JP4266678B2 - Process for producing readily dyeable meta-type wholly aromatic polyamide fiber - Google Patents

Process for producing readily dyeable meta-type wholly aromatic polyamide fiber Download PDF

Info

Publication number
JP4266678B2
JP4266678B2 JP2003071801A JP2003071801A JP4266678B2 JP 4266678 B2 JP4266678 B2 JP 4266678B2 JP 2003071801 A JP2003071801 A JP 2003071801A JP 2003071801 A JP2003071801 A JP 2003071801A JP 4266678 B2 JP4266678 B2 JP 4266678B2
Authority
JP
Japan
Prior art keywords
fiber
aromatic polyamide
wholly aromatic
meta
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003071801A
Other languages
Japanese (ja)
Other versions
JP2004277937A (en
Inventor
秀樹 新田
寛 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Techno Products Ltd
Original Assignee
Teijin Techno Products Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Techno Products Ltd filed Critical Teijin Techno Products Ltd
Priority to JP2003071801A priority Critical patent/JP4266678B2/en
Publication of JP2004277937A publication Critical patent/JP2004277937A/en
Application granted granted Critical
Publication of JP4266678B2 publication Critical patent/JP4266678B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
本発明は、カチオン染料や分散染料等の染料に対する染色性が良好であり、かつ、繊維強度及び熱収縮安定性にも優れた易染性メタ型全芳香族ポリアミド繊維及びその製造方法に関するものである。
【0002】
【従来の技術】
ポリメタフェニレンテレフタルアミド繊維などのメタ型全芳香族ポリアミド繊維は、分子骨格がほとんど芳香族環から構成されているため、優れた耐熱性と寸法安定性を有する。これらの特性を生かし、メタ型全芳香族ポリアミド繊維は、産業用途や耐熱性、防炎性、耐炎性が重視される用途に好適に使用されている。特に、その耐炎性と防炎性を生かした寝具、衣料、インテリア分野への用途が急速に広がりつつある。これら分野では、審美性や視覚性の観点から着色した繊維が求められるが、それと同時に優れた繊維強度や熱収縮安定性も求められる。すなわち、良好な染色性を有し、かつ繊維強度や熱収縮安定性は非着色と同等の性能を備えた繊維及びそれを不利なく製造する製造法が求められる。しかし、メタ型全芳香族ポリアミド繊維は優れた物性を有する反面、ポリマー分子鎖が剛直なために通常の方法ではその染色が困難であるという問題がある。
【0003】
このような問題を解消するため、特開昭50−59522号公報には、特定の顔料をメタ型全芳香族ポリアミド繊維に含有させた着色繊維が提案されている。しかし、繊維の製造工程で顔料を含有させるため、製造時のロスが多くなり、そのため小ロット対応の生産が困難であったり、要求される各種の色相の繊維を得るのが困難であるなどの問題がある。
【0004】
また、特開昭55−21406号公報には、キシリレンジアミンを共重合させたポリアミドを混合して染色性を向上させる方法が提案されている。しかし、このように第3成分を共重合させたポリアミドの製造には、重合装置の稼働率が低下するなどの問題がある。
【0005】
染色性を向上させる別の手段として、特開平8−81827号公報には、アルキルベンゼンスルホン酸オニウム塩を添加してカチオン染料易染性とする方法が提案されている。確かにこの方法によればカチオン染料に対しては良好な染色性が得られるものの、該オニウム塩の添加によりコストが高くなるだけでなく、製糸時に該オニウム塩が繊維から脱落しないように製糸時や後加工時の条件設定を厳しくしなければならないという問題がある。
【0006】
このように、重合時又は紡糸時に添加剤等を加えて染色性を改善する方法では、例え優れた染色性、繊維強度、熱収縮安定性を兼備させることができるとしても、コストアップや工程増加、工程管理などの問題がある。
【0007】
一方、添加剤等を加えることなく良好な染色性と熱収縮安定性を備える方法として、特公昭50−13846号公報には、アミド溶媒溶液を湿式紡糸した凝固糸を、溶媒及び可溶化塩を含有する水性浴中で熱延伸し、次いで水性浴中で延伸糸中に残存する溶剤及び可溶化塩をすべて抽出洗浄し、さらに実質的に張力をかけていない状態で蒸気処理した後に、実質的に張力をかけていない状態下110〜150℃で乾燥する方法が提案されている。確かにこの方法によれば、良好な染色性及び良好な熱収縮安定性を有するメタ型全芳香族ポリアミド繊維が得られるものの、該繊維は径0.1μm程度のミクロボイドが多数形成された多孔性繊維であるために切断強度がやや低いという問題がある。
【0008】
このように、良好な染色性を有すると共に、良好な繊維強度及び熱収縮安定性を兼ね備えたメタ型全芳香族ポリアミド繊維は未だ提案されていないのが実情である。
【0009】
【特許文献1】
特開昭50−59522号公報
【特許文献2】
特開昭55−21406号公報
【特許文献3】
特開平8−81827号公報
【特許文献4】
特公昭50−13846号公報
【0010】
【発明が解決しようとする課題】
本発明は、上記従来技術を背景になされたもので、その目的は、染料に対する染色性に優れ、しかも繊維強度及び熱収縮安定性を兼備した易染性メタ型全芳香族ポリアミド繊維の製造方法を提供することにある。
【0011】
【課題を解決するための手段】
本発明者の研究によれば、上記本発明の第1の目的は、
アミド系溶媒に溶解したメタ型全芳香族ポリアミド重合体溶液を湿式紡糸することによりメタ型全芳香族ポリアミド繊維を製造する方法において、(1)該重合体溶液を無機塩を含む水性凝固浴中に紡出して凝固せしめ、(2)この凝固糸を水性洗浄浴中にて水洗し、(3)次いで温水浴中において1.0〜4.0倍の範囲で延伸し、(4)さらに温水浴中にて繊維中の無機塩を取り除き、(5)続いて下記(a)〜(d)を満足する条件にて飽和水蒸気中で延伸し、(6)さらに緊張のかからない状態下、49〜294kPaの飽和水蒸気中で、1秒〜2分熱処理することを特徴とする易染性メタ型全芳香族ポリアミド繊維の製造方法。
(a)水蒸気中延伸前の繊維中のアミド系溶媒含有率が3〜25重量%
(b)水蒸気中延伸時の飽和水蒸気圧力が29.4〜392kPa
(c)上記(3)における温水延伸と水蒸気中延伸の全延伸倍率が4.0〜6.0倍
(d)水蒸気中延伸の延伸時間が1秒〜2分
により達成できることが見いだされた。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態について詳細に説明する。
本発明において使用されるメタ型全芳香族ポリアミドは、メタ型芳香族ジアミン成分とメタ型芳香族ジカルボン酸成分とから構成されるもので、その製造方法は特に限定されず、例えば、メタ型芳香族ジアミンとメタ型芳香族ジカルボン酸クロライドとを原料とした溶液重合や界面重合等により製造することができる。この際、本発明の目的を阻害しない範囲内でパラ型等の他の共重合成分を共重合してもよい。
【0014】
上記メタ型芳香族ジアミンとしては、メタフェニレンジアミン、3,4’−ジアミノジフェニルエーテル、3,4’−ジアミノジフェニルスルホン等、及びこれらの芳香環にハロゲン、炭素数1〜3のアルキル基等の置換基を有する誘導体、例えば2,4−トルイレンジアミン、2,6−トルイレンジアミン、2,4−ジアミノクロロベンゼン、2,6−ジアミノクロロベンゼン等を例示することができる。なかでも、メタフェニレンジアミン又はメタフェニレンジアミンを85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上含有する上記の混合ジアミンが好ましい。
【0015】
またメタ型芳香族ジカルボン酸ハライドとしては、イソフタル酸クロライド、イソフタル酸ブロマイド等のイソフタル酸ハライド、及びこれらの芳香環にハロゲン、炭素数1〜3のアルコキシ基等の置換基を有する誘導体、例えば3−クロロイソフタル酸クロライドを例示することができる。なかでも、イソフタル酸クロライド又はイソフタル酸クロライドを85モル%以上、好ましくは90モル%、特に好ましくは95モル%以上含有する上記の混合カルボン酸ハライドが好ましい。
【0016】
上記ジアミンとカルボン酸ハライド以外で使用し得る共重合成分としては、芳香族ジアミンとしてパラフェニレンジアミン、2,5−ジアミノクロロベンゼン、2,5−ジアミノブロモベンゼン、アミノアニシジン等のベンゼン誘導体、1,5−ナフチレンジアミン、4,4’−ジアミノジフェニルエーテル、4,4’−ジアミノジフェニルケトン、4,4’−ジアミノジフェニルアミン、4,4’−ジアミノジフェニルメタン等を例示することができる。また、芳香族ジカルボン酸ハライドとしては、テレフタル酸クロライド、1,4−ナフタレンジカルボン酸クロライド、2,6−ナフタレンジカルボン酸クロライド、4,4’−ビフェニルジカルボン酸クロライド、4,4’−ジフェニルエーテルカルボン酸クロライド等を例示することができる。これらの共重合成分の共重合量は、あまりに多くなりすぎるとメタ型芳香族ポリアミドの特性が低下しやすいので、好ましくは全芳香族ポリアミドの全酸成分を基準として15モル%以下、好ましくは10モル%以下、特に好ましくは5モル%以下とするのが適当である。
【0017】
特に好ましく使用されるメタ型芳香族ポリアミドは、全繰返し単位の85モル%以上、好ましくは90モル%以上、特に好ましくは95モル%以上、さらに好ましくは100モル%がメタフェニレンイソフタルアミド単位から構成されるメタ型全芳香族ポリアミドである。
【0018】
かかるメタ型全芳香族ポリアミドの重合度は、N−メチル−2−ピロリドン(NMP)を溶媒として30℃で測定した固有粘度(IV)が0.8〜3.0、特に1.0〜2.0の範囲にあるものが好ましい。
【0019】
かかるメタ型全芳香族ポリアミドからなる本発明により得られる易染性繊維は、その切断強度が3.5〜5.0cN/dtex、好ましくは3.8〜5.0cN/dtexの範囲であることが好ましい。切断強度が3.5cN/dtex未満の場合には、寝具、衣料、インテリアなどの分野に用途展開するには強度が不十分で本発明の目的を達成することができない場合がある。一方、5.0cN/dtexを超えるような繊維は、後述する乾熱収縮率や湿熱収縮率を同時に満足させることは、現実には困難な場合がある
【0020】
なお、本発明でいう易染性とは、下記の染色方法で染色した際の染着率が90%以上であり、かつ、マスベク(株)製のカラー測色装置「マクベスカラーアイ」で測定した染色トウの明度指数L*値が30以下のことをいう。
【0021】
<染色方法>
試料繊維をトウの状態で、Kayacryl Blue GSL−ED(B−54)(日本化薬(株)製カチオン染料)6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリア剤としてベンジルアルコール70g/L、分散剤としてディスパーTL(明成化学工業(株)製染色助剤)0.5g/Lの染色液を用い、繊維と染色液の浴比を1:40として120℃下60分間染色処理する。染色後、ハイドロサルファイト2.0g/L、アラミジンD(第一工業製薬(株)製)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用い、浴比1:20で80℃下20分間還元洗浄し、水洗後乾燥する。
【0022】
<染着率>
上記の染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出する。この抽出液の670、540、530nm波長の吸光度を測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から、この抽出液の染料濃度(C)を求める(3波長での濃度の平均をとる)。染色前の染料濃度(Co)を用いて、下記式より染着率(U)を算出する。
U=(Co−C)/Co×100
【0023】
<染色トウのL*値>
マスベク(株)製のカラー測色装置「マクベスカラーアイ モデルCE−3100」を用い、10度視野、D65光源、波長360〜740nmの条件で測定して、明度指数L*を求めた。なお、明度指数L*は、数値が小さいほど濃染化されていることを示す。
【0024】
次に、本発明の易染性全芳香族ポリアミド繊維は、300℃乾熱収縮率が10〜30%、さらに好ましくは10〜25%の範囲であることが好ましい。該乾熱収縮率が10%未満の場合には、本発明の目的とする易染性メタ型全芳香族ポリアミド繊維を得ることが困難となる場合があり、一方、30%を超える場合には、消防服などの炎下又は高温雰囲気下に曝される衣料用途では、熱による収縮応力によって衣服に穴があき、身体が高温に曝され可能性が大きくなるので好ましくない。
【0025】
ここで、300℃乾熱収縮率の測定は、以下の方法にしたがって測定したものである。
<300℃乾熱収縮率>
約3300dtex(3000デニール)のトウに98cN(100g)の荷重を吊るし、30cm離れた箇所に印をつける。荷重を除去後、トウを300℃雰囲気下に15分間置いた後の印間長Lを測定する。(30−L)/30×100の値を300℃乾熱収縮率(%)とした。
【0026】
また、本発明により得られる易染性全芳香族ポリアミド繊維は、135℃湿熱収縮率が0〜12%、さらに好ましくは1〜8%の範囲であることが好ましい。該湿熱収縮率が0%未満の場合(すなわち、自己伸長する場合)には、上記乾熱収縮率の場合と同じく易染性メタ型全芳香族ポリアミド繊維を得ることが困難となる場合があり、一方、12%を超える場合には、前記乾熱収縮率が30%を超える場合と同じく、消防服などの炎下又は高温雰囲気下に曝される衣料用途で熱収縮応力により衣服に穴があき、身体が高温に曝され可能性が大きくなるので好ましくない。
【0027】
ここで、135℃湿熱収縮率の測定は、以下の方法にしたがって測定したものである。
<135℃湿熱収縮率>
約3300dtex(3000デニール)のトウに98cN(100g)の荷重を吊るし、50cm離れた箇所に印をつける。荷重を除去後、トウと水を染色用耐圧ポットに入れ、135℃の水中に60分間置いた後の印間長Kを測定する。(50−K)/50×100の値を135℃湿熱収縮率(%)とした。
【0028】
以上に説明した本発明により得られる易染性メタ型全芳香族ポリアミド繊維は、例えば以下の方法により製造することができる。すなわち、前述のメタ型全芳香族ポリアミドをアミド系溶媒に溶解して、先ずメタ型全芳香族ポリアミド重合体溶液を調整する。ここで使用されるアミド系溶媒としては、N−メチル−2−ピロリドン(NMP)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)等を例示することができ、なかでもNMPが好ましい。溶液濃度としては、次の凝固工程での凝固速度及び重合体の溶解性の観点から適当な濃度を選択すればよく、ポリマーがポリメタフェニレンイソフタルアミドで溶媒がNMPの場合には、通常は15〜25重量%の範囲が好ましい。
【0029】
このメタ型全芳香族ポリアミド重合体溶液は、従来公知の湿式紡糸装置を使用し、従来公知の無機塩を含む水性凝固浴中に紡出して凝固させる。すなわち、紡糸口金の紡糸孔数、配列状態、孔形状等は、安定して湿式紡糸できるものであれば特に制限する必要はなく、例えば孔数が1000〜30000個、紡糸孔径が0.05〜0.2mmであるスフ用の多ホール紡糸口金でも、水性凝固浴中で安定に凝固させることができる。紡糸口金から紡出するメタ型全芳香族ポリアミド重合体溶液の温度は、50〜90℃の範囲が適当である。
【0030】
無機塩を含む水性凝固浴液も、従来公知の水性凝固浴液を使用することができる。具体的には、塩化カルシウム濃度が34〜42重量%、NMP濃度が5〜10重量%の水溶液が好ましいものとして例示される。かかる水性凝固浴液の温度は80〜95℃の範囲が適当である。なお、凝固浴中への繊維の浸漬時間は、1〜11秒の範囲が適当である。
【0031】
凝固浴中で凝固された繊維は、次に水性洗浄浴中にて水洗されるが、該水洗工程は、得られる繊維の品質面及び繊維中のアミド系溶媒含有率を適正な範囲に調整する面から多段で行なうのが好ましい。すなわち、凝固液から引き出された繊維を水性洗浄浴中で水洗する際、該洗浄浴の温度及びアミド系溶媒濃度は、繊維中からのアミド系溶媒の抽出状態及び洗浄浴からの水の繊維中への浸入状態に影響を与えるため、それらを最適な状態とするには、多段での温度条件及び多段でのアミド系溶媒濃度として制御することが好ましい。例えば、最初の洗浄浴を60℃以上の高温とすると、水の繊維中への浸入がここで一気に起こり、繊維中に巨大なボイドが生成して糸品質の劣化を招くため、最初の洗浄浴は30℃以下の低温とすることが好ましい。また、後述する飽和水蒸気中での延伸において、該飽和水蒸気中延伸前の繊維中のアミド系溶媒含有率を制御することが本発明においてはたいへん重要であるが、それを適正範囲とするための手段として、洗浄浴中のアミド系溶媒濃度を多段に調整することが有効である。このように、該洗浄工程は多段で行なうのが好ましい。なお、該洗浄浴中への繊維の浸漬時間は、用いる洗浄浴の温度、アミド系溶媒濃度に応じて適宜選択すればよいが、通常1洗浄工程の浸漬時間は10秒〜180秒の範囲が適当である。
【0032】
洗浄された繊維は、次に温水浴中にて延伸処理される。ここで延伸倍率は1.0〜4.0倍の範囲とする必要がある。本発明においては、温水浴での延伸と後述する飽和水蒸気中での延伸を組合わせた全延伸倍率を大きくして、切断強度が高くて熱収縮安定性も良好な繊維を得ることにある。したがって、飽和水蒸気中での延伸が十分可能であれば温水中での延伸はなくても構わないが(温水延伸倍率1.0倍)、あまりに大きくしすぎると工程調子が低下するので温水延伸倍率4.0倍以下とする必要がある。特に好ましい温水延伸倍率は2.0〜3.5倍の範囲である。この際の温水浴の温度は、70〜100℃の範囲が好ましく、特に温度が低めであると工程調子が悪くなりやすいので、85〜100℃の範囲がより好ましい。
【0033】
なお、洗浄工程の条件を制御して、温水延伸する前の繊維中のアミド系溶媒含有率を5〜30重量%の範囲に制御することが好ましい。この値が5重量%未満の場合には、円滑に温水延伸できなくなり、一方、30重量%を越える場合には、後述する飽和水蒸気中延伸前の繊維中のアミド系溶媒含有率を適性な範囲とすることが困難になるので好ましくない。
【0034】
本発明においては、温水延伸された繊維は、さらに温水浴中に浸漬して繊維中に残存している無機塩を取り除く必要がある。該温水浴の温度は、無機塩が取り除ける温度であれば特に制限する必要はないが、70〜100℃の範囲が好ましく、特に効率よく無機塩を取り除くためには85〜100℃の範囲がより好ましい。その際の浸漬時間も特に制限する必要はないが、あまりに長くしすぎると、飽和水蒸気中での延伸に供する繊維中のアミド系溶媒含有率が低下して、適正範囲を下回る場合があるので適宜調整する。
【0035】
本発明においては、このように温水浴中で無機塩を除去した繊維を、下記(a)〜(d)を満足する条件にて飽和水蒸気中で延伸することが肝要である。
(a)蒸気中延伸前の繊維中のアミド系溶媒含有率が3〜25重量%である。
(b)水蒸気中延伸時の飽和蒸気圧力が29.4〜392kPa
(c)上記(3)における温水延伸と蒸気中延伸の全延伸倍率が4.0〜6.0倍である。
(d)蒸気中延伸の延伸時間が1秒〜2分である。
【0036】
まず、飽和水蒸気中で延伸する前の繊維中のアミド系溶媒含有率は、本発明では極めて重要であり、3〜25重量%、特に好ましくは4〜20重量%の範囲とする必要がある。すなわち、本発明においては、飽和水蒸気中での延伸時に結晶化は進行させずに分子鎖配向のみを上げたいわけであるが、該飽和水蒸気中での延伸前の繊維中のアミド系溶媒含有率が3重量%未満の場合には、繊維の見掛けのガラス転移温度(Tg)が高くなり、飽和水蒸気中での延伸が十分に行うことができなくなる。一方、該延伸前の繊維中のアミド系溶媒含有率が25重量%を超える場合には、該飽和水蒸気中での延伸時に結晶化も進行するため、得られる繊維の染色性が大きく低下してしまうので好ましくない。
【0037】
次に、水蒸気中延伸時の飽和蒸気圧力は29.4〜392kPaとする必要があり、さらに好ましい範囲は39.2〜343kPaである。すなわち、上記延伸前の繊維中のアミド系溶媒含有率と同様に、水蒸気中延伸時の飽和蒸気圧力が29.4kPa未満の場合には安定に水蒸気中延伸ができなくなり、一方、392kPaを越える場合には、該延伸時に結晶化も進行するため、得られる繊維の染色性が大きく低下してしまうので好ましくない。
【0038】
また、前記(3)工程における温水延伸と本飽和水蒸気中での延伸とをあわせた全延伸倍率は4.0〜6.0倍とする必要があり、さらに好ましい範囲は4.2〜5.6倍である。この全延伸倍率が4.0倍未満と低い場合には、配向を十分に上げることができず、目的とする切断強度が達成できなくなるだけでなく、後述する熱処理工程で十分な熱収縮安定性を付与することができなくなるので好ましくない。一方、全延伸倍率が6.0倍を越える場合には、延伸の工程調子が低下して毛羽や断糸が多発するようになるので好ましくない。
【0039】
さらに、飽和水蒸気中での延伸の延伸時間は、1秒〜2分の範囲とする必要があり、さらに好ましい範囲は3秒〜1分でさる。この延伸時間が1秒未満の場合には、水蒸気が繊維中に十分浸透しないため、安定に延伸することができなくなる。一方、2分を越える場合には、不必要な繊維構造の変化が起きて所望の特性を有する繊維が得られなくなる可能性があり、また生産速度が遅くなる、蒸気中延伸の装置が過大になるなど、生産性、設備投資の点からも好ましくない。
【0040】
本発明においては、このように飽和水蒸気中延伸した繊維は、該蒸気中延伸により高められた配向を緩和させることにより、染色性を維持しながら熱収縮安定性を向上させるために、緊張のかからない状態で熱処理する必要がある。具体的には緊張のかからない状態下、49〜294kPaの飽和水蒸気圧力中にて1秒〜2分蒸気処理する方法がある。特に、135〜150℃の飽和水蒸気中での熱処理方法は、135℃湿熱収縮率を5%以下と小さくすることができるので好ましい。飽和蒸気温度が135℃未満であると十分な熱処理効果を付与するための時間が長くなる傾向にあり、一方、150℃を越えると、非緊張下でも結晶化が進行しやすくなり染色性が低下しやすい。
【0041】
【実施例】
以下、実施例をあげて本発明をさらに具体的に説明する。なお、実施例中における各物性値は下記の方法で測定した。
【0042】
<染色方法>
試料繊維をトウの状態で、Kayacryl Blue GSL−ED(B−54)(日本化薬(株)製カチオン染料)6%owf、酢酸0.3mL/L、硝酸ナトリウム20g/L、キャリア剤としてベンジルアルコール70g/L、分散剤としてディスパーTL(明成化学工業(株)製染色助剤)0.5g/Lの染色液を用い、繊維と染色液の浴比を1:40として120℃下60分間染色処理する。染色後、ハイドロサルファイト2.0g/L、アラミジンD(第一工業製薬(株)製)2.0g/L、水酸化ナトリウム1.0g/Lの割合で含有する処理液を用い、浴比1:20で80℃下20分間還元洗浄し、水洗後乾燥する。
【0043】
<染着率>
上記の染色残液に、この染色残液と同容積のジクロロメタンを加え、残染料を抽出する。この抽出液の670、540、530nm波長の吸光度を測定し、あらかじめ染料濃度が既知のジクロロメタン溶液から作成した上記3波長の検量線から、この抽出液の染料濃度(C)を求める(3波長での濃度の平均をとる)。染色前の染料濃度(Co)を用いて、下記式より染着率(U)を算出する。
U=(Co−C)/Co×100
【0044】
<染色トウのL*値>
マスベク(株)製のカラー測色装置「マクベスカラーアイ モデルCE−3100」を用い、10度視野、D65光源、波長360〜740nmの条件で測定して、明度指数L*を求めた。なお、明度指数L*は、数値が小さいほど濃染化されていることを示す。
【0045】
<固有粘度IV>
ポリマーをNMPに0.5g/100mLの濃度で溶解し、オストワルド粘度計を用い、30℃で測定した。
【0046】
<繊度>
JIS−L−1015に準じ、測定した。
【0047】
<強度、伸度>
JIS−L−1015に準じ、試料長20mm、初荷重0.044cN(1/20g)/dtex、伸張速度20mm/分で測定した。
【0048】
<300℃乾熱収縮率>
約3300dtex(3000デニール)のトウに98cN(100g)の荷重を吊るし、30cm離れた箇所に印をつける。荷重を除去後、トウを300℃雰囲気下に15分間置いた後の印間長Lを測定する。(30−L)/30×100の値を300℃乾熱収縮率(%)とした。
【0049】
<135℃湿熱収縮率>
約3300dtex(3000デニール)のトウに98cN(100g)の荷重を吊るし、50cm離れた箇所に印をつける。荷重を除去後、トウと水を染色用耐圧ポットに入れ、135℃の水中に60分間置いた後の印間長Kを測定する。(50−K)/50×100の値を135℃湿熱収縮率(%)とした。
【0050】
<繊維中のアミド系溶媒含有率>
繊維を遠心分離機(回転数5000rpm)に10分かけ、重量Mgのジクロロメタン中で4時間煮沸し、繊維中のアミド化合物溶媒を抽出する。抽出後繊維を105℃雰囲気下で乾燥させ、乾燥後の繊維重量を測定し、これをF0とする。抽出液中のアミド化合物溶媒重量濃度C(%)を、ガスクロマトグラフにより求める。これらより、繊維中のアミド系溶媒含有率SV(%)を以下式により算出する。
SV=M×C/F0
【0051】
[実施例1]
特公昭47−10863号公報記載の方法に準じた界面重合法により製造した固有粘度が1.9のポリメタフェニレンイソフタルアミド粉末21.5重量部を、−10℃に冷却したN−メチル−2−ピロリドン(NMP)78.5重量部中に懸濁させ、スラリー状にした後、60℃まで昇温して溶解させ、透明なポリマー溶液を得た。
【0052】
このポリマー溶液を85℃に加温して紡糸原液とし、孔径0.07mm、孔数3000の紡糸口金から85℃の凝固浴中に吐出して紡糸した。この凝固浴の組成は、塩化カルシウムが40重量%、NMPが5重量%、残りの水が55重量%であり、浸漬長(有効凝固浴長)100cmにて糸速9.5m/分で通過させた後、いったん空気中に引き出した。
【0053】
この凝固糸条を第1〜第3水性洗浄浴にて水洗し、この際の総浸漬時間は36秒とした。なお、第1水性洗浄浴組成はNMPが10重量%、残りの水が90重量%、温度は10℃とし、第2水性洗浄浴及び第3水性洗浄浴はすべて水とし、温度は30℃とした。次に、この洗浄糸条を95℃の温水中にて2.4倍に延伸し、引続き95℃の温水中に24秒浸漬した。このとき得られた繊維中のNMP含有率は6.4重量%であった。
【0054】
続いてこの糸条を、飽和水蒸気圧力49kPa下に10秒間曝して1.9倍に延伸した。前記温水延伸と水蒸気中延伸の全延伸倍率は4.6倍である。得られた蒸気中延伸糸条を、緊張のかからない状態で、飽和水蒸気圧力49kPa下に12秒間曝して熱処理し、繊度1.57dtex、強度3.93cN/dtex、伸度45.5%、300℃乾熱収縮率22.1%、135℃湿熱収縮率6.5%のトウを得た。
【0055】
このトウを染色したところ、染着率は92.4%、L*値は29.4であり、良好な染色性を示した。
【0056】
[実施例2]
第1水性洗浄浴の組成をNMP30重量%、残りが水70重量%、第2水性洗浄浴の組成をNMP20重量%、残りが水80重量%、第3水性洗浄浴の組成をNMP10重量%、残りが水90重量%とした以外は、実施例1と同様に行なった。なお、このときの飽和水蒸気中延伸に供する前の繊維中のNMP含有率は21.9重量%であった。
【0057】
得られた繊維は、繊度1.69dtex、強度4.38cN/dtex、伸度39.7%、300℃乾熱収縮率18.4%、135℃湿熱収縮率6.1%のトウであり、染着率は90.9%、L*値は29.6であり、良好な染色性を示した。
【0058】
[実施例3]
飽和水蒸気圧力を294kPaとして延伸した以外は、実施例1と同様に行なった。得られた繊維は、繊度1.74dtex、強度4.36cN/dtex、伸度47.6%、300℃乾熱収縮率21.4%、135℃湿熱収縮率5.8%のトウであり、染着率は91.7%、L*値は29.3であり、良好な染色性を示した。
【0060】
[比較例1]
第1水性洗浄浴の組成をNMP40重量%、残りが水60重量%、第2水性洗浄浴の組成をNMP30重量%、残りが水70重量%、第3水性洗浄浴の組成をNMP20重量%、残りが水80重量%とした以外は、実施例1と同様に行なった。なお、このときの飽和水蒸気中延伸に供する前の繊維中のNMP含有率は28.5重量%であった。
【0061】
得られた繊維は、繊度1.82dtex、強度4.36cN/dtex、伸度36.8%、300℃乾熱収縮率14.5%、135℃湿熱収縮率6.3%のトウであり、染着率は72.3%、L*値は32.8で、染色性に劣るものであった。
【0062】
[比較例2]
飽和水蒸気中での延伸倍率を1.2倍(温水延伸と蒸気中延伸の全延伸倍率は2.9倍)とした以外は、実施例1と同様に行なった。得られた繊維は、繊度2.21dtex、強度3.11cN/dtex、伸度58.1%、300℃乾熱収縮率28.6%、135℃湿熱収縮率11.4%のトウであり、染着率は93.1%、L*値は29.2であるものの、切断強度に劣るものであった。
【0063】
[比較例3]
第1水性洗浄浴、第2水性洗浄浴、第3水性洗浄浴を水とし、この際の総浸漬時間を54秒とし、温水中延伸に続く95℃温水中に48秒浸漬した。それ以外は実施例1と同様にし、飽和水蒸気中延伸に供する前の繊維を得た。このときの繊維中のNMP含有率は2.3重量%であった。
【0064】
続いてこの糸条を、飽和水蒸気圧力49kPa下に10秒間曝して延伸を行なったが、糸が破断するため1.4倍までしか延伸できなかった(温水延伸と蒸気中延伸の全延伸倍率は3.8倍)。その後、実施例1と同様な熱処理を行なった。
【0065】
得られた繊維は、繊度1.75dtex、強度3.21cN/dtex、伸度58.8%、300℃乾熱収縮率28.3%、135℃湿熱収縮率11.3%のトウであり、染着率は90.6%、L*値は29.1であるものの、切断強度に劣るものであった。
【0066】
[比較例4]
飽和水蒸気圧力を9.8kPaとした以外は実施例1と同様に行ない、実施例1と同様に飽和蒸気中での延伸倍率を1.9倍として行なうことを試みた。しかし、糸が破断するため1.2倍までしか延伸できなかった(温水延伸と蒸気中延伸の全延伸倍率は2.9倍)。その後、実施例1と同様な熱処理を行なった。
得られた繊維は、繊度1.86dtex、強度3.12cN/dtex、伸度63.6%、300℃乾熱収縮率30.4%、135℃湿熱収縮率11.9%のトウであり、染着率は91.5%、L*値は28.9であるものの、切断強度に劣るものであった。
【0067】
【発明の効果】
以上に説明した本発明の製造方法によれば、染料に対する染色性が良好であり、かつ優れた繊維強度、熱収縮安定性をも兼ね備えたメタ型全芳香族ポリアミド繊維を提供することができる。また、本来の優れた耐炎性だけでなく、熱安定性や力学特性を生かした各種の用途に応用することができ、特に着色が必要な寝具、衣料、インテリアの分野で有効に使用できる。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a readily dyeable meta-type wholly aromatic polyamide fiber having good dyeability for dyes such as cationic dyes and disperse dyes, and excellent in fiber strength and heat shrink stability, and a method for producing the same. is there.
[0002]
[Prior art]
Meta-type wholly aromatic polyamide fibers such as polymetaphenylene terephthalamide fiber have excellent heat resistance and dimensional stability because the molecular skeleton is almost composed of aromatic rings. Taking advantage of these characteristics, meta-type wholly aromatic polyamide fibers are suitably used for industrial applications and applications where heat resistance, flame resistance, and flame resistance are important. In particular, applications in the bedding, clothing, and interior fields that make use of the flame resistance and flame resistance are rapidly expanding. In these fields, colored fibers are required from the viewpoint of aesthetics and visual properties, but at the same time, excellent fiber strength and heat shrinkage stability are also required. That is, there is a need for a fiber that has good dyeability and that has fiber strength and thermal shrinkage stability equivalent to that of non-colored fiber, and a production method that produces it without disadvantages. However, while the meta-type wholly aromatic polyamide fiber has excellent physical properties, it has a problem that it is difficult to dye by a normal method because the polymer molecular chain is rigid.
[0003]
In order to solve such a problem, Japanese Patent Application Laid-Open No. 50-59522 proposes a colored fiber in which a specific pigment is contained in a meta-type wholly aromatic polyamide fiber. However, since the pigment is included in the fiber manufacturing process, the loss during manufacturing increases, so that it is difficult to produce for small lots, and it is difficult to obtain fibers of various required hues. There's a problem.
[0004]
Japanese Patent Laid-Open No. 55-21406 proposes a method for improving dyeability by mixing polyamide copolymerized with xylylenediamine. However, in the production of the polyamide copolymerized with the third component in this way, there is a problem that the operation rate of the polymerization apparatus is lowered.
[0005]
As another means for improving dyeability, Japanese Patent Application Laid-Open No. 8-81827 proposes a method in which alkylbenzenesulfonic acid onium salt is added to make it easily dyeable with a cationic dye. Certainly, according to this method, good dyeability can be obtained for the cationic dye, but not only the cost is increased by the addition of the onium salt, but also at the time of spinning so that the onium salt does not fall off from the fiber during spinning. In addition, there is a problem that the condition setting during post-processing must be strict.
[0006]
As described above, the method for improving the dyeability by adding an additive during polymerization or spinning can increase the cost and increase the process even if excellent dyeability, fiber strength, and heat shrink stability can be combined. There are problems such as process management.
[0007]
On the other hand, as a method having good dyeability and heat shrinkage stability without adding an additive or the like, Japanese Patent Publication No. 50-13846 discloses a coagulated yarn obtained by wet spinning an amide solvent solution, a solvent and a solubilizing salt. After hot drawing in the aqueous bath containing, then extracting and washing all the solvent and solubilized salt remaining in the drawn yarn in the aqueous bath and further steaming in a substantially untensioned state, There has been proposed a method of drying at 110 to 150 ° C. in a state where no tension is applied. Certainly, according to this method, although a meta type wholly aromatic polyamide fiber having good dyeing property and good heat shrinkage stability can be obtained, the fiber is porous in which many microvoids having a diameter of about 0.1 μm are formed. Since it is a fiber, there exists a problem that cutting strength is a little low.
[0008]
Thus, in reality, a meta-type wholly aromatic polyamide fiber having good dyeability and having good fiber strength and heat shrinkage stability has not been proposed yet.
[0009]
[Patent Document 1]
JP 50-59522 A
[Patent Document 2]
Japanese Patent Laid-Open No. 55-21406
[Patent Document 3]
JP-A-8-81827
[Patent Document 4]
Japanese Patent Publication No. 50-13846
[0010]
[Problems to be solved by the invention]
  The present invention has been made against the background of the above-described prior art, and its purpose is an easily dyeable meta-type wholly aromatic polyamide fiber having excellent dyeability for dyes and having both fiber strength and heat shrinkage stability.TeddyIt is to provide a manufacturing method.
[0011]
[Means for Solving the Problems]
  According to the inventor's research, the first object of the present invention is as follows.
  "In a method for producing a meta type wholly aromatic polyamide fiber by wet spinning a meta type wholly aromatic polyamide polymer solution dissolved in an amide solvent, (1) the polymer solution in an aqueous coagulation bath containing an inorganic salt (2) The coagulated yarn is washed with water in an aqueous washing bath, (3) is then stretched in the range of 1.0 to 4.0 times in a warm water bath, and (4) is further heated with warm water. In the bath, the inorganic salts in the fibers are removed, (5) and then stretched in saturated steam under the conditions satisfying the following (a) to (d): (6) In a state where no tension is applied, 49- A method for producing a readily dyeable meta-type wholly aromatic polyamide fiber, characterized by heat treatment in saturated water vapor of 294 kPa for 1 second to 2 minutes.
(A) The amide solvent content in the fiber before stretching in water vapor is 3 to 25% by weight
(B) Saturated steam pressure during stretching in steam is 29.4 to 392 kPa
(C) The total draw ratio of the hot water stretching and the steam stretching in (3) above is 4.0 to 6.0 times.
(D) Stretching time for stretching in water vapor is 1 second to 2 minutes."
Has been found to be achieved.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail.
The meta type wholly aromatic polyamide used in the present invention is composed of a meta type aromatic diamine component and a meta type aromatic dicarboxylic acid component, and its production method is not particularly limited. It can be produced by solution polymerization, interfacial polymerization or the like using an aromatic diamine and a meta-type aromatic dicarboxylic acid chloride as raw materials. Under the present circumstances, you may copolymerize other copolymerization components, such as a para type, in the range which does not inhibit the objective of this invention.
[0014]
Examples of the meta-type aromatic diamine include metaphenylene diamine, 3,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl sulfone, and the like, and substitution of halogens, alkyl groups having 1 to 3 carbon atoms, and the like on these aromatic rings. Examples thereof include derivatives having a group such as 2,4-toluylenediamine, 2,6-toluylenediamine, 2,4-diaminochlorobenzene, 2,6-diaminochlorobenzene and the like. Especially, said mixed diamine containing metaphenylenediamine or metaphenylenediamine 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more is preferable.
[0015]
Examples of the meta-type aromatic dicarboxylic acid halide include isophthalic acid halides such as isophthalic acid chloride and isophthalic acid bromide, and derivatives having a substituent such as halogen or an alkoxy group having 1 to 3 carbon atoms on the aromatic ring, such as 3 -Chloroisophthalic acid chloride can be exemplified. Among them, the above-mentioned mixed carboxylic acid halide containing 85 mol% or more, preferably 90 mol%, particularly preferably 95 mol% or more of isophthalic acid chloride or isophthalic acid chloride is preferable.
[0016]
Copolymerization components that can be used other than the diamine and carboxylic acid halide include, as aromatic diamines, benzene derivatives such as paraphenylenediamine, 2,5-diaminochlorobenzene, 2,5-diaminobromobenzene, aminoanisidine, 1, Examples include 5-naphthylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl ketone, 4,4′-diaminodiphenylamine, 4,4′-diaminodiphenylmethane, and the like. As aromatic dicarboxylic acid halides, terephthalic acid chloride, 1,4-naphthalenedicarboxylic acid chloride, 2,6-naphthalenedicarboxylic acid chloride, 4,4′-biphenyldicarboxylic acid chloride, 4,4′-diphenyl ether carboxylic acid A chloride etc. can be illustrated. If the copolymerization amount of these copolymerization components is too large, the properties of the meta-type aromatic polyamide are liable to deteriorate. Therefore, it is preferably 15 mol% or less, preferably 10% based on the total acid component of the total aromatic polyamide. It is appropriate that the amount is not more than mol%, particularly preferably not more than 5 mol%.
[0017]
Particularly preferably used meta-type aromatic polyamide is composed of 85 mol% or more, preferably 90 mol% or more, particularly preferably 95 mol% or more, more preferably 100 mol% of all repeating units composed of metaphenylene isophthalamide units. Meta-type wholly aromatic polyamide.
[0018]
The polymerization degree of such meta-type wholly aromatic polyamide is such that the intrinsic viscosity (IV) measured at 30 ° C. using N-methyl-2-pyrrolidone (NMP) as a solvent is 0.8 to 3.0, particularly 1.0 to 2. Those in the range of 0.0 are preferred.
[0019]
  The present invention comprising such a meta-type wholly aromatic polyamideObtained byThe readily dyeable fiber has a cutting strength of 3.5 to 5.0 cN / dtex, preferably 3.8 to 5.0 cN / dtex.Is preferable. When the cutting strength is less than 3.5 cN / dtex, the strength is insufficient to expand the application to the fields such as bedding, clothing, and interior, and the object of the present invention cannot be achieved.Sometimes. On the other hand, it is actually difficult for fibers that exceed 5.0 cN / dtex to simultaneously satisfy the dry heat shrinkage rate and the wet heat shrinkage rate described later.Sometimes.
[0020]
In the present invention, the easy dyeability means that the dyeing rate when dyeing is carried out by the following dyeing method is 90% or more, and measured with a color measuring device “Macbeth Color Eye” manufactured by Masbek Co., Ltd. The lightness index L * value of the dyed tow is 30 or less.
[0021]
<Dyeing method>
With sample fiber in tow state, Kayacryl Blue GSL-ED (B-54) (cationic dye manufactured by Nippon Kayaku Co., Ltd.) 6% owf, acetic acid 0.3 mL / L, sodium nitrate 20 g / L, benzyl as carrier agent Alcohol 70 g / L, Disper TL (dyeing assistant manufactured by Meisei Chemical Co., Ltd.) 0.5 g / L as a dispersant, and a fiber / dye bath ratio of 1:40 at 120 ° C. for 60 minutes Dyeing process. After dyeing, using a treatment liquid containing hydrosulfite 2.0 g / L, aramidine D (Daiichi Kogyo Seiyaku Co., Ltd.) 2.0 g / L, and sodium hydroxide 1.0 g / L, bath ratio 1:20, reducing and washing at 80 ° C. for 20 minutes, washing with water and drying.
[0022]
<Dyeing rate>
To the above dyeing residual liquid, dichloromethane having the same volume as the dyeing residual liquid is added to extract the residual dye. The absorbance of the extract at 670, 540, and 530 nm wavelengths is measured, and the dye concentration (C) of the extract is obtained from the calibration curve of the above three wavelengths prepared from a dichloromethane solution with a known dye concentration (at three wavelengths). Take the average of The dyeing rate (U) is calculated from the following formula using the dye concentration (Co) before dyeing.
U = (Co−C) / Co × 100
[0023]
<L * value of dyed tow>
Using a color measuring device “Macbeth Color Eye Model CE-3100” manufactured by Masbek Co., Ltd., the lightness index L * was determined by measurement under the conditions of a 10-degree field of view, a D65 light source, and a wavelength of 360 to 740 nm. Note that the lightness index L * indicates that the smaller the value, the deeper the dyeing.
[0024]
  Next, the readily dyeable wholly aromatic polyamide fiber of the present invention has a dry heat shrinkage of 300 ° C. of 10 to 30%,furtherPreferably it is 10 to 25% of range.Is preferable. When the dry heat shrinkage rate is less than 10%, it is difficult to obtain an easily dyeable meta-type wholly aromatic polyamide fiber as an object of the present invention.MayOn the other hand, if it exceeds 30%, there is a possibility that the clothes may be exposed to high temperatures due to shrinkage stress due to heat in clothing applications that are exposed to flames or high-temperature atmospheres such as fire clothes. Since it becomes large, it is not preferable.
[0025]
Here, the measurement of the dry heat shrinkage at 300 ° C. is measured according to the following method.
<300 ° C dry heat shrinkage>
A load of 98 cN (100 g) is hung on a tow of about 3300 dtex (3000 denier), and a mark is made at a location 30 cm away. After removing the load, the mark length L after the tow is placed in an atmosphere of 300 ° C. for 15 minutes is measured. The value of (30-L) / 30 × 100 was defined as 300 ° C. dry heat shrinkage (%).
[0026]
  In addition, the present inventionObtained byThe readily dyeable wholly aromatic polyamide fiber has a 135 ° C. wet heat shrinkage of 0 to 12%, more preferably 1 to 8%.Is preferable. When the wet heat shrinkage is less than 0% (that is, when self-elongating), it is difficult to obtain a readily dyeable meta-type wholly aromatic polyamide fiber as in the case of the dry heat shrinkage.MayOn the other hand, when it exceeds 12%, as in the case where the dry heat shrinkage rate exceeds 30%, the clothes are exposed to a flame or a high temperature atmosphere such as fire-fighting clothes due to heat shrinkage stress. It is not preferable because the possibility that the body is exposed to high temperature increases.
[0027]
Here, the measurement of 135 degreeC wet heat shrinkage rate is measured in accordance with the following method.
<135 ° C wet heat shrinkage>
A load of 98 cN (100 g) is hung on a tow of about 3300 dtex (3000 denier), and a mark is made at a location 50 cm away. After removing the load, tow and water are put into a pressure-resistant pot for dyeing, and the mark length K after being placed in water at 135 ° C. for 60 minutes is measured. The value of (50−K) / 50 × 100 was defined as 135 ° C. wet heat shrinkage (%).
[0028]
  The present invention described aboveObtained byThe easily dyeable meta-type wholly aromatic polyamide fiber can be produced, for example, by the following method. That is, the above-mentioned meta type wholly aromatic polyamide is dissolved in an amide solvent, and a meta type wholly aromatic polyamide polymer solution is first prepared. Examples of the amide solvent used here include N-methyl-2-pyrrolidone (NMP), dimethylformamide (DMF), dimethylacetamide (DMAc), etc. Among them, NMP is preferable. As the solution concentration, an appropriate concentration may be selected from the viewpoint of the coagulation rate in the next coagulation step and the solubility of the polymer. When the polymer is polymetaphenylene isophthalamide and the solvent is NMP, usually 15 A range of ˜25% by weight is preferred.
[0029]
This meta-type wholly aromatic polyamide polymer solution is spun in an aqueous coagulation bath containing a conventionally known inorganic salt using a conventionally known wet spinning device and coagulated. That is, the number of spinning holes, the arrangement state, the hole shape, etc. of the spinneret are not particularly limited as long as they can be stably wet-spun. For example, the number of holes is 1,000 to 30,000, and the spinning hole diameter is 0.05 to Even a multi-hole spinneret for SUFF of 0.2 mm can be stably coagulated in an aqueous coagulation bath. The temperature of the meta-type wholly aromatic polyamide polymer solution spun from the spinneret is suitably in the range of 50 to 90 ° C.
[0030]
A conventionally known aqueous coagulation bath liquid can also be used as the aqueous coagulation bath liquid containing the inorganic salt. Specifically, an aqueous solution having a calcium chloride concentration of 34 to 42% by weight and an NMP concentration of 5 to 10% by weight is preferred. The temperature of the aqueous coagulation bath liquid is suitably in the range of 80 to 95 ° C. In addition, the range of 1-11 seconds is suitable for the immersion time of the fiber in a coagulation bath.
[0031]
The fiber coagulated in the coagulation bath is then washed with water in an aqueous washing bath, and the washing step adjusts the quality of the resulting fiber and the content of the amide solvent in the fiber to an appropriate range. It is preferable to carry out in multiple stages from the surface. That is, when the fiber drawn from the coagulating liquid is washed with water in an aqueous washing bath, the temperature of the washing bath and the amide solvent concentration are determined by the extraction state of the amide solvent from the fiber and the water fiber from the washing bath. Therefore, in order to make them optimal, it is preferable to control the temperature conditions in multiple stages and the amide solvent concentration in multiple stages. For example, if the initial cleaning bath is at a high temperature of 60 ° C. or higher, water intrudes into the fibers at once, and huge voids are formed in the fibers, resulting in deterioration of the yarn quality. Is preferably a low temperature of 30 ° C. or lower. Further, in stretching in saturated steam described later, it is very important in the present invention to control the content of the amide solvent in the fiber before stretching in saturated steam. As a means, it is effective to adjust the amide solvent concentration in the washing bath in multiple stages. Thus, it is preferable to perform this washing process in multiple stages. In addition, what is necessary is just to select the immersion time of the fiber in this washing | cleaning bath suitably according to the temperature and amide-type solvent density | concentration of the washing bath to be used, but the immersion time of one washing | cleaning process has the range of 10 second-180 second normally. Is appropriate.
[0032]
The washed fibers are then drawn in a warm water bath. Here, the draw ratio needs to be in the range of 1.0 to 4.0 times. In the present invention, there is an object to obtain a fiber having high cutting strength and good heat shrinkage stability by increasing the total draw ratio by combining drawing in a warm water bath and drawing in saturated steam described later. Therefore, if stretching in saturated steam is sufficiently possible, stretching in warm water is not necessary (warm water stretching ratio: 1.0 times), but if it is too large, the process condition is lowered, so the warm water stretching ratio is reduced. It must be 4.0 times or less. A particularly preferred hot water draw ratio is in the range of 2.0 to 3.5 times. In this case, the temperature of the hot water bath is preferably in the range of 70 to 100 ° C., and particularly in the range of 85 to 100 ° C., since the process condition tends to deteriorate when the temperature is low.
[0033]
In addition, it is preferable to control the conditions of a washing | cleaning process and to control the amide-type solvent content rate in the fiber before extending | stretching warm water in the range of 5 to 30 weight%. When this value is less than 5% by weight, the hot water cannot be smoothly stretched. On the other hand, when it exceeds 30% by weight, the amide solvent content in the fiber before stretching in saturated steam described later is in an appropriate range. It is not preferable because it becomes difficult.
[0034]
In the present invention, the hot-stretched fiber needs to be further immersed in a hot water bath to remove inorganic salts remaining in the fiber. The temperature of the warm water bath is not particularly limited as long as the inorganic salt can be removed, but is preferably in the range of 70 to 100 ° C, and more preferably in the range of 85 to 100 ° C in order to remove the inorganic salt efficiently. preferable. The immersion time at that time is not particularly limited, but if it is too long, the content of the amide solvent in the fiber to be subjected to stretching in saturated steam is lowered and may fall below the appropriate range. adjust.
[0035]
In the present invention, it is important to stretch the fiber from which the inorganic salt has been removed in the warm water bath in the saturated water vapor under the conditions satisfying the following (a) to (d).
(A) The amide solvent content in the fiber before stretching in steam is 3 to 25% by weight.
(B) Saturated vapor pressure during stretching in water vapor is 29.4 to 392 kPa
(C) The total draw ratio of the hot water stretching and the steam stretching in (3) is 4.0 to 6.0 times.
(D) The stretching time for stretching in steam is 1 second to 2 minutes.
[0036]
First, the content of the amide solvent in the fiber before drawing in saturated steam is extremely important in the present invention, and it is necessary to make it 3 to 25% by weight, particularly preferably 4 to 20% by weight. That is, in the present invention, it is desired to increase only the molecular chain orientation without proceeding crystallization during stretching in saturated steam, but the amide solvent content in the fiber before stretching in saturated steam. Is less than 3% by weight, the apparent glass transition temperature (Tg) of the fiber becomes high, and stretching in saturated water vapor cannot be performed sufficiently. On the other hand, when the content of the amide solvent in the fiber before drawing exceeds 25% by weight, crystallization proceeds at the time of drawing in the saturated steam, so that the dyeability of the resulting fiber is greatly reduced. This is not preferable.
[0037]
Next, the saturated vapor pressure during stretching in water vapor needs to be 29.4 to 392 kPa, and a more preferable range is 39.2 to 343 kPa. That is, as in the case of the amide solvent content in the fiber before drawing, when the saturated vapor pressure during drawing in water vapor is less than 29.4 kPa, drawing in water vapor cannot be performed stably, while over 392 kPa. However, since crystallization also proceeds at the time of stretching, the dyeability of the resulting fiber is greatly reduced, which is not preferable.
[0038]
Further, the total draw ratio of the warm water drawing and the drawing in the saturated water vapor in the step (3) needs to be 4.0 to 6.0 times, and a more preferable range is 4.2 to 5. 6 times. If this total draw ratio is as low as less than 4.0 times, the orientation cannot be raised sufficiently, and the desired cutting strength cannot be achieved, and sufficient heat shrink stability in the heat treatment step described below. Is not preferred because it cannot be imparted. On the other hand, when the total draw ratio exceeds 6.0 times, the drawing process tone is lowered, and fluff and yarn breakage occur frequently, which is not preferable.
[0039]
Furthermore, the stretching time of stretching in saturated steam needs to be in the range of 1 second to 2 minutes, and a more preferable range is 3 seconds to 1 minute. When this stretching time is less than 1 second, water vapor does not sufficiently penetrate into the fiber, so that it cannot be stably stretched. On the other hand, if it exceeds 2 minutes, an unnecessary change in the fiber structure may occur and a fiber having the desired characteristics may not be obtained, and the production rate becomes slow. It is not preferable from the viewpoint of productivity and capital investment.
[0040]
  In the present invention, the fiber stretched in saturated water vapor in this way does not take tension in order to improve the thermal shrinkage stability while maintaining dyeability by relaxing the orientation enhanced by stretching in the steam. It is necessary to heat-treat in the state. In particularThere is a method of performing a steam treatment for 1 second to 2 minutes in a saturated water vapor pressure of 49 to 294 kPa under a state where no tension is applied. In particular, a heat treatment method in saturated steam at 135 to 150 ° C. is preferable because the 135 ° C. wet heat shrinkage can be reduced to 5% or less. If the saturated vapor temperature is lower than 135 ° C, the time required to give a sufficient heat treatment effect tends to be longer. On the other hand, if the saturated vapor temperature exceeds 150 ° C, crystallization tends to proceed even under non-tension and the dyeability is lowered. It's easy to do.
[0041]
【Example】
Hereinafter, the present invention will be described more specifically with reference to examples. In addition, each physical-property value in an Example was measured with the following method.
[0042]
<Dyeing method>
With sample fiber in tow state, Kayacryl Blue GSL-ED (B-54) (cationic dye manufactured by Nippon Kayaku Co., Ltd.) 6% owf, acetic acid 0.3 mL / L, sodium nitrate 20 g / L, benzyl as carrier agent Alcohol 70 g / L, Disper TL (dyeing assistant manufactured by Meisei Chemical Co., Ltd.) 0.5 g / L as a dispersant, and a fiber / dye bath ratio of 1:40 at 120 ° C. for 60 minutes Dyeing process. After dyeing, using a treatment liquid containing hydrosulfite 2.0 g / L, aramidine D (Daiichi Kogyo Seiyaku Co., Ltd.) 2.0 g / L, and sodium hydroxide 1.0 g / L, bath ratio 1:20, reducing and washing at 80 ° C. for 20 minutes, washing with water and drying.
[0043]
<Dyeing rate>
To the above dyeing residual liquid, dichloromethane having the same volume as the dyeing residual liquid is added to extract the residual dye. The absorbance of the extract at 670, 540, and 530 nm wavelengths is measured, and the dye concentration (C) of the extract is obtained from the calibration curve of the above three wavelengths prepared from a dichloromethane solution with a known dye concentration (at three wavelengths). Take the average of The dyeing rate (U) is calculated from the following formula using the dye concentration (Co) before dyeing.
U = (Co−C) / Co × 100
[0044]
<L * value of dyed tow>
Using a color measuring device “Macbeth Color Eye Model CE-3100” manufactured by Masbek Co., Ltd., the lightness index L * was determined by measurement under the conditions of a 10-degree field of view, a D65 light source, and a wavelength of 360 to 740 nm. Note that the lightness index L * indicates that the smaller the value, the deeper the dyeing.
[0045]
<Intrinsic viscosity IV>
The polymer was dissolved in NMP at a concentration of 0.5 g / 100 mL and measured at 30 ° C. using an Ostwald viscometer.
[0046]
<Fineness>
It measured according to JIS-L-1015.
[0047]
<Strength and elongation>
According to JIS-L-1015, the sample length was 20 mm, the initial load was 0.044 cN (1/20 g) / dtex, and the extension rate was 20 mm / min.
[0048]
<300 ° C dry heat shrinkage>
A load of 98 cN (100 g) is hung on a tow of about 3300 dtex (3000 denier), and a mark is made at a location 30 cm away. After removing the load, the mark length L after the tow is placed in an atmosphere of 300 ° C. for 15 minutes is measured. The value of (30-L) / 30 × 100 was defined as 300 ° C. dry heat shrinkage (%).
[0049]
<135 ° C wet heat shrinkage>
A load of 98 cN (100 g) is hung on a tow of about 3300 dtex (3000 denier), and a mark is made at a location 50 cm away. After removing the load, tow and water are put into a pressure-resistant pot for dyeing, and the mark length K after being placed in water at 135 ° C. for 60 minutes is measured. The value of (50−K) / 50 × 100 was defined as 135 ° C. wet heat shrinkage (%).
[0050]
<Content of amide solvent in fiber>
The fiber is centrifuged for 10 minutes in a centrifuge (rotation speed: 5000 rpm), boiled in dichloromethane of weight Mg for 4 hours, and the amide compound solvent in the fiber is extracted. After extraction, the fiber was dried in an atmosphere of 105 ° C., and the weight of the fiber after drying was measured.0And The amide compound solvent weight concentration C (%) in the extract is determined by gas chromatography. From these, the amide solvent content SV (%) in the fiber is calculated by the following equation.
SV = M × C / F0
[0051]
[Example 1]
N-methyl-2 obtained by cooling 21.5 parts by weight of polymetaphenylene isophthalamide powder having an intrinsic viscosity of 1.9, produced by an interfacial polymerization method according to the method described in JP-B-47-10863, to -10 ° C. -After suspending in 78.5 parts by weight of pyrrolidone (NMP) to form a slurry, the solution was heated to 60 ° C and dissolved to obtain a transparent polymer solution.
[0052]
This polymer solution was heated to 85 ° C. to obtain a spinning stock solution, and spun by discharging from a spinneret having a hole diameter of 0.07 mm and a hole number of 3000 into a coagulation bath at 85 ° C. The composition of this coagulation bath is 40% by weight of calcium chloride, 5% by weight of NMP and 55% by weight of the remaining water, and passes at a yarn speed of 9.5 m / min at an immersion length (effective coagulation bath length) of 100 cm. Then, it was pulled out into the air.
[0053]
The coagulated yarn was washed with water in the first to third aqueous washing baths, and the total immersion time was 36 seconds. The composition of the first aqueous cleaning bath is 10% by weight of NMP, 90% by weight of the remaining water, the temperature is 10 ° C., the second aqueous cleaning bath and the third aqueous cleaning bath are all water, and the temperature is 30 ° C. did. Next, this washed yarn was stretched 2.4 times in warm water at 95 ° C., and subsequently immersed in warm water at 95 ° C. for 24 seconds. The NMP content in the fiber obtained at this time was 6.4% by weight.
[0054]
Subsequently, the yarn was exposed to a saturated water vapor pressure of 49 kPa for 10 seconds and stretched 1.9 times. The total draw ratio of the warm water drawing and the drawing in steam is 4.6 times. The obtained stretched yarn in steam was exposed to heat under a saturated water vapor pressure of 49 kPa for 12 seconds without applying tension, and the fineness was 1.57 dtex, the strength was 3.93 cN / dtex, the elongation was 45.5%, and 300 ° C. A tow having a dry heat shrinkage of 22.1% and a wet heat shrinkage of 135 ° C. of 6.5% was obtained.
[0055]
When this tow was dyed, the dyeing rate was 92.4% and the L * value was 29.4, indicating good dyeability.
[0056]
[Example 2]
The composition of the first aqueous cleaning bath is 30% by weight of NMP, the remaining is 70% by weight of water, the composition of the second aqueous cleaning bath is 20% by weight of NMP, the remaining is 80% by weight of water, the composition of the third aqueous cleaning bath is 10% by weight of NMP, The same procedure as in Example 1 was performed except that the balance was 90% by weight of water. The NMP content in the fiber before being subjected to stretching in saturated steam at this time was 21.9% by weight.
[0057]
The resulting fiber is a tow having a fineness of 1.69 dtex, strength of 4.38 cN / dtex, elongation of 39.7%, 300 ° C. dry heat shrinkage of 18.4%, 135 ° C. wet heat shrinkage of 6.1%, The dyeing rate was 90.9%, and the L * value was 29.6, indicating good dyeability.
[0058]
[Example 3]
It carried out similarly to Example 1 except having extended | stretched with saturated water vapor | steam pressure being 294 kPa. The resulting fiber is a tow having a fineness of 1.74 dtex, a strength of 4.36 cN / dtex, an elongation of 47.6%, a 300 ° C. dry heat shrinkage of 21.4%, and a 135 ° C. wet heat shrinkage of 5.8%. The dyeing rate was 91.7% and the L * value was 29.3, indicating good dyeability.
[0060]
[Comparative Example 1]
The composition of the first aqueous cleaning bath is 40% by weight of NMP, the remaining is 60% by weight of water, the composition of the second aqueous cleaning bath is 30% by weight of NMP, the remaining is 70% by weight of water, the composition of the third aqueous cleaning bath is 20% by weight of NMP, The same procedure as in Example 1 was performed except that the remaining amount was 80% by weight of water. The NMP content in the fiber before being subjected to stretching in saturated steam at this time was 28.5% by weight.
[0061]
The resulting fiber is a tow having a fineness of 1.82 dtex, a strength of 4.36 cN / dtex, an elongation of 36.8%, a 300 ° C. dry heat shrinkage of 14.5%, and a 135 ° C. wet heat shrinkage of 6.3%, The dyeing rate was 72.3%, the L * value was 32.8, and the dyeability was poor.
[0062]
[Comparative Example 2]
The same procedure as in Example 1 was performed except that the draw ratio in saturated steam was 1.2 times (the total draw ratio of hot water drawing and steam drawing was 2.9 times). The obtained fiber is a tow having a fineness of 2.21 dtex, a strength of 3.11 cN / dtex, an elongation of 58.1%, a 300 ° C. dry heat shrinkage of 28.6%, and a 135 ° C. wet heat shrinkage of 11.4%. Although the dyeing rate was 93.1% and the L * value was 29.2, the cutting strength was inferior.
[0063]
[Comparative Example 3]
The first aqueous cleaning bath, the second aqueous cleaning bath, and the third aqueous cleaning bath were water, the total immersion time was 54 seconds, and the samples were immersed in warm water at 95 ° C. for 48 seconds following stretching in warm water. Other than that was carried out similarly to Example 1, and obtained the fiber before using for extending | stretching in saturated water vapor | steam. The NMP content in the fiber at this time was 2.3% by weight.
[0064]
Subsequently, the yarn was stretched by exposing it to a saturated water vapor pressure of 49 kPa for 10 seconds. However, since the yarn was broken, it could be stretched only up to 1.4 times (the total stretch ratio of hot water stretching and steam stretching was 3.8 times). Thereafter, the same heat treatment as in Example 1 was performed.
[0065]
The obtained fiber is a tow having a fineness of 1.75 dtex, a strength of 3.21 cN / dtex, an elongation of 58.8%, a 300 ° C. dry heat shrinkage of 28.3%, and a 135 ° C. wet heat shrinkage of 11.3%. Although the dyeing rate was 90.6% and the L * value was 29.1, the cutting strength was inferior.
[0066]
[Comparative Example 4]
The same procedure as in Example 1 was performed except that the saturated steam pressure was 9.8 kPa, and an attempt was made to perform the stretching ratio in saturated steam at 1.9 times as in Example 1. However, since the yarn broke, it could only be stretched up to 1.2 times (total draw ratio of hot water stretching and steam stretching was 2.9 times). Thereafter, the same heat treatment as in Example 1 was performed.
The obtained fiber is a tow having a fineness of 1.86 dtex, a strength of 3.12 cN / dtex, an elongation of 63.6%, a 300 ° C. dry heat shrinkage of 30.4%, and a 135 ° C. wet heat shrinkage of 11.9%. Although the dyeing rate was 91.5% and the L * value was 28.9, the cutting strength was inferior.
[0067]
【The invention's effect】
According to the production method of the present invention described above, it is possible to provide a meta-type wholly aromatic polyamide fiber having good dyeability with respect to a dye and having excellent fiber strength and heat shrinkage stability. Moreover, it can be applied not only to the original excellent flame resistance but also to various uses that make use of thermal stability and mechanical properties, and can be used effectively particularly in the fields of bedding, clothing, and interiors that require coloring.

Claims (3)

アミド系溶媒に溶解したメタ型全芳香族ポリアミド重合体溶液を湿式紡糸することによりメタ型全芳香族ポリアミド繊維を製造する方法において、(1)該重合体溶液を無機塩を含む水性凝固浴中に紡出して凝固せしめ、(2)この凝固糸を水性洗浄浴中にて水洗し、(3)次いで温水浴中において1.0〜4.0倍の範囲で延伸し、(4)さらに温水浴中にて繊維中の無機塩を取り除き、(5)続いて下記(a)〜(d)を満足する条件にて飽和水蒸気中で延伸し、(6)さらに緊張のかからない状態下、49〜294kPaの飽和水蒸気中で、1秒〜2分熱処理することを特徴とする易染性メタ型全芳香族ポリアミド繊維の製造方法。In a method for producing a meta type wholly aromatic polyamide fiber by wet spinning a meta type wholly aromatic polyamide polymer solution dissolved in an amide solvent, (1) the polymer solution in an aqueous coagulation bath containing an inorganic salt (2) The coagulated yarn is washed with water in an aqueous washing bath, (3) is then stretched in the range of 1.0 to 4.0 times in a warm water bath, and (4) is further heated with warm water. In the bath, the inorganic salts in the fibers are removed, (5) and then stretched in saturated steam under the conditions satisfying the following (a) to (d): (6) In a state where no tension is applied, 49- A method for producing a readily dyeable meta-type wholly aromatic polyamide fiber, characterized by heat treatment in saturated water vapor of 294 kPa for 1 second to 2 minutes.
(a)水蒸気中延伸前の繊維中のアミド系溶媒含有率が3〜25重量%(A) The amide solvent content in the fiber before stretching in water vapor is 3 to 25% by weight
(b)水蒸気中延伸時の飽和水蒸気圧力が29.4〜392kPa(B) Saturated steam pressure during stretching in steam is 29.4 to 392 kPa
(c)上記(3)における温水延伸と水蒸気中延伸の全延伸倍率が4.0〜6.0倍(C) The total draw ratio of the hot water stretching and the steam stretching in (3) above is 4.0 to 6.0 times.
(d)水蒸気中延伸の延伸時間が1秒〜2分(D) Stretching time for stretching in water vapor is 1 second to 2 minutes.
得られる易染性メタ型全芳香族ポリアミド繊維の切断強度が3.5〜5cN/dtex、300℃乾熱収縮率が10〜30%、135℃湿熱収縮率が0〜12%である請求項1記載の易染性メタ型全芳香族ポリアミド繊維の製造方法。The resulting easily-dyeable meta-type wholly aromatic polyamide fiber has a cutting strength of 3.5 to 5 cN / dtex, a 300 ° C dry heat shrinkage of 10 to 30%, and a 135 ° C wet heat shrinkage of 0 to 12%. 2. A process for producing a readily dyeable meta-type wholly aromatic polyamide fiber according to 1. メタ型全芳香族ポリアミドの全繰返し単位の90モル%以上がメタフェニレンイソフタルアミド単位である請求項1又は2記載の易染性メタ型全芳香族ポリアミド繊維の製造方法。The method for producing readily dyeable meta-type wholly aromatic polyamide fibers according to claim 1 or 2, wherein 90 mol% or more of all repeating units of the meta-type wholly aromatic polyamide are metaphenylene isophthalamide units.
JP2003071801A 2003-03-17 2003-03-17 Process for producing readily dyeable meta-type wholly aromatic polyamide fiber Expired - Fee Related JP4266678B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003071801A JP4266678B2 (en) 2003-03-17 2003-03-17 Process for producing readily dyeable meta-type wholly aromatic polyamide fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003071801A JP4266678B2 (en) 2003-03-17 2003-03-17 Process for producing readily dyeable meta-type wholly aromatic polyamide fiber

Publications (2)

Publication Number Publication Date
JP2004277937A JP2004277937A (en) 2004-10-07
JP4266678B2 true JP4266678B2 (en) 2009-05-20

Family

ID=33288149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003071801A Expired - Fee Related JP4266678B2 (en) 2003-03-17 2003-03-17 Process for producing readily dyeable meta-type wholly aromatic polyamide fiber

Country Status (1)

Country Link
JP (1) JP4266678B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249879A (en) * 2010-10-05 2013-08-14 聚合物研发中心 Process for producing high-performance polymer fibers

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8802233B2 (en) * 2006-01-31 2014-08-12 Teijin Limited Meta-type wholly aromatic polyamide fiber excellent in high-temperature processability, and method for producing the same
JP2009120976A (en) * 2007-11-13 2009-06-04 Teijin Techno Products Ltd Easily dyeable meta-type wholly aromatic polyamide fiber
JP4647680B2 (en) * 2008-09-29 2011-03-09 帝人テクノプロダクツ株式会社 Easy-dyeing meta-type wholly aromatic polyamide fiber
KR102554768B1 (en) * 2016-09-29 2023-07-11 코오롱인더스트리 주식회사 Method of manufacturing high denier aramid multifilament with excellent bulletproof property
KR102074197B1 (en) * 2018-07-11 2020-02-07 주식회사 휴비스 Meta-Aramid Fiber improved strength and Method for Preparing the Same
JP7372118B2 (en) * 2019-11-15 2023-10-31 帝人株式会社 Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103249879A (en) * 2010-10-05 2013-08-14 聚合物研发中心 Process for producing high-performance polymer fibers
CN103249879B (en) * 2010-10-05 2016-10-05 聚合物研发中心 The production method of high-performance polymer fiber

Also Published As

Publication number Publication date
JP2004277937A (en) 2004-10-07

Similar Documents

Publication Publication Date Title
JP4647680B2 (en) Easy-dyeing meta-type wholly aromatic polyamide fiber
CA2255686C (en) Wet spinning process for aramid polymer containing salts and fiber produced from this process
JP4804590B1 (en) Meta-type wholly aromatic polyamide fiber
WO2007089008A1 (en) Meta-type fully aromatic polyamide fiber having excellent high-temperature processability and method for production thereof
JP2007262589A (en) Easily-dyeable meta aromatic amide fiber and method for producing the same
TWI586855B (en) Dope dyed meta-type master aromatic polyamide fiber
JP2009120976A (en) Easily dyeable meta-type wholly aromatic polyamide fiber
JP4266678B2 (en) Process for producing readily dyeable meta-type wholly aromatic polyamide fiber
KR100465474B1 (en) Wet Spinning Process for Aramid Polymer Containing Salts and Fiber Produced from This Process
JP2011202327A (en) Fabric comprising easy-to-dye meta-wholly aromatic polyamide fiber
JP2005042262A (en) Method for producing easily dyeable meta-type wholly aromatic polyamide fiber
JP7372118B2 (en) Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP2020117831A (en) Easily-dyeable meta-type wholly aromatic polyamide fiber, and method for producing the same
JP4664794B2 (en) Method for producing meta-type aromatic polyamide fiber
JP2007254928A (en) Easily dyeable meta-type wholly aromatic polyamide fiber and method for producing the same
JP5718654B2 (en) Meta-type wholly aromatic polyamide fiber
JP6523026B2 (en) Black meta-type wholly aromatic polyamide fiber
JP2010261132A (en) Easily dyeable fabric including meta-type wholly aromatic polyamide fiber
JPH0359110A (en) Production of poly-m-phenylene terephthalamide-based fiber
JP2006328555A (en) Meta type wholly aromatic polyamide fiber and method for producing the same
JP2006283217A (en) Dyed polybenzazole fiber and method for producing the same
JP2012154003A (en) Yarn

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060127

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees