigeration cycle device
CN106642792B (en) * 2017-01-20 2022-04-19 珠海格力电器股份有限公司 Enhanced vapor injection air conditioning unit
PL3677855T3 (en) 2018-06-07 2024-03-18 Panasonic Intellectual Property Management Co., Ltd. Refrigeration cycle device and liquid heating device having the same
CN118057957A (en) * 2022-09-21 2024-05-21 日立江森自控空调有限公司 Air conditioner

Also Published As

Publication number Publication date
JP2000274859A (en) 2000-10-06

Similar Documents

Publication Publication Date Title
JP3858276B2 (en) Refrigeration equipment
US7360372B2 (en) Refrigeration system
JP4269397B2 (en) Refrigeration equipment
US9506674B2 (en) Air conditioner including a bypass pipeline for a defrosting operation
JP5100416B2 (en) Reheat dehumidifier and air conditioner
US6986259B2 (en) Refrigerator
US6698217B2 (en) Freezing device
EP2211127A1 (en) Heat pump type air conditioner
WO2005033593A1 (en) Freezer
JPH1068553A (en) Air conditioner
WO2013065233A1 (en) Refrigeration cycle apparatus and air conditioner provided with same
KR20190005445A (en) Method for controlling multi-type air conditioner
JP4407012B2 (en) Refrigeration equipment
JP5601890B2 (en) Air conditioner
JP6021943B2 (en) Air conditioner
JP2009293887A (en) Refrigerating device
JP4023386B2 (en) Refrigeration equipment
JP2508347B2 (en) Heat pump system
JPH04324069A (en) Refrigerating plant
JP3482845B2 (en) Air conditioner
KR20190005052A (en) Method for controlling multi-type air conditioner
JP7183381B2 (en) refrigeration cycle equipment
JPH10185343A (en) Refrigerating equipment
JPH0835731A (en) Heat pump
JP6950328B2 (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080708

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140306

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees