JP4267314B2 - Resistance welding monitoring apparatus and method - Google Patents

Resistance welding monitoring apparatus and method Download PDF

Info

Publication number
JP4267314B2
JP4267314B2 JP2002368684A JP2002368684A JP4267314B2 JP 4267314 B2 JP4267314 B2 JP 4267314B2 JP 2002368684 A JP2002368684 A JP 2002368684A JP 2002368684 A JP2002368684 A JP 2002368684A JP 4267314 B2 JP4267314 B2 JP 4267314B2
Authority
JP
Japan
Prior art keywords
moving average
resistance welding
value
resistance
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002368684A
Other languages
Japanese (ja)
Other versions
JP2004195521A (en
Inventor
有吾 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Toyota Motor Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Toyota Motor Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Toyota Motor Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2002368684A priority Critical patent/JP4267314B2/en
Publication of JP2004195521A publication Critical patent/JP2004195521A/en
Application granted granted Critical
Publication of JP4267314B2 publication Critical patent/JP4267314B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、交流式、特にインバータ方式の抵抗溶接機を用いたワークの抵抗溶接の状態を監視する技術に関し、特にニッケル・水素二次電池などの密閉型二次電池における電池内に収納される構成部材の接合時における微小なスプラッシュの発生の有無を判定する技術に関する。
【0002】
【従来の技術】
ニッケル・水素二次電池から成る複数の単電池を直列接続して内蔵させた密閉型二次電池である集合型角形電池(以下では、電池モジュールと称する)を並列配置して組み付けた電池パックが、電気自動車(PEV)、ハイブリッド車両(HEV)、燃料電池とバッテリとのハイブリッド車両等の電動車両や、各種の電源装置等に塔載されている。
【0003】
以下では、電池パックを構成する電池モジュールについて、図7を参照して説明する。図7は、電池モジュールの構造を示す部分縦断側面図である。
【0004】
図7において、1は電池モジュールであり、直列接続された複数の単電池2を内蔵している。3は電池モジュール1の一体電槽で、幅の狭い短側面と幅の広い長側面とを有する直方体状の単電池2の電槽4をその短側面を隔壁として共用して相互に一体連接してなる扁平な直方体状に形成され、各電槽4の上面開口は一体の蓋体6にて一体的に閉鎖されている。両端の電槽4の外側の短側面である一体電槽3の両端壁3aと各電槽4、4間の隔壁5の上部には接続穴7が形成されている。各電槽4内には、矩形状の正極板と負極板をセパレータを介して積層して構成された極板群8がアルカリ電解液とともに収容され、単電池2が構成されている。極板群8の正極板と負極板は互いに反対側の側部に突出されて正極板と負極板のリード部9a、9bとされ、それらのリード部9a、9bの側縁部にはそれぞれ集電体10a、10bが溶接等にて接続されている。
【0005】
集電体10a、10bの上部には、接続穴7内に嵌入する接続突部11が突設され、隣接する電槽4、4間で正極と負極の集電体10a、10bの接続突部11が互いに溶接にて接続されている。また、一体電槽3の両端壁3aの接続穴7に正極または負極の接続端子(以下、極柱と称する)が装着され、その接続突部13と集電体10aまたは10bの接続突部11が互いに溶接にて接続されている。かくして一体電槽3内に内蔵された複数の単電池2が直列に接続されて、両端の極柱12、12間に電圧が出力される。
【0006】
蓋体6には、各電槽4の内圧を均等にするための連通路14や、各電槽4の内部圧力が一定値以上になったときに圧力を開放するための安全弁(不図示)や、適当な単電池2の温度を検出する温度センサを装着するセンサ装着穴15などが設けられている。16は、接続突部11、13の周囲に配設されたシール用のOリングである。
【0007】
ところで、電池モジュールの製造工程において、電槽挿入工程で各極板群8を一体電槽3の各電槽4内に挿入した後、単電池間溶接工程で、互いに隣接する電槽4間で、隔壁5を介して対向する集電体10a、10b同士を溶接にて接続する際には、図8に示すように、各電槽4に極板群8を収容配置し、集電体10a、10bの接続突部11を接続穴7に嵌入させた状態で、一体電槽3を下向きにし、集電体10a、10bの接続突部11の背部に溶接電極41(41a、41b)を当接させ、白抜き矢印で示す方向に加圧しながら溶接電流を流すことにより、接続突部11同士を抵抗溶接し、集電体10a、10b同士を接合する。
【0008】
また、極柱溶接工程で、一体電槽3の両端壁3aにおける集電体10aまたは10bと極柱12を溶接にて接続する際には、図9に示すように、集電体10aまたは10bの接続突部11の背部に溶接電極41を当接させ、極柱12の軸部を収容可能な収容穴43を有する溶接電極42を極柱12の座部12aの背面に当接させ、白抜き矢印で示す方向に加圧しながら溶接電流を流すことにより、接続突部11と13を抵抗溶接し、集電体10aまたは10bと極柱12を接合する。
【0009】
ところで、集電体10a、10bの接続突部11同士の接合部や、集電体10aまたは10bの接続突部11と極柱12の接続突部13との接合部には高い気密性が要求されるため、それらの接合部で溶融金属の爆飛(スプラッシュ)が発生すると、それがどんなに小さくても気密性に悪影響を及ぼしたり、また、たとえ電槽4を下向きにして溶接したとしても、微小なスプラッシュが電槽4内に侵入し、アルカリ電解液に溶解して短絡の原因となるため、微小なスプラッシュを高精度に検出して、製品の信頼性を高めることが重要となる。
【0010】
従来の、交流式抵抗溶接機を用いた抵抗溶接制御装置では、溶接電極に印加される電圧、溶接電極に流れる電流を測定し、これらの測定値や、測定電圧と測定電流から求めた抵抗値、または測定電流のゼロクロス点から求めた力率角(例えば、特許文献1参照)の時間特性と、予め設定された閾値の時間特性とに基づいて、スプラッシュの発生の有無を判断していた。
【0011】
【特許文献1】
特許第2767328号公報
【0012】
【発明が解決しようとする課題】
しかしながら、上記従来のスプラッシュの発生を検出する方法では、交流式抵抗溶接機として、直流電力を交流電力に変換するインバータ方式の抵抗溶接機を用いた場合、溶接電極に印加される電圧または溶接電極に流れる電流にはインバータ制御がかかっているため、測定電圧や測定電流そのものではスプラッシュの発生の有無を検出することができない。
【0013】
一方、測定電圧と測定電流から求めた抵抗値によりスプラッシュを検出しようとした場合、抵抗値は、溶接部の温度が高くなると、それにつれて高くなり、この変化は、測定電圧や測定電流のみの変化に比べて顕著に現れる。しかし、この抵抗値も、インバータ制御による電圧、電流の変化を受けて、小刻みに変化するため、スプラッシュを高精度に検出することは困難である。
【0014】
また、インバータによるスイッチングノイズが測定電圧や測定電流に重畳されるため、スプラッシュの発生の有無を判断する基準となる閾値を高めに設定せざるをえなくなり、大きなスプラッシュは検出できても、微小なスプラッシュを高精度に検出することは困難であった。
【0015】
本発明は、かかる問題点に鑑みてなされたものであり、その目的は、密閉型二次電池内に収納される構成部材の抵抗溶接による接合時において、微小なスプラッシュの発生を高精度に検出し、製品の信頼性を高めることができる抵抗溶接監視装置および方法を提供することにある。
【0016】
【課題を解決するための手段】
前記の目的を達成するため、本発明に係る抵抗溶接監視装置は、例えばニッケル・水素二次電池から成る密閉型二次電池(電池モジュール)の製造工程において、前記密閉型二次電池内に収納される構成部材に抵抗溶接を行う際に、インバータ方式の交流式抵抗溶接機による抵抗溶接の状態を監視する装置であって、交流式抵抗溶接機の溶接電極に印加される電圧の所定時間毎(例えば、約1m秒間毎)の移動平均値を演算し、移動平均電圧値として出力する移動平均電圧演算手段と、交流式抵抗溶接機の溶接電極に流れる電流の所定時間毎(例えば、約1m秒間毎)の移動平均値を演算し、移動平均電流値として出力する移動平均電流演算手段と、移動平均電圧値および移動平均電流値から移動平均抵抗値を算出する移動平均抵抗算出手段と、抵抗溶接の末期において移動平均抵抗値を予め設定された閾値と比較して、抵抗溶接による接合部におけるスプラッシュの発生の有無を判定するスプラッシュ判定手段とを備えたことを特徴とする。
【0017】
本発明に係る抵抗溶接監視装置において、スプラッシュ判定手段は、移動平均抵抗値が閾値を越えた場合に、スプラッシュの発生有りと判定することを特徴とする。
【0019】
また、本発明に係る抵抗溶接監視装置は、コンピュータシステムとして構成されることが好ましい。
【0020】
前記の目的を達成するため、本発明に係る抵抗溶接監視方法は、例えばニッケル・水素二次電池から成る密閉型二次電池(電池モジュール)の製造工程において、前記密閉型二次電池内に収納される構成部材に抵抗溶接を行う際に、インバータ方式の交流式抵抗溶接機による抵抗溶接の状態を監視する方法であって、交流式抵抗溶接機の溶接電極に印加される電圧の所定時間毎(例えば、1m秒間毎)の移動平均値を移動平均電圧値として演算する移動平均電圧演算工程と、交流式抵抗溶接機の溶接電極に流れる電流の所定時間毎(例えば、1m秒間毎)の移動平均値を移動平均電流値として演算する移動平均電流演算工程と、移動平均電圧値および移動平均電流値から移動平均抵抗値を算出する移動平均抵抗算出工程と、抵抗溶接の末期において移動平均抵抗値を予め設定された閾値と比較して、抵抗溶接による接合部におけるスプラッシュの発生の有無を判定するスプラッシュ判定工程とを含むことを特徴とする。
【0021】
本発明に係る抵抗溶接監視方法において、スプラッシュ判定工程において、移動平均抵抗値が閾値を越えた場合に、スプラッシュの発生有りと判定することを特徴とする。
【0027】
上記の構成によれば、インバータ制御による大幅な変化を伴う電圧、電流の代わりに、比較的直線的な変化しかしない移動平均抵抗値をスプラッシュの発生の有無の判定に用いることで、移動平均抵抗値の時間変化に対して閾値の時間変化を近接させて容易に設定することができる。これにより、電池モジュールの単電池間溶接または極柱溶接において微小なスプラッシュの発生を高精度に検出することができ、製品の信頼性を高めることができる。
【0028】
【発明の実施の形態】
以下、本発明の好適な実施形態として、密閉型二次電池である集合型角形ニッケル・水素二次電池について、図面を参照して説明する。
【0029】
図1は、本発明の一実施形態に係る集合型角形電池の製造方法における工程を示すフローチャートである。なお、以下では、集合型角形電池を従来例で説明した図7の構造を有する電池モジュールとして説明する。
【0030】
図1において、電槽挿入工程S101で、複数の電槽4を隔壁を介して連設した一体電槽3の各電槽4内に、集電体10a、10bを接合した極板群8を集電体10a、10bが隔壁5に対向するように挿入配置し、集電体10a、10bに設けた接続突部11を隔壁5および一体電槽3の両端壁3aに形成された接続穴7に嵌入させる。
【0031】
次に、単電池間溶接工程S102で、図8を参照して説明したように、隔壁5を介して対向する集電体10a、10bの接続突部11同士をインバータ方式の抵抗溶接機により抵抗溶接し、単電池2間での集電体10a、10b同士を接合する。
【0032】
次に、極柱溶接工程S103で、図9を参照して説明したように、一体電槽3の両端に装着する極柱12の接続突部13と集電体10aまたは10bの接続突部11とをインバータ方式の抵抗溶接機により抵抗溶接し、集電体10aまたは10bと極柱12とを接合する。
【0033】
次に、電解液注液工程S104で、アルカリ電解液を各電槽4内に注液し、真空含浸工程S105で、電池モジュールを真空容器中に放置し、セパレータの内部にまでアルカリ電解液を十分に含浸させ、蓋溶着工程S106で、各電槽4の上面開口に一体の蓋体6を配置して一体電槽3に溶着し、安全弁溶着工程S107で、各電槽4の内部圧力が一定値以上になったときに圧力を開放するための安全弁を蓋体6に溶着する。
【0034】
このようにして、電池モジュールの組立が行われる。この後は、充放電工程、エージング工程、パック組立工程、および充電工程を経て電池パックとして出荷される。
【0035】
次に、単電池間溶接工程S102において単電池2間での集電体10a、10b同士を接合する際、および極柱溶接工程S103において集電体10aまたは10bと極柱12とを接合する際に、それらの接合部でのスプラッシュの発生の有無を判定するシステムについて、図2および図3を参照して説明する。
【0036】
図2は、本発明の一実施形態に係る抵抗溶接監視装置が適用される抵抗溶接システムの構成例を示す機能ブロック図である。図2において、21は電池モジュール、22はインバータ方式の抵抗溶接機、23は抵抗溶接機22に対する電圧、電流を制御する抵抗溶接制御装置、24は本発明に係る抵抗溶接監視装置である。
【0037】
抵抗溶接監視装置24は、移動平均電圧演算部241と、移動平均電流演算部242と、移動平均抵抗算出部243と、スプラッシュ判定部244とで構成される。ここで、抵抗溶接監視装置24は、マイクロコンピュータ等のコンピュータシステムとして構成される。
【0038】
図3は、本発明の一実施形態における抵抗溶接監視ルーチンにおける処理手順を示すフローチャートである。
【0039】
まず、電池モジュール21の組立工程が単電池間溶接工程S102に移行すると、図8に示す溶接電極41a、41bを有する抵抗溶接制御装置23により、抵抗溶接機22の電圧および電流が制御されて、抵抗溶接が開始する。抵抗溶接機22の溶接電極41aと41bに印加される電圧V(i)、および溶接電極41aと41b間に流れる電流I(i)が測定され(図3のステップS301)、抵抗溶接監視装置24に送信される。
【0040】
抵抗溶接監視装置24に送信された電圧V(i)および電流I(i)は、それぞれ、移動平均電圧演算部241および移動平均電流演算部242にて、所定時間毎(例えば、1m秒間毎)に移動平均電圧値Vav(j)および移動平均電流値Iav(j)が演算される(図3のステップS302)。ここで、iは移動平均を演算するのに必要なサンプルを示す変数で、そのサンプル数はインバータ方式の抵抗溶接機22のインバータによるスイッチング周波数等に応じて設定される。また、jは移動平均を演算した後のサンプルを示す変数であり、時間変化に対応している。
【0041】
次に、移動平均電圧値Vav(j)および移動平均電流値Iav(j)から、移動平均抵抗算出部243にて、移動平均抵抗値Rav(j)が算出される(図3のステップS303)。算出された移動平均抵抗値Rav(j)は、スプラッシュ判定部244にて、予め設定された閾値Rth(j)以下であるか否かが判断される(図3のステップS304)。なお、ステップS304の判断は、溶接部の温度が高くなるにつれて移動平均抵抗値Rav(j)の時間に対する変化率が高くなる抵抗溶接の末期において行われる。抵抗溶接の初期および中期においては、移動平均抵抗値Rav(j)の時間に対する変化率が低く、比較的直線的な変化しかしないため、閾値Rth(j)を容易にかつ移動平均抵抗値Rav(j)に接近させて設定することができる。
【0042】
ステップS304の判断において、移動平均抵抗値Rav(j)が閾値Rth(j)よりも大きい場合(No)、スプラッシュ判定部244は、スプラッシュの発生有りとして、溶接対象の電池モジュールは不良品であることを示すNG信号を抵抗溶接制御装置23に出力し(図3のステップS305)、抵抗溶接が中止され、不良の電池モジュールは組立ラインから外される。
【0043】
一方、ステップS304の判断において、移動平均抵抗値Rav(j)が閾値Rth(j)以下である場合(Yes)、所定の溶接時間が経過したか否かが判断され(図3のステップS306)、まだ所定の溶接時間が経過していない場合(No)、ステップS304に戻る。ステップS306の判断において、所定の溶接時間が経過した場合(Yes)、スプラッシュ判定部244は、スプラッシュの発生無しとして、溶接対象の電池モジュールは良品であることを示すOK信号を抵抗溶接制御装置23に出力し(図3のステップS307)、次の電池モジュールの抵抗溶接へと移行する。
【0044】
以上のようにして、単電池2間での集電体10a、10b同士を接合する単電池間溶接工程S102が終了すると、集電体10aまたは10bと極柱12とを接合する極柱溶接工程S103へと移行し、同様にして抵抗溶接が行われる。
【0045】
図4、図5および図6は、それぞれ、大きなスプラッシュが発生した場合、微小なスプラッシュが発生した場合、およびスプラッシュが発生しない場合における、移動平均電圧値Vav(j)、移動平均電流値Iav(j)、および移動平均抵抗値Rav(j)の時間変化を示すグラフである。
【0046】
なお、図4、図5および図6において、V(i)は測定電圧、Vth(j)は電圧閾値、I(i)は測定電流、R(i)は測定電圧V(i)と測定電流I(i)から算出した抵抗値を表し、それぞれ、正規化単位で示している(電圧係数は4.1(V/unit)、電流係数は1.45(A/unit)、抵抗係数は0.4(Ω/unit)である)。図4から図6において、測定電圧V(i)、測定電流I(i)、および抵抗値R(i)には、インバータ制御によるスイッチングノイズが重畳されている。
【0047】
図4において、溶接開始から約24m秒を経過した時点(溶接末期の開始時点)で、移動平均抵抗値Rav(j)が閾値Rth(j)を超えて、大きく変化している様子が分かる。このような移動平均抵抗値Rav(j)の変化が大きい場合は、溶接部の温度が急激に高くなり、大きなスプラッシュが発生する。この場合は、移動平均電圧値Vav(j)も電圧閾値Vth(j)よりも大きくなり、移動平均抵抗値Rav(j)でなく、移動平均電圧値Vav(j)を用いたとしても、大きなスプラッシュの発生を検出することができる。
【0048】
図5において、溶接末期において、移動平均抵抗値Rav(j)が徐々に上昇し、閾値Rth(j)に接近して、閾値Rth(j)を僅かに超えている様子が分かる。このような移動平均抵抗値Rav(j)が緩やかに変化して閾値を超える場合は、溶接部の温度が徐々に高くなり、微小なスプラッシュが発生している。
【0049】
図6において、溶接末期において、移動平均抵抗値Rav(j)の変化が少なく、比較的直線的であり、閾値Rth(j)を超えていない様子が分かる。この場合、微小なスプラッシュは発生していない。
【0050】
なお、上記実施形態では、密閉型二次電池の一例として、集合型角形ニッケル・水素二次電池について説明したが、本発明は、円筒型ニッケル・水素二次電池、円筒型ニッケル・カドミウム二次電池、リチウムイオン二次電池などの製造工程において、これらの電池内に収納される構成部材に抵抗溶接を実施する際にも、同様に応用できる。
【0051】
【発明の効果】
以上説明したように、本発明によれば、集合型角形電池である電池モジュールの単電池間溶接工程または極柱溶接工程において、微小なスプラッシュの発生を高精度に検出し、製品の信頼性を高めることができる、という格別な効果を奏する。
【図面の簡単な説明】
【図1】 本発明の一実施形態に係る集合型角形電池(電池モジュール)の製造方法における工程を示すフローチャート
【図2】 本実施形態に係る抵抗溶接監視装置が適用される抵抗溶接システムの構成例を示す機能ブロック図
【図3】 本実施形態における抵抗溶接監視ルーチンにおける処理手順を示すフローチャート
【図4】 大きなスプラッシュが発生する場合における移動平均電圧値Vav(j)、移動平均電流値Iav(j)、移動平均抵抗値Rav(j)の時間変化を示す図
【図5】 微小なスプラッシュが発生する場合における移動平均電圧値Vav(j)、移動平均電流値Iav(j)、移動平均抵抗値Rav(j)の時間変化を示す図
【図6】 スプラッシュが発生しない場合における移動平均電圧値Vav(j)、移動平均電流値Iav(j)、移動平均抵抗値Rav(j)の時間変化を示す図
【図7】 電池モジュールの構造を示す部分縦断側面図
【図8】 単電池間溶接工程における接合部分を示す部分縦断正面図
【図9】 極柱溶接工程における接合部分を示す部分縦断正面図
【符号の説明】
1、21 集合型角形電池(電池モジュール)
2 単電池
3 一体電槽
3a 端壁
4 電槽
5 隔壁
6 蓋体
7 接続穴
8 極板群
9a 正極板のリード部
9b 負極板のリード部
10a、10b 集電体
11 集電体の接続突部
12 極柱
13 極柱の接続突部
14 連通路
15 温度センサ装着穴
16 シール用のOリング
22 インバータ方式の抵抗溶接機
23 抵抗溶接制御装置
24 抵抗溶接監視装置
241 移動平均電圧演算部
242 移動平均電流演算部
243 移動平均抵抗演算部
244 スプラッシュ判定部
41、41a、41b、42 溶接電極
S101 電槽挿入工程
S102 単電池間溶接工程
S103 極柱溶接工程
S302 移動平均電圧演算工程および移動平均電流演算工程
S303 移動平均抵抗算出工程
S304 スプラッシュ判定工程
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for monitoring the state of resistance welding of a work using an AC type, particularly an inverter type resistance welding machine, and is particularly housed in a battery in a sealed secondary battery such as a nickel-hydrogen secondary battery. The present invention relates to a technique for determining whether or not a minute splash is generated at the time of joining component members.
[0002]
[Prior art]
A battery pack in which a plurality of unit cells made of nickel / hydrogen secondary batteries are connected in series and assembled, and are assembled in a parallel arrangement of assembled prismatic batteries (hereinafter referred to as battery modules). And electric vehicles (PEV), hybrid vehicles (HEV), electric vehicles such as hybrid vehicles of fuel cells and batteries, and various power supply devices.
[0003]
Below, the battery module which comprises a battery pack is demonstrated with reference to FIG. FIG. 7 is a partially longitudinal side view showing the structure of the battery module.
[0004]
In FIG. 7, reference numeral 1 denotes a battery module, which includes a plurality of unit cells 2 connected in series. Reference numeral 3 denotes an integrated battery case of the battery module 1, and the battery case 4 of the cuboid unit cell 2 having a narrow short side surface and a wide long side surface is used as a partition wall and is integrally connected to each other. The upper surface opening of each battery case 4 is integrally closed by an integral lid body 6. A connection hole 7 is formed in the upper part of the partition wall 5 between the both end walls 3 a of the integrated battery case 3 and the battery case 4, 4, which is the short side surface outside the battery case 4 at both ends. In each battery case 4, an electrode plate group 8 formed by laminating a rectangular positive electrode plate and a negative electrode plate with a separator interposed therebetween is housed together with an alkaline electrolyte to constitute a unit cell 2. The positive electrode plate and the negative electrode plate of the electrode plate group 8 are projected to the opposite side portions to form lead portions 9a and 9b of the positive electrode plate and the negative electrode plate, and are gathered at the side edges of the lead portions 9a and 9b, respectively. The electric bodies 10a and 10b are connected by welding or the like.
[0005]
A connection protrusion 11 that fits into the connection hole 7 protrudes from the upper side of the current collectors 10 a and 10 b, and the connection protrusions of the positive and negative current collectors 10 a and 10 b between the adjacent battery cases 4 and 4. 11 are connected to each other by welding. Also, positive or negative connection terminals (hereinafter referred to as pole columns) are mounted in the connection holes 7 of the both end walls 3a of the integral battery case 3, and the connection protrusion 13 and the connection protrusion 11 of the current collector 10a or 10b. Are connected to each other by welding. Thus, the plurality of single cells 2 incorporated in the integrated battery case 3 are connected in series, and a voltage is output between the pole columns 12 and 12 at both ends.
[0006]
The lid 6 has a communication passage 14 for equalizing the internal pressure of each battery case 4 and a safety valve (not shown) for releasing the pressure when the internal pressure of each battery case 4 exceeds a certain value. In addition, a sensor mounting hole 15 for mounting a temperature sensor for detecting the temperature of an appropriate unit cell 2 is provided. Reference numeral 16 denotes an O-ring for sealing disposed around the connection protrusions 11 and 13.
[0007]
By the way, in the battery module manufacturing process, after each electrode plate group 8 is inserted into each battery case 4 of the integrated battery case 3 in the battery case insertion step, between the adjacent battery cases 4 in the inter-cell welding step. When the current collectors 10a and 10b facing each other via the partition wall 5 are connected to each other by welding, as shown in FIG. 8, the electrode plate group 8 is accommodated and disposed in each battery case 4, and the current collector 10a. With the connecting projection 11 of 10b inserted into the connecting hole 7, the integrated battery case 3 faces downward, and the welding electrode 41 (41a, 41b) is applied to the back of the connecting projection 11 of the current collectors 10a, 10b. The contact protrusions 11 are resistance-welded to each other and the current collectors 10a and 10b are joined together by applying a welding current while pressing in the direction indicated by the white arrow.
[0008]
In addition, when the current collector 10a or 10b on the both end walls 3a of the integral battery case 3 and the pole column 12 are connected by welding in the pole column welding step, as shown in FIG. 9, the current collector 10a or 10b is connected. The welding electrode 41 is brought into contact with the back portion of the connecting projection 11, and the welding electrode 42 having the receiving hole 43 capable of accommodating the shaft portion of the pole 12 is brought into contact with the back surface of the seat 12 a of the pole 12, By flowing a welding current while applying pressure in the direction indicated by the drawing arrow, the connection protrusions 11 and 13 are resistance-welded, and the current collector 10a or 10b and the pole column 12 are joined.
[0009]
By the way, a high airtightness is required for the joint between the connection protrusions 11 of the current collectors 10a and 10b and the connection between the connection protrusion 11 of the current collector 10a or 10b and the connection protrusion 13 of the pole 12. Therefore, if a molten metal splash occurs at these joints, no matter how small it is, the airtightness will be adversely affected. Even if welding is performed with the battery case 4 facing downward, Since a minute splash enters the battery case 4 and dissolves in the alkaline electrolyte and causes a short circuit, it is important to detect the minute splash with high accuracy and improve the reliability of the product.
[0010]
In a conventional resistance welding control apparatus using an AC resistance welding machine, the voltage applied to the welding electrode and the current flowing through the welding electrode are measured, and the measured value and the resistance value obtained from the measured voltage and the measured current. Alternatively, the presence / absence of splash is determined based on the time characteristic of the power factor angle (see, for example, Patent Document 1) obtained from the zero cross point of the measured current and the time characteristic of a preset threshold value.
[0011]
[Patent Document 1]
Japanese Patent No. 2767328 [0012]
[Problems to be solved by the invention]
However, in the conventional method for detecting the occurrence of splash, when an inverter type resistance welding machine that converts DC power into AC power is used as the AC resistance welding machine, the voltage applied to the welding electrode or the welding electrode Inverter control is applied to the current flowing through the current, so the presence or absence of splash cannot be detected by the measured voltage or the measured current itself.
[0013]
On the other hand, when an attempt is made to detect splash based on the resistance value obtained from the measurement voltage and measurement current, the resistance value increases as the temperature of the weld increases, and this change is only a change in the measurement voltage and measurement current. Appears more prominently. However, since this resistance value also changes in small increments in response to changes in voltage and current due to inverter control, it is difficult to detect splash with high accuracy.
[0014]
In addition, since switching noise due to the inverter is superimposed on the measurement voltage and measurement current, it is unavoidable to set a high threshold value as a reference for determining whether or not the splash occurs. It was difficult to detect the splash with high accuracy.
[0015]
The present invention has been made in view of such problems, and its purpose is to detect the occurrence of minute splashes with high accuracy during joining by resistance welding of components housed in a sealed secondary battery. and to provide a resistance welding monitoring device and methods can increase the reliability of the product.
[0016]
[Means for Solving the Problems]
In order to achieve the above object, a resistance welding monitoring device according to the present invention is housed in the sealed secondary battery in a manufacturing process of a sealed secondary battery (battery module) made of, for example, a nickel-hydrogen secondary battery. A device for monitoring the state of resistance welding by an inverter type AC resistance welding machine when resistance welding is performed on a component to be formed, and for each predetermined time of the voltage applied to the welding electrode of the AC type resistance welding machine A moving average voltage calculating means for calculating a moving average value (for example, about every 1 msec) and outputting it as a moving average voltage value, and a predetermined time of current flowing in the welding electrode of the AC resistance welding machine (for example, about 1 m) A moving average current calculating means for calculating a moving average value every second) and outputting it as a moving average current value; and a moving average resistance calculating means for calculating a moving average resistance value from the moving average voltage value and the moving average current value , As compared to the resistance welding of a preset threshold value moving average resistance value at the end, it is characterized in that a splash determining means determines the presence or absence of splash generation at the joint by the resistance welding.
[0017]
In resistance welding monitoring device according to the present invention, the splash determining means, when the dynamic average resistance value shift exceeds the threshold value, and judging that there is splash generation.
[0019]
Moreover, it is preferable that the resistance welding monitoring apparatus according to the present invention is configured as a computer system.
[0020]
In order to achieve the above object, a resistance welding monitoring method according to the present invention is housed in a sealed secondary battery in a manufacturing process of a sealed secondary battery (battery module) made of, for example, a nickel-hydrogen secondary battery. A method of monitoring the resistance welding state by an inverter type AC resistance welding machine when resistance welding is performed on a component to be formed, and for each predetermined time of the voltage applied to the welding electrode of the AC type resistance welding machine A moving average voltage calculation step for calculating a moving average value (for example, every 1 msec) as a moving average voltage value, and a movement of current flowing in the welding electrode of the AC resistance welding machine at predetermined time intervals (for example, every 1 msec) a moving average current calculation step of calculating an average value as a moving average current value, a moving average resistance calculation step of calculating a moving average resistance value from the moving average voltage values and the moving average current value, the resistance welding end There compared to the moving average resistance value preset threshold, the characterized in that it comprises a splash determination step of determining whether the splash generation at the joint by the resistance welding.
[0021]
In resistance welding monitoring method according to the present invention, the splash determination step, when the dynamic average resistance value shift exceeds the threshold value, and judging that there is splash generation.
[0027]
According to the above configuration, the moving average resistance value, which is a relatively linear change instead of the voltage and current accompanied by a large change due to inverter control, is used for determining whether or not the splash is generated. It is possible to easily set the time change of the threshold close to the time change of the value. As a result, it is possible to detect the occurrence of minute splash with high accuracy in the inter-single cell welding or polar column welding of the battery module, and to improve the reliability of the product.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, as a preferred embodiment of the present invention, an assembled prismatic nickel-hydrogen secondary battery which is a sealed secondary battery will be described with reference to the drawings.
[0029]
FIG. 1 is a flowchart showing steps in a method for manufacturing an assembled prismatic battery according to an embodiment of the present invention. Hereinafter, the collective prismatic battery will be described as a battery module having the structure of FIG. 7 described in the conventional example.
[0030]
In FIG. 1, in the battery case insertion step S <b> 101, an electrode plate group 8 in which current collectors 10 a and 10 b are joined in each battery case 4 of the integrated battery case 3 in which a plurality of battery cases 4 are connected via a partition wall. The current collectors 10 a and 10 b are inserted and arranged so as to face the partition wall 5, and the connection protrusions 11 provided on the current collectors 10 a and 10 b are connected to the connection holes 7 formed in the partition wall 5 and both end walls 3 a of the integrated battery case 3. Inset.
[0031]
Next, in the inter-cell welding step S102, as described with reference to FIG. 8, the connecting protrusions 11 of the current collectors 10a and 10b facing each other through the partition wall 5 are resisted by an inverter type resistance welding machine. It welds and the collectors 10a and 10b between the single cells 2 are joined.
[0032]
Next, in the pole column welding step S103, as described with reference to FIG. 9, the connection projections 13 of the pole column 12 and the connection projections 11 of the current collector 10a or 10b to be attached to both ends of the integrated battery case 3. And the current collector 10a or 10b and the pole column 12 are joined by resistance welding using an inverter type resistance welder.
[0033]
Next, in the electrolytic solution pouring step S104, an alkaline electrolytic solution is poured into each battery case 4, and in the vacuum impregnation step S105, the battery module is left in a vacuum vessel, and the alkaline electrolytic solution is poured into the separator. In the lid welding step S106, an integral lid body 6 is disposed on the upper surface opening of each battery case 4 and welded to the integral battery case 3, and in the safety valve welding step S107, the internal pressure of each battery case 4 is A safety valve for releasing the pressure when the pressure exceeds a certain value is welded to the lid 6.
[0034]
In this way, the battery module is assembled. Thereafter, the battery pack is shipped through a charge / discharge process, an aging process, a pack assembly process, and a charge process.
[0035]
Next, when the current collectors 10a and 10b between the single cells 2 are joined in the unit cell welding step S102, and when the current collector 10a or 10b and the pole column 12 are joined in the pole column welding step S103. Next, a system for determining the presence or absence of occurrence of splash at those joints will be described with reference to FIGS.
[0036]
FIG. 2 is a functional block diagram showing a configuration example of a resistance welding system to which the resistance welding monitoring apparatus according to one embodiment of the present invention is applied. In FIG. 2, 21 is a battery module, 22 is an inverter type resistance welding machine, 23 is a resistance welding control device for controlling voltage and current with respect to the resistance welding machine 22, and 24 is a resistance welding monitoring device according to the present invention.
[0037]
The resistance welding monitoring device 24 includes a moving average voltage calculation unit 241, a moving average current calculation unit 242, a moving average resistance calculation unit 243, and a splash determination unit 244. Here, the resistance welding monitoring device 24 is configured as a computer system such as a microcomputer.
[0038]
FIG. 3 is a flowchart showing a processing procedure in the resistance welding monitoring routine in one embodiment of the present invention.
[0039]
First, when the assembly process of the battery module 21 proceeds to the inter-cell welding process S102, the resistance welding control device 23 having the welding electrodes 41a and 41b shown in FIG. 8 controls the voltage and current of the resistance welding machine 22, Resistance welding starts. The voltage V (i) applied to the welding electrodes 41a and 41b of the resistance welding machine 22 and the current I (i) flowing between the welding electrodes 41a and 41b are measured (step S301 in FIG. 3), and the resistance welding monitoring device 24 is measured. Sent to.
[0040]
The voltage V (i) and the current I (i) transmitted to the resistance welding monitoring device 24 are respectively transmitted at predetermined time intervals (for example, every 1 msec) at the moving average voltage calculation unit 241 and the moving average current calculation unit 242, respectively. The moving average voltage value Vav (j) and the moving average current value Iav (j) are calculated (step S302 in FIG. 3). Here, i is a variable indicating a sample necessary for calculating the moving average, and the number of samples is set according to the switching frequency by the inverter of the inverter type resistance welding machine 22 or the like. Further, j is a variable indicating a sample after calculating the moving average, and corresponds to a change with time.
[0041]
Next, the moving average resistance value Rav (j) is calculated by the moving average resistance calculation unit 243 from the moving average voltage value Vav (j) and the moving average current value Iav (j) (step S303 in FIG. 3). . The calculated moving average resistance value Rav (j) is determined by the splash determination unit 244 whether or not it is equal to or less than a preset threshold value Rth (j) (step S304 in FIG. 3). Note that the determination in step S304 is performed at the end of resistance welding in which the rate of change of the moving average resistance value Rav (j) with respect to time increases as the temperature of the welded portion increases. In the initial and middle stages of resistance welding, the rate of change of the moving average resistance value Rav (j) with respect to time is low and only a relatively linear change. Therefore, the threshold value Rth (j) can be easily set and the moving average resistance value Rav ( j) can be set.
[0042]
When the moving average resistance value Rav (j) is larger than the threshold value Rth (j) in the determination in step S304 (No), the splash determination unit 244 determines that splash has occurred and the battery module to be welded is defective. An NG signal indicating this is output to the resistance welding control device 23 (step S305 in FIG. 3), resistance welding is stopped, and the defective battery module is removed from the assembly line.
[0043]
On the other hand, when the moving average resistance value Rav (j) is equal to or less than the threshold value Rth (j) in the determination in step S304 (Yes), it is determined whether or not a predetermined welding time has elapsed (step S306 in FIG. 3). If the predetermined welding time has not yet elapsed (No), the process returns to step S304. If the predetermined welding time has elapsed in the determination of step S306 (Yes), the splash determination unit 244 determines that no splash has occurred and outputs an OK signal indicating that the battery module to be welded is a non-defective product to the resistance welding control device 23. (Step S307 in FIG. 3), and the process proceeds to resistance welding of the next battery module.
[0044]
When the inter-cell welding step S102 for joining the current collectors 10a and 10b between the single cells 2 is completed as described above, the polar column welding step for joining the current collector 10a or 10b and the polar column 12 is completed. The process proceeds to S103, and resistance welding is performed in the same manner.
[0045]
4, FIG. 5 and FIG. 6 respectively show the moving average voltage value Vav (j) and moving average current value Iav () when a large splash occurs, when a minute splash occurs, and when no splash occurs. It is a graph which shows the time change of j) and moving average resistance value Rav (j).
[0046]
4, 5, and 6, V (i) is the measurement voltage, Vth (j) is the voltage threshold, I (i) is the measurement current, and R (i) is the measurement voltage V (i) and the measurement current. The resistance value calculated from I (i) is represented by a normalization unit (the voltage coefficient is 4.1 (V / unit), the current coefficient is 1.45 (A / unit), and the resistance coefficient is 0. .4 (Ω / unit)). 4 to 6, switching noise due to inverter control is superimposed on the measurement voltage V (i), the measurement current I (i), and the resistance value R (i).
[0047]
In FIG. 4, it can be seen that the moving average resistance value Rav (j) exceeds the threshold value Rth (j) and changes greatly when about 24 milliseconds have elapsed since the start of welding (starting time at the end of welding). When such a change in the moving average resistance value Rav (j) is large, the temperature of the welded portion rapidly increases and a large splash occurs. In this case, the moving average voltage value Vav (j) is also larger than the voltage threshold value Vth (j), and even if the moving average voltage value Vav (j) is used instead of the moving average resistance value Rav (j), it is large. Splash occurrence can be detected.
[0048]
In FIG. 5, it can be seen that the moving average resistance value Rav (j) gradually increases at the end of welding, approaches the threshold value Rth (j), and slightly exceeds the threshold value Rth (j). When the moving average resistance value Rav (j) gradually changes and exceeds the threshold value, the temperature of the welded portion gradually increases, and minute splash is generated.
[0049]
In FIG. 6, it can be seen that at the end of welding, the moving average resistance value Rav (j) is little changed, is relatively linear, and does not exceed the threshold value Rth (j). In this case, a fine splash is not generated.
[0050]
In the above-described embodiment, a collective prismatic nickel / hydrogen secondary battery has been described as an example of a sealed secondary battery. In the manufacturing process of batteries, lithium ion secondary batteries and the like, the present invention can be applied in the same manner when resistance welding is carried out on components housed in these batteries.
[0051]
【The invention's effect】
As described above, according to the present invention, the occurrence of minute splash can be detected with high accuracy in the inter-unit welding process or polar column welding process of the battery module, which is a collective prismatic battery, and the reliability of the product can be improved. There is an extraordinary effect that it can be increased.
[Brief description of the drawings]
FIG. 1 is a flowchart showing steps in a method for manufacturing a collective prismatic battery (battery module) according to an embodiment of the invention. FIG. 2 is a configuration of a resistance welding system to which a resistance welding monitoring device according to the embodiment is applied. Functional block diagram showing an example FIG. 3 is a flowchart showing a processing procedure in a resistance welding monitoring routine in the present embodiment. FIG. 4 is a diagram showing a moving average voltage value Vav (j) and a moving average current value Iav ( FIG. 5 is a diagram showing the time variation of the moving average resistance value Rav (j). FIG. 5 shows the moving average voltage value Vav (j), the moving average current value Iav (j), and the moving average resistance when a minute splash occurs. The figure which shows the time change of value Rav (j). [FIG. 6] Moving average voltage value Vav (j) and moving average voltage in the case where splash does not occur FIG. 7 is a partial vertical side view showing the structure of a battery module. FIG. 8 is a partial vertical cross section showing a joint portion in a cell-to-cell welding process. Front view [Figure 9] Partial longitudinal front view showing the joint in the pole column welding process [Explanation of symbols]
1,21 Collective prismatic battery (battery module)
2 Cell 3 Integrated battery case 3a End wall 4 Battery case 5 Bulkhead 6 Lid 7 Connection hole 8 Electrode group 9a Lead plate lead portion 9b Negative electrode lead portion 10a, 10b Current collector 11 Current collector connection protrusion Part 12 Polar Column 13 Polar Column Connection Projection 14 Communication Path 15 Temperature Sensor Mounting Hole 16 Seal O-ring 22 Inverter Type Resistance Welding Machine 23 Resistance Welding Control Device 24 Resistance Welding Monitoring Device 241 Moving Average Voltage Calculation Unit 242 Movement Average current calculation unit 243 Moving average resistance calculation unit 244 Splash determination units 41, 41a, 41b, 42 Welding electrode S101 Battery case insertion step S102 Inter-cell welding step S103 Polar column welding step S302 Moving average voltage calculation step and moving average current calculation Step S303 Moving Average Resistance Calculation Step S304 Splash Determination Step

Claims (5)

密閉型二次電池の製造工程において、前記密閉型二次電池内に収納される構成部材に抵抗溶接を行う際に、インバータ方式の交流式抵抗溶接機による抵抗溶接の状態を監視する装置であって、
前記交流式抵抗溶接機の溶接電極に印加される電圧の所定時間毎の移動平均値を演算し、移動平均電圧値として出力する移動平均電圧演算手段と、
前記交流式抵抗溶接機の溶接電極に流れる電流の前記所定時間毎の移動平均値を演算し、移動平均電流値として出力する移動平均電流演算手段と、
前記移動平均電圧値および前記移動平均電流値から移動平均抵抗値を算出する移動平均抵抗算出手段と、
抵抗溶接の末期における前記移動平均抵抗値を予め設定された閾値と比較して、抵抗溶接による接合部におけるスプラッシュの発生の有無を判定するスプラッシュ判定手段とを備えたことを特徴とする抵抗溶接監視装置。
This is a device for monitoring the state of resistance welding by an inverter type AC resistance welding machine when resistance welding is performed on the components housed in the sealed secondary battery in the manufacturing process of the sealed secondary battery. And
A moving average voltage calculating means for calculating a moving average value for each predetermined time of a voltage applied to the welding electrode of the AC resistance welding machine and outputting as a moving average voltage value;
A moving average current calculating means for calculating a moving average value of the current flowing through the welding electrode of the AC resistance welding machine every predetermined time and outputting as a moving average current value;
Moving average resistance calculation means for calculating a moving average resistance value from the moving average voltage value and the moving average current value;
A resistance welding monitor comprising: splash determination means for comparing the moving average resistance value at the end of resistance welding with a preset threshold value and determining whether or not the splash is generated in the joint by resistance welding. apparatus.
前記スプラッシュ判定手段は、前記移動平均抵抗値が前記閾値を越えた場合に、スプラッシュの発生有りと判定することを特徴とする請求項1記載の抵抗溶接監視装置。  The resistance welding monitoring apparatus according to claim 1, wherein the splash determination unit determines that splash has occurred when the moving average resistance value exceeds the threshold value. 前記抵抗溶接監視装置は、コンピュータシステムとして構成される請求項1記載の抵抗溶接監視装置。  The resistance welding monitoring apparatus according to claim 1, wherein the resistance welding monitoring apparatus is configured as a computer system. 密閉型二次電池の製造工程において、前記密閉型二次電池内に収納される構成部材に抵抗溶接を行う際に、インバータ方式の交流式抵抗溶接機による抵抗溶接の状態を監視する方法であって、
前記交流式抵抗溶接機の溶接電極に印加される電圧の所定時間毎の移動平均値を移動平均電圧値として演算する移動平均電圧演算工程と、
前記交流式抵抗溶接機の溶接電極に流れる電流の前記所定時間毎の移動平均値を移動平均電流値として演算する移動平均電流演算工程と、
前記移動平均電圧値および前記移動平均電流値から移動平均抵抗値を算出する移動平均抵抗算出工程と、
抵抗溶接の末期における前記移動平均抵抗値を予め設定された閾値と比較して、抵抗溶接による接合部におけるスプラッシュの発生の有無を判定するスプラッシュ判定工程とを含むことを特徴とする抵抗溶接監視方法。
This is a method for monitoring the state of resistance welding by an inverter type AC resistance welding machine when resistance welding is performed on the components housed in the sealed type secondary battery in the manufacturing process of the sealed type secondary battery. And
A moving average voltage calculation step of calculating a moving average value for each predetermined time of a voltage applied to the welding electrode of the AC resistance welding machine as a moving average voltage value;
A moving average current calculation step of calculating the moving average value of the current flowing through the welding electrode of the AC resistance welding machine every predetermined time as a moving average current value;
A moving average resistance calculating step of calculating a moving average resistance value from the moving average voltage value and the moving average current value;
A resistance welding monitoring method comprising: a splash determination step for comparing the moving average resistance value at the end of resistance welding with a preset threshold value and determining whether or not splash has occurred in the joint by resistance welding. .
前記スプラッシュ判定工程において、前記移動平均抵抗値が前記閾値を越えた場合に、スプラッシュの発生有りと判定することを特徴とする請求項4記載の抵抗溶接監視方法。  The resistance welding monitoring method according to claim 4, wherein, in the splash determination step, it is determined that splash has occurred when the moving average resistance value exceeds the threshold value.
JP2002368684A 2002-12-19 2002-12-19 Resistance welding monitoring apparatus and method Expired - Lifetime JP4267314B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002368684A JP4267314B2 (en) 2002-12-19 2002-12-19 Resistance welding monitoring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002368684A JP4267314B2 (en) 2002-12-19 2002-12-19 Resistance welding monitoring apparatus and method

Publications (2)

Publication Number Publication Date
JP2004195521A JP2004195521A (en) 2004-07-15
JP4267314B2 true JP4267314B2 (en) 2009-05-27

Family

ID=32765189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002368684A Expired - Lifetime JP4267314B2 (en) 2002-12-19 2002-12-19 Resistance welding monitoring apparatus and method

Country Status (1)

Country Link
JP (1) JP4267314B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5205246B2 (en) 2008-12-09 2013-06-05 プライムアースEvエナジー株式会社 Resistance welding quality judgment method and resistance welding quality judgment device
JP5559732B2 (en) * 2011-03-30 2014-07-23 プライムアースEvエナジー株式会社 Battery manufacturing method and welding method
KR101563126B1 (en) 2014-06-13 2015-10-26 한국생산기술연구원 Expulsion detection method of spot welder and recording medium for storing program thereof

Also Published As

Publication number Publication date
JP2004195521A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
EP0859416B1 (en) Explosion-proof seal plate for enclosed type cell and production method thereof
US9397372B2 (en) Sealed battery including current interrupting mechanism
JP5483034B2 (en) Batteries having unit cells, charge compensation devices, and pole connections welded to each other
KR20060090469A (en) Battery cartridge-connecting system for battery module
US11189858B2 (en) Electricity storage module
KR102072481B1 (en) Method of Inspecting Welding State Using Pressure Gauge
JPH08185896A (en) Abnormality detection device for storage battery
JP4267314B2 (en) Resistance welding monitoring apparatus and method
JP5594079B2 (en) Monitoring device for current interruption mechanism
JP6909406B2 (en) Battery module
KR100551418B1 (en) Automatic Welding Apparatus
CN113474940B (en) Method of soldering a cell interconnect and soldering electrode arrangement for use in said method
KR102627940B1 (en) Metal Plate For Resistance Welding and Welding Method Thereof
JP5205246B2 (en) Resistance welding quality judgment method and resistance welding quality judgment device
JPH0982306A (en) Lead-acid battery and manufacture thereof
KR100649205B1 (en) Secondary battery and cap assembly
CN218448344U (en) Cover plate assembly and lithium battery
JP2762585B2 (en) Inspection method of connection between cells in lead-acid battery
JP2004006420A (en) Manufacturing method of battery
JP2002324574A (en) Inspecting method for lead storage battery
JP7246815B2 (en) Metal plate for resistance welding and resistance welding method using the same
JP7443321B2 (en) Secondary batteries and assembled batteries, and their manufacturing methods
JP2004014171A (en) Sensor mounting structure and battery
JP5559732B2 (en) Battery manufacturing method and welding method
KR20230040581A (en) Ultrasonic welding quality monitoring system and method using artificial intelligence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050526

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071009

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090218

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4267314

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term