JP4269140B2 - 光反射機能物体 - Google Patents

光反射機能物体 Download PDF

Info

Publication number
JP4269140B2
JP4269140B2 JP2002284824A JP2002284824A JP4269140B2 JP 4269140 B2 JP4269140 B2 JP 4269140B2 JP 2002284824 A JP2002284824 A JP 2002284824A JP 2002284824 A JP2002284824 A JP 2002284824A JP 4269140 B2 JP4269140 B2 JP 4269140B2
Authority
JP
Japan
Prior art keywords
light
light reflecting
functional object
fine
reflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002284824A
Other languages
English (en)
Other versions
JP2003227923A (ja
Inventor
金也 熊沢
秀和 高橋
洋 田畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002284824A priority Critical patent/JP4269140B2/ja
Publication of JP2003227923A publication Critical patent/JP2003227923A/ja
Application granted granted Critical
Publication of JP4269140B2 publication Critical patent/JP4269140B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Filters (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は光の回折・散乱作用により、可視光線、赤外線及び紫外線領域の少なくともいずれかの波長域の光を反射する光学機能構造体に係わり、さらに詳しくは、顔料や染料を必要とせず、例えば可視光線領域において、光の特定波長を反射して発色する新規な光反射機能物体、及びこれを用いた物品に関するものである。
【0002】
【発明が解決しようとする課題】
光エネルギーは、一般に我々の視覚で認知できる可視光線(波長0.38μm〜0.78μm)、それより短い波長域の紫外線(波長0.29μm〜0.38μm)、可視光線より長い波長域の赤外線(波長0.78μm以上)に区分される。このうち可視光線域は、我々の視知覚と密接に関与しており、この光の下で各種物体の色を感知している。一般に、物体の色はその物体が光の一部を吸収することにより生じる。この原理を利用した着色方法の一つが従来から用いられてきた顔料や染料を用いたものであり、現在の我々の身の回りのほとんどの着色及び発色はこの方法に基づいている。
【0003】
ところが、これらによる着色は各種顔料や染料が必要であるばかりでなく、これらを混練する工程や廃液処理等も必要になり、工程及び環境上も問題視されてきている。また、品質的には、物体表面に溶出して質感低下を引き起こしたり、紫外線等による退色に基づく初期品質の低下に伴って意匠性や商品性を損ねたりするといった欠点も少なからず指摘されている。
【0004】
このような問題点を解決するため、顔料や染料などのいわゆる色素を用いることなく、光の干渉、回折などの物理作用を用いた発色手段(広義には構造性発色と称する)が知られている。これは、物体表面やその内部の微細構造と、光との相互作用によって発色するもので、既にいくつかの公知技術が知られている。
【0005】
例えば、光の干渉反射作用を利用することにより発色する構造体としては、分子配向異方性フィルムを2枚の偏光フィルムで挟んだ構造とすることにより発色する材料が発表されている(繊維機械学会誌Vol.42,No.2,P55(1989)及び同誌Vol.42,No.10,P160(1989))。
【0006】
この原理は、次のとおりである。すなわち、第1の偏光フィルムに法線方向からの光が入射すると、このフィルムを通った光は一定方向にのみ振動する光(直線偏光)となり、次に、この直線偏光が45°に配位した分子配向異方性フィルムを通ると、偏光面を回転させて楕円偏光に変わる。さらに、この楕円偏光が第2の偏光フィルムを通ると再び直線偏光となるが、その際に、波長によって光の強さが異なるために、それが着色偏光となって色として認識されることになるものである(いわゆる偏光の干渉による発色)。
【0007】
また、屈折率の異なる2種類のポリマー物質を、交互に何十層と積層した構造とすることにより発色する材料も報告されている(特開平4−295804号公報、特許第3036305号)。この原理は、屈折率の異なる交互積層界面で生じるフレネル反射が重なって干渉を起こし、その結果として反射率の波長依存性や反射率そのものの増強や減少を生じるもので、特定波長で特定位相差をもって重なり合うときに現れる発色である(発色波長λ=2(n+n):発色波長λは互いの光学的厚みが等しいとき、すなわち、n=nのとき、最大となる)。
【0008】
例えば、特開平4−295804号公報には少なくとも第1と第2のポリマー物質の屈折率が互いに少なくとも0.03異なり、しかも0.1μm程度の厚さで積層させたフィルム状の反射性ポリマー物体が開示されている。さらに本発明者らも特許第3036305号において、屈折率の異なる2種類の高分子物質からなる交互積層構造を有する繊維状の発色構造体を開示している。後者の発色繊維は非染色の発色繊維であって、見る方向によって干渉特有の色味が変わり、しかもこれと組み合わせる糸の色によっては、その複合効果によって独特の質感を呈するものである。
【0009】
一方、回折・干渉作用を利用した構造体としては、繊維表面に一定幅の細溝を設けることによって回折・干渉色を発する構造体が提案されている(特開昭62−170510号公報あるいは特開昭63−120642号公報、特開平8−234007号公報)。この原理は、平面あるいは凹面上に多数の所定寸法の溝(間隔と深さ)を規則的(いわゆる、回折格子のごとく)に形成させたものに光を入射させると、光路差ΔLが生じ、この光路差が波長λの整数倍のとき、反射光が強め合って明るくなるもの(光路差ΔL=mλ :但し、mは回折次数で、m=0,1,2・・・)で、実際には、ある入射角で入った入射光に対し、ある回折角で波長λの発色を与えるものである。
【0010】
しかしながら、上記のうち、分子配向異方性フィルムを偏光フィルムで挟んだ構造体においては、細い繊維や微小な光輝材用チップ(小片)を安価に、しかも安定して製造することが困難であると共に、色味の鮮やかさの点でも十分ではなかった。また、第1と第2の屈折率の異なるポリマーからなる反射性ポリマー物体においても、細い繊維や微小な光輝材用チップを安価に製造することが困難であるばかりでなく、見る角度によって、即ち、広視野角度になると干渉現象特有の灰色に見えてしまう(死角がある)という本質的な問題もあった。ここで死角とは、干渉発色フィルムや繊維の照射面に対して、法線方向からの光が入射し、我々の眼でこの法線からαだけずれた位置で見る場合、このαが大きくなればなるほど、多層薄膜干渉理論に基づき、発色波長λ1が法線方向で見た場合よりも短波長側にシフトし、最終的にはλ1が可視光領域をはずれて紫外線領域にシフトしてしまい、色として認知できない角度を意味する。
【0011】
また、特許第3036305号にて開示した繊維状の発色構造体においても見る方向によって色味が変わるというメリットと裏腹に、やはり広視野角度になると、干渉現象特有の灰色に見えてしまうという問題を内在していた。
【0012】
一方、回折・干渉作用を利用した構造体においては上記のような欠点は少ないものの、CD盤のごとくレインボー色に見え、商品として安価なイメージを与えてしまうものであったり、膜状のものにおいては、特殊な装置や製造方法が必要となったり、実用性に乏しいといった問題があり、このような問題点の解消が従来の発色構造体における課題となっていた。
【0013】
【発明の目的】
本発明は、構造性発色機能を備えた従来の発色構造体における上記課題に着目してなされたものであって、広視野角度になると灰色に見える(死角がある)という問題点を解消すると共に、目的とする発色波長の分光スペクトルの急峻さに由来する色の深み機能を発現させる新規な発色機構に基づいた光反射機能物体を提供することを目的としている。
【0014】
【課題を解決するための手段】
本発明に係わる光反射機能物体は、可視光線、赤外線及び紫外線の反射特性のうちの少なくともいずれかの光学機能を有する繊維状あるいはフィルム状の物体であって、該物体の内部に、屈折率の異なる少なくとも第1及び第2の材料からなり、少なくとも第1の材料が光透過性を有し、第2の材料からなる複数の微細構造体が第1の材料により取り囲まれた状態で回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置された光反射構造体を有し、異なる規則性を備えた光反射構造体が少なくとも2段配設してある構成としており、光反射機能構造体におけるこのような構成を前述した従来の課題を解決するための手段としたことを特徴としている。
【0015】
本発明に係わる光反射機能物体の好適形態としては、少なくとも第1及び第2の光反射構造体内に位置する微細構造体の断面形状が、円形、楕円形、矩形及び多角形から成る群から選ばれた少なくとも1種の断面形状であることを特徴としている。
また、 第1の光反射構造体内に位置する微細構造体同士のピッチをP、第2の光反射構造体内に位置する微細構造体同士のピッチをP、第(N−1)の光反射構造体内に位置する微細構造体同士のピッチをPN−1、第Nの光反射構造体内に位置する微細構造体同士のピッチをPとするとき、P,PN−1,・・・,P<Pとなるように構成している。
さらに、光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向とするとき、第1の光反射構造体内に位置する微細構造体のx方向における断面寸法をL、微細構造体同士のピッチをP、第2の光反射構造体内に位置する微細構造体のx方向における断面寸法をL、微細構造体同士のピッチをPとするとき、L<L、かつP<Pである構成としたことを特徴としている。
【0016】
さらに、本発明に係わる光反射機能物体の好適形態としては、第2の光反射構造体内に位置する微細構造体のx方向における断面寸法をLと、微細構造体同士のx方向のピッチをP2xとの間に、P2x=Lなる関係がある構成としたことを特長としている。また、微細構造体群の奥行方向、すなわちx−y平面に直交する方向をz方向とするとき、第1及び/又は光反射構造体内に位置する微細構造体がz方向に一様連続である構成したことを特徴としている。
【0017】
本発明に係わる光反射機能物体の他の好適形態としては、少なくとも第1あるいは第2の光反射構造体を挟んで、その両側に第2あるいは第1の光反射構造体が配置されている構成としたことを特徴としている。また、第1の光反射構造体内に位置する微細構造体の屈折率をn、微細構造体同士のピッチをP、前記微細構造体を取り囲む光透過性材料の屈折率をn、第2の光反射構造体内に位置する微細構造体の屈折率をn、微細構造体同士のピッチをP、前記微細構造体を取り囲む光透過性材料の屈折率をnとし、さらに第1の光反射構造体から反射される光の波長をλとするとき、前記ピッチP,Pが以下の関係を満足する構成としたことを特徴としている。
=λ/m・・・(1)
=(λ/2)/m・・・(2)
(式中のm,mは第1及び第2の光反射構造体の見かけの屈折率であって、
=n×(A/100)+n×(B/100)
=n×(C/100)+n×(E/100)
A+B=100
C+E=100
で与えられる。なお、B及びAは第1の光反射構造体断面に占める微細構造体及び該微細構造体を取り囲む光透過性材料の面積割合、またE及びCは第2の光反射構造体断面に占める微細構造体及び該微細構造体を取り囲む光透過性材料の面積割合を示す。)
【0018】
さらに、本発明に係わる光反射機能物体の他の好適形態としては、第2の光反射構造体における微細構造体同士のx方向及びy方向のピッチをそれぞれP2x及びP2yとし、微細構造体のx方向及びy方向の断面寸法をそれぞれL2x及びL2yとすると、P2x=P2y=L2x=L2yである構成としたことを特徴としている。
【0019】
さらに、第1及び/又は第2の光反射構造体において、光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向とするとき、第1の材料内部に所定断面形状を有する微細構造体がx−y平面内で多角形配列の規則的配列をなす構成、例えば八角形、六角形、五角形の規則的配列、さらには行と列のマトリックス状(アレイ状)の規則的配列、三角形の規則的配列をなす構成とすることができる。
【0020】
また、微細構造体の断面形状が円形であって、円形断面における断面寸法(直径)をL、円形微細構造体により構成される行と列のマトリックス状の配列規則性における隣接する微細構造体同士のピッチをP、回折・散乱作用による反射ピーク波長をλとしたとき、サイズパラメータα(=λ/2πr)及びピッチPがL=2r、10−2≦α≦10 、2r≦Pなる関係を満たす構成とすることができる。
【0021】
また、さらに他の好適形態としては、第1及び/又は第2の光反射構造体において、微細構造体が所定の断面形状を有し、異なる波長の光を出射するに十分な規則性をもった微細構造体群がx方向、あるいはy方向に複数のブロックとして存在する構成としたことを特徴としている。
【0022】
また、さらに他の好適形態としては、少なくとも第1の材料がポリマー系、ガラス系、セラミックス系よりなる群から選ばれる1種類以上の材料からなる構成とし、前記ポリマー系材料としては、ポリエステル系、ポリアミド系、ポリオレフィン系、ビニル系、ポリエーテルケトン系、ポリサルファイド系、フッ素系、ポリカーボネート系の単体もしくはこれらのブレンド、あるいはこれら2種類以上の共重合体のいずれかとすることができる。
【0023】
さらに、別の好適形態として、第1及び/又は第2の光反射構造体を構成する材料が複屈折性を有するものとすることができ、このとき複屈折性を有する材料の複屈折Δnが0.05以上である構成とすることができる。また、第1の材料が顔料及び/又は染料を含有しているものとしたり、さらには当該光反射機能物体を所定の長さに切断して微小なチップとしたり、粉砕して粉末としたりすることができる。
【0024】
そして、このようなチップや粉末は光輝材として使用することができ、塗料やフィルム構造体、プラスチック等の各種成形体、不織布や壁紙等に広く適用することができる。
【0025】
【発明の実施の形態】
以下、本発明の実施の形態について、図面に基づいて具体的に説明する。
【0026】
図1(a)は、本発明に係わる光反射機能構造を繊維あるいはフィルム状構造体に適用した場合を示す概念図であって、本発明に係わる光反射機能物体1は、可視光線、赤外線及び紫外線の反射特性のうちの少なくともいずれかの光学機能を有する、繊維状あるいはフィルム状の物体であって、該物体の内部に、屈折率の異なる少なくとも第1、第2の材料からなり、かつ、少なくとも第1の材料が光透過性を有し、この光透過性を有する第1の材料2によって取り囲まれた第2の材料からなる複数の微細構造体3(3a,3b)が、実質的に回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置されている光反射構造体4を形成し、かつ、このような光反射構造体4が2段に、すなわち第1の光反射構造体4aと、これとは微細構造体3bの配置の規則性が異なる第2の光反射構造体4bとが2段に配置されたものである。
なお、ここでは微細構造体の断面形状として、単純な円形断面を中心に説明するが、断面形状に関しては後述するように、円形のみに限定されず、円形、楕円形、矩形及び多角形から成る群から選ばれる少なくとも1種の断面形状であれば特に支障はない。
【0027】
ここで、説明の都合上、光の入射方向に対する座標軸、入射角度、反射光の次数等を定義するが、説明を単純化するために、ここでは本発明に係わる光反射機能物体1の内部に形成される第1の光反射構造体4aに焦点を当てて進めるものとする。さて、図1(b)に示すように、上記物体1の断面において、光の基本的な入射方向をyとし、これに対向する前記第1の光反射構造体4a,第2の光反射構造体4bの内部に、十分な規則性をもって配置される複数の微細構造体3aからなる微細構造体群の方向をx方向とし、さらにその微細構造体群の奥行き方向をz方向とする。また、図1(b)のように法線を仮定し、かつ、入射角αで入ってきた入射光の反射光(回折角β)を0次反射と称するものとし、入射光側に正の次数(+1,+2,・・・)、反射光側に負の次数(−1,−2,・・・)の反射光が出射されるとする。なお、各次数の反射光のピーク波長λを、例えば、λ(0次反射光)、λ−1(−1次反射光)と記述することにする。
【0028】
また、光の反射機能を発現させるのに「十分な規則性」とは、例えば、図2に示す第1の光反射構造体4aの拡大図において、第1の材料2の内部に、第2の材料からなる微細構造体3aが、x方向の断面寸法L1(すなわち、この場合は直径D)が同一で、しかもx方向及びy方向に、あるピッチPでもって規則的に配列しているようなものを言う。なお、ピッチPは第2の材料からなる微細構造体3aの各々の中心間の距離を言う。
【0029】
また、本発明において、実質的に「回折・散乱作用」に基づくとは、基本的に以下の内容を意味するものである。
【0030】
すなわち、今、一様な媒質中にその屈折率とは異なる屈折率で波長よりも小さな物体があると、光は散乱されるが、その物体が等間隔で規則的に並んでいると、それぞれの散乱された光が一定方向に波面を形成してその方向に強く反射(回折)されることになる。この現象の特異性を「回折・散乱作用」に基づく、と称することにする(詳細については、例えば、光波工学 第10頁:共立出版参照)。
【0031】
これを踏まえ、再度、図1(b)を用いて本発明における光反射機能の基本的特異性を説明する。すなわち、本発明に係わる光反射機能物体1に、入射角αで入った光は、回折角βで0次反射光を、さらに±1次,±2次等の反射光を発現する。つまり、入射角αが一定のとき、反射光側に位置して、当該物体1を見たり、反射測定したりすると、次数の重なりを生じ、各次数の反射光成分に基づいた反射スペクトルがあたかも合成されたかのように、一つの連続スペクトルとして検知されることになる。さらにまた、各次数の反射スペクトルにおける反射ピーク波長λ、λ±1、λ±2等も入射角依存性(入射角を変えると、λ、λ±1、λ±2等もシフトすること)、及び反射強度依存性をもつため、反射光側に位置して当該物体1を入射角度を変えて見ても、ある色相を保持し、それゆえ、広視野角度になっても灰色に見えたりすることがない(すなわち死角がない)と考えられる。なお、入射角度を変えながら、当該物体1をある角度で見ることと、入射角度を一定にして、見る角度(受光角度)を変えて観察することと等価であるので、以下、入射角度を変えた状態をベースに説明することにする。
【0032】
以上のように、本発明における「回折・散乱作用」に基づく光の反射機能とは、従来から知られている回折や干渉作用に基づく反射機能、さらに着色体の単なる散乱作用に基づく反射機能とは機構的に明らかに異なるものである。
【0033】
このように、本発明者らは鋭意検討の結果、屈折率の異なる少なくとも第1及び第2の材料からなり、しかも第2の材料からなる微細構造体3の直径DやそのピッチPが実質的に狙いとする反射ピーク波長λを発現させるよう、規則性、周期性が確保できていれば、回折・散乱作用に基づく所望の反射機能を得ることができるということを見出し、特に可視光線領域では、従来から問題視されてきた広視野角度になると、灰色に見えたり(死角があることを意味する)、レインボー色に見えたりする欠点を解消できるということを見出したものである。
【0034】
さて、再度、図1(a)を用いて本発明の詳細を説明すると、本発明に係わる光反射機能物体1は、上記したように可視光線、赤外線及び紫外線の反射特性のうちの少なくともいずれかの光学機能を有する繊維状あるいはフィルム状の物体であって、該物体1の内部に、屈折率の異なる少なくとも第1,第2の材料からなり、かつ、少なくとも第1の材料が光透過性を有し、この光透過性を有する第1の材料2によって取り囲まれた第2の材料からなる複数の微細構造体3(微細構造体群)が、実質的に回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置している光反射構造体4を形成し、かつ、異なる規則性をもった前記光反射構造体4が2段配置されたものである(第1の光反射構造体4a及び第2の光反射構造体4b)。
【0035】
ここでは、回折・散乱作用に基づく光の反射機能を発現する第1の光反射構造体4aと第2の光反射構造体4bがy方向に2段重ね合った形態のもので、入射光側から見て、第1の光反射構造体4a、第2の光反射構造体4bが順次配置されている一例が示してある。なお、第1の光反射構造体4a、第2の光反射構造体4bを構成する微細構造体3a及び3bのx軸方向の断面寸法、すなわち直径をそれぞれD及びD、さらにピッチをそれぞれP及びPとした時、D≠Dであるか、あるいはP≠Pとなるようにしている。ここで、第1の光反射構造体4a及び第2の光反射構造体4bを構成するそれぞれの直径やピッチが規則性をもたず、ランダムに設定されていると、当然のことながら、狙いとする波長λでの回折・散乱作用による強い反射光は得ることはできない。
【0036】
また、第1の光反射構造体4aと第2の光反射構造体4bから、各々の規則性に基づいた反射光(反射波長λ)が放出される場合であっても、それぞれ適正な反射波長λを有していなければ、両構造体からの反射光同士がお互いに反射効果を減じたり、狙いとする波長以外の波長にピークを有したりするなどの現象が生じるので、やはり適切な反射波長λに設定することが望ましい。なお、D=Dでしかも、P=Pの場合には、同一構造体が2段重ね合ったものと等価であることは言うまでもない。
【0037】
以下に、本発明に係わる光反射機能物体1の内部に形成される第1の光反射構造体4aと第2の光反射構造体4bを構成する微細構造体3a,3bの断面寸法L(D),L(D)やピッチP,Pがある規則性をもって、しかもお互いに異なっている場合の作用効果について、図1(b)を用いて説明する。すなわち、第1の光反射構造体4a、第2の光反射構造体4bは前述したように、それぞれ実質的に回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもっている。それゆえ、当該反射機能物体1に入射した光は、[0029]〜[0032]において説明したように、まず、入射光側に位置する第1の光反射構造体4aから、断面寸法L(直径D)、ピッチPの規則性に基づいた0次、±1次、±2次等の各種次数の反射光(回折・散乱光)を発し、反射スペクトルとしてはそれらの混在したスペクトル(A)となっている。
【0038】
次に、当初の入射光からその反射光を除いた光が、第2の入射光として、第2の光反射構造体4bに入射し、同様に第2の光反射構造体4bから直径D、ピッチPの規則性に基づいた0次、±1次、±2次等の各種次数の反射光(回折・散乱光)を発し、同様にこれらの混在したスペクトル(B)となってくる。これらの状況を示したのが図3であって、光反射機構的には、本発明の光反射機能物体1を構成する第1の光反射構造体4aと第2の光反射構造体4bから、それぞれの規則性に基づいた固有の反射スペクトルが反射光として放出されることになる。したがって、入射光の反対側に位置して本発明の光反射機能物体1の色味を見たり、反射スペクトルを測定したりすると上記スペクトル(A)と(B)の合成和として検知されることになる。
【0039】
また、以上のような事例に基づき、本発明者らはさらに次のようなバリエーションも可能であることを見出した。
【0040】
例えば、図4(a)及び(b)に示すように、入射光側から見たとき、実質的に回折・散乱作用に基づいて光の反射機能を発現するのに十分な規則性(微細構造体のx軸方向における断面寸法L、微細構造体同士のピッチPの三角形配列型)を有している第1の光反射構造体4aの下部に、やはり実質的に回折・散乱作用に基づく反射機能を有する規則性(微細構造体のx軸方向における断面寸法L、微細構造体同士のピッチPの直交配列型)をもった微細構造体群からなる第2の光反射構造体4bが、さらに、回折・散乱作用に基づく反射機能を有する規則性(微細構造体のx軸方向における断面寸法L、微細構造体同士のピッチPの直交配列型)を有している第Nの光反射構造体4Nが配置されていても構わない。
このとき、光反射構造体における各々のピッチの間には、P,PN−1,・・・,P<Pなる関係があることが望ましい。これは最も入射光側に位置する第1の光反射構造体において、狙いとする波長λの光を出射させ、その波長λ以外の残りの波長の光を下部に位置する第2、第3、・・・、第N−1、第Nの光反射構造体へと順次、入射させていくためである。従って、狙いとする波長λに関係するピッチP(詳細は段落[0074]を参照)は上記のような関係を満たすことが望ましい。なお、第1、第2、・・・、第N−1、第Nの全ての光反射構造体から、同一の波長の光を出射させて高反射率を得ようとする場合には、第2の光反射構造体においてP=(P)/2とし、以下同様に、第Nの光反射構造体においてP=(P)/Nとすることにより効果が増大する。
その際の微細構造体の各々のx軸方向における断面寸法L(微細構造体の形状が円形の場合は、直径を表わす)は、特に限定されないが、概ね、L<LN−1,・・・,L<Lであることが望ましい。
【0041】
また、図5(a)に示すように、光反射機能物体が、2段の光反射構造体からなるような場合は、特にL<L、P<Pとすることにより、さらに反射率が向上し、反射スペクトルにおける半値幅も狭くなり、より深み感をも付与することが可能となる。なお、各光反射構造体に位置する微細構造体のx軸方向における断面寸法L,Lと微細構造体同士のピッチP,Pの定義について、図6(a)及び(b)を用いて簡単に説明する。
まず、微細構造体の断面形状として、円形の場合を示したのが図6(a)である。円形断面の場合、第1の光反射構造体4aにおける微細構造体のx軸方向における断面寸法Lとは、微細構造体の直径Dそのものを示すことになる。一方、微細構造体の形状として、三角形状(多角形状の一例として)の場合を示したのが図6(b)である。この場合、第1の光反射構造体4aにおける微細構造体の断面寸法Lとは、図からも明らかなように、あくまでもx軸方向における長さを意味するものである。この考え方は、例えば、三角形状断面の微細構造体が、x軸方向にピッチPで規則的に配置されている場合、三角形状断面の微細構造体の断面寸法LがピッチPと等しくなると、微細構造体同士が接する状況になることを意味する。またL<L、P<Pなる関係は、第1の光反射構造体4aで回折・散乱作用による光の反射波長λを主に確保し、次の第2の光反射構造体4bで、その反射率を向上させることを狙ったもので、具体的には、第2の反射構造体4bからの反射波長が、第1の光反射構造体4aから出射される反射波長λの1/2、1/3の次数とすることによりその効果を得ることが可能となる。
【0042】
さらに、図5(b)に示すように、実質的に回折・散乱作用に基づいて光の反射機能を発現する第1の光反射構造体4a,4aの間に、上記第2の光反射構造体4bが入り込んだサンドイッチ構造であっても構わない。これによって、構造上対称形状となり、どちらの側から光が入っても効率のよい反射が可能となる。
【0043】
ここで第2の光反射構造体4bの機能は、第1の光反射構造体4aからの回折、散乱作用に基づく反射機能をさらに向上させるためのもの(一種の反射増幅機能)であり、例えば、図1(a)においては、第2の光反射構造体4bは、その上部に位置する第1の光反射構造体4aからの回折・散乱作用に基づく反射波長λ(0次反射波長)と同一の反射波長λを発現するよう寸法・諸元が決定されていることが特に望ましい。一例としては、第1の光反射構造体4aからの回折・散乱作用に基づく反射波長λ0が0.47μm(青色発色)とすると、第2の光反射構造体4bからの反射波長λ0も0.47μm(青色発色)であるようになっていることが好ましい。
【0044】
その具体例を図7に示す。図7は、直径D(断面寸法L)=0.19μm、平均ピッチP=0.28μmの円柱状微細構造体からなる微細構造体群(7行×60列の直交配列型)である第1の光反射構造体4aと、直径D(断面寸法L)=0.07μm、x方向のピッチPx2=0.07μm、y方向のピッチPy2=0.14μmの微細構造体からなる微細構造体群(5行×60列の直交配列型)である第2の反射構造体4bが2段重ねに配列しているものの反射スペクトルを単に第1の光反射構造体4aだけのもの(但し、微細構造体の行数は12行であって、上記光反射機能物体と同一)と比較した結果である。
【0045】
このような機能を発現させるため、具体的には第2の光反射構造体4bにおいて、微細構造体の各々の直径D(断面寸法L)は、第1の光反射構造体4aからの反射ピーク波長λと等価の値となるλ/(4n)に近い方がより望ましく、また、微細構造体のy方向のピッチPy2は、(λ/(4n)+λ/(4n))の値に近い方がより望ましい。また、x方向のピッチPx2は、請求項5にも記載しているように、微細構造体の直径Dに近い値がより好ましい。なお、微細構造体のx方向のピッチPx2が直径Dに近い値をとるということは、微細構造体同士が最近接あるいは接触していて、実質的に一様連続体(一種の層状構造)と見なすことができることを意味する。
【0046】
本発明者らは、このような構成をとることにより、単に第1の光反射構造体4aだけから構成される光反射機能物体1に比べ、第1の光反射構造体4aと第2の光反射構造体4bの両者からの相乗効果によって、例えば目的とする反射波長λにおける反射率を極めて大きくできることを見出した。さらに当該光反射機能物体1のy方向の厚みも薄く抑えることができるというメリットも生まれ、本発明に係わる光反射機能物体の寸法諸元を決定する上での自由度をアップできることになる。
【0047】
また、さらに、反射スペクトルにおけるその反射波長λでの半値幅Bも狭くすることが可能となり、より顕著な深みをも付与することができるという特徴を発現することになる。
【0048】
また、本発明者らは、本発明に係わる光反射機能物体1において、当該物体1を構成する第1の光反射構造体4a及び第2の光反射構造体4bが以下のような寸法諸元を満足するような関係を持つことにより、さらに所望の波長の光を効率良く反射させることができるということを見出した。
【0049】
図8(a)は、これを説明するための概略図であり、本発明に係わる光反射機能物体1が次のような構成、すなわち、第1の光反射構造体4a内に位置する微細構造体3aの屈折率及び直径(断面寸法)をそれぞれn及びD、微細構造体3a同士の中心間の距離(ピッチ)をP、微細構造体3aを取り囲む光透過性材料2aの屈折率をnとし、また第2の光反射構造体4b内に位置する微細構造体3bの屈折率及び直径(断面寸法)をそれぞれn及びD、微細構造体3b同士の中心間の距離(ピッチ)をP、微細構造体3bを取り囲む光透過性材料2bの屈折率をnとし、さらに第1の光反射構造体4aから反射される光の波長をλとしたとき、前記第2の光反射構造体4bから反射される光の波長が(λ/2)となるように、前記ピッチP及びP
=λ/m・・・(1)
=(λ/2)/m・・・(2)
を満足するようにしている。但し、m及びmは、第1の光反射構造体4a及び第2の光反射構造体4bの見かけの屈折率であって、それぞれm=n×(A/100)+n×(B/100)、m=n×(C/100)+n×(E/100)で与えられるものである。なお、B,Aは第1の光反射構造体4aの断面に占める微細構造体3a及びこの微細構造体3aを取り囲む光透過性材料2aの面積割合を示し(A+B=100)、同様に面積E,Cは第2の光反射構造体4bの断面に占める微細構造体3b及びこの微細構造体3bを取り囲む光透過性材料2bの面積割合を示す(C+D=100)。したがって、第1の光反射構造体4a及び第2の光反射構造4bを構成するそれぞれの微細構造体3a,3b、これら微細構造体3a,3bを取り囲む光透過性材料2a,2bの面積割合によって見かけの屈折率も異なってくる。
【0050】
これを具体的な事例で説明すると、図8(a)において、まず、当該光反射機能物体1から回折・散乱作用に基づいて発せられる色を青色(λ=0.45μm)とする。また、第1の光反射構造体4a及び第2の光反射構造4bを構成する微細構造体3a,3bの屈折率、これら微細構造体3a,3bを取り囲む光透過性材料2a,2bの屈折率をいずれも、n(=n)、n(=n)とし、さらに第1の光反射構造体4a及び第2の光反射構造4bの断面に占める微細構造体3a,3b、これらを取り囲む光透過性材料2a,2bの面積の割合をB=A、C=Eとし、いずれも同一面積(B=A=1/2、C=E=1/2)を占めるものとする。
【0051】
ここで、第1の光反射構造体4aを構成する微細構造体3aの屈折率nを1.53(ナイロン6(Ny6))、この微細構造体3aを取り囲む第1の光透過性材料2aの屈折率nを1.63(ポリエチレンテレフタレート(PET))とする。そして、第2の光反射構造4bにおいても同様とする。このような前提下では、第1の光反射構造体4a及び第2の光反射構造4bの見かけの屈折率m,mはそれぞれ、
=1.53×1/2+1.63×1/2=1.58
=1.53×1/2+1.63×1/2=1.58
となる。したがって、第1の光反射構造体4aにおける微細構造体3a,3a間のピッチPは、
=λ/m=0.45μm/1.58=0.45μm
また、第2の光反射構造体4bにおける微細構造体3b,3b間のピッチPは、
=(λ/2)/m=(0.45μm/2)/1.58=0.14μm
を得る。このように当該光反射機能物体1において、第1の光反射構造体4aと第2の光反射構造4bを構成する微細構造体の各々のピッチP、Pを決定することにより、目標とする反射ピーク波長λを精度良く設定できると共に、その反射ピーク波長λの変動を少なくすることができ、反射強度をも向上させることができるようになる。
【0052】
さらに上記において、図6(a)に示すように、第2の光反射構造4bを構成する微細構造体3bのx軸方向におけるピッチP2xとその断面寸法L2xが等しい(お互いに点接触している状態)とき、すなわちP2x=L2xであるとき、見る角度を変えても大きな色味の変化を呈さず、微妙な色味の変化を示すことがわかった(反射スペクトル上、反射ピーク波長λの大きなシフトも発生しない)。また、x軸方向のみならず、さらにy軸方向における微細構造体同士のピッチP2yと断面寸法L2yとがいずれも等しいとき、すなわち、P2x=P2y=L2x=L2yとすることにより、見る角度を変えても大きな色味変化を抑制できることがわかった。
【0053】
また、上記結果を踏まえ、図9(a)及び(b)に示すように、光反射機能物体1の構成が、前記第1,第2の光反射構造体4a,4bを基本構成要素としたとき、第2の光反射構造体4bを挟んで、その両側に第1の光反射構造体4aを対称的に配置することにより、入射光が当該光反射機能物体1の上下方向(y軸方向)いずれの方向から入っても同様の光反射機能を発現できるようになる。
【0054】
また、上記対称構成(第1の光反射構造体4a/第2の光反射構造体4b/第1の光反射構造体4a)において、各々を構成するy軸方向の微細構造体の段数Nをそれぞれ3段、12段、3段とした場合と、第1の光反射構造体4a/第2の光反射構造体4bという構成において、各々のy軸方向の微細構造体の段数Nを6段、12段とした場合を比較してみる(但し、第1の光反射構造体4a内の微細構造体3aの総段数Nはお互いに等しい(6段)とする)と、このようなケースにおいては、第1の光反射構造体4a内における微細構造体3aの総段数Nが一つの構造体内に構成されていると、それぞれの光反射構造体を構成する微細構造体のピッチや直径の製造上の寸法ばらつきが累積されて非常に大きな機能上の低下を生み、結果的に第1の光反射構造体4aと第2の光反射構造体4bからの反射ピーク波長λにずれを生じる可能性が高くなる。これに対し、第1の光反射構造体4a/第2の光反射構造体4b/第1の光反射構造体4aというような分配した構成にしておくと、第1の光反射構造体4a内における微細構造体3aの総段数Nが少なくなるため、製造上、微細構造体3aのピッチや直径の寸法ばらつきがあっても機能上の低下を軽減できるというメリットもある。
【0055】
本発明の光反射機能物体1は、次のような形態であっても構わない。すなわち、図10(a)〜(c)には、第1の光反射構造体4a内に位置する微細構造体3aの配列が後述するように六角形配列となっており、第2の光反射構造体4b内に位置する微細構造体3bの配列が直交配列の場合を示す。また、図11(a)〜(c)には、第1の光反射構造体4a内に位置する微細構造体3aの配列が六角形配列、第2の光反射構造体4b内に位置する微細構造体3bの配列も六角形配列であって、第2の光反射構造体4bにおける微細構造体3bの直径及びピッチが、第1の光反射構造体4aにおける微細構造体3aのそれらより小さい場合を示す。これらの場合も、第2の光反射構造体4bにおける直径D及びピッチP2の関係において、x方向のピッチPx2は直径Dに近い方が、反射率を向上できるということを見出した。
【0056】
また、さらに他の実施形態として、図12(a)及び(b)に示すように、直交配列となった第2の光反射構造体4bの両側を直交配列の第1の光反射構造体4aと六角形配列の第3の光反射構造体4cで挟んだ構造や、図13(a)及び(b)に示すように、六角形配列を有する第2の光反射構造体4bの両側を直交配列となった第1の光反射構造体4aと六角形配列となった第3の光反射構造体4cで挟んだ構造の組み合わせも可能であり、この場合にも所望の性能を得ることができる。
【0057】
微細構造体群の配列に関して、直交配列(正四角形配列)および六角形配列の2形態について上述したが、本発明者らはさらに、これ以外の微細構造体群の配列についても鋭意検討した結果、微細構造体群の配列が上記2形態に留まらず、規則性を有する多角形状(三角形、五角形、六角形、八角形など)配列であれば、光反射機能を発現することを見出した。以下、これについて説明する。なお、微細構造体の断面形状はこれまでの流れを踏まえ、全て円形(3次元的には円柱体)として説明する。
【0058】
図14(a)〜図16(b)は、x−y平面内で微細構造体群(円柱体)が三角形状の規則的配列(同一直径の微細構造体が三角形状配列となっているもの)を含む光反射機能物体の例を示す。まず、図14(a),(b),(c)には、2段構造からなる光反射機能物体を示したもので、図14(a)は、第1の光反射構造体4aおよび第2の光反射構造体4bにおいて、微細構造体群がいずれも三角形状配列をなしているものである。また、図14(b)は、第2の光反射構造体4bにおいて、微細構造体群が直交(正四角形)配列をなしたものであり、図14(c)は、前記図14(b)の逆のケースで、第1の光反射構造体4aが直交配列を、第2の光反射構造体4bが三角形状配列をなしているものである。
【0059】
また、図15(a)〜図16(b)には、光反射機能物体が3つの光反射構造体から構成される例を示す。まず、図15(a)は、第2の光反射構造体4b(微細構造体群が直交配列状)を挟んで、その両側に、第1の光反射構造体4a(微細構造体群が三角形状配列)が配置された系である。なお、第1の光反射構造体4aにおける微細構造体群の三角形状配列は、入射光が上部から入っても、下部から入っても対称となるように配置している(上部に位置する第1の光反射構造体4aと下部に位置する第1の光反射構造体4aの関係において)。さらに、図15(b)は、第2の光反射構造体4b(微細構造体群が五角形状配列)を挟んで、第1の光反射構造体4a(微細構造体群が三角形状配列)が配置された系である。また、図16(a)には、第2の光反射構造体4b(微細構造体群が三角形状配列)を挟んで、その両側に第1の光反射構造体4a(微細構造体群が八角形状配列)が位置する構成となっているものを示す。
【0060】
次に,図16(b)には、第1,第2,第3の光反射構造体がそれぞれ、異なる多角形状配列をなしている例を示したもので、微細構造体群が三角形状配列を有する第1の光反射構造体4a、五角形状配列を有する第2の光反射構造体4b、八角形状配列を有する第3の光反射構造体4cから構成されたものである。このように、微細構造体群の配列が多角形状となっても、その配列の規則性が保たれていれば、光反射機能を発現し得ることが見出された。
【0061】
また、これら一連の断面構造の検討から、本発明者らは、さらに次のようなバリエーションも可能であることを見出した。
すなわち、図17(a)及び(b)は、これまで例示してきた構造の組合せからなる多機能な光学特性を発現する光反射機能物体の一例である。まず、図17(a)においては、第2の光反射構造体4bの上に、x方向に互いに異なる波長の光を出射するようなブロックとなった第1の光反射構造体4aが複数配置されたものである。ここでは、x方向に3つのブロックが配置されており、図中、左側のブロックからは青色の光λが、真中に位置するブロックからは緑色の光λが、右側のブロックからは赤色の光λが出射するといった具合に光の3原色(青、緑、赤)が回折・散乱作用によって発せられるように構成されたものである。このような構成とすることにより、見る角度(受光角)を例えば、入射面に対し、法線方向(0°)から、45°、60°、70°と大きく変えていっても灰色(無彩色)にならず、色味を保持した高品位な発色が可能となる。
【0062】
またさらに、図17(b)のように、前述のブロックがy方向に複数配置された構成とすることにより、種々の光の色を発現させることが可能となる。例えば、図中上方の入射光側に配置されているブロックからは青色の光λが、真中に位置するブロックからは緑色の光λが、さらに下部に位置するブロックからは赤色の光λが、回折・散乱作用により出射できるように構成すると、各ブロックから発せられる光の強度を制御する(各ブロックに位置する微細構造体のy方向の段数Nを変えたり、微細構造体の断面寸法Lあるいは直径D(断面円形の場合)を変えたりして)ことにより、黒色以外の様々な「光の色」を発現させることが可能となる(加法混色により)。なお、3原色の光強度が同一になるようにすれば、λ+λ+λ=λ(白)となり、我々の眼には白色に見えることになる。このように、加法混色により、様々な色を発現させることが可能であるので、この構成を利用適用すると、各種ディスプレイなどに応用できることになる。
【0063】
加えて、各ブロックから出射される色味が異なっているため、見る角度(受光角)を大きく変えても、あるブロックからの回折・散乱光が必ず反射されてくるので、灰色(無彩色)に見えることなく、色味を保持できると言う特徴を有することになる。なお、上記各ブロック内の微細構造体は、回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置していれば、どんな配置構成であっても構わず、前述したように、例えば、x−y平面で多角形配列(三角形状配列、直交(四角形状)配列、五角形状配列、六角形状配列など)が挙げられる。また、上記事例では、いずれも青色の波長λ、緑色の波長λ、赤色の波長λという光の3原色を発するような3ブロック配列としたが、必ずしもこれに限定されるものではない(例えば、緑色の波長λ、赤色の波長λというような2ブロックの組合せなど、種々の組合せが可能)。
【0064】
以下、本発明に係わる光反射機能物体1の構成上のポイントを具体的に説明する。
【0065】
まず、光反射機能物体1において、第1の光反射構造体4a及び第2の光反射構造体4bの構成は、各々、屈折率の異なる少なくとも第1、第2の材料からなるが、両者の屈折率の大小関係については特に限定されない。ここで、光反射構造体4において、回折・散乱作用を効率良く発現させる上でのキーでもある屈折率について、屈折率が明記されている図8を使って説明する。図8に示す光反射構造体4は、第1の光反射構造体4aおよび第2の光反射構造体4bからなる複合系である。複合系であっても、回折・散乱作用に基づく光の反射機構は、単一系での現象と大きく異なる訳ではないので、今、第1の光反射構造体4aに焦点を当てて説明する。
第1の光反射構造体4aは、構成上、屈折率の異なる少なくとも第1、第2の材料からなるが、両者の屈折率の大小関係については、特に限定されない。すなわち、光透過性を有する第1の材料(微細構造体を取り囲む材料)2aの屈折率をn、第2の材料(微細構造体の材料)3aの屈折率をnとすると、その大小は、(1)n>nであっても、(2)n<nであっても構わず、その選択は後述するように、ユーザーの嗜好性によるところ大である。つまり、回折・散乱作用に基づく光の反射は、上記(1)の場合、高屈折率nの材料が最表面側に位置することになるので、キラキラ感を含めた「光沢」が増す方向になる。一方、上記(2)の場合、低屈折率nが最表面側に位置するため、(1)とは逆に、しっとりとした「濡れた感じ(濃色化)」が増す傾向となる。
【0066】
従って、第1の材料2a(屈折率n)と、第2の材料3a(屈折率n)の屈折率比という視点からすると、両者の比をできるだけ大きくとれるように材料選択することが反射強度向上の点から望ましい。ここで両者の比とは屈折率の大きい方を分子とすることとし、(1)n>nの場合は.n/nとして、(2)n<nの場合は、n/nとして表現する。実用的には両者の比は1.01以上、より好ましくは1.03以上であることが望ましい。その理由について、以下説明する。
すなわち、両者の屈折率比が限りなく1.0に近い場合では、所望の反射機能(例えば、反射率)を得るために、微細構造体3のy軸方向の段数Nymを格段にアップさせる必要性が生じてくる。このことは、当該光反射機能物体1自身の厚み(y軸方向における全体厚み)を増大させてしまうので、適用分野を限定してしまい、また、当該光反射機能物体1を成形するための紡糸口金自体も極めて大掛かりになるというデメリットも生ずるので、屈折率比としては1.01以上、好ましくは1.03以上であることが望ましい。
【0067】
次に、[0029]〜[0032]において述べた本発明に係わる光反射機能物体1の反射機能の特異性について説明する。
【0068】
図18ないし図22には、実際の光反射構造体における反射スペクトルの入射角依存性(α=0°〜60°)の測定結果を示す。ここでは光透過性を有する第1の材料2として、屈折率n=1.68のポリエチレンテレフタレート(PET)を、第2の材料として、屈折率n=1.53のナイロン6(Ny6)を選択し、図1(a)に示される光反射構造体4aの構造とする。なお、微細構造体3としての円柱体の直径Dは0.09μm、ピッチPを0.28μmとし、y方向の行数Nym(Nymの定義は後述する)を5として、青色発色を狙ったものである。また、これらの図に示されている反射スペクトルはいずれも全反射スペクトルであり、反射測定法において、様々な方向に反射される反射光(ここでは主に、0次、±1次の反射光)を積分球にて取り込んだものと基本的に等価である。
【0069】
図18は、横軸に波長λ(nm)、縦軸にエネルギー反射率Rをとり、入射角α=0°での反射スペクトルを示したもので、波長370nm付近にメインピークが、また波長450nm付近にサブピークが認められ、両ピークに起因して、この場合の色味としては概ね青紫色となる。入射角α=0°で見られるこのメインピークは、図19〜図21からも明らかなように、入射角αが15°〜45°へと増大しても波長400nm〜430nm付近に位置し、大きなピークシフトは発生せず、それ故、色味もほぼ青紫色に安定することになる。さらに、図21に示すように入射角α=60°となってもメインピークは波長490nm付近に位置し、色味的には青〜緑青色を呈することになる。
【0070】
ここでは一例を示したに過ぎないが、入射角αを0°〜60°と大きく変えても、色味的に大きな変化を引き起こさず、また、当然のことながら、広視野角(入射角α=60°)になっても、従来の干渉型発色構造体で認められたような灰色に見えるというようなことも発生しない。
【0071】
また、図23は、上記条件下で、円柱体の直径Dをパラメータにして、D=0.03,0.06,0.09,0.13,0.19及び0.28μmと変化させた場合の入射角度αと反射ピーク波長λとの関係の一例を示したものである。この例ではピッチPと比較して、円柱体直径Dが小さい方が反射ピーク波長λの入射角度依存性が少ない傾向が認められる。
【0072】
また、上記構成において、屈折率の異なる少なくとも第1及び第2の材料からなると記述しているように、本発明は屈折率の異なる2種類の材料のみの組み合わせに限定されず、例えば、図24(a)及びその拡大図である図24(b)に示すように、第2の材料からなる微細構造体3に第3の材料5を複合させた構成としてもよい。この具体的事例としては、第3の材料が高屈折率材料であっても成形が困難であったり、延伸処理等により所望の寸法サイズまで引落とすことが物性上、困難であったりする場合が挙げられる。このような場合、成形可能な第2の材料からなる微細構造体の周囲を高屈折率材料である第3の材料で覆う構成とすることにより、高屈折率材料による優れた発色効果を達成できるようになる。
【0073】
なお、第2の材料からなる微細構造体3の実際の直径、ピッチ等は、狙いとする所望の反射スペクトル波長λを得るために、第2の材料と第1の材料2との屈折率比(n/n)や、第2の材料からなる微細構造体3の数N(図2参照:行数や列数を言うもので、x方向における第2の材料からなる微細構造体3の数:Nx1,Nx2,・・・Nxn、y方向における同材料からなる構造体の数:Ny1,Ny2,・・・Nyn)等を調整することによって制御することができる。
【0074】
例えば、先に記載した材料の組み合わせ(屈折率n=1.63のPETと、屈折率n=1.53のNy6からなる構成)において、青色発色(反射ピーク波長λ=0.45μm)を得るための諸元寸法は、段落[0049]にも記載しているように、概ね、以下のように算出することができる。まず、微細構造体3の各々の中心間距離(ピッチP)については、狙いとする反射ピーク波長をλ、見かけの屈折率をmとすると、おおよそ、λ/mで与えられる。光反射構造体4の断面内に占める両物質の面積比で分配・換算することができる。今、この見かけの屈折率mは断面内に占める屈折率nの媒質がA/100(%)、屈折率nの微細構造体がB/100(%)であるとすると、見かけの屈折率mは、
=n2×(B/100)+n×(A/100)
で与えられる。なお、A+B=100である。したがって、この場合、断面内に占めるPETの微細構造体が50%、またそれを取り囲むNy6材料も50%であるとすると、ピッチPは、
P=λ/m=0.45μm/((1.53+1.63)/2)=0.28μmとなる。
【0075】
また、光反射構造体4aあるいは4bを構成する微細構造体3の直径D(=2r)は、請求項17にも記載しているように、当該光反射機能物体1を構成する材料、すなわち、第2の材料の屈折率nや第1の光透過性材料の屈折率nの大きさ、及び段落[0065]にも記載している両者の比(n/n)あるいは(n/n)、さらには微細構造体群の配列形態等により、一義的には設定できないが、概ね次のように考えることができる。
【0076】
散乱理論に基づくと、粒子のサイズパラメータとして、
α=(λ/2πr)・・・▲1▼
なる関係式を広く用いられている。ここで、rは粒子の半径、λは波長である。散乱理論によれば、散乱光強度はこのαの値により大きく変動(振動)するとされてきた。しかしながら、本発明者らは鋭意検討した結果、単なる散乱理論の適用ではなく、前述してきたように、規則性に着目(すなわち、回折・散乱作用)することにより、このサイズパラメータαが
10−2≦α≦10・・・▲2▼
という範囲においても、実用的な光反射機能を発現するということを見出した。ここで、前述した図18ないし図22から実際の値を適用し、α値を逆算してみると、円柱体の半径r=(0.19μm/2)、反射ピーク波長λ=0.45μmという値から、α=0.75程度となる。光反射機能を発現するためのより好ましいサイズパラメータαの値としては10−1〜10、さらには10−1〜10が好適である。とくに可視光線から近赤外線に到る領域における光反射機能の点からは10−1〜10であることが望ましい。
【0077】
なお、このサイズパラメータαが10−2よりも小さくなると、粒子サイズが波長オーダよりも非常に大きくなってしまい、散乱理論で言うレイリー散乱やミー散乱の領域を超え、いわゆる、幾何学的散乱(全方位的に散乱するレベルで、発色も白色のみとなる)になる。また、当然のことながら、粒子(あるいは円柱体)サイズが大きくなると、繊維状やフィルム状への成形も困難になってしまう。逆に、このαが10よりも大きくなってしまうと、粒子サイズが分子レベル以下の大きさとなってしまい、規則性を保持することが困難になると共に、散乱光強度自体も非常に小さくなり、実用的な光反射機能を発現できなくなってしまう。
【0078】
また、2r(=D)≦Pなる関係式は、微細構造体3の直径DとピッチPとの関係を示したもので、微細構造体3の直径Dは、最大でもピッチPの寸法(この場合、隣接する微細構造体同士は点接触することを意味する)であることを規定している。直径DがピッチP以上になると、微細構造体同士の融着や断面構造に変化を生じさせ、回折・散乱作用による光反射機能を低下させるため、好ましくない。
【0079】
第2の材料からなる微細構造体3の数については、x方向における数Nxn(行列でいうところの列の数)は、反射光波長λよりも十分に長い距離をとることが望ましく、好ましくは波長λの数倍以上、より好ましくは数十倍程度確保されていることが望ましい。このようにすることにより、発色領域を確保でき、回折・散乱効率を向上させることができる。
【0080】
また、y方向における数Nym(行列でいうところの行の数)は、第2の材料と光透過性を有する第1の材料との屈折率の比(n/n)に依存し、一義的に設定できないが、微細構造体3に空気孔を用いた系においては、数行(2〜5行程度)で所望の光反射機能を得ることができる。なお、微細構造体3を構成する第2の材料としてポリマー系、ガラス系、セラミックス系などを用いた系においては、概ね5行以上、より好ましくは10行以上とすることが望ましい。
【0081】
次に、第1の光反射構造体4a及び第2の光反射構造体4bの内部における第2の材料からなる微細構造体3の断面形状及び第1、第2の適用材料について説明する。
【0082】
微細構造体3の断面形状については、二次元的(x,y方向)に、あるいは三次元的(x,y,z方向)に十分な規則性を保つことが可能であれば円形断面に限定されず、例えば、図25(a)ないし(c)に示すように、円形、楕円形、矩形、各種多角形(三角形、四角形、五角形、六角形、八角形等)断面など任意の形状であっても構わない。しかしながら、回折・散乱光の位相整合性(円形断面であれば、等価面から見た場合、どの方向に回折・散乱光が反射されても光路長が等しくできるため)と、回折・散乱光の反射強度を稼げる(円形断面であると、円形断面の直径Dと円形断面の中心間ピッチPが等しい場合に、隣接する円形断面同士の点接触が可能となり、反射スペクトルの半値幅も大きくできるというメリット有り)という視点から、より円形断面に近い形状が好ましい。
【0083】
また、第2の材料からなる微細構造体3は、x−y平面だけでなく、z方向においても規則性をもった形態であれば、特に限定されず、上記に示したような種々の断面形状をもった三次元体であっても良い。なお、このような、より一般的な形状体としては図26に示すような球状体を一例としてあげることができる。なお、少なくとも第1と第2の材料からなる本発明の光反射機能物体1自体の断面形状については何ら限定されず、例えば、図27(a)ないし(g)に示すように、円形、楕円形、矩形、星型、多角形(三角形、四角形、五角形、六角形、八角形など)等、目的や用途に応じて適宜設定できることは言うまでもない。例えば、後述するように、本発明の光反射機能物体1をチッピング(小片化)し、塗装用光輝材の形でクリア層の中に入れて使用する場合、入射光に対し、塗装膜内で光輝材の回折・散乱面がその向きにそろう確率が大となる観点から、円形断面よりも矩形や偏平断面の形態がより好ましい。
【0084】
また、本発明の光反射機能物体は、例えば、図28に示すように微細構造体が断面(x−z平面)内で回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配列されているため、従来の発色構造体では得られなかった以下のような大きな特徴も兼ね備えている。すなわち、当該物体では、例えば、図28において、基本的に光が、(i)x−z平面に入射した場合に、大きな光反射機能を発現するように構成されているが、光が(ii)x−y平面(断面方向)、あるいは(iii)y−z平面(側面)に入射した場合でも光反射機能は劣るものの、その機能を発現できるということである。言い換えると、当該光反射機能物体においては、光がどの方向から入射しても光反射機能を発現する(全方位的反射)という特徴をもっている。
【0085】
特に、本発明の光反射機能物体1内の微細構造体が、円柱体のような連続一様のもの(例えば、図1(b)、あるいは球状体のもの(図26)などで、しかもその規則的配列が直交配列(正四角形配列)のような場合であれば、y−z平面(側面)に光が入射した場合でも光反射機能を発現する。この特異性は、例えば、当該光反射機能物体1を縦糸、あるいは横糸に用いて織編物としたとき、当該物体1に撚りが入っていても全方位的に概ね発色を示す(従来の光干渉や回折作用に基づいて発色する織編物類では、撚りが入ると灰色に見えてしまう(無彩色化)という欠点があった)ということを意味する。
【0086】
さらにまた、当該光反射機能物体1(例えば、糸の場合)を数mm〜数十μmオーダの長さにチッピング(小片化)して塗装用光輝材として塗膜の中に入れて使用する場合でも以下のようなメリットが生まれる。すなわち、通常の干渉発色型光輝材では形状的に極めて扁平とすることにより、入射光面が塗膜内で自然に配向するようにしたり、あるいは、配向がランダムになっても発色するよう、着色付き光輝材を使わざるを得なかったのに対し、本物体からなる光輝材では必ずしもその光輝材の配向の精密制御をしなくても発色させることができる(図28参照)。例えば、図28中に符号(ア)で示すように、チッピング面が光入射方向に配置されても、反射効率は落ちるものの発色が可能である。
【0087】
また、本発明で言う光透過性材料とは、可視光線、赤外線及び紫外線領域の中のいずれかの領域で実質的に光透過性を有する材料であれば、特に限定されず、固体、液体、気体物質のいずれであっても構わない。また、回折・散乱作用に基づく光の反射機能を発現させるためには、第1の材料2と第2の材料との境界面での反射が重要となるので、第1の材料2は少なくとも入射した光の一部が透過する材料系であることが望ましい。加えて、第2の材料も光透過性を有する材料とし、かつ、当該構造体が可視光の特定波長を反射する発色構造体になっているとすると、以下のような特異性も発現する。
【0088】
すなわち、我々が入射光側に位置して本発明の光反射機能物体1を見る場合(反射光を見ることになる)と、入射光線側と反対側に位置して当該光反射機能物体1を見る場合(透過光を見ることになる)とで、色相が異なるという商品性も付与することができる。
【0089】
また、本発明に係わる光反射機能物体1の構成材料として、少なくとも第1の材料2が実質的に光透過性を有してさえいれば、分子構造に基づく着色があっても良いし、あるいは顔料や染料などの色素によって人工的に着色されていても構わない。このような着色機能と本発明の回折・散乱作用に基づく光の反射機能との相乗効果(複合効果)により、今までにない独特の色味や質感を与えることも可能である。さらに、第2の材料からなる微細構造体群を形成する各々の微細構造体3の中に、実質的に紫外線や赤外線を反射させる材料を適量添加することにより、紫外線あるいは赤外線の反射特性を向上させることも可能である。また、紫外線や赤外線を吸収する材料を適量添加することにより、紫外線や赤外線を遮蔽させたり、保温効果を持たせたりすることも可能である。このような具体的な材料としては微粒子形態が好ましく、例えば、チタンやジルコニウム、アルミニウム、アンチモン、亜鉛、リンなどの酸化物等を挙げることができる。
【0090】
次に、実質的に光透過性を有する材料について説明する。請求項13に記載しているように、少なくとも第1の材料としては、ポリマー系、ガラス系、セラミックス系よりなる群から選ばれる1種類以上の材料からなることが望ましい。ガラス系の材料としては例えば、通常のクラウンガラス、フリントガラス、Eガラス、Sガラス、石英ガラスなどが挙げられる。また、セラミックス系の材料としては例えば、Al、BeO、CaOなどが挙げられる。さらに、より多くの応用品に適用するため、例えば紫外線・赤外線の反射や、可視光領域で死角のない発色化のための織編物やフィルム、成形品として、あるいはまた、これらを所定の長さに切断した微小なチップ(小片)として光輝材として使用した加飾性・高意匠性用途には、実質的に光透過性を有するポリマー系がより望ましい。
【0091】
なお、ポリマー系材料としては、熱可塑性樹脂、熱硬化性樹脂、紫外線硬化樹脂といった種々のポリマー系の中でも、成形性及び後加工性、コスト等の点から、例えば請求項21に記載されているように、第1の材料及び第2の材料の少なくとも一方は、ポリエステル系、ポリアミド系、ポリオレフィン系、ビニル系、ポリエーテルケトン系、ポリサルファイド系、フッ素系、ポリカーボネート系の単体もしくはこれらのブレンド、あるいはこれらの共重合体のいずれかであることが望ましく、実用的なポリマー材料の組み合わせと製造が可能になる。
【0092】
次に、本発明に係わる光反射機能物体1の内部に形成される、第1の光反射構造体4a及び第2の光反射構造体4aにおいて、「十分な規則性」をもっている断面構造のバリエーションについて、さらに補足説明する。まず、図29には、第2の材料からなる微細構造体3において、x方向及びy方向の各々のピッチPは同一であるが、奇数行(Ny1,Ny3・・・)と偶数行(Ny2,Ny4・・・)に位置する第2の材料からなる微細構造体群を形成する微細構造体3の直径が互いに異なる場合を示している。
【0093】
また、図30には、Ny1行からNy4行に位置する第2の材料からなる微細構造体群を単一ユニットと考えた時、ピッチPはいずれの行も同一であって、Ny1行とNy4行に位置する第2の材料からなる微細構造体3の直径Dは等しく、Ny2行とNy3行に位置する第2の材料からなる微細構造体3の直径dが等しく、前者と後者の直径が異なる場合を示したものである。
【0094】
また、図31には、請求項13にも記載しているように、奇数行(あるいは偶数行)において、x方向にピッチPで規則的に配置されている第2の材料からなる微細構造体3と、偶数行(あるいは奇数行)において、x方向に上記と同一ピッチで配置されている第2の材料からなる微細構造体3とが互いに半ピッチずれており、しかも偶数行と奇数行に位置する最近接の微細構造体同士もピッチPとなっている場合を示したもので、いわゆる結晶学上、良く見られる六角形配列(この場合、奇数行に位置する第2の材料からなる微細構造体3と、偶数行に位置する第2の材料からなる微細構造体3とが互いに同一ピッチになっている)である。
【0095】
図32〜図34には、上記この六角形配列における反射スペクトルの一例を示す。但し、光透過性を有する第1の材料2、第2の材料としては、それぞれ前述したPET及びNy6を用い、円柱体(微細構造体)の直径D=0.19μm、ピッチP=0.28μm、微細構造体の行数Nym=5とし、入射角度αを0°、45°、60°と変えたものである。入射角α=0°、45°、60°におけるメインピーク波長λはそれぞれ、430nm、460nm、450nm程度で、入射角を大きく変えても大きなピークシフトは見られないことがわかる。したがって色味としても概ね、青色を呈している。
【0096】
このように、微細構造体群の配列を六角形配列とすることにより、広視野角度になっても干渉型発色構造体のように灰色に見えるようなことはなく、しかも安定した色味を呈することが判った(干渉型発色構造体のように、大きな色味の変化は発生しない)。以上の事例は、第2の材料からなる微細構造体3が直径D、ピッチPなる寸法で、しかも微細構造体同士が接触せず、光透過性を備えた第1の材料2を介して、ある間隔(スペース)でもって規則的に配列したものである。
【0097】
一方、実質的に回折・散乱作用に基づく光の反射機能を発揮させる上で、第2の材料からなる微細構造体同士が必ずしも、ある間隔を空けて配列している必要はなく、微細構造体3が直径D、ピッチPなる寸法で規則性を保持してさえいれば、微細構造体同士が近接していたり、接触していたりしても構わないことを本発明者らは見出した。例えば、図35においては、図2で示した直交配列の状態で、微細構造体同士が点接触している断面構造を例示しており、また、図36には図31で示した六角形配列の状態で、やはり点接触しているような場合を示したものである。
【0098】
図37は、上記図35に示した構造体(円柱体同士が接触:D=0.28μmの場合)における反射スペクトルを示す。なお、参考として、円柱体の直径Dがそれよりも小さい0.16μm、0.19μm、0.22μmの場合の反射スペクトルを図38ないし40に示す。なお、発色としては青色を狙い、材料系としては前述したPETとNy6とし、ピッチP=0.28μm、微細構造体3の行数Nym=5行、入射角度α=45°として得たものである。
【0099】
図37から明らかなように、反射ピークは2つの波長である波長λ=400nm付近と波長λ=680nm付近に認められ、メインピークはλ=680nm付近となっている。そして、この場合の色味は概ね赤紫色を呈する。また、2つの反射ピーク位置は、円柱体(微細構造体)の直径Dが小さくなってもほどんど変化せず、反射強度が変化する傾向が認められるだけで、十分実用的な光反射機能を発現することがわかる。
【0100】
このように、本発明者は,屈折率の異なる少なくとも第1、第2の材料からなり、かつ断面において少なくとも第1の材料が光透過性を有し、該第1の光透過性材料によって取り囲まれた第2の材料からなる微細断面構造群が、x軸方向、y軸方向、z軸方向での規則性を保つことによって初めて、光との相互作用による回折・散乱作用に基づいた所望の反射機能を得ることができると言うことを見出した。
【0101】
また、光反射構造体4a及び4bにおいては、第2の材料からなる微細構造体3a及び3bを覆う第1の材料2の厚みも重要になってくる。この厚みは単なる保護的な役割を担うものであっても構わないが、各種耐久性(耐摩耗性や耐引掻性等)や耐候性の観点から適正な厚みに調整されていることが望ましい。なお、このような実用的な機能に加え、適切な光透過性材料の選択と厚みの調整により、実質的に回折・散乱作用に基づく光の反射機能をさらに向上させる機能を兼ね備えることも可能である。
【0102】
例えば、光反射構造体4aの周囲に、さらに同一の、あるいは異種の光透過性材料を一次被覆、二次被覆として覆っても構わない。図41(a)及び(b)はその概略図を示したものであって、当該構造体4aの周囲に、第1の材料2及び第2の材料より屈折率の大きな第3の光透過性材料からなる層保護層6として設けることにより反射率を向上させ、さらに高品位性を高めても良い。なお、第1の材料2の厚み、あるいは第1の材料2を覆う保護層6の厚みに関しては、その光透過性材料の屈折率と厚みの積で与えられる光学的厚み(屈折率×厚み)を適正にすることにより、さらに反射率を向上させることも可能である。また、図41(b)に示すように、前記保護層(一次被覆層)6の外側をさらに被覆して二次被覆層7とすることもできる。
【0103】
また、本発明の光反射機能物体1の光沢度を高めるために、第1の材料2あるいは第2の材料のうち、より平滑性の高い材料を選択して保護層6として設けても良いし、さらに両者よりもさらに高平滑性を有する第3の光透過性材料を保護層6として設けても良い。なお、このような保護層6は繊維状やフィルム状の構造体成形の際に、複合溶融紡糸口金や成形ダイを使って一気に押出し(一体成形)しても良いし、後工程で一次被覆、二次被覆しても良い。
【0104】
さらに、請求項22に記載しているように、本発明に係わる光反射機能物体1における光反射構造体4a,4bを構成する各々の微細構造体3a,3bの材料、及びこれらを取り囲む材料の少なくともいずれかの材料が複屈折を有するものであることが望ましい。ここで、「複屈折」とは偏光方向によって屈折率が異なり、光がその進行方向と垂直な面内で最大の屈折率を示す振動方向と最小の屈折率を示す振動方向(互いに直交する)の2成分に分かれて進む現象をいう(例えば、丸善株式会社発行「繊維便覧」第195頁参照)。
【0105】
本発明の光反射機能物体1において、上記材料のうちの少なくともいずれかの材料が複屈折を有するものであると、前述したようにある方向において最大の屈折率差を利用できるというメリットが生まれ、回折・散乱作用に基づく光反射機能を一層向上させることができる。複屈折Δnの大きな材料としては、例えば請求項21で挙げた各種ポリマーのうちでは、ポリエチレンナフタレート(PEN:Δn=0.24〜0.28)、ポリエチレンテレフタレート(PET:Δn=0.24〜0.25)、ポリカーボネート(PC:Δn=0.182)、ポリブチルテレフタレート(PBT:Δn=0.153)が代表的なものである(丸善株式会社発行「繊維便覧」第196頁参照)。
【0106】
したがって、光学機能向上の点から複屈折Δnに着目すると、複屈折Δnの大きな材料と小さな材料の組み合わせを使うことが望ましい。例えば、図1(a)に示される第1の光反射構造体4aと第2の光反射構造体4bの2段配置からなる本発明の光反射機能物体1においても、それぞれの微細構造体及びそれを取り囲む光透過性材料の少なくとも一方に、複屈折Δnの比較的大きなポリエチレンナフタレートやポリエチレンテレフタレート等を用いることが望ましい。なお、繊維形態においては繊維軸方向の屈折率(n)と繊維軸に垂直方向の屈折率(n)の2つの成分の差で複屈折Δnを決定することができる(繊維においては、一般に断面内のx方向とy方向の屈折率は区別できず、n=nとなるため、繊維軸方向の屈折率(n)と、もう一方の繊維軸に垂直方向の屈折率(n)とで論じることができる)。
【0107】
繊維においては、紡糸中や延伸処理によって繊維軸方向に結晶配向するため、条件をコントロールすることにより、繊維軸方向の屈折率(n)を著しく大きくすることが可能となる。このような視点に立って、回折・散乱作用に基づく光の反射機能を考えると、第1,第2の光反射構造体等を構成する各々の微細構造体、及びこれらを取り囲む材料の少なくともいずれかの材料の複屈折Δnは0.05以上、より好ましくは0.10以上であることが望ましい。
【0108】
上記したポリエチレンナフタレート(PEN)とナイロン6(Ny6)の組み合わせを考えると、ポリエチレンナフタレートのΔn=0.24〜0.28、ナイロン6のΔnは0.08程度であり、繊維軸方向においては、0.2前後の屈折率差を確保できるというメリットが生まれる。
【0109】
次に、本発明に係わる光反射機能物体の実施形態において、可視光線領域での発色向上のため、あるいは今までにない複合色や深み感を向上させるために、前記構造体の中に、光透過性を損なわない程度の顔料含有領域が組込まれていても良い。例えば、黒色や褐色などの暗色系の顔料を組込んだ領域を、光の入射方向yに対し、光反射構造体4aや光反射構造体4bの下部、あるいは当該光反射機能物体1の下部に設けると、回折・散乱光以外の余分な光(いわゆる迷光)を吸収して、より鮮やかで深みのある質感を発現させることができる。
【0110】
この場合、第2の材料からなる微細構造体3に暗色系の顔料が含有されていても構わないし、第1の材料2に含有されていても構わない。さらに、当該光反射機能物体1の成形後に、暗色系の塗料や粘着テープなどを同様な位置に付加させても良い。また、光反射機能物体1を繊維として用いる場合、撚り糸の相手側に暗色系の糸を用いたり、縦糸あるいは横糸のいずれか一方に暗色系(例えば、黒色系や茶色系)の糸を用いたりして織編物とすることも可能である。
【0111】
一方、暗色系の顔料に代えて、白色系の顔料を組み込んだ領域を光反射機能物体1の下部に設けると、光の拡散反射が助長されるために、回折・散乱作用に基づく発色機能と、高反射体との機能を兼ね備えた発色ミラー的な機能をも発現可能となる。
【0112】
当該光反射機能物体1の断面形状や寸法は、前述のごとく特に限定されず、目的に合った形状・寸法のものが可能であるが、冒頭に述べた繊維レベルのものでは、円形断面であれ矩形断面であれ、概ねミクロンオーダの寸法のものが製造上の観点からは好ましい。
【0113】
次に、本発明に係わる光反射機能物体1を数百本から数千本というオーダで、ある断面寸法になるように束ねた状態にしてから、カッター等で機械的に切断し、請求項25に記載しているように、微小なチップ(小片)とすることも可能である。例えば、適切な含浸液(例えば、水)を使用しながら当該光反射機能物体1を数千本程度集合させて直径数十mm程度にした後、集合束の送り出し機構を備えた自動カッターで、連続的に数十μmから数mm程度の長さに切断することも可能である。なお、チッピングの方法等については、例えば、繊維機械学会編「繊維工学(II)繊維の製造、構造体及び物性」の第116頁や、同学会編「繊維工学(III)繊維の製造、構造体及び物性」の第233〜235頁に記載されている。
【0114】
あるいはまた、請求項26に記載しているように、当該光反射機能物体1を上記のごとく束ねた後、例えばフリージング処理し、各種方法によって粉砕して所定の寸法に粉砕した粉末体とすることも可能である。これらはいずれも従来にない優れた色材として各種分野に幅広く適用できるものである。
【0115】
また、請求項27あるいは28に記載しているように、このような微小なチップ(小片)や粉末体を光輝材として使用し、その光輝材による光反射性機能を有する塗料やフィルム構造体、プラスチック等の各種成形体に適用することができる。自動車用塗装としては、例えば、外板塗装、ホイールやエンブレム表面、テーブルフィッシャ、インパネ、ドアトリム等に適用可能であり、また、成形体としては、バンパー、エアロパーツ等に適用できる。
【0116】
また、自動車分野以外では、家電や玩具等のハウジング、インテリア品、建築材、スポーツ用品などの様々な内外装面に塗布することが可能となる。このような適用により、見る方向によっても大きな死角がなく、しかも鮮やかな色味と反射スペクトルの急峻さによる深み感をも兼ね備えた、優れた意匠性を実現することができる。
【0117】
次に、本発明に係わる光反射機能物体1の成形について、上記で示したポリマー系を例として説明する。すなわち、繊維状あるいはフィルム状の光学機能構造体1を成形する代表的な手段としては、複合溶融紡糸法や共押出し法が挙げられる。
【0118】
ここで、複合溶融紡糸法による光反射機能を有する構造体(繊維)の成形について触れると、公知の海島型構造成形用口金(特公昭44−13208号公報や特公昭44−18369号公報等参照)をベースに、図1に示したような島部直径D、島部同士の中心間ピッチPの規則的な直交配列型の超微細構造体群を高精度に成形できるよう相似的にスケールアップした特殊口金と、第1の材料と第2の材料を溶融可能な2種類のポリマーを用い、適切な紡糸条件(口金温度、口金下温度、総吐出量、吐出量比、巻き取り速度等)で未延伸糸を成形する。さらに所望の光学機能発現と機械特性向上を図るため、次のステップとして適切な条件下(温度、巻き取り速度、延伸比等)で熱延伸処理等を施すことによって、本発明の光反射機能物体1を得ることができる。なお、溶融可能な2種類のポリマーについては、口金流路内及び口金吐出孔下での両者の応力バランスを考慮すると、できるだけ溶融粘度特性(せん断速度−溶融粘度)の近いものが望ましい。
【0119】
上記においては、主に可視光領域の回折・散乱作用に基づく光の反射機能について説明したが、紫外線及び赤外線領域に対しても適用可能であることは言うまでもない。一例として本発明に係わる光反射機能物体における赤外線反射機能について説明する。
【0120】
すなわち、図9(b)に示した構造体(第1の光反射構造体4a/第2の光反射構造体4b/第1の光反射構造体4a)において、それぞれの構造体における微細構造体の材料をPET(平均屈折率n=1.63)、それを取り囲む材料をNy6(平均屈折率n=1.53)とし、狙いとする赤外線の反射スペクトルにおける反射ピーク波長λを0.8μmとすると、第1の光反射構造体4aにおける微細構造体のピッチP1は0.506μm、第2の光反射構造体4bにおける微細構造体のピッチP2は0.253μm、また、それぞれの微細構造体の直径D、Dを0.169μm、0.253μmと設定することにより、極めて高い赤外線反射体を得ることができる。
【0121】
【実施例】
以下、本発明を実施例に基づいて具体的に説明するが、これら実施例によって本発明が限定されるものではない。
【0122】
(実施例1)
光透過性を有する第1の材料2として、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また、微細構造体3を形成するための第2の材料として、平均屈折率n=1.53のナイロン6(Ny6)を選択し、下記条件にて、図1(a)に示すような矩形型の2段構造体からなる青色発色する光反射機能物体を狙って紡糸を行った。
【0123】
紡糸は、次の手順で行った。まず、口金は特開平8−226011号公報に記載の複合紡糸口金を一部修正したものを準備し、これを溶融複合紡糸装置に装着した上で、紡糸温度285℃、巻き取り速度3km/minから5km/minの条件下で、吐出量を適宜変えて未延伸糸を得た。この未延伸糸は、さらに熱延伸処理により細径化され、光反射機能を有する光反射機能物体1を得た。
【0124】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形で、その断面寸法は約5.6μm×22μmであった。またその内部には、第1及び第2の光反射構造体4a及び4bが積木状に形成され、第1の光反射構造体4aの内部には、1本当たり、平均直径D=0.19μm、平均ピッチP=0.28μmの円柱体からなる微細構造体群(7行×60列の直交配列型)が、また、第2の光反射構造体4bの内部には、1本当たり、平均直径D=0.07μm、x方向の平均ピッチP2x=0.07μm、y方向の平均ピッチP2y=0.14μmの円柱体からなる微細構造体群(5行×60列の直交配列型)が規則的に配列していることが確認された。
【0125】
この単糸を、積分球を具備した分光光度計(日立製作所製モデルU−4000を改良したもの)を用い、可視光領域で、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは、波長λ=476nmにメインピークをもち、その反射率Rは72%、しかもその波長におけるスペクトルの半値幅Bも約86nmと小さく、スペクトルとしては急峻な形状を示した。
【0126】
また、角度0°位での目視でも青色に発色し、しかも深み感が感じられた。さらに見る角度を0°〜60°位に大きく変えても干渉型繊維のように灰色的に見えることなく、青紫色から青緑色に明らかに発色していることが確認された。
【0127】
(実施例2)
実施例1と同様のポリマーを使用し、狙いとする断面構造は図5(b)に示したような矩形型で3段構造体(第1の光反射構造体4a/第2の光反射構造体4b/第1の光反射構造体4a)からなる青色発色する光反射機能物体を狙って紡糸した。
【0128】
紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用して、実施例1と同様の要領による紡糸及び熱延伸処理によって細径化し、光反射機能を有する物体1を得た。
【0129】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形で、その断面寸法は約6.8μm×25μmであった。またその内部には、光反射構造体4a/光反射構造体4b/光反射構造体4aが積木状に形成され、上下の構造体4aの内部には、それぞれ、平均直径D=0.09μm、平均ピッチP=0.28μmの円柱体からなる微細構造体群(3行×60列の直交配列型)が、また、中央の構造体4bの内部には、1本当たり、平均直径D=0.07μm、x方向の平均ピッチP2x=0.07μm、y方向の平均ピッチP2y=0.14μmの円柱体からなる微細構造体群(12行×60列の直交配列型)が規則的に配列していた。
【0130】
この単糸を上記分光光度計を用いて、可視光領域で、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは、波長λ=482nm付近にメインピークをもち、その反射率Rは約92%、スペクトルの半値幅Bは約78nmと極めて小さく、スペクトルとしては急峻であった。また、角度0°位での目視でも青色に発色し、しかも深み感が感じられた。さらに見る角度を0°〜60°位に大きく変えても、干渉型繊維のように灰色的に見えることなく、青紫色から青緑色に明らかに発色していることが確認された。
【0131】
(実施例3)
上記実施例1及び2と同様のポリマーを使用し、狙いとする断面構造は図10(a)に示したような矩形型の2段構造体からなる緑色発色する光反射機能物体を狙って紡糸した。紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用し、実施例1及び2と同様の要領によって紡糸及び熱延伸処理を行い、光反射機能を有する物体1を得た。
【0132】
得られた糸の断面を電子顕微鏡で観察したところ、断面形状は矩形で、その断面寸法は約6.2μm×26μmであった。またその内部には、光反射構造体4a及び4bが積木状に形成され、光反射構造体4aの内部には、1本当たり、直径D=0.16μm、ピッチP=0.28μmの円柱体からなる微細構造体群(7行×60列の六角形配列型)が、また光反射構造体4bの内部には、1本当たり、平均直径D=0.08μm、x方向の平均ピッチP2x=0.08μm、y方向の平均ピッチP2y=0.16μmの円柱体からなる微細構造体群(12行×60列の直行配列型)が規則的に配列していた。
【0133】
この単糸を上記分光光度計を用い、可視光領域において、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは、波長λ=0.52μmにメインピークをもち、その反射率Rは約72%、スペクトルの半値幅Bは約89nmと極めて小さく、スペクトルとしては急峻であった。また、角度0°位での目視でも緑色に発色していることが確認されると共に、見る角度を0°〜60°位に大きく変えた場合も、干渉型繊維のように灰色的に見えることなく、緑青色及び青緑色に明らかに発色していることが確認された。
【0134】
(実施例4)
上記実施例1,2及び3と同様のポリマーを使用し、狙いとする断面構造は図11(a)に示したような矩形型の2段構造体からなる橙色発色する光反射機能物体を狙って紡糸した。紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用し、上記各実施例と同様の要領によって紡糸及び熱延伸処理を行い、光反射機能を有する物体1を得た。
【0135】
得られた糸の断面を電子顕微鏡で観察したところ、断面形状は矩形で、その断面寸法は約6.2μm×19μmであった。またその内部には、光反射構造体4a及び4bが積木状に形成されており、光反射構造体4aの内部には、1本当たり、直径D=0.09μm、ピッチP=0.16μmの円柱体からなる微細構造体群(行数:4、列数:60の六角形配列型)が、また光反射構造体4bの内部には、1本当たり、平均直径D=0.08μm、x方向の平均ピッチPx=0.08μm、y方向の平均ピッチP2y=0.16μmの円柱体からなる微細構造体群(12行×60列の直行配列型)が規則的に配列していることが確認された。
【0136】
この単糸を上記分光光度計を用いて、可視光領域において、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは、波長λ=0.62μmにメインピークをもち、その反射率Rは約68%、スペクトルの半値幅Bは約90nmであった。また、目視でも橙色に発色していることが確認され、さらに見る角度を0°〜60°位に大きく変えたても、干渉型繊維のように灰色的に見えることもなく、黄橙色から橙赤色に明らかに発色していることが確認された。
【0137】
(実施例5)
光透過性を有する第1の材料2として、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また、微細構造体3を形成するための第2の材料として、第1の光反射構造体4a用には屈折率n=1.0の空気孔を、第2の光反射構造体4b用には屈折率n=1.49のポリメチルメタクリレート(PMMA)を選択し、下記条件にて、図1(a)に示すような矩形型で、2段構造体からなる青色発色する光反射機能物体を狙って紡糸した。
【0138】
紡糸については、中空繊維作成用の公知の複合紡糸口金を一部修正した口金を準備し、それを溶融複合紡糸装置に装着した上で、紡糸温度260℃、巻き取り速度3km/minから5km/minの条件下で、吐出量を適宜変えて未延伸糸を得た。この未延伸糸は、さらに熱延伸処理により細径化され、光反射機能を有する物体1を得た。
【0139】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は楕円形状で、その寸法は約4.8μm×21μmであった。そして、光反射構造体4aの内部には、1本当たり直径D=0.19μm、ピッチP=0.28μmの円柱状の空気孔からなる微細構造体群(行数:5、列数50の六角形配列型)が、また光反射構造体4bの内部には1本当たり、平均直径D=0.08μm、x方向の平均ピッチP2x=0.08μm、y方向の平均ピッチP2y=0.16μmの円柱体からなる微細構造体群(12行×60列の六角形配列型)が規則的に配列していることが確認された。
【0140】
この単糸を上記分光光度計を用いて、可視光領域で、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=0.46μmにメインピークをもち、その反射率Rは約85%と極めて大きな値を示し、スペクトルの半値幅Bは約92nmnmであった。また、目視でも青色に発色していることが確認された。さらに見る角度を0°〜60°位に大きく変えても、干渉型繊維のように灰色的に見えることなく、明らかに青紫色から紫青色に発色していることが確認された。
【0141】
(実施例6)
光透過性を有する第1の材料2として、平均屈折率n=1.68のポリエチレンナフタレート(PEN)を、また、微細構造体群を形成するための第2の材料として、平均屈折率n=1.49のポリメチルメタクリレート(PMMA)を選択し、下記条件にて、図8(b)に示すような矩形型で2段構造体からなる青色発色する光反射機能物体(繊維)を狙って紡糸を行った。
【0142】
紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを準備し、これを溶融複合紡糸装置に装着した上で、紡糸温度285℃、巻き取り速度3km/minの条件下で、吐出量を適宜変えて未延伸糸を得た。この未延伸糸はさらに2.5倍に熱延伸処理されて、細径化・結晶配向化され、光反射機能を有する物体1を得た。
【0143】
この処理の後、PEN側の屈折率を干渉顕微鏡で測定したところ、繊維軸方向の屈折率n=1.71、繊維軸に垂直方向の屈折率n=1.58となり、複屈折Δn=0.13であった。一方、PMMA側の屈折率は繊維軸方向及び繊維軸方向に垂直方向ともn=1.49であり、複屈折Δn=0であった。
【0144】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形型で、その内部には、光反射構造体4a及び4bが積木状に形成されており、光反射構造体4aの内部には、平均直径D=0.09μm、ピッチP=0.28μmの円柱体からなる微細構造体群(行数:6、列数:60の直交配列型)が、また、光反射構造体4bの内部には、平均直径D=0.14μm、ピッチP=0.14μmの円柱体からなる微細構造体群(行数:12、列数:119の直交配列型)が規則的に配列していた。
【0145】
この単糸を上記分光光度計を用いて、可視光領域で、入射角θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=0.48μmにメインピークをもち、その反射率Rも複屈折Δnの大きな差異に基づいて、82%と大きな値を示し、またスペクトルの半値幅Bも120nmと比較的狭かった。また、目視でも青色に発色していることが顕著に確認され、さらに見る角度を0°〜60°位に変えても、干渉型繊維のように灰色的に見えることはなく、明らかに青色から紫青色に発色していることが確認された。
【0146】
(実施例7)
上記実施例6と同様のポリマーを使用し、狙いとする断面構造は図9(b)に示したような矩形型で3段構造体からなる青色発色する光反射機能物体(繊維)を狙って紡糸した。紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用して、実施例6と同様の要領によって紡糸及び熱延伸処理を行い、光反射機能を有する物体1を得た。
【0147】
この処理の後、PEN側の屈折率を干渉顕微鏡で測定したところ、繊維軸方向の屈折率n=1.71、繊維軸に垂直方向の屈折率n=1.58となり、複屈折Δn=0.13であった。一方、PMMA側の屈折率は繊維軸方向及び繊維軸方向に垂直方向ともn=1.49であり、複屈折Δn=0であった。
【0148】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形で、その内部には、光反射構造体4a、光反射構造体4b、光反射構造体4aが積木状に形成され、上下の構造体4aの内部には、平均直径D=0.10μm、ピッチP=0.28μmの円柱体からなる微細構造体群(行数:3、列数:60の直交配列型)が、また、中央の構造体4bの内部には、平均直径D=0.14μm、ピッチP=0.14μmの円柱体からなる微細構造体群(行数:12、列数:60の直交配列型)が規則的に配列していた。
【0149】
この単糸を上記分光光度計を用いて、可視光領域で、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは、波長λ=0.48μm付近にメインピークをもち、その反射率Rも複屈折Δnの大きな差異に基づいて、92%と大きな値を示し、スペクトルの半値幅Bも110nmと比較的狭かった。また、目視でも青色に発色していることが顕著に確認され、さらに見る角度を0°〜60°位に変えても、干渉型繊維のように灰色的に見えることはなく、明らかに青色から紫青色に発色していることが確認された。
【0150】
(実施例8)
光透過性を有する第1の材料2aとして、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また、微細構造体3aを形成するための第2の材料として、平均屈折率nb=1.53のナイロン6(Ny6)を選択し、下記条件にて、図14(a)に示すような矩形型の2段構造からなる緑色発色する光反射機能物体を狙って紡糸を行った。
【0151】
紡糸は、前述の複合紡糸口金(特開平8−226011号公報記載の口金を修正したもの)を用い、紡糸温度285℃、巻取り速度3km/minから5km/minの範囲で吐出量を適宜変えて未延伸糸を得た。この未延伸糸を熱延伸処理することにより、細径化し、光反射機能を有する光反射機能物体1を得た。
【0152】
得られた糸の断面を電子顕微鏡で観察したところ、その内部には第1の光反射構造体4aおよび第2の光反射構造体4bが2段形成されていた。第1の光反射構造体4aの中には、1本当り、平均直径D=0.19μm、x方向の平均ピッチP1x=0.32μm、y方向の平均ピッチP1y=0.28μmの円柱体からなる3角形状配列(3個で1ユニットとなる)をなした微細構造体群が、y方向に7段形成されていた。また、第2の光反射構造体4bの中には、1本当り、平均直径D=0.18μm、x方向の平均ピッチP2x=0.30μm、y方向の平均ピッチP2y=0.26μmの円柱体からなる3角形状配列(3個で1ユニットとなる)をなした微細構造体群が、やはりy方向に7段形成されていた。
【0153】
この単糸を積分球を具備した前述の分光光度計を用い、可視光領域で入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=525nmにメインピークを持ち、その反射率Rは94%に達していた(図43のa参照)。また、角度0°での目視でも緑色に発色し、見る角度を0°〜60°位に変えても灰色に見えることはなく、緑色から緑青色に発色していることが確認された。
【0154】
(実施例9)
光透過性を有する第1の材料2aとして、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また微細構造体3aを形成するための第2の材料として、平均屈折率nb=1.53のナイロン6(Ny6)を選択し、下記条件にて、図15(a)に示すような矩形型の3段構造からなる緑色発色する光反射機能物体を狙って紡糸を行った。
【0155】
紡糸は、前述の複合紡糸口金を用い、紡糸温度285℃、巻取り速度3km/minから5km/minの範囲で吐出量を適宜変えて未延伸糸を得た。この未延伸糸を熱延伸処理することにより、細径化し、光反射機能を有する光反射機能物体1を得た。
【0156】
得られた糸の断面を電子顕微鏡で観察したところ、その内部には第2の光反射構造体4bを挟んで、その両側に第1の光反射構造体4aが配置された3段重ねで形成されていた。第1の光反射構造体4aの中には、1本当り、平均直径D=0.19μm、x方向の平均ピッチP1x=0.32μm、y方向の平均ピッチP1y=0.28μmの円柱体からなる3角形状配列(3個で1ユニットとなる)をなした微細構造体群がy方向に5段形成されていた。また、第2の光反射構造体4bの中には、1本当り、平均直径D=0.18μm、x方向の平均ピッチP2x=0.30μm、y方向の平均ピッチP2y=0.26μmの円柱体からなる直交配列(正方形状配列)をなした微細構造体群がy方向に7段形成されていた。また、図中下側に位置する第1の光反射構造体4aの中には、上側の光反射構造4a内に位置する三角形状配列とは逆方向(三角形の頂点が表面に向く形)に配列したものが形成されていた。
【0157】
この単糸を積分球を具備した前述の分光光度計を用い、可視光領域で入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=545nmにメインピークを持ち、その反射率Rは82%に達していた(図42のb参照)。また、角度0°での目視でも緑色に発色し、見る角度を0°〜60°位に変えても灰色に見えることはなく、緑色から緑青色に発色していることが確認された。
【0158】
(実施例10)
光透過性を有する第1の材料2aとして、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また、微細構造体3aを形成するための第2の材料として、平均屈折率n=1.49のポリメチルメタクリレート(PMMA)を選択し、下記条件にて、図14(c)に示すような矩形型の2段構造からなる青緑色発色する光反射機能物体を狙って紡糸を行った。
【0159】
紡糸は、前述の複合紡糸口金を用い、紡糸温度285℃、巻取り速度3km/minから5km/minの範囲で吐出量を適宜変えて未延伸糸を得た。この未延伸糸を熱延伸処理することにより、細径化し、光反射機能を有する光反射機能物体1を得た。
【0160】
得られた糸の断面を電子顕微鏡で観察したところ、その内部には第1の光反射構造体4a、第2の光反射構造体4bが2段重ねで形成されていた。第1の光反射構造体4aの中には、1本当り、平均直径D=0.20μm、x方向の平均ピッチP1x=0.292μm、y方向の平均ピッチP1y=0.292μmの円柱体からなる直交配列(正方形状)をなした微細構造体群がy方向に7段形成されていた。また、第2の光反射構造体4bの中には、1本当り、平均直径D=0.289μm、x方向の平均ピッチP2x=0.30μm、y方向の平均ピッチP2y=0.26μmの円柱体からなる3角形状配列(3円柱体が1ユニットを形成する)をなした微細構造体群がy方向に5段形成されていた。なお、第2の光反射構造体の内部に位置する微細構造体の三角形状配列は、逆方向(三角形の頂点が表面に向く形)に配列したものが形成されていた。
【0161】
この単糸を積分球を具備した前述の分光光度計を用い、可視光領域で入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=502nmにメインピークを持ち、その反射率Rは71%に達していた(図42のc参照)。また、角度0°での目視でも青緑色に発色し、見る角度を0°〜60°位に変えても灰色に見えることはなく、青緑色から青色に発色していることが確認された。
【0162】
(実施例11)
実施例1ないし4と同様のポリマーを使用し、下記条件にて図1(a)に示すような矩形型で、2段構造体からなる赤外線反射機能を有する物体(繊維)を狙って紡糸を行った。紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用し、上記各実施例と同様の要領によって紡糸及び熱延伸処理を行い、光反射機能を有する物体1を得た。
【0163】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形体で、その内部には光反射構造体4a及び光反射構造体4bが積木状に形成されており、構造体4aには平均直径D=0.17μm、平均ピッチP=0.51μmの円柱状をなす微細構造体群(7行×60列の直交配列型)が、また、光反射構造体4bの内部には平均直径D=0.13μm、x方向の平均ピッチP2x=0.13μm、y方向の平均ピッチP2y=0.25μmの円柱状からなる微細構造体群(5行×60列)が規則的に配列していた。
【0164】
この単糸を、積分球を具備した上記分光光度計を用いて、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=0.82μm付近にメインピークをもち、その反射率は約73%と比較的高く、また、その波長における半値幅Bは約100nmであった。
【0165】
(実施例12)
上記実施例6及び7と同様のポリマーを使用し、下記条件にて図9(b)に示すような矩形型で3段構造体からなる赤外線反射機能を有する物体(繊維)を狙って紡糸を行った。紡糸は、特開平8−226011号公報記載の複合紡糸口金を一部修正したものを使用して、実施例6,7と同様の要領によって紡糸及び熱延伸処理を行い、光反射機能を有する物体1を得た。
【0166】
この処理の後、PEN側の屈折率を干渉顕微鏡で測定したところ、繊維軸方向の屈折率n=1.68、繊維軸に垂直方向の屈折率n=1.57となり、複屈折Δn=0.11であった。一方、PMMA側の屈折率は繊維軸方向及び繊維軸方向に垂直方向ともn=1.49であり、複屈折Δn=0であった。
【0167】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は矩形型で、その内部には光反射構造体4a、光反射構造体4b、光反射構造体4aが積木状に形成され、構造体4aの内部には、平均直径D=0.17μm、ピッチP=0.51μmの円柱体からなる微細構造体群(行数:3、列数:60の直交配列型)が、また、構造体4bの内部には、平均直径D=0.25μm、ピッチP=0.25μmの円柱体からなる微細構造体群(行数:12、列数:119の直交配列型)が規則的に配列していた。
【0168】
この単糸を上記分光光度計を用い、可視光領域で、入射角θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=0.82μmにメインピークをもち、その反射率Rも複屈折Δnの大きな差異に基づいて、82%と極めて大きな値を示し、またスペクトルの半値幅Bも110nmであった。
【0169】
(実施例13)
光透過性を有する第1の材料2として、平均屈折率n=1.63のポリエチレンテレフタレート(PET)を、また、微細構造体3を形成するための第2の材料として、第1の光反射構造体4a用には屈折率n=1.0の空気孔を、第2の光反射構造体4b用には屈折率n=1.49のポリメチルメタクリレート(PMMA)を選択し、下記条件にて、図1(a)に示すような矩形型で、2段構造体からなる赤外線反射機能を有する物体(繊維)を狙って紡糸を行った。
【0170】
紡糸は、中空繊維作成用の公知の複合紡糸口金を一部修正した口金を準備し、それを溶融複合紡糸装置に装着した上で、紡糸温度260℃、巻き取り速度3km/minから5km/minの条件下で、吐出量を適宜変えて未延伸糸を得た。この未延伸糸は、さらに熱延伸処理により細径化され、光反射機能を有する物体1を得た。
【0171】
得られた糸の断面を電子顕微鏡で観察したところ、糸断面形状は楕円形状で、光反射構造体4aの内部には、1本当たり直径D=0.40μm、ピッチP=0.61μmの円柱状の空気孔からなる微細構造体群(行数:5、列数50の六角形配列型)が、また光反射構造体4bの内部には、1本当たり、平均直径D=0.13μm、x方向の平均ピッチP2x=0.13μm、y方向の平均ピッチP2y=0.26μmの円柱体からなる微細構造体群(12行×60列の六角形配列型)が規則的に配列していることが確認された。
【0172】
この単糸を上記分光光度計を用いて、可視光領域で、入射角度θ=0°にて反射スペクトルを測定した。なお、反射率は標準白色板を基準とした。得られた反射スペクトルは波長λ=0.81μmにメインピークをもち、その反射率Rは約8%と極めて大きな値を示し、スペクトルの半値幅Bは約98nmであった。
【0173】
【発明の効果】
以上説明したように、本発明に係わる光反射機能物体においては、光透過性を有する第1の材料によって取り囲まれた第2の材料からなる複数の微細構造体(微細構造体群)が、実質的に回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置された光反射構造体を形成し、かつ異なる規則性をもった前記光反射構造体が当該光反射機能物体の内部に少なくとも2段に配置されているので、広視野角度になっても灰色に見えたり(死角がある)、レインボー色を発現したりするということを解消でき、高品位な繊維状、あるいはフィルム状の構造体を提供することができ、しかも反射スペクトルの半値幅も狭くなるので、スペクトルの急峻さに基づく深み感も付与できるという極めて優れた効果がもたらされる。さらに、当該光反射機能物体は、微小なチップや粉末体に比較的容易にかつ安価に加工することができるので、光輝材として塗料やプラスチック成形体、さらには不織布や紙などにも適用可能であり、当該構造体の有する光学機能に基づく意匠性を種々の物品に適用することができる。
【図面の簡単な説明】
【図1】(a) 本発明に係わる光反射機能物体の基本構造を示す斜視図である。
(b) 本発明に係わる光反射機能物体において、入射角、回折角等の定義を示す説明図である。
【図2】図1に示した光反射機能物体におけるx−y平面の拡大説明図である。
【図3】本発明に係わる光反射機能物体の作用原理を示す説明図である。
【図4】(a) 本発明に係わる光反射機能物体の実施形態として第1〜第Nの光反射構造体からなり、第2〜第Nの光反射構造体におけるピッチが等しく直径が異なる例を示す断面図である。
(b) 本発明の実施形態として第1〜第Nの光反射構造体からなり、第2〜第Nの光反射構造体におけるピッチ及び直径が異なる例を示す断面図である。
【図5】(a) 本発明の実施形態として第1の光反射構造体の上に第2の光反射構造体が位置する例を示す斜視図である。
(b) 同じく実施形態として第1の光反射構造体の間に第2の光反射構造体を挟んだ例を示す斜視図である。
【図6】(a) 本発明の実施形態として第2の光反射構造体の上に円形断面の微細構造体からなる第2の光反射構造体が位置する例を示す断面図である。
(b) 同じく実施形態として第2の光反射構造体の上に三角形断面の微細構造体からなる第2の光反射構造体が位置する例を示す断面図である。
【図7】本発明に係わる光反射機能構物体の反射スペクトルを光反射構造体が一つのみの場合と比較して示すグラフである。
【図8】(a) 本発明に係わる光反射機能物体において第2の光反射構造体から反射される光の波長が第1の光反射構造体から反射される光の波長λの1/2となるように設定する例を示す斜視図である。
(b) 図8(a)において、第2の光反射構造体内の微細構造体の直径とピッチが等しい場合の例を示す斜視図である。
【図9】(a) 第1の光反射構造体の間に第2の光反射構造体を挟んだ光反射機能物体において第2の光反射構造体から反射される光の波長が第1の光反射構造体から反射される光の波長λの1/2となるように設定する例を示す断面図である。
(b) 図9(a)において、第2の光反射構造体内の微細構造体の直径とピッチが等しい場合の例を示す斜視図である。
【図10】(a)ないし(c)は直交配列の第1の光反射構造体と六角形配列の第2の光反射構造体とを組み合わせた形態例を示すそれぞれ斜視図である。
【図11】(a)ないし(c)は六角形配列を有する第1の光反射構造体と第2の光反射構造体とを組み合わせた形態例を示すそれぞれ斜視図である。
【図12】(a)及び(b)は直交配列を有する第2の光反射構造体を直交配列の第1の光反射構造体と六角形配列の第3の光反射構造体とで挟持した形態例を示す斜視図である。
【図13】(a)及び(b)は六角形配列を有する第2の光反射構造体を直交配列の第1の光反射構造体と六角形配列の第3の光反射構造体とで挟持した形態例を示す斜視図である。
【図14】(a) 本発明に係わる光反射機能物体の実施形態として三角形状配列の微細構造体群を備えた第1及び第2の光反射構造体からなる例を示す断面図である。
(b) 本発明の実施形態として直交配列の微細構造体群を備えた光反射構造体の上に三角形状配列の光反射構造体が位置する例を示す断面図である。
(c) 同じく実施形態として三角形状配列の微細構造体群を備えた光反射構造体の上に直交配列の光反射構造体が位置する例を示す断面図である。
【図15】(a) 本発明の実施形態として直交配列の微細構造体群を備えた光反射構造体を三角形状配列の微細構造体群を備えた光反射構造体で挟んだ例を示す断面図である。
(b) 同じく実施形態として五角形状配列の微細構造体群を備えた光反射構造体を三角形状配列の微細構造体群を備えた光反射構造体で挟んだ例を示す断面図である。
【図16】(a) 本発明の実施形態として三角形状配列の微細構造体群を備えた光反射構造体を八角形状配列の微細構造体群を備えた光反射構造体で挟んだ例を示す断面図である。
(b) 同じく実施形態として三角形状、五角形状および八角形状配列の微細構造体群を備えた第1〜第3の光反射構造体から成る例を示す断面図である。
【図17】(a) 本発明に係わる光反射機能物体の実施形態として第2の光反射構造体の上に異なる波長の光を出射するブロック状の光反射構造体をx方向に並列させた構造例を示す断面図である。
(b) 本発明の実施形態として異なる波長の光を出射するブロック状の第1〜第3の光反射構造体をy方向に生み重ねた構造例を示す断面図である。
【図18】図1に示した光反射機能構物体の光反射構造体による入射角度α=0°のときの反射スペクトルを示すグラフである。
【図19】図1に示した光反射機能構物体の光反射構造体による入射角度α=15°のときの反射スペクトルを示すグラフである。
【図20】図1に示した光反射機能構物体の光反射構造体による入射角度α=30°のときの反射スペクトルを示すグラフである。
【図21】図1に示した光反射機能構物体の光反射構造体による入射角度α=45°のときの反射スペクトルを示すグラフである。
【図22】図1に示した光反射機能構物体の光反射構造体による入射角度α=60°のときの反射スペクトルを示すグラフである。
【図23】図1に示した光反射機能物体における微細構造体の径を変化させた場合の入射角度αと反射ピーク波長λとの関係を示すグラフである。
【図24】(a) 本発明に係わる光反射機能物体の他の実施形態として芯鞘型微細構造体による直交配列型の光反射構造体を示す斜視図である。
(b) 図24(a)に示した光反射構造体のx−y平面における拡大説明図である。
【図25】(a)ないし(c)は本発明に係わる光反射機能物体における光反射構造体の実施形態として直交配列した微細構造体の断面が楕円形、矩形及び多角形の例を示すx−y平面の拡大説明図である。
【図26】(a) 本発明に係わる光反射機能物体における光反射構造体の実施形態として球状微細構造体による直交配列型の例を示す斜視図である。
(b) 図26(a)に示した光反射構造体における球状微細構造体の拡大説明図である。
【図27】(a)ないし(g)は本発明に係わる光反射機能物体の形状例を示すそれぞれ断面図である。
【図28】チッピング下本発明に係わる光反射機能物体の小片を塗装用光輝材として含有する塗膜の構造を示す概念図である。
【図29】本発明に係わる光反射機能物体における光反射構造体の実施形態として直交配列した円柱形微細構造体の径を行ごとに変えた例を示すx−y平面の拡大説明図である。
【図30】本発明に係わる光反射機能物体における光反射構造体の実施形態として直交配列した円柱形微細構造体の径を2行ごとに変えた例を示すx−y平面の拡大説明図である。
【図31】(a) 本発明に係わる光反射機能物体における光反射構造体の実施形態として円形断面の微細構造体による六角形配列型の例を示す斜視図である。
(b) 図31(a)に示した光反射構造体のx−y平面における拡大説明図である。
【図32】図31に示した光反射構造体による入射角度α=0°のときの反射スペクトルを示すグラフである。
【図33】図31に示した光反射構造体による入射角度α=45°のときの反射スペクトルを示すグラフである。
【図34】図31に示した光反射構造体による入射角度α=60°のときの反射スペクトルを示すグラフである。
【図35】本発明に係わる光反射機能物体における光反射構造体の実施形態として直交配列した円柱形微細構造体が互いに接触した例を示すx−y平面の拡大説明図である。
【図36】本発明に係わる光反射機能物体における光反射構造体の実施形態として六角形配列した円柱形微細構造体が互いに接触した例を示すx−y平面の拡大説明図である。
【図37】図35に示した光反射構造体であって円柱形微細構造体の径が0.28μmのときの反射スペクトルを示すグラフである。
【図38】図35に示した光反射構造体であって円柱形微細構造体の径が0.16μmのときの反射スペクトルを示すグラフである。
【図39】図35に示した光反射構造体であって円柱形微細構造体の径が0.19μmのときの反射スペクトルを示すグラフである。
【図40】図35に示した光反射構造体であって円柱形微細構造体の径が0.22μmのときの反射スペクトルを示すグラフである。
【図41】(a)及び(b)は本発明に係わる光反射機能物体における光反射構造体の実施形態として当該構造体の周囲に一次被覆層及び一次、二次被覆層を設けた例を示す断面説明図である。
【図42】実施例8(a)、実施例9(b)及び実施例10(c)により得られた光反射機能構物体による入射角度α=0°のときの反射スペクトルを示すグラフである。
【符号の説明】
1 光反射機能物体
2,2a,2b 第1の材料
3,3a,3b 微細構造体
4a 第1の光反射構造体
4b 第2の光反射構造体

Claims (28)

  1. 可視光線、赤外線及び紫外線の反射特性のうちの少なくともいずれかの光学機能を有する繊維状あるいはフィルム状の物体であって、
    該物体の内部に、屈折率の異なる少なくとも第1及び第2の材料からなり、少なくとも第1の材料が光透過性を有し、第2の材料からなる複数の微細構造体が第1の材料により取り囲まれた状態で回折・散乱作用に基づく光の反射機能を発現させるのに十分な規則性をもって配置された光反射構造体を有し、異なる規則性を備えた光反射構造体が少なくとも2段配設してあることを特徴とする光反射機能物体。
  2. 少なくとも第1及び第2の光反射構造体内に位置する微細構造体の断面形状が、円形、楕円形、矩形及び多角形から成る群から選ばれた少なくとも1種であることを特徴とする請求項1に記載の光反射機能物体。
  3. 第1の光反射構造体内に位置する微細構造体同士のピッチをP、第2の光反射構造体内に位置する微細構造体同士のピッチをP、第(N−1)の光反射構造体内に位置する微細構造体同士のピッチをPN−1、第Nの光反射構造体内に位置する微細構造体同士のピッチをPとするとき、
    ,PN−1,・・・,P<P
    であることを特徴とする請求項1又は2に記載の光反射機能物体。
  4. 光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向とするとき、第1の光反射構造体内に位置する微細構造体のx方向における断面寸法をL、微細構造体同士のピッチをP、第2の光反射構造体内に位置する微細構造体のx方向における断面寸法をL、微細構造体同士のピッチをPとするとき、
    <L、かつP<P
    であることを特徴とする請求項1〜3のいずれか1つの項に記載の光反射機能構造体。
  5. 光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向とするとき、第2の光反射構造体内に位置する微細構造体のx方向における断面寸法Lと、微細構造体同士のx方向のピッチをP2xとの間に、
    2x=L
    なる関係があることを特徴とする請求項1〜4のいずれか1つの項に記載の光反射機能構造体。
  6. 少なくとも第1の光反射構造体を挟んで、その両側に第2の光反射構造体が配置されていることを特徴とする請求項1又は2に記載の光反射機能物体。
  7. 少なくとも第2の光反射構造体を挟んで、その両側に第1の光反射構造体が配置されていることを特徴とする請求項1又は2に記載の光反射機能物体。
  8. 光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向、さらにx−y平面に直交する微細構造体群の奥行方向をz方向とするとき、第1及び/又は第2の光反射構造体内に位置する微細構造体がz方向に一様に連続していることを特徴とする請求項1〜5のいずれか1つの項に記載の光反射機能物体。
  9. 第1の光反射構造体内に位置する微細構造体の屈折率をn、微細構造体同士のピッチをP、前記微細構造体を取り囲む光透過性材料の屈折率をn、第2の光反射構造体内に位置する微細構造体の屈折率をn、微細構造体同士のピッチをP、前記微細構造体を取り囲む光透過性材料の屈折率をnとし、さらに第1の光反射構造体から反射される光の波長をλとするとき、前記ピッチP,Pが以下の関係を満足することを特徴とする請求項1〜8のいずれか1項に記載の光反射機能物体。
    =λ/m・・・(1)
    =(λ/2)/m・・・(2)
    (式中のm,mは第1及び第2の光反射構造体の見かけの屈折率であって、
    =n×(A/100)+n×(B/100)
    =n×(C/100)+n×(E/100)
    A+B=100
    C+E=100
    で与えられる。なお、B及びAは第1の光反射構造体断面に占める微細構造体及び該微細構造体を取り囲む光透過性材料の面積割合、またE及びCは第2の光反射構造体断面に占める微細構造体及び該微細構造体を取り囲む光透過性材料の面積割合を示す。)
  10. 第2の光反射構造体における微細構造体同士のx方向及びy方向のピッチをそれぞれP2x及びP2yとし、微細構造体のx方向及びy方向の断面寸法をそれぞれL2x及びL2yとすると、
    2x=P2y=L2x=L2y
    であることを特徴とする請求項9記載の光反射機能物体。
  11. 第1及び/又は第2の光反射構造体において、光の入射方向をy方向、これに対向する複数の微細構造体からなる微細構造体群の方向をx方向とするとき、第1の材料内部に所定断面形状を有する微細構造体がx−y平面内で多角形配列の規則的配列をなしていることを特徴とする請求項1〜10のいずれか1項に記載の光反射機能物体。
  12. 上記微細構造体がx−y平面内で八角形の規則的配列をなしていることを特徴とする請求項11に記載の光反射機能物体。
  13. 上記微細構造体がx−y平面内で六角形の規則的配列をなしていることを特徴とする請求項11に記載の光反射機能物体。
  14. 上記微細構造体がx−y平面内で五角形の規則的配列をなしていることを特徴とする請求項11に記載の光反射機能物体。
  15. 上記微細構造体がx−y平面内で行と列のマトリックス状(アレイ状)の規則的配列をなしていることを特徴とする請求項11に記載の光反射機能物体。
  16. 上記微細構造体がx−y平面内で三角形の規則的配列をなしていることを特徴とする請求項11に記載の光反射機能物体。
  17. 微細構造体の断面形状が円形であって、円形断面における断面寸法(直径)をL、円形微細構造体により構成される行と列のマトリックス状の配列規則性における隣接する微細構造体同士のピッチをP、回折・散乱作用による反射ピーク波長をλとしたとき、サイズパラメータα(=λ/2πr)及びピッチPが
    =2r
    10−2≦α≦10
    2r≦P
    なる関係を満たすことを特徴する請求項1〜10のいずれか1項に記載の光反射機能物体。
  18. 第1及び/又は第2の光反射構造体において、微細構造体が所定の断面形状を有し、異なる波長の光を出射するに十分な規則性をもった微細構造体群がx方向に複数のブロックとして存在することを特徴とする請求項1〜17のいずれか1項に記載の光反射機能物体。
  19. 第1及び/又は第2の光反射構造体において、微細構造体が所定の断面形状を有し、異なる波長の光を出射するに十分な規則性をもった微細構造体群がy方向に複数のブロックとして存在することを特徴とする請求項11〜18のいずれか1項に記載の光反射機能物体。
  20. 第1の材料がポリマー系、ガラス系、セラミックス系から成る群から選ばれた少なくとも1種の材料からなることを特徴とする請求項1〜19のいずれか1項に記載の光反射機能物体。
  21. 前記ポリマー系材料がポリエステル系、ポリアミド系、ポリオレフィン系、ビニル系、ポリエーテルケトン系、ポリサルファイド系、フッ素系、ポリカーボネート系の単体もしくはこれらのブレンド、あるいはこれら2種類以上の共重合体のいずれかであることを特徴とする請求項1〜20のいずれか1項に記載の光反射機能物体。
  22. 第1及び/又は第2の光反射構造体を構成する材料が複屈折性を有するものであることを特徴とする請求項1〜21のいずれか1項に記載の光反射機能物体。
  23. 複屈折性を有する材料の複屈折Δnが0.05以上であることを特徴とする請求項22に記載の光反射機能物体。
  24. 第1の材料が顔料及び/又は染料を含有することを特徴とする請求項1〜23のいずれか1項に記載の光反射機能物体。
  25. 所定の長さに切断された微小なチップであることを特徴とする特徴とする請求項1〜24のいずれか1項に記載の光反射機能物体。
  26. 所定の寸法に粉砕された粉末体であることを特徴とする請求項1〜24のいずれか1項に記載の光反射機能物体。
  27. 請求項25に記載の光反射機能物体チップを含有することを特徴とする塗料、フィルム構造体、プラスチック成形体、不織布及び壁紙から成る群より選ばれる物品。
  28. 請求項26に記載の光反射機能物体粉末を含有することを特徴とする塗料、フィルム構造体、プラスチック成形体、不織布及び壁紙から成る群より選ばれる物品。
JP2002284824A 2001-11-30 2002-09-30 光反射機能物体 Expired - Fee Related JP4269140B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002284824A JP4269140B2 (ja) 2001-11-30 2002-09-30 光反射機能物体

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001367005 2001-11-30
JP2001-367005 2001-11-30
JP2002284824A JP4269140B2 (ja) 2001-11-30 2002-09-30 光反射機能物体

Publications (2)

Publication Number Publication Date
JP2003227923A JP2003227923A (ja) 2003-08-15
JP4269140B2 true JP4269140B2 (ja) 2009-05-27

Family

ID=27759563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002284824A Expired - Fee Related JP4269140B2 (ja) 2001-11-30 2002-09-30 光反射機能物体

Country Status (1)

Country Link
JP (1) JP4269140B2 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005008302A1 (ja) * 2003-07-22 2006-11-24 住友化学株式会社 反射型偏光板、積層光学部材及び液晶表示装置
JP4743017B2 (ja) * 2006-06-22 2011-08-10 豊田合成株式会社 赤外線反射材、赤外線反射積層体および赤外線反射構造体
JP4867938B2 (ja) * 2008-03-18 2012-02-01 コニカミノルタビジネステクノロジーズ株式会社 表示部材
JP5308047B2 (ja) * 2008-03-27 2013-10-09 豊田合成株式会社 コロイド結晶組成物
JP6176290B2 (ja) * 2015-07-13 2017-08-09 凸版印刷株式会社 発色構造体およびその製造方法
WO2017010099A1 (ja) * 2015-07-13 2017-01-19 凸版印刷株式会社 発色構造体およびその製造方法
CN110192129B (zh) * 2017-01-11 2022-03-04 凸版印刷株式会社 显色构造体、显示体、显色片材、成型体、以及显色构造体的制造方法

Also Published As

Publication number Publication date
JP2003227923A (ja) 2003-08-15

Similar Documents

Publication Publication Date Title
US6875510B2 (en) Structure for reflecting light
DE69833795T2 (de) Rückstrahlender dichroitischer Reflektor
US20050127542A1 (en) Immisible polymer filled optical elements
US7851054B2 (en) Multilayer optical films having one or more reflection bands
US5407738A (en) Minute structure for showing colors by reflection and interference of natural light
US5472798A (en) Coloring structure having reflecting and interfering functions
EP1756632B1 (en) Retroreflective structures
CN1285047A (zh) 隐藏有逆向反射图案的反射制品
KR20080056687A (ko) 폴리머 도메인을 가진 형상 아티클 및 프로세스
JPH0734324A (ja) 反射、干渉作用を有する発色構造体
US6243521B1 (en) Fibers with optical function
JP4269140B2 (ja) 光反射機能物体
JP3550775B2 (ja) 発色構造体
JP2004151271A (ja) 光反射機能を有する構造体
JP2005226196A (ja) 光反射機能複合体及び光反射機能構造体チップ
JP2004190157A (ja) 光反射機能構造体、その製造方法及び装置
JP4325147B2 (ja) 光反射機能を有する物体
JPH11124734A (ja) 繊維構造体
JPH11189911A (ja) 複合繊維構造体の製造方法及び製造用紡糸口金
JP2003301319A (ja) 光反射機能構造体およびその製造方法
JP2005076127A (ja) 可変反射機能構造体
JP2004270052A (ja) 構造性発色物体及びその製造方法並びにそれを用いた物品
JP2003342828A (ja) 光反射機能を有する物体及びその製造方法
KR100741754B1 (ko) 구조발색성 모노필라멘트 및 이들로 구성된 멀티필라멘트
WO2023002324A1 (en) Light control film and method of fabricating same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050624

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090114

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090128

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees