JP4266391B2 - Multilayer structure - Google Patents

Multilayer structure Download PDF

Info

Publication number
JP4266391B2
JP4266391B2 JP15232395A JP15232395A JP4266391B2 JP 4266391 B2 JP4266391 B2 JP 4266391B2 JP 15232395 A JP15232395 A JP 15232395A JP 15232395 A JP15232395 A JP 15232395A JP 4266391 B2 JP4266391 B2 JP 4266391B2
Authority
JP
Japan
Prior art keywords
layer
evoh
multilayer structure
less
stretching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15232395A
Other languages
Japanese (ja)
Other versions
JPH08318599A (en
Inventor
上 馨 井
邦芳 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Synthetic Chemical Industry Co Ltd
Original Assignee
Nippon Synthetic Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Synthetic Chemical Industry Co Ltd filed Critical Nippon Synthetic Chemical Industry Co Ltd
Priority to JP15232395A priority Critical patent/JP4266391B2/en
Publication of JPH08318599A publication Critical patent/JPH08318599A/en
Application granted granted Critical
Publication of JP4266391B2 publication Critical patent/JP4266391B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、エチレン−酢酸ビニル系共重合体ケン化物(以下、EVOHと略記する)からなる層を中間層とし、これに共押出しにより両外層が積層された共押出積層体を延伸してなる多層構造体に関し、更に詳しくは、薄膜で、延伸後のガスバリヤー性、透明性に優れ、かつ耐熱水性に非常に優れた多層構造体に関する。
【0002】
【従来の技術】
一般に、EVOHのフィルムは、透明性、ガスバリヤー性、耐油性などに優れているため、食品や医薬品等の包装材料やその他の用途に有用であり、又、そのフィルムを延伸したものはガスバリヤー性が更に向上し、機械的強度も向上するという効果を奏する。しかしながら、EVOHは分子内に多数の水酸基を有しているためその水素結合が強く、延伸することによりEVOHフィルムにクラックが生じたり、白濁が生じたりする等、延伸性に問題がある。
又、EVOHフィルムには、透湿性が高い、耐水性が劣る、衝撃強度が劣る等の欠点があり、このEVOHの欠点を補うために、透湿性が小さく耐衝撃性の良好なポリオレフィン、例えばポリエチレン、ポリプロピレン等を積層することが行われており、このような積層フィルムの製法については通常ドライラミネート法、押出ラミネート法、共押出法等種々の方法が知られている。しかし、延伸された積層フィルムの製造については、ドライラミネート法や押出ラミネート法によるものが一般的であるものの、該方法ではラミネート層の厚みを薄くすることに限界があるため、得られるフィルムのEVOH層が必要以上に厚くなり、該フィルムの厚みの増大のみならず、製膜工程、ラミネート工程が必要となり経済的にも不利となる。又、共押出法によるものは上記の如き成膜法以上に問題が多い。
【0003】
これらの解決策として、特開昭59−32293号公報には、エチレン含有率40〜50モル%のEVOH層とポリプロピレン層とからなる多層積層シートを共押出しし、EVOH層が結晶溶融温度以上の温度にあり、ポリプロピレン層が結晶消失温度以下でかつネツキングを生じない温度範囲にある状態で二軸に延伸することが開示されている。
又、一方ではEVOH層に用いるEVOHそのものの延伸性を改善する目的で、EVOHに各種可塑剤の添加(特開昭53−88067号公報、特開昭59−20345号公報)やポリアミド系樹脂のブレンド(特開昭52−141785号公報、特開昭58−36412号公報)等が提案されている。
【0004】
又、二種類以上の異なるEVOHをブレンドしてなる樹脂組成物、例えば、エチレン含有量45〜60モル%のEVOHとエチレン含有量25〜40モル%のEVOHとのブレンド物(特開昭63−264656号公報)、ケン化度96モル%以上のEVOHとケン化度96モル%未満のEVOHとのブレンド物(特開昭63−230757号公報)等も提案されている。
更に、特開平7−40516号公報には、示差熱量計測定を基に規定される特定のEVOHが加熱延伸成形性に優れることが記載されている。
【0005】
【発明が解決しようとする課題】
しかしながら、特開昭59−32293号公報開示技術ではその実施例より縦5.5倍、横5.5倍と確かに高倍率の延伸フィルムは得られているものの、本発明の目的とする耐熱水性については何ら考慮されておらず、又ガスバリヤー性についてもまだまだ満足のいくものではない。
又、特開昭53−88067号公報や特開昭59−20345号公報開示技術では延伸特性を充分に改善するためには可塑剤を多量に添加する必要があり、これによりガスバリヤー性が大きく低下する。特開昭52−141785号公報や特開昭58−36412号公報開示技術ではロングラン加工性に問題が残り、成形物に多数のゲルが発生し、又着色などが起こるため好ましくない。又、特開昭63−264656号公報開示技術については、エチレン含有量の大きく異なるEVOH同士のブレンド物では透明性、ガスバリヤー性が不良となり、特開昭63−230757号公報開示技術については低ケン化度のEVOHを用いるため熱安定性が悪くなりゲルの発生を招くことになる。
【0006】
更に、特開平7−40516号公報開示技術は、延伸時に、まず延伸温度より10〜30℃高い温度まで昇温後、延伸温度まで放熱し延伸すること、即ちEVOHの結晶化を考慮して延伸を行ったもので、延伸性(ボイド、クラック、ムラ)の改善は見られるものの、その延伸性は該公報実施例より容器製造に供する程度の延伸倍率であり、高延伸とは言い難く、更に耐熱水性については上記同様何ら考慮されていない。
そこで、EVOH層を中間層とし、これにポリプロピレン等を両外層として積層した共押出積層体を延伸してなる多層構造体において、ガスバリヤー性、透明性に優れ、かつ、ボイル、レトルト殺菌を行う食品包装材等の用途に用いたときに要求されるような耐熱水性に非常に優れた多層構造体が薄膜で得られるための開発が望まれている。
【0007】
【問題を解決するための手段】
しかるに、本発明者等は、かかる問題を解決すべく鋭意研究を重ねた結果、EVOHからなる層を中間層とし、中間層と隣接させたポリオレフィン層を少なくとも1層有する層を両外層とする共押出積層体を延伸してなり、両外層の40℃、90%RHにおける透湿度(W)(g/m2・day)と中間層の厚み(L)(μ)との比(W/L)が8以下であり、かつ、中間層にホウ酸を含有する多層構造体が、薄膜でガスバリヤー性、透明性、耐熱水性に優れることを見出し、本発明を完成した。
本発明では、中間層の厚み(L)(μ)と、20℃、65%RHの条件下での多層構造体の酸素透過率(T)(cc/m2・day・atm)との積(L×T)が100以下であることが望まれ、又、該中間層が、差動走査熱量計により測定される吸熱ピークを示す融解曲線において、全面積(全熱量)が45J/g以上で、かつ、150℃以上の面積(熱量)が55J/g以下であるEVOHからなるとき、薄膜であっても特に良好なガスバリヤー性をもつ延伸フィルム、シートが得られる。
【0008】
以下、本発明を詳細に説明する。
本発明においては、EVOHからなる層を中間層とするが、該EVOHとしては、エチレン−酢酸ビニル系共重合体をケン化したものであればとくに制限されることなく任意のEVOHが使用可能であり、該EVOHはエチレン−酢酸ビニル系共重合体のケン化によって得られ、該エチレン−酢酸ビニル系共重合体は、公知の任意の重合法、例えば懸濁重合、エマルジョン重合、溶液重合などにより製造され、エチレン−酢酸ビニル系共重合体のケン化も公知の方法で行い得るものである。
【0009】
エチレン含有量は20〜60モル%、好ましくは25〜50モル%、ケン化度96モル%以上であることが好ましい。エチレン含有量が20モル%未満では高湿時のガスバリヤー性、溶融成形性が低下し、60モル%を越えると充分なガスバリヤー性が得られない。又、ケン化度が96モル%未満ではガスバリヤー性や、熱安定性、耐湿性が低下する。
【0010】
又、該EVOHは少量であればα−オレフィン、不飽和カルボン酸系化合物、不飽和スルホン酸系化合物、(メタ)アクリロニトリル、(メタ)アクリルアミド、ビニルエーテル、塩化ビニル、スチレンなどの他のコモノマーで「共重合変性」されても差し支えない。又、本発明の趣旨を損なわない範囲で、ウレタン化、アセタール化、シアノエチル化など「後変性」されても差し支えない。
【0011】
更に必要に応じて、可塑剤、熱安定剤、紫外線吸収剤、酸化防止剤、着色剤、フィラー、他樹脂などの添加剤を使用することも可能である。特にゲル発生防止剤として、ハイドロタルサイト系化合物、ヒンダードフェノール系、ヒンダードアミン系熱安定剤、高級脂肪族カルボン酸の金属塩を添加することもできる。
【0012】
一方、ポリオレフィン層を形成するポリオレフィン系樹脂としては、直鎖状低密度ポリエチレン、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、エチレン−酢酸ビニル共重合体、アイオノマー、エチレン−プロピレン共重合体、エチレン−アクリル酸エステル共重合体、ポリプロピレン、プロピレン−α−オレフィン(炭素数4〜20のα−オレフィン)共重合体、ポリブテン、ポリペンテン等のオレフィンの単独又は共重合体、或いはこれらのオレフィンの単独又は共重合体を不飽和カルボン酸又はそのエステルでグラフト変性したもの、ポリオレフィン系の接着樹脂等の広義のポリオレフィン系樹脂が挙げられる。なかでも、水蒸気バリヤー性の点から、ポリプロピレン、変性ポリプロピレン、エチレン−プロピレン共重合体等が特に好ましい。
【0013】
又、本発明では、必要に応じて、ポリオレフィン系樹脂にナイロン、EVOH、ポリエステル等の樹脂を20重量%以下、特に10重量%以下混合してもよく、該ブレンド物をポリオレフィン層として用いることもできる。
【0014】
本発明では、上記EVOHからなる層を中間層とし、該中間層と隣接させた上記ポリオレフィン層を少なくとも1層有する層を両外層として、共押出しにより積層体を製造し、該積層体を延伸するのである。
共押出法としては、特に制限されずTダイ法、インフレーション法等があり、例えばポリオレフィン層/EVOH層/ポリオレフィン層の場合は2種3層あるいはポリオレフィン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリオレフィン層の場合は3種5層等の共押出成形装置を用いて、温度180〜250℃に設定されたTダイより共押出した後、チルロール等により冷却して3層あるいは5層等の積層体を得ることができる。
【0015】
本発明における層構成としては上記のポリオレフィン層/EVOH層/ポリオレフィン層、ポリオレフィン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリオレフィン層に限られることなく、接着性樹脂層/EVOH層/接着性樹脂層、ポリオレフィン層/接着性樹脂層/EVOH層/接着性樹脂層、ポリオレフィン層/接着樹脂層/EVOH層/接着樹脂層/EVOH層/接着樹脂層/ポリオレフィン層等、種々の組み合わせの積層体が可能であり、更にポリオレフィン層の外側に、別のポリオレフィン、ポリエステル、ポリアミド、共重合ポリアミド、ポリ塩化ビニル、ポリ塩化ビニリデン、アクリル系樹脂、スチレン系樹脂、ビニルエステル系樹脂、ポリエステルエラストマー、ポリウレタンエラストマー、塩素化ポリエチレン、塩素化ポリプロピレン等を積層することも可能である。
【0016】
尚、上記層構成ではあえて接着性樹脂層と記載したが、接着性樹脂として用いられるものはポリプロピレン、ポリエチレン、あるいはエチレンと共重合しうるモノマー(酢酸ビニル、アクリル酸エステル等)の共重合体等のポリオレフィン系樹脂を無水マレイン酸等付加して変性した樹脂等であり、上記の如く広義のポリオレフィン系樹脂に入るものである。
【0017】
かかる共押出積層体の延伸については、一軸延伸、二軸延伸のいずれであってもよく、できるだけ高倍率の延伸を行ったほうが物性的に良好である。一軸延伸の場合では3倍以上、特に10倍以上、二軸延伸の場合では面積倍率で5倍以上、特に10倍以上とすることが、物性的に好ましいが、本発明においては上記の如く面積倍率で10倍以上、特に20倍以上、更に25〜50倍としたとき、95℃、30分のボイル殺菌を行ったときでも白化等の外観不良を生じることなく耐熱水性に優れた効果を示す。
【0018】
延伸方法としては、ロール延伸法、テンター延伸法、チューブラー延伸法、延伸ブロー法等の他、深絞成形、真空成形等のうち延伸倍率の高いものも採用できる。二軸延伸の場合は同時二軸延伸方式、逐次二軸延伸方式のいずれの方式も採用できる。延伸温度は80〜160℃、好ましくは100〜150℃程度の範囲から選ばれる。
【0019】
延伸が終了した後は、次いで熱固定を行うことが好ましい。熱固定は周知の手段で実施可能であり、上記延伸フィルムを緊張状態を保ちながら90〜170℃、好ましくは110〜160℃で2〜600秒間程度熱処理を行う。又、得られる延伸フィルムは必要に応じ、冷却処理、圧延処理、印刷処理、ドライラミネート処理、溶液又は溶融コート処理、製袋加工、深しばり加工、箱加工、チューブ加工、スプリット加工等を行うことができる。
【0020】
本発明では、上記の如くして得られた共押出積層体を延伸してなる多層構造体において、その両外層の40℃、90%RHにおける透湿度(W)(g/m2・day)と中間層の厚み(L)(μ)との比(W/L)が8以下、好ましくは7以下、更に好ましくは5以下であることが最大の特徴であり、かかる条件を満たしたときに初めて薄膜で耐熱水性、透明性等の本発明の効果が発揮される。かかる透湿度と厚みの比(W/L)が8以上では、ボイル、レトルト等の熱水殺菌を行った場合フィルムが白化し、本発明の効果を示さない。
【0021】
該両外層の40℃、90%RHにおける透湿度(W)は200g/m2・day以下、好ましくは80g/m2・day以下であることが望まれ、又該中間層の厚み(L)は1μ以上、好ましくは2〜40μであることが望まれる。透湿度(W)が200g/m2・dayを越えると本発明の効果が発揮されず、一方、中間層の厚み(L)が1μ未満ではガスバリヤー性が不安定となり好ましくない。
【0022】
かかる透湿度(W)は勿論共押出積層体を延伸した後の値であることは言うまでもなく、該透湿度(W)の測定にあたっては、本発明の多層構造体をヘキサフルオロイソプロパノール等の溶剤に常温で浸漬しEVOH層を溶かし除去して外層のみの透湿度(W)を測定することが可能であるが、これに限定されるものではない。透湿度(W)の規定方法としては、JIS Z 0208に規定される方法、即ち、吸湿剤を入れたカップにフィルムを取り付け、密封、固定した後、40℃、相対湿度90%に調節された恒温恒湿装置内に放置し、重量増加速度を測定することにより求められる。
【0023】
更に本発明では、多層構造体の中間層の厚み(L)(μ)と20℃、65%RH条件下での多層構造体の酸素透過率(T)(cc/m2・day・atm)との積(L×T)が100以下、好ましくは50以下、更に好ましくは45以下であることが望まれ、薄膜でガスバリヤー性、透明性、耐熱水性等の本発明の効果が顕著に発揮される。該積(L×T)が100を越えると求められるガスバリヤー性に対してEVOH層が厚くなり、該多層構造体の柔軟性が低下し好ましくない。
該酸素透過率(T)は60cc/m2・day・atm以下、好ましくは30cc/m2・day・atm以下、更に好ましくは20cc/m2・day・atm以下であることが望まれる。
【0024】
上記本発明の多層構造体については、上記の如く高延伸により共押出積層体のの薄膜化が可能で、物性の優れたフィルム、シート等が得られる。該多層構造体は薄膜のフィルムであるという点で、全厚みが50μ以下、好ましくは40μ以下、更に好ましくは20μ以下であることが好ましい。全厚みが50μを越えると薄膜フィルムとしての柔軟性が損なわれる。
【0025】
本発明では、上述したように共押出積層体を延伸してなり、かつ、両外層の40℃、90%RHにおける透湿度(W)と中間層の厚み(L)との比(W/L)が8以下である多層構造体、好ましくは更に中間層の厚み(L)と多層構造体の酸素透過率(T)との積(L×T)が100以下である多層構造体が、耐熱水性、透明性等に優れた効果を示すのであるが、更に中間層が、差動走査熱量計により測定される吸熱ピークを示す融解曲線において、全面積(全熱量)が45J/g以上で、かつ、150℃以上の面積(熱量)が55J/g以下であるEVOHからなる層であるとき、特に優れた延伸性、ガスバリヤー性を示す。即ち、該EVOHを中間層に用いることにより、面積倍率で20倍以上といった高延伸が可能で、このときでも、延伸時に破断、ピンホール、クラック、延伸ムラ等の生じない延伸フィルムや延伸シート等が得られる。
【0026】
かかるEVOHとしては、差動走査熱量計により測定される吸熱ピークを示す融解曲線において、全面積(全熱量)が45J/g以上、好ましくは50J/g以上、更に好ましくは53〜80J/gで、かつ、150℃以上の面積(熱量)が55J/g以下、好ましくは50J/g以下であるEVOHを用いることが好ましく、本発明の効果を顕著に発揮する。かかる融解曲線において、全面積(全熱量)が45J/g未満ではガスバリヤー性が低くなり、150℃以上の面積(熱量)が55J/gを越えると延伸性が不充分となり好ましくない。
【0027】
尚、差動走査熱量計での測定については、10℃/minで230℃まで昇温した後、10℃/minで30℃まで降温し、再び10℃/minで昇温したときの吸熱ピークを示す融解曲線を求めることにより行い、全面積及び150℃以上の面積を測定する。
【0028】
更に詳しく図1を用いて説明すれば、図1は上記特定のEVOHの一典型例の融解曲線であり(これに限られることはない)、該融解曲線のピークの上がり始めの点をa、ピークの終点をbとし、150℃上に直線を引いたときに、曲線a〜bと交わる点をc、直線a−bと交わる点をdとすると、本発明でいう全面積とは曲線a〜c〜bと直線a−d−bで囲まれる面積(S1+S2)であり、150℃以上の面積とは曲線c〜bと直線b−dと直線c−dで囲まれる面積(S2)である。つまり、本発明では、上記面積(S1+S2)で表される熱量が45J/g以上で、かつ面積(S2)で表される熱量が55J/g以下であればよい。
【0029】
上記特定のEVOHを得る方法としては、特に制限されることなく、EVOHに高融点の可塑剤、例えば炭素数2〜20のアルキル鎖をもつポリアルコール類等をEVOH100重量部に対して1〜10重量部、好ましくは2〜5重量部添加する方法、EVOHに特定の官能基、例えばモノカルボン酸化合物、エポキシ化合物、アミノ化合物等を0.1〜10モル%、好ましくは0.5〜5モル%グラフトする方法、あるいはエチレン含有量の異なるEVOHを2種以上ブレンドする方法等が挙げられる。なかでも、最も簡単に上記特定のEVOHを得る方法としてはエチレン含有量の異なるEVOHを2種以上ブレンドする方法が最適であり、以下、該方法について詳述する。
【0030】
上記ブレンドで用いるEVOHとしては、特に制限されないが、いずれもエチレン含有量が20〜60モル%、好ましくは25〜50モル%、更に好ましくは27〜45モル%で、ケン化度96モル%以上であることが望ましい。エチレン含有量が20モル%未満では高湿時のガスバリヤー性、溶融成形性が低下し、60モル%を越えると充分なガスバリヤー性が得られない。又、ケン化度が96モル%未満ではガスバリヤー性や、熱安定性、耐湿性が低下する。
【0031】
ブレンドに用いるEVOHは、少量であればα−オレフィン、不飽和カルボン酸系化合物、不飽和スルホン酸系化合物、(メタ)アクリロニトリル、(メタ)アクリルアミド、ビニルエーテル、塩化ビニル、スチレンなどの他のコモノマーで「共重合変性」されても差し支えない。又、本発明の趣旨を損なわない範囲で、ウレタン化、アセタール化、シアノエチル化など「後変性」されても差し支えない。
【0032】
本発明においては、かかるEVOHの中より任意に選ばれた2種以上のEVOHをブレンドすればよいのであるが、特に、エチレン含有量の異なる2種以上のEVOHを用いることが好ましく、該ブレンドにおいて、最も配合量の多いEVOH(A)と次に配合量の多いEVOH(B)とのエチレン含有量の差が3〜20モル%、好ましくは3〜15モル%、更に好ましくは5〜15モル%であることが好ましい。該エチレン含有量の差が3モル%未満では延伸性、ガスバリヤー性ともに満足できるものは得られず、又20モル%を越えると透明性が不良となり、又、製膜安定性も悪くなり実用上好ましくない。
【0033】
尚、エチレン含有量の差とは、EVOH(A)のエチレン含有量を(a)、EVOH(B)のエチレン含有量を(b)とすると、│(a)−(b)│のことである。
ブレンドするEVOHのそれぞれの配合量については、ブレンドするEVOHの種類等により適宜選択される
【0034】
ブレンド方法としては、特に限定されず、各EVOHを水−アルコール溶媒に溶解して混合する方法、各EVOHのケン化前のエチレン−酢酸ビニル系共重合体をメタノール等のアルコール溶媒に溶解した状態で混合してケン化する方法、あるいは各EVOHを溶融混合する方法等が挙げられるが、通常は溶融混合する方法が採用される。例えば、各EVOHをドライブレンドした後に溶融してブレンドする方法、各EVOHを溶融状態でブレンドする方法、あるいは溶融状態の一種のEVOHに、他のEVOHを乾燥状態で添加する方法等が挙げられる。なかでも、各EVOHをドライブレンドした後に溶融してブレンドする方法が装置の簡便さ、ブレンド物のコスト面等で実用的である。
【0035】
かくして上記製造方法により、差動走査熱量計により測定される吸熱ピークを示す融解曲線において、全面積(全熱量)が45J/g以上で、かつ、150℃以上の面積(熱量)が55J/g以下であるEVOHが得られるのであり、本発明において上記範囲のEVOHを用いるとき、高延伸が可能で、延伸後のガスバリヤー性、透明性、耐熱水性に非常に優れた多層構造体が得られる。
本発明においては、該EVOHに、更にホウ素化合物、銅化合物、アルミニウム化合物、チタン化合物、ジルコニウム化合物から選ばれる少なくとも一つの化合物を含有させることで、更に延伸性が向上し、フィルム製膜時の厚み精度が向上しスジの発生がなく、延伸時の延伸ムラのないフィルムが得られるのである。
【0036】
用いるホウ素化合物、銅化合物、アルミニウム化合物、チタン化合物、ジルコニウム化合物の中でも、食品包装材料として用いる場合、毒性が低い点からホウ素化合物が好ましく採用され、該ホウ素化合物としては、例えばホウ酸、ホウ酸塩、ホウ酸エステル、ホウ砂、ハロゲン化ホウ素類、トリアルキルホウ素類、トリアリールホウ素類等が挙げられる。
該EVOHに上記ホウ素化合物を含有させる方法としては、特に限定されないが、EVOHをブレンドする際に同時に添加したり、あらかじめ少なくとも一種のEVOHに含有させておいたり、ブレンドの後に含有させたりしてもよく、又、ホウ素化合物を水等の溶媒に溶解しEVOHに混合したり、ホウ素化合物の溶液にEVOHを浸漬させたりしてもよい。
かかるホウ素化合物の含有量はホウ素に換算してEVOHの全重量に対して0.01〜5重量%、好ましくは0.01〜1重量%、更に好ましくは0.01〜0.5重量%であり、0.01重量%未満ではホウ素化合物含有の効果は得られず、一方、5重量%を越えるとホウ素化合物が局在化するためかゲルが発生するので好ましくない。
【0037】
かくして得られた多層構造体の形状としては任意のものであってよく、フィルム、シート、テープ、ボトル、パイプ、フィラメント、異型断面押出物等が例示される。又、上記の如く得られたフィルム、シート或いは容器等は食品、医薬品、工業薬品、農薬等各種の包装材料として有用である。特に、ボイル殺菌処理用のフィルム包装材料として有用で、該フィルム包装材料のより具体的な用途としては、ふた材、パウチ類、真空包装、スキンパック、深絞り包装、ロケット包装等が挙げられる。
【0038】
【作 用】
本発明の多層構造体は、EVOH層、ポリオレフィン層からなる共押出積層体を高延伸し、かつ、延伸後の外層の40℃、90%RHにおける透湿度(W)と中間層の厚み(L)との比(W/L)が8以下であり、更に好ましくは、中間層の厚み(L)と多層構造体の酸素透過率(T)との積(L×T)が100以下であるため、ガスバリヤー性、透明性に優れ、更に耐熱水性に非常に優れた効果を示し、更に、中間層として差動走査熱量計で測定される特定の融解曲線を示すEVOHを用いることで、高延伸においてガスバリヤー性、透明性は勿論のこと、破断、ピンホール、クラック、延伸ムラ等の生じない延伸性に優れたフィルム、シート等を得ることができる。
【0039】
【実施例】
以下、実施例を挙げて本発明を具体的に説明する。
尚、実施例中「部」、「%」とあるのは特に断りのない限り重量基準を示す。
実施例1
エチレン含有量45モル%、ケン化度97.0モル%のEVOH(A)と、エチレン含有量30モル%、ケン化度99.5モル%のEVOH(B)を配合重量比が60:40となるように単軸押出機に供給し220℃で溶融混合して、ペレット化を行い、該ペレットを1%のホウ酸水溶液中に投入し、80℃で12時間撹拌した後、15℃の純水で洗浄し、110℃で8時間乾燥を行い、得られたEVOHを用いて、フィードブロック5層Tダイにより、ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリプロピレン層の層構成となるように製膜し、多層積層フィルムを作製した。
【0040】
フィルムの構成は、両外層のポリプロピレン層(ポリプロピレンのMIが1.2g/10分)が156μ、接着樹脂層(接着樹脂が無水マレイン酸変性ポリプロピレンであり、そのMIが2.6g/10分)が52μ、中間層のEVOH層が78μである。かかる多層積層フィルムを150℃で1分間予熱し、100mm/secの延伸速度で、縦方向に4倍、横方向に6.5倍の順(延伸倍率:26倍)で逐次二軸延伸を行い、本発明の多層構造体を得た。
該多層構造体の厚みは19μ(ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリプロピレン層=6μ/2μ/3μ/2μ/6μ)で、両外層(ポリプロピレン層/接着性樹脂層)の40℃、90%RHにおける透湿度(W)は11g/m2・dayで、多層構造体の酸素透過率(T)は15cc/m2・day・atmであった(W/L=3.7、L×T=45)。
【0041】
尚、かかるEVOHの差動走査熱量計(パーキンエルマー製DSC7)により測定される吸熱ピークを示す融解曲線の全面積(全熱量)は53J/gであり、150℃以上の面積(熱量)は35J/gであった。
かかる多層構造体について、透明性、耐熱水性、延伸性、延伸ムラ、酸素透過率を下記の如く評価した。
【0042】
(透明性)
得られた多層構造体のヘイズ値を、村上色彩技術研究所製反射透過計RM−15Aを用いて測定した。
(耐熱水性)
得られた多層構造体を98℃で30分間熱水処理し、処理後のヘイズ値を上記同様の装置で測定した。
【0043】
(延伸性)
得られた多層構造体の外観により下記の基準で評価した。
○・・・延伸後も平滑で、透明なフィルムである。
×・・・延伸後は白化したり、フィルブリル化したりしていた。
【0044】
(延伸ムラ)
得られた多層構造体の外観から下記の基準で評価した。
○・・・スジが見られなかった。
△・・・1〜2本のスジが見られた。
×・・・3本以上のスジが見られた。
【0045】
(酸素透過率)
上記と同様にして得られた延伸フィルムの酸素透過率を、MODERN−CONTOROL社のOX−TRAN10−50を用いて20℃、65%RHの条件下で測定した(cc/m2・day・atm)。
【0046】
実施例2
エチレン含有量40モル%、ケン化度97.0モル%のEVOH(A)と、エチレン含有量45モル%、ケン化度99.5モル%のEVOH(B)を用い、配合重量比を70:30として、実施例1に準じて多層構造体を製造した。
該多層構造体の厚みは36μ(ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリプロピレン層=10μ/4μ/8μ/4μ/10μ)で、両外層(ポリプロピレン層/接着性樹脂層)の40℃、90%RHにおける透湿度は6g/m2・dayで、多層構造体の酸素透過率は2.5cc/m2・day・atmであった(W/L=0.8、L×T=20)。
【0047】
尚、かかるEVOHの差動走査熱量計(パーキンエルマー製DSC7)により測定される吸熱ピークを示す融解曲線の全面積(全熱量)は66J/gであり、150℃以上の面積(熱量)は48J/gであった。
かかる多層構造体について、実施例1と同様に透明性、耐熱水性、延伸性、延伸ムラ、酸素透過率を評価した。
【0048】
実施例3
エチレン含有量45モル%、ケン化度97.0モル%のEVOHを用いて、実施例1に準じて多層構造体を製造した。
該多層構造体の厚みは19μ(ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリプロピレン層=6μ/2μ/3μ/2μ/6μ)で、両外層(ポリプロピレン層/接着性樹脂層)の40℃、90%RHにおける透湿度は11g/m2・dayで、多層構造体の酸素透過率は52cc/m2・day・atmであった(W/L=3.7、L×T=156)。
【0049】
尚、かかるEVOHの差動走査熱量計(パーキンエルマー製DSC7)により測定される吸熱ピークを示す融解曲線の全面積(全熱量)は36J/gであり、150℃以上の面積(熱量)は14J/gであった。
かかる多層構造体について、実施例1と同様に透明性、耐熱水性、延伸性、延伸ムラ、酸素透過率を評価した。
【0050】
比較例1
実施例1において、ポリプロピレン層/接着性樹脂層/EVOH層/接着性樹脂層/ポリプロピレン層=2μ/1μ/2μ/1μ/2μで、両外層(ポリプロピレン層/接着性樹脂層)の40℃、90%RHにおける透湿度が30g/m2・dayで、多層構造体の酸素透過率が23cc/m2・day・atmの積層体を得(W/L=15、L×T=46)、実施例1と同様に耐熱水性、延伸性、延伸ムラ、酸素透過率、透明性を評価した。
実施例、比較例のそれぞれの多層構造体の測定結果を表1に、耐熱水性、延伸性、延伸ムラ、酸素透過率、透明性の評価結果を表2に示す。
【0051】
【表1】

Figure 0004266391
【0052】
【表2】
Figure 0004266391
【0053】
【発明の効果】
本発明の多層構造体は、EVOH層、ポリオレフィン層からなる共押出積層体を高延伸し、かつ、延伸後の外層の40℃、90%RHにおける透湿度(W)と中間層の厚み(L)との比(W/L)が8以下であり、更に好ましくは、中間層の厚み(L)と多層構造体の酸素透過率(T)との積(L×T)が100以下であるため、ガスバリヤー性、透明性に優れ、更に耐熱水性に非常に優れた効果を示し、更に、中間層として差動走査熱量計で測定される特定の融解曲線を示すEVOHを用いることで、高延伸においてガスバリヤー性、透明性は勿論のこと、破断、ピンホール、クラック、延伸ムラ等の生じない延伸性に優れたフィルム、シート等を得ることができる。
【図面の簡単な説明】
【図1】 本発明の多層構造体の中間層として好ましく用いられるエチレン−酢酸ビニル系共重合体ケン化物樹脂組成物の差動走査熱量計により測定される融解曲線
【符号の説明】
a:融解曲線のピークの上がり始めの点
b:融解曲線のピークの終点
c:150℃上に直線を引いたときに、曲線a〜bと交わる点
d:150℃上に直線を引いたときに、直線a−bと交わる点
1:曲線a〜cと直線a−dと直線c−dで囲まれる面積
2:曲線c〜bと直線b−dと直線c−dで囲まれる面積[0001]
[Industrial application fields]
In the present invention, a layer made of a saponified ethylene-vinyl acetate copolymer (hereinafter abbreviated as EVOH) is used as an intermediate layer, and a coextruded laminate in which both outer layers are laminated by coextrusion is stretched. More specifically, the present invention relates to a multilayer structure that is a thin film, excellent in gas barrier properties and transparency after stretching, and extremely excellent in hot water resistance.
[0002]
[Prior art]
In general, EVOH films are excellent in transparency, gas barrier properties, oil resistance, etc., and are therefore useful for packaging materials such as foods and pharmaceuticals and other applications. The properties are further improved, and the mechanical strength is also improved. However, since EVOH has a large number of hydroxyl groups in its molecule, its hydrogen bond is strong, and stretching causes problems such as cracking and white turbidity in the EVOH film.
In addition, the EVOH film has drawbacks such as high moisture permeability, poor water resistance, and poor impact strength. In order to compensate for the disadvantages of EVOH, polyolefins such as polyethylene having low moisture permeability and good impact resistance are used. Polypropylene and the like are laminated, and various methods such as a dry lamination method, an extrusion lamination method, and a co-extrusion method are generally known for producing such a laminated film. However, for the production of a stretched laminated film, a dry lamination method or an extrusion lamination method is generally used. However, in this method, there is a limit to reducing the thickness of the laminate layer. The layer becomes thicker than necessary, which not only increases the thickness of the film but also requires a film forming process and a laminating process, which is disadvantageous economically. Further, the coextrusion method has more problems than the film formation method as described above.
[0003]
As a solution to these problems, JP-A-59-32293 discloses that a multilayer laminated sheet composed of an EVOH layer having an ethylene content of 40 to 50 mol% and a polypropylene layer is coextruded, and the EVOH layer has a crystal melting temperature or higher. It is disclosed that the polypropylene layer is stretched biaxially at a temperature and in a temperature range where the polypropylene layer is below the crystal disappearance temperature and does not cause netting.
On the other hand, for the purpose of improving the stretchability of EVOH itself used in the EVOH layer, various plasticizers are added to EVOH (Japanese Patent Laid-Open Nos. 53-88067 and 59-20345) and polyamide-based resins. Blends (Japanese Patent Laid-Open Nos. 52-141785 and 58-36412) have been proposed.
[0004]
Also, a resin composition obtained by blending two or more different types of EVOH, for example, a blend of EVOH having an ethylene content of 45 to 60 mol% and EVOH having an ethylene content of 25 to 40 mol% (JP-A 63- 264656), EVOH having a saponification degree of 96 mol% or more and EVOH having a saponification degree of less than 96 mol% (Japanese Patent Laid-Open No. 63-230757) have been proposed.
Furthermore, JP-A-7-40516 describes that a specific EVOH defined based on differential calorimetry measurement is excellent in heat stretchability.
[0005]
[Problems to be solved by the invention]
However, in the technique disclosed in Japanese Patent Application Laid-Open No. 59-32293, a stretched film of 5.5 times in length and 5.5 times in width is certainly obtained, but the heat resistance targeted by the present invention is not limited. No consideration has been given to water, and gas barrier properties are still unsatisfactory.
Further, in the techniques disclosed in JP-A-53-88067 and JP-A-59-20345, it is necessary to add a large amount of a plasticizer in order to sufficiently improve the drawing characteristics. descend. The techniques disclosed in JP-A-52-141785 and JP-A-58-36412 are not preferred because problems remain in long-run processability, a large number of gels are formed in the molded product, and coloring occurs. Also, regarding the technology disclosed in Japanese Patent Laid-Open No. 63-264656, transparency and gas barrier properties are poor in blends of EVOH with greatly different ethylene contents, and the technology disclosed in Japanese Patent Laid-Open No. 63-230757 is low. Since EVOH having a saponification degree is used, the thermal stability is deteriorated and the gel is generated.
[0006]
Furthermore, the technology disclosed in Japanese Patent Laid-Open No. 7-40516 is drawn in consideration of crystallization of EVOH at the time of stretching, first raising the temperature to a temperature 10-30 ° C. higher than the stretching temperature, and then releasing heat to the stretching temperature. Although the improvement of stretchability (void, crack, unevenness) is observed, the stretchability is a stretch ratio that is used for container production from the examples of the publication, and it is difficult to say that it is highly stretched. No consideration is given to hot water resistance as described above.
Therefore, in a multilayer structure formed by stretching a co-extrusion laminate in which an EVOH layer is an intermediate layer and polypropylene or the like is laminated as both outer layers, gas barrier properties and transparency are excellent, and boil and retort sterilization are performed. Development is desired for obtaining a multilayer structure with excellent hot water resistance, which is required when used in food packaging materials and the like, as a thin film.
[0007]
[Means for solving problems]
However, as a result of intensive studies to solve such problems, the present inventors have made a layer composed of EVOH as an intermediate layer and a layer having at least one polyolefin layer adjacent to the intermediate layer as both outer layers. Do not stretch the extruded laminate Both Moisture permeability (W) of outer layer at 40 ° C. and 90% RH (g / m 2 (Day) and the ratio (W / L) of the intermediate layer thickness (L) (μ) is 8 or less And containing boric acid in the intermediate layer The present invention has been completed by finding that the multilayer structure is a thin film and excellent in gas barrier properties, transparency and hot water resistance.
In the present invention, the thickness (L) (μ) of the intermediate layer and the oxygen transmission rate (T) of the multilayer structure under the conditions of 20 ° C. and 65% RH (cc / m 2 (Day × atm) and the product (L × T) is desirably 100 or less, and the intermediate layer has a total area (in the melting curve showing an endothermic peak measured by a differential scanning calorimeter ( When composed of EVOH having a total heat quantity of 45 J / g or more and an area of 150 ° C. or more (heat quantity) of 55 J / g or less, a stretched film or sheet having particularly good gas barrier properties even for a thin film is obtained. can get.
[0008]
Hereinafter, the present invention will be described in detail.
In the present invention, a layer made of EVOH is used as an intermediate layer. As the EVOH, any EVOH can be used without particular limitation as long as it is a saponified ethylene-vinyl acetate copolymer. The EVOH is obtained by saponification of an ethylene-vinyl acetate copolymer, and the ethylene-vinyl acetate copolymer is obtained by any known polymerization method such as suspension polymerization, emulsion polymerization, solution polymerization, etc. The saponification of the produced ethylene-vinyl acetate copolymer can be performed by a known method.
[0009]
The ethylene content is preferably 20 to 60 mol%, preferably 25 to 50 mol%, and the saponification degree is 96 mol% or more. If the ethylene content is less than 20 mol%, the gas barrier property and melt moldability at high humidity are lowered, and if it exceeds 60 mol%, sufficient gas barrier property cannot be obtained. On the other hand, if the degree of saponification is less than 96 mol%, gas barrier properties, thermal stability, and moisture resistance are lowered.
[0010]
In addition, if the EVOH is a small amount, it may be an α-olefin, an unsaturated carboxylic acid compound, an unsaturated sulfonic acid compound, (meth) acrylonitrile, (meth) acrylamide, vinyl ether, vinyl chloride, styrene, or other comonomer. It may be “copolymerized”. Further, it may be “post-modified” such as urethanization, acetalization, cyanoethylation and the like within a range not impairing the gist of the present invention.
[0011]
Furthermore, additives such as a plasticizer, a heat stabilizer, an ultraviolet absorber, an antioxidant, a colorant, a filler, and other resins can be used as necessary. In particular, hydrotalcite compounds, hindered phenols, hindered amine heat stabilizers, and metal salts of higher aliphatic carboxylic acids can also be added as gel generation inhibitors.
[0012]
On the other hand, as the polyolefin resin forming the polyolefin layer, linear low density polyethylene, low density polyethylene, medium density polyethylene, high density polyethylene, ethylene-vinyl acetate copolymer, ionomer, ethylene-propylene copolymer, ethylene -Acrylic ester copolymer, polypropylene, propylene-α-olefin (α-olefin having 4 to 20 carbon atoms) copolymer, polybutene, polypentene, or other olefins alone or copolymers, or these olefins alone or Examples thereof include those obtained by graft-modifying copolymers with unsaturated carboxylic acids or esters thereof, and polyolefin resins in a broad sense such as polyolefin-based adhesive resins. Of these, polypropylene, modified polypropylene, ethylene-propylene copolymer and the like are particularly preferable from the viewpoint of water vapor barrier properties.
[0013]
In the present invention, if necessary, a resin such as nylon, EVOH, or polyester may be mixed with a polyolefin-based resin in an amount of 20% by weight or less, particularly 10% by weight or less, and the blend may be used as a polyolefin layer. it can.
[0014]
In the present invention, the EVOH layer is used as an intermediate layer, and a layer having at least one polyolefin layer adjacent to the intermediate layer is used as both outer layers to produce a laminate, and the laminate is stretched. It is.
The coextrusion method is not particularly limited and includes a T-die method and an inflation method. For example, in the case of polyolefin layer / EVOH layer / polyolefin layer, two types or three layers or polyolefin layer / adhesive resin layer / EVOH layer / adhesiveness In the case of a resin layer / polyolefin layer, it is coextruded from a T die set at a temperature of 180 to 250 ° C. using a coextrusion molding apparatus of 3 types and 5 layers, and then cooled by a chill roll or the like to form 3 or 5 layers. Etc. can be obtained.
[0015]
The layer structure in the present invention is not limited to the above-mentioned polyolefin layer / EVOH layer / polyolefin layer, polyolefin layer / adhesive resin layer / EVOH layer / adhesive resin layer / polyolefin layer, and adhesive resin layer / EVOH layer / Various combinations of adhesive resin layer, polyolefin layer / adhesive resin layer / EVOH layer / adhesive resin layer, polyolefin layer / adhesive resin layer / EVOH layer / adhesive resin layer / EVOH layer / adhesive resin layer / polyolefin layer, etc. Laminates are possible, and on the outside of the polyolefin layer, another polyolefin, polyester, polyamide, copolymerized polyamide, polyvinyl chloride, polyvinylidene chloride, acrylic resin, styrene resin, vinyl ester resin, polyester elastomer, Polyurethane elastomer, chlorinated polyethylene, It is also possible to stack iodinated polypropylene.
[0016]
In addition, although it described as an adhesive resin layer in the said layer structure, what is used as an adhesive resin is a copolymer of a monomer (vinyl acetate, acrylate ester, etc.) that can be copolymerized with polypropylene, polyethylene, or ethylene, etc. These resins are modified by adding maleic anhydride or the like to the polyolefin resin, and enter the polyolefin resin in a broad sense as described above.
[0017]
The stretching of the coextruded laminate may be either uniaxial stretching or biaxial stretching, and it is better in terms of physical properties to perform stretching as high as possible. In the case of uniaxial stretching, it is preferably 3 times or more, particularly 10 times or more, and in the case of biaxial stretching, the area magnification is preferably 5 times or more, particularly preferably 10 times or more. However, in the present invention, the area is as described above. When the magnification is 10 times or more, particularly 20 times or more, and further 25 to 50 times, even when boil sterilization is performed at 95 ° C. for 30 minutes, it exhibits an excellent effect in hot water resistance without causing appearance defects such as whitening. .
[0018]
As the stretching method, in addition to a roll stretching method, a tenter stretching method, a tubular stretching method, a stretching blow method, and the like, a deep drawing method, a vacuum forming method, or the like having a high stretching ratio can be employed. In the case of biaxial stretching, both a simultaneous biaxial stretching method and a sequential biaxial stretching method can be employed. The stretching temperature is selected from the range of about 80 to 160 ° C, preferably about 100 to 150 ° C.
[0019]
After the stretching is completed, it is preferable to perform heat setting. The heat setting can be performed by a known means, and heat treatment is performed at 90 to 170 ° C., preferably 110 to 160 ° C. for about 2 to 600 seconds while maintaining the stretched film in a tension state. Moreover, the stretched film obtained is subjected to cooling treatment, rolling treatment, printing treatment, dry laminating treatment, solution or melt coating treatment, bag making processing, depth sticking processing, box processing, tube processing, split processing, etc. Can do.
[0020]
In the present invention, in the multilayer structure obtained by stretching the coextruded laminate obtained as described above, the moisture permeability (W) (g / m) of both outer layers at 40 ° C. and 90% RH. 2 The maximum feature is that the ratio (W / L) between the (day) and the thickness (L) (μ) of the intermediate layer is 8 or less, preferably 7 or less, more preferably 5 or less, and this condition is satisfied. For the first time, the effect of the present invention such as hot water resistance and transparency is exhibited with a thin film. When the ratio (W / L) of moisture permeability to thickness is 8 or more, when hot water sterilization such as boiling and retort is performed, the film is whitened and the effect of the present invention is not exhibited.
[0021]
The moisture permeability (W) at 40 ° C. and 90% RH of the outer layers is 200 g / m. 2 -Day or less, preferably 80 g / m 2 -It is desired that it is not more than day, and the thickness (L) of the intermediate layer is 1 μm or more, preferably 2 to 40 μm. Moisture permeability (W) is 200 g / m 2 -If it exceeds day, the effect of the present invention is not exhibited. On the other hand, if the thickness (L) of the intermediate layer is less than 1 μm, the gas barrier property becomes unstable, which is not preferable.
[0022]
Needless to say, the moisture permeability (W) is a value after the coextrusion laminate is stretched. In measuring the moisture permeability (W), the multilayer structure of the present invention is used in a solvent such as hexafluoroisopropanol. It is possible to measure the moisture permeability (W) of only the outer layer by immersing at room temperature to dissolve and remove the EVOH layer, but this is not a limitation. As a method for defining moisture permeability (W), a method defined in JIS Z 0208, that is, a film was attached to a cup containing a hygroscopic agent, sealed and fixed, and then adjusted to 40 ° C. and a relative humidity of 90%. It is obtained by leaving it in a constant temperature and humidity device and measuring the rate of weight increase.
[0023]
Furthermore, in the present invention, the thickness (L) (μ) of the intermediate layer of the multilayer structure and the oxygen permeability (T) of the multilayer structure under the conditions of 20 ° C. and 65% RH (cc / m 2 (Day × atm) and the product (L × T) is 100 or less, preferably 50 or less, more preferably 45 or less, and it is a thin film with gas barrier properties, transparency, hot water resistance, etc. The effect is remarkable. When the product (L × T) exceeds 100, the EVOH layer becomes thick with respect to the required gas barrier property, and the flexibility of the multilayer structure is lowered, which is not preferable.
The oxygen permeability (T) is 60 cc / m 2 · Day · atm or less, preferably 30cc / m 2 · Day · atm or less, more preferably 20cc / m 2 -It is desired that it is not more than day-atm.
[0024]
As for the multilayer structure of the present invention, a thin film of the coextruded laminate can be formed by high stretching as described above, and films, sheets and the like having excellent physical properties can be obtained. It is preferable that the total thickness is 50 μm or less, preferably 40 μm or less, more preferably 20 μm or less in that the multilayer structure is a thin film. When the total thickness exceeds 50 μm, flexibility as a thin film is impaired.
[0025]
In the present invention, as described above, the coextruded laminate is stretched, and the ratio between the moisture permeability (W) and the thickness (L) of the intermediate layer at 40 ° C. and 90% RH of both outer layers (W / L). ) Is 8 or less, preferably a multilayer structure in which the product (L × T) of the thickness (L) of the intermediate layer and the oxygen transmission rate (T) of the multilayer structure is 100 or less. In the melting curve showing an endothermic peak measured by a differential scanning calorimeter, the total area (total calorie) is 45 J / g or more. And when it is a layer which consists of EVOH whose area (heat amount) of 150 degreeC or more is 55 J / g or less, especially outstanding ductility and gas barrier property are shown. That is, by using the EVOH for the intermediate layer, it is possible to perform high stretching such as 20 times or more in area magnification, and even at this time, a stretched film or stretched sheet that does not cause breakage, pinholes, cracks, uneven stretching, etc. Is obtained.
[0026]
As such EVOH, in a melting curve showing an endothermic peak measured by a differential scanning calorimeter, the total area (total heat) is 45 J / g or more, preferably 50 J / g or more, more preferably 53 to 80 J / g. Moreover, it is preferable to use EVOH having an area (heat quantity) of 150 ° C. or higher of 55 J / g or less, preferably 50 J / g or less, and the effect of the present invention is remarkably exhibited. In this melting curve, if the total area (total heat amount) is less than 45 J / g, the gas barrier property is low, and if the area (heat amount) of 150 ° C. or higher exceeds 55 J / g, the stretchability is insufficient.
[0027]
As for the measurement with a differential scanning calorimeter, the endothermic peak when the temperature was raised to 230 ° C. at 10 ° C./min, lowered to 30 ° C. at 10 ° C./min, and again raised to 10 ° C./min. The total area and the area of 150 ° C. or higher are measured.
[0028]
Referring to FIG. 1 in more detail, FIG. 1 is a melting curve of a typical example of the above-mentioned specific EVOH (but is not limited to this). When the end point of the peak is b, and when a straight line is drawn on 150 ° C., the point that intersects the curves a to b is c, and the point that intersects the line ab is d, the total area in the present invention is the curve a ~ C ~ b and the area surrounded by the straight line adb (S 1 + S 2 ), And the area of 150 ° C. or higher is the area surrounded by the curves c to b, the straight line bd, and the straight line cd (S 2 ). That is, in the present invention, the area (S 1 + S 2 ) And the area (S 2 The amount of heat represented by) may be 55 J / g or less.
[0029]
The method for obtaining the specific EVOH is not particularly limited, and a high melting point plasticizer in EVOH, for example, a polyalcohol having an alkyl chain having 2 to 20 carbon atoms or the like is used in an amount of 1 to 10 with respect to 100 parts by weight of EVOH. Part by weight, preferably 2-5 parts by weight, EVOH specific functional groups such as monocarboxylic acid compounds, epoxy compounds, amino compounds, etc. 0.1-10 mol%, preferably 0.5-5 mols % Grafting method, or a method of blending two or more types of EVOH having different ethylene contents. Among them, the most simple method for obtaining the specific EVOH is to blend two or more types of EVOH having different ethylene contents. The method will be described in detail below.
[0030]
EVOH used in the blend is not particularly limited, but any of them has an ethylene content of 20 to 60 mol%, preferably 25 to 50 mol%, more preferably 27 to 45 mol%, and a saponification degree of 96 mol% or more. It is desirable that If the ethylene content is less than 20 mol%, the gas barrier property and melt moldability at high humidity are lowered, and if it exceeds 60 mol%, sufficient gas barrier property cannot be obtained. On the other hand, if the degree of saponification is less than 96 mol%, gas barrier properties, thermal stability, and moisture resistance are lowered.
[0031]
EVOH used for blending is a small amount of other comonomer such as α-olefin, unsaturated carboxylic acid compound, unsaturated sulfonic acid compound, (meth) acrylonitrile, (meth) acrylamide, vinyl ether, vinyl chloride, styrene. It may be “copolymerized”. Further, it may be “post-modified” such as urethanization, acetalization, cyanoethylation and the like within a range not impairing the gist of the present invention.
[0032]
In the present invention, two or more types of EVOH arbitrarily selected from such EVOHs may be blended. In particular, it is preferable to use two or more types of EVOH having different ethylene contents. The difference in ethylene content between EVOH (A) with the largest blending amount and EVOH (B) with the next largest blending amount is 3 to 20 mol%, preferably 3 to 15 mol%, more preferably 5 to 15 mol. % Is preferred. If the difference in ethylene content is less than 3 mol%, satisfactory stretchability and gas barrier properties cannot be obtained, and if it exceeds 20 mol%, transparency is poor and film-forming stability is also deteriorated. Not preferable.
[0033]
The difference in ethylene content is │ (a)-(b) │ where the ethylene content of EVOH (A) is (a) and the ethylene content of EVOH (B) is (b). is there.
The amount of EVOH to be blended is appropriately selected depending on the type of EVOH to be blended, etc.
[0034]
The blending method is not particularly limited, and is a method in which each EVOH is dissolved and mixed in a water-alcohol solvent, and an ethylene-vinyl acetate copolymer before saponification of each EVOH is dissolved in an alcohol solvent such as methanol. The method of mixing and saponifying with, or the method of melt-mixing each EVOH etc. is mentioned, However, Usually, the method of melt-mixing is employ | adopted. For example, a method in which each EVOH is dry blended and then melted and blended, a method in which each EVOH is blended in a molten state, a method in which another EVOH is added in a dry state to a kind of EVOH in a molten state, and the like. Especially, the method of melt-blending each EVOH after dry blending is practical in terms of the simplicity of the apparatus, the cost of the blended product, and the like.
[0035]
Thus, according to the above production method, in the melting curve showing the endothermic peak measured by the differential scanning calorimeter, the total area (total heat amount) is 45 J / g or more and the area (heat amount) of 150 ° C. or more is 55 J / g. The following EVOH is obtained, and when the EVOH in the above range is used in the present invention, a high-stretching is possible, and a multilayer structure excellent in gas barrier property, transparency and hot water resistance after stretching is obtained. .
In the present invention, the EVOH further contains at least one compound selected from a boron compound, a copper compound, an aluminum compound, a titanium compound, and a zirconium compound, whereby the stretchability is further improved and the thickness at the time of film formation is increased. The accuracy is improved, no streaks are generated, and a film free from unevenness in stretching is obtained.
[0036]
Among boron compounds, copper compounds, aluminum compounds, titanium compounds and zirconium compounds to be used, when used as food packaging materials, boron compounds are preferably employed because of their low toxicity. Examples of the boron compounds include boric acid and borate. , Boric acid esters, borax, boron halides, trialkyl borons, triaryl borons and the like.
The method of incorporating the boron compound into the EVOH is not particularly limited. However, the EVOH may be added at the same time when blending, or may be incorporated in at least one kind of EVOH in advance, or may be incorporated after blending. Alternatively, the boron compound may be dissolved in a solvent such as water and mixed with EVOH, or EVOH may be immersed in a solution of the boron compound.
The content of the boron compound is 0.01 to 5% by weight, preferably 0.01 to 1% by weight, more preferably 0.01 to 0.5% by weight based on the total weight of EVOH in terms of boron. If it is less than 0.01% by weight, the effect of containing a boron compound cannot be obtained. On the other hand, if it exceeds 5% by weight, the boron compound is localized, or a gel is generated.
[0037]
The shape of the multilayer structure thus obtained may be any shape, and examples thereof include films, sheets, tapes, bottles, pipes, filaments, and modified cross-section extrudates. The film, sheet or container obtained as described above is useful as various packaging materials such as foods, pharmaceuticals, industrial chemicals and agricultural chemicals. In particular, it is useful as a film packaging material for boil sterilization treatment, and more specific uses of the film packaging material include lid materials, pouches, vacuum packaging, skin packs, deep drawing packaging, rocket packaging, and the like.
[0038]
[Operation]
In the multilayer structure of the present invention, a coextruded laminate composed of an EVOH layer and a polyolefin layer is highly stretched, and the moisture permeability (W) at 40 ° C. and 90% RH of the stretched outer layer and the thickness of the intermediate layer (L ) (W / L) is 8 or less, more preferably, the product (L × T) of the thickness (L) of the intermediate layer and the oxygen permeability (T) of the multilayer structure is 100 or less. Therefore, by using EVOH, which has excellent gas barrier properties, transparency, and extremely excellent hot water resistance, and shows a specific melting curve measured with a differential scanning calorimeter as an intermediate layer, In stretching, it is possible to obtain a film, sheet and the like excellent in stretchability in which not only gas barrier properties and transparency but also breakage, pinholes, cracks, stretching unevenness and the like do not occur.
[0039]
【Example】
Hereinafter, the present invention will be specifically described with reference to examples.
In the examples, “parts” and “%” are based on weight unless otherwise specified.
Example 1
EVOH (A) having an ethylene content of 45 mol% and a saponification degree of 97.0 mol% and EVOH (B) having an ethylene content of 30 mol% and a saponification degree of 99.5 mol% have a weight ratio of 60:40. The mixture was fed to a single screw extruder so as to be melted and mixed at 220 ° C., pelletized, the pellets were put into a 1% boric acid aqueous solution, stirred at 80 ° C. for 12 hours, Washed with pure water, dried at 110 ° C. for 8 hours, and using the obtained EVOH, a feed block 5-layer T-die made of polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer / polypropylene layer. A film was formed so as to have a layer structure to produce a multilayer laminated film.
[0040]
The composition of the film is 156μ for the polypropylene layer of both outer layers (MI of polypropylene is 1.2 g / 10 min), and the adhesive resin layer (adhesive resin is maleic anhydride-modified polypropylene, and its MI is 2.6 g / 10 min) Is 52 μ, and the EVOH layer of the intermediate layer is 78 μ. This multilayer laminated film is preheated at 150 ° C. for 1 minute, and sequentially biaxially stretched in the order of 4 times in the longitudinal direction and 6.5 times in the transverse direction (stretching ratio: 26 times) at a stretching speed of 100 mm / sec. The multilayer structure of the present invention was obtained.
The thickness of the multilayer structure is 19 μ (polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer / polypropylene layer = 6 μ / 2 μ / 3 μ / 2 μ / 6 μ), and both outer layers (polypropylene layer / adhesive resin layer) ) At 40 ° C. and 90% RH, the water vapor transmission rate (W) is 11 g / m. 2 -The oxygen permeability (T) of the multilayer structure is 15 cc / m at day. 2 Day / atm (W / L = 3.7, L × T = 45).
[0041]
In addition, the total area (total heat quantity) of the melting curve showing the endothermic peak measured by the differential scanning calorimeter (Perkin Elmer DSC7) of EVOH is 53 J / g, and the area (heat quantity) of 150 ° C. or higher is 35 J. / G.
The multilayer structure was evaluated for transparency, hot water resistance, stretchability, stretch unevenness, and oxygen permeability as follows.
[0042]
(transparency)
The haze value of the obtained multilayer structure was measured using a reflection transmission meter RM-15A manufactured by Murakami Color Research Laboratory.
(Heat resistant water)
The obtained multilayer structure was hydrothermally treated at 98 ° C. for 30 minutes, and the haze value after treatment was measured with the same device as described above.
[0043]
(Extensible)
The appearance of the obtained multilayer structure was evaluated according to the following criteria.
◯: Smooth and transparent film after stretching.
X: After stretching, it was whitened or fibrillated.
[0044]
(Uneven drawing)
The following criteria were evaluated from the appearance of the obtained multilayer structure.
○ ... streaks were not seen.
Δ: 1-2 streaks were observed.
X: Three or more streaks were observed.
[0045]
(Oxygen permeability)
The oxygen permeability of the stretched film obtained in the same manner as described above was measured under the conditions of 20 ° C. and 65% RH using OX-TRAN10-50 manufactured by MODERN-CONTROL (cc / m 2 -Day-atm).
[0046]
Example 2
EVOH (A) having an ethylene content of 40 mol% and a saponification degree of 97.0 mol% and EVOH (B) having an ethylene content of 45 mol% and a saponification degree of 99.5 mol% were used, and the blending weight ratio was 70. : 30, a multilayer structure was produced according to Example 1.
The thickness of the multilayer structure is 36 μ (polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer / polypropylene layer = 10 μ / 4 μ / 8 μ / 4 μ / 10 μ), and both outer layers (polypropylene layer / adhesive resin layer) ) Has a water vapor transmission rate of 6 g / m at 40 ° C. and 90% RH. 2 -The oxygen permeability of the multilayer structure is 2.5 cc / m at day. 2 Day / atm (W / L = 0.8, L × T = 20).
[0047]
In addition, the total area (total heat quantity) of the melting curve showing the endothermic peak measured by the differential scanning calorimeter (Perkin Elmer DSC7) of EVOH is 66 J / g, and the area (heat quantity) of 150 ° C. or higher is 48 J. / G.
The multilayer structure was evaluated for transparency, hot water resistance, stretchability, stretch unevenness, and oxygen permeability in the same manner as in Example 1.
[0048]
Example 3
A multilayer structure was produced according to Example 1 using EVOH having an ethylene content of 45 mol% and a saponification degree of 97.0 mol%.
The thickness of the multilayer structure is 19 μ (polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer / polypropylene layer = 6 μ / 2 μ / 3 μ / 2 μ / 6 μ), and both outer layers (polypropylene layer / adhesive resin layer) ) Has a moisture permeability of 11 g / m at 40 ° C. and 90% RH. 2 -The oxygen permeability of the multilayer structure is 52 cc / m at day. 2 Day / atm (W / L = 3.7, L × T = 156).
[0049]
The total area (total heat) of the melting curve showing the endothermic peak measured by the differential scanning calorimeter (Perkin Elmer DSC7) of EVOH is 36 J / g, and the area (heat quantity) of 150 ° C. or higher is 14 J. / G.
The multilayer structure was evaluated for transparency, hot water resistance, stretchability, stretch unevenness, and oxygen permeability in the same manner as in Example 1.
[0050]
Comparative Example 1
In Example 1, polypropylene layer / adhesive resin layer / EVOH layer / adhesive resin layer / polypropylene layer = 2 μ / 1 μ / 2 μ / 1 μ / 2 μ and both outer layers (polypropylene layer / adhesive resin layer) at 40 ° C. Moisture permeability at 90% RH is 30 g / m 2 -The oxygen transmission rate of the multilayer structure is 23 cc / m at day. 2 A laminate of day / atm was obtained (W / L = 15, L × T = 46), and the hot water resistance, stretchability, stretch unevenness, oxygen permeability, and transparency were evaluated in the same manner as in Example 1.
Table 1 shows the measurement results of the multilayer structures of Examples and Comparative Examples, and Table 2 shows the evaluation results of hot water resistance, stretchability, stretch unevenness, oxygen permeability, and transparency.
[0051]
[Table 1]
Figure 0004266391
[0052]
[Table 2]
Figure 0004266391
[0053]
【The invention's effect】
In the multilayer structure of the present invention, a coextruded laminate composed of an EVOH layer and a polyolefin layer is highly stretched, and the moisture permeability (W) at 40 ° C. and 90% RH of the stretched outer layer and the thickness of the intermediate layer (L ) (W / L) is 8 or less, and more preferably, the product (L × T) of the thickness (L) of the intermediate layer and the oxygen permeability (T) of the multilayer structure is 100 or less. Therefore, by using EVOH, which has excellent gas barrier properties, transparency, and extremely excellent hot water resistance, and shows a specific melting curve measured with a differential scanning calorimeter as an intermediate layer, In stretching, it is possible to obtain a film, sheet and the like excellent in stretchability in which not only gas barrier properties and transparency but also breakage, pinholes, cracks, stretching unevenness and the like do not occur.
[Brief description of the drawings]
FIG. 1 is a melting curve measured by a differential scanning calorimeter of an ethylene-vinyl acetate copolymer saponified resin composition preferably used as an intermediate layer of the multilayer structure of the present invention.
[Explanation of symbols]
a: Point at which the peak of the melting curve begins to rise
b: end point of melting curve peak
c: A point that intersects curves a and b when a straight line is drawn above 150 ° C.
d: Point that intersects straight line ab when drawing a straight line at 150 ° C
S 1 : Area surrounded by curves a to c, straight line ad, and straight line cd
S 2 : Area surrounded by curves c to b, straight line bd, and straight line cd

Claims (2)

エチレン−酢酸ビニル系共重合体ケン化物からなる層を中間層とし、中間層と隣接させたポリプロピレン層を少なくとも1層有する層を両外層とする共押出積層体を延伸してなり、両外層それぞれの40℃、90%RHにおける透湿度(W)(g/m2・day)と中間層の厚み(L)(μ)との比(W/L)が8以下であり、かつ、中間層にホウ酸を含有し、全厚みが50μ以下であって、前記中間層の厚みが2〜40μであり、前記ポリプロピレン層の厚みが6〜10μであることを特徴とする多層構造体。Ethylene - a layer made of vinyl acetate copolymer saponification product and an intermediate layer, and a layer having at least one layer of polypropylene layers are adjacent to the intermediate layer by stretching the coextruded laminate to both outer layers, both outer layers each 40 ° C., and the ratio of the moisture permeability 90% RH (W) thickness (g / m 2 · day) and intermediate layer (L) (μ) (W / L) is 8 or less, and the intermediate containing boric acid in the layer, the total thickness is not more 50μ or less, said a thickness of the intermediate layer is 2~40Myu, multilayer structure the thickness of the polypropylene layer is characterized 6~10μ der Rukoto. 中間層の厚み(L)(μ)と、20℃、65%RHの条件下での多層構造体の酸素透過率(T)(cc/m2・day・atm)との積(L×T)が100以下であることを特徴とする請求項1記載の多層構造体。The product (L × T) of the thickness (L) (μ) of the intermediate layer and the oxygen transmission rate (T) (cc / m 2 · day · atm) of the multilayer structure under the conditions of 20 ° C. and 65% RH The multilayer structure according to claim 1, wherein the multilayer structure is 100 or less.
JP15232395A 1995-05-25 1995-05-25 Multilayer structure Expired - Fee Related JP4266391B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15232395A JP4266391B2 (en) 1995-05-25 1995-05-25 Multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15232395A JP4266391B2 (en) 1995-05-25 1995-05-25 Multilayer structure

Publications (2)

Publication Number Publication Date
JPH08318599A JPH08318599A (en) 1996-12-03
JP4266391B2 true JP4266391B2 (en) 2009-05-20

Family

ID=15538023

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15232395A Expired - Fee Related JP4266391B2 (en) 1995-05-25 1995-05-25 Multilayer structure

Country Status (1)

Country Link
JP (1) JP4266391B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605553B2 (en) * 1998-09-28 2011-01-05 株式会社クラレ Multilayer film

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148264A (en) * 1985-12-23 1987-07-02 三菱化成ポリテック株式会社 Transparent laminated plastic film
JPH0735108B2 (en) * 1986-12-22 1995-04-19 株式会社クラレ Thermoformed product
JP3032615B2 (en) * 1991-07-29 2000-04-17 株式会社クラレ Multilayer structure and package
JP2996072B2 (en) * 1992-10-08 1999-12-27 住友化学工業株式会社 Resin compatibilizing method and resin composition

Also Published As

Publication number Publication date
JPH08318599A (en) 1996-12-03

Similar Documents

Publication Publication Date Title
JP2915324B2 (en) Saponified ethylene-vinyl acetate copolymer resin composition and multilayer structure using the same
JP5274556B2 (en) Heat-shrinkable multilayer film or tube showing shrinkage stability after stretching
KR100499437B1 (en) Multilayered structure, and a thermoformed container obtained by thermoforming the multilayered structure
JP5008291B2 (en) Resin composition and multilayer structure using the same
JPH08239528A (en) Saponified resin composition of ethylene-vinyl acetate copolymer and its application
JP4864196B2 (en) Alkoxyl group-containing ethylene-vinyl acetate copolymer saponified product and molded product thereof
US7521497B2 (en) Saponified, alkoxyl group-containing ethylene-vinyl acetate copolymer and its processed products
AU2001252149A1 (en) Bi-axially oriented and heat-set multilayer thermoplastic film for packaging
EP1276609A1 (en) Bi-axially oriented and heat-set multilayer thermoplastic film for packaging
JP3895010B2 (en) Resin composition and laminate thereof
US5177138A (en) Resin composition including a saponified ethylene-vinyl acetate copolymer, polyolefin, a graft copolymer and hydrotalcite
WO2005061224A1 (en) Laminate
JP4002676B2 (en) Resin composition and use thereof
JP4266391B2 (en) Multilayer structure
JP3895011B2 (en) Resin composition and laminate thereof
JP3623577B2 (en) Ethylene-vinyl acetate copolymer saponified resin composition and use thereof
JP6534151B2 (en) Multilayer structure
JP3841943B2 (en) Production method of resin composition
JP3087919B2 (en) Laminate
JP4017275B2 (en) Resin composition and use thereof
JP3629096B2 (en) Resin composition and use thereof
JPH08165397A (en) Resin composition and use thereof
JP6805513B2 (en) Multi-layer structure
JP3189174B2 (en) Composite stretched film
JP2860127B2 (en) Resin composition and its use

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040513

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040714

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040714

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040714

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050118

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20071220

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20071228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080204

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees