JP4265940B2 - Method for removing nitrogen compounds - Google Patents

Method for removing nitrogen compounds Download PDF

Info

Publication number
JP4265940B2
JP4265940B2 JP2003189187A JP2003189187A JP4265940B2 JP 4265940 B2 JP4265940 B2 JP 4265940B2 JP 2003189187 A JP2003189187 A JP 2003189187A JP 2003189187 A JP2003189187 A JP 2003189187A JP 4265940 B2 JP4265940 B2 JP 4265940B2
Authority
JP
Japan
Prior art keywords
acid
hydrogen peroxide
nitrogen
hydrofluoric acid
nha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189187A
Other languages
Japanese (ja)
Other versions
JP2005021785A (en
Inventor
勇 毛利
周 大江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP2003189187A priority Critical patent/JP4265940B2/en
Publication of JP2005021785A publication Critical patent/JP2005021785A/en
Application granted granted Critical
Publication of JP4265940B2 publication Critical patent/JP4265940B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]

Landscapes

  • Treating Waste Gases (AREA)
  • Gas Separation By Absorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、燃焼排ガスなどの排気ガスや窒素フッ化物、窒素酸化フッ化物合成工程での粗製品中に含まれる不要な窒素酸化物、窒素酸化ハロゲン化物、並びにそれらのハロゲン化水素との複合体ガスを高効率に無害化あるいは精製する窒素化合物の除去方法に関する。
【0002】
【従来の技術および発明が解決しようとする課題】
従来、燃焼排ガスなどに含まれる窒素酸化物などはアンモニア接触還元法(特許文献1)、酸化マンガン−酸化セリウムによる吸着除去法(特許文献2)、光触媒担持組成物にNOx吸着させ紫外線を照射して分解する方法(特許文献3)、プラズマ分解とオゾン吸収剤とを組み合わせた方法(特許文献4)などが提案されている。しかしアンモニア接触還元法では、支燃性物質中に可燃性物質を混合する危険性があり、触媒充填式では、大量のガスを処理するためには大規模な施設が必要となり、プラズマ式では、大量のガスを分解することは実質的に困難である問題があった。また、本発明で除去対象の一つとしている窒素酸化物とハロゲン化水素の付加体に関しては、有効な除去手段は知られていなかった。さらに、三フッ化窒素などのフッ化物製造工程に於いても、反応器からの大気や水分の混入、あるいは原料中に微量に含まれる酸素や水分の影響から窒素酸化物、窒素酸化ハロゲン化物並びにそれらのハロゲン化水素付加体が生成する場合があった。このような場合、ガスを精製するために精製設備の規模を大型化したり、多段化したりする必要があった。特にハロゲン化水素付加体の場合は、ガス中から選択的に取り除くことは困難であった。さらに、水でこれらの化合物を除去しようとすると、水中に亜硝酸あるいは亜硝酸イオンが検出される。亜硝酸は、式(1)に示したように除去が極めて困難な一酸化窒素の発生要因となるため好ましくない。
3HNO2 → 2NO + HNO3 + H2O ・・・(1)
【0003】
以上のことから高効率に、かつ簡便に不要な窒素酸化物、窒素酸化ハロゲン化物、窒素フッ化物、並びにそれらのハロゲン化水素との複合体を取り除くことができ、亜硝酸を硝酸まで酸化し、一酸化窒素などの2次汚染物質の発生を起こさない方法が必要とされていた。
【0004】
【特許文献1】
特開平9−213596号公報
【特許文献2】
特開2002−371830号公報
【特許文献3】
特開2003−063852号公報
【特許文献4】
特開2001−259362号公報
【0005】
【課題を解決するための手段】
本発明者らは、上記の問題点に鑑み鋭意検討の結果、窒素酸化物、窒素酸化ハロゲン化物、及びそれらのハロゲン化水素との複合体ガスを湿式スクラバー溶液として過酸化水素とフッ酸(HF)、塩酸(HCl)、臭化水素酸(HBr)、ヨウ化水素酸(HI)のいずれかであるハロゲン酸との混合水溶液を使用することにより窒素化合物を除去できることを見出し本発明に到達した。
【0006】
すなわち、本発明は、湿式スクラバーにおいて、NOx、NOxAy、HNOx、NOx・nHA、NOxAy・nHA、HNOx・nHA、またはこれらの混合物を除去するに際し、スクラバー液として過酸化水素とフッ酸(HF)、塩酸(HCl)、臭化水素酸(HBr)、ヨウ化水素酸(HI)のいずれかであるハロゲン酸とを含有した水溶液を使用することを特徴とする窒素化合物の除去方法(ただし、A=ハロゲン、x≧0.5、y>0、nは、1以上の整数を表す。)を提供するものである。
【0007】
以下、本発明を詳細に説明する。
窒素酸化物が水スクラバーに導入されると、例えば、NO2であればスクラバー液中に一部吸収され亜硝酸と硝酸となる。亜硝酸として吸収されると前述のように一酸化窒素のように除去が困難な窒素酸化物の再生成が起こる。また過酸化水素溶液中にこれら窒素酸化物を導入しても、酸化力が弱く亜硝酸の生成は避けがたい。しかし、鋭意検討の結果、過酸化水素溶液にハロゲン酸を混合することにより飛躍的にスクラバー液の酸化力が向上し、亜硝酸を硝酸に変換できることを見出したものである(式(2))。
HNO2 +H22 +HA = HNO3 +H2O +HA ・・・(2)
Aは、F,Cl,Br,Iである。
【0008】
この場合、ハロゲン酸は触媒的に働き、そのもの自体は化学的変化を起こさない。なお、酸化ハロゲン化窒素の場合は、水との反応でハロゲン酸と過酸化水素を生成するが、生成率が低く予めスクラバー液の酸化力を上げておかないと十分な除去効果が得られない。本発明において、使用するハロゲン酸とは、フッ酸(HF)、塩酸(HCl)、臭化水素酸(HBr)、ヨウ化水素酸(HI)等が挙げられるが、フッ酸、塩酸が特に好ましい。
【0009】
本発明において、対象となる窒素酸化物、窒素酸化ハロゲン化物、及びそれらのハロゲン化水素との複合体ガスとは、一般式では、NOx、NOxAy、HNOx、NOx・nHA、NOxAy・nHA、またはHNOx・nHA(ただし、A=ハロゲン、x≧0.5、y>0、nは、1以上の整数を表す。)で表される。HFの付加は、水素結合により連鎖的に会合しておりその最大値は不明である。しかし、HFとの複合体が存在することは古くから知られている(F.seel and W.Birnkraut、Angewandte Chemie 73, 531−2(1961)等)。具体的には、NO2・4HF、NO2・8HF、NO2・12HF、NOF・4HF、NO2F・4HF、NO2F・8HF、NO2F・12HF等が挙げられる。
【0010】
本発明において、スクラバー液中の過酸化水素の濃度は、10ppm以上50容積%以下が好ましく、より好ましくは、100ppm以上10容積%以下である。10ppm未満では、効果が殆ど認められず、50容積%を越える濃度では、顕著な効果の向上が認められず好ましくない。ハロゲン酸の濃度は、0.1〜30容積%の範囲が好ましく、より好ましくは、1〜10容積%である。0.1容積%以下では、添加の効果が顕著ではなく、30容積%より多く添加しても効果に顕著な差異が認められない。
【0011】
また、過酸化水素や酸濃度を維持するためには、ハロゲン酸の種類が、フッ酸の場合ならば窒素酸化物を含むガスにフッ素を添加しても良い。フッ素と水との反応により、式(3)に示すように過酸化水素とフッ酸が生成するため効率が良い。
2H2O + F2(g) = H22(g) + 2HF(g) ・・・・(3)
【0012】
【実施例】
以下、実施例により本発明を詳細に説明するが、本発明はかかる実施例に限定されるものではない。
【0013】
実施例1、比較例1、2
100mlメスフラスコを用い、亜硝酸濃度を0.22mmolに調整し、これを標準液とした。過酸化水素水溶液(比較例1)、過酸化水素とフッ酸水溶液(実施例1)、過酸化水素と水酸化カリウム水溶液(比較例2)の三種類と混合し、溶液中の硝酸、亜硝酸イオン濃度をイオンクロマトグラフで測定した。その結果、表1に示した。表1から分かるように過酸化水素とフッ酸との混合溶液のみ亜硝酸イオンが硝酸イオンに変換されており、その他の溶液では酸化能力が発現されない結果となった。
【0014】
【表1】

Figure 0004265940
【0015】
実施例2、比較例3
Heで1000ppmに希釈したNO2ガスを予め真空に減圧した1L容器に93kPaまで導入した後、純水、もしくは過酸化水素(0.32mmol)とフッ酸(0.12mmol)との混合水溶液を100CC導入して1時間攪拌した。その後、溶液中の亜硝酸イオンと硝酸イオンの濃度から窒素酸化物の溶液への捕集率を求めた。その結果、純水では、亜硝酸イオンとして35容積%、硝酸として35容積%、合計70容積%の酸化窒素成分が捕集されていた。一方、過酸化水素とフッ酸との混合液には、全て硝酸イオンとして85容積%の酸化窒素成分が捕集されていた。以上から、過酸化水素とフッ酸の混合液は、不純物を再発生させる亜硝酸を硝酸に酸化すると効果と同時に、液への捕集率を向上させる効果が有ることが解った。
【0016】
実施例3〜5、比較例4〜6
次に、純水並びに過酸化水素とフッ酸との混合液に、NO2に替えてNO2・2HF、NO2F・2HF、NOF・2HFを1L容器に導入して実施例2、比較例3と同様の実験を行った。各々の硝酸イオン、亜硝酸イオンとしての捕集率並びにそれらの合計を表2に示した。この結果から、過酸化水素とフッ酸の混合液にすることで亜硝酸イオンを全て硝酸イオンに変換でき、さらに捕集率も向上させられることが解った。また、フッ酸の代わりに塩酸、シュウ化水素酸、ヨウ化水素酸を混合しても同様の結果が得られた。
【0017】
【表2】
Figure 0004265940
【0018】
実施例6〜8、比較例7〜9
内径2.5cm、長さ100cmのラシヒリング充填塔を具備したスクラバーに塔下部から、N2で5000ppmに希釈したNO2(実施例6、比較例7)、NO2F(実施例7、比較例8)、NOF(実施例8、比較例9)を含むガスを流通させ、塔上部から循環水(あいは水溶液)を0.5L/minの流量で落下循環させた。その結果、スクラバー液に純水を使用した場合には75%,86%,76%であった捕集率が、過酸化水素とフッ酸の混合溶液を用いたところ全てほぼ100%捕集できた。
【0019】
【発明の効果】
本発明の方法により、燃焼排ガスなどの排気ガスや窒素フッ化物等の合成工程での粗製品中に含まれる不要な窒素酸化物、窒素酸化ハロゲン化物、及びそれらのハロゲン化水素との複合体ガスを高効率に無害化あるいは精製除去することを可能とした。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust gas such as combustion exhaust gas, nitrogen fluoride, unnecessary nitrogen oxides contained in a crude product in a nitrogen oxyfluoride synthesis process, nitrogen oxide halides , and composites thereof with hydrogen halides. The present invention relates to a method for removing a nitrogen compound that renders a gas harmless or highly efficient.
[0002]
[Background Art and Problems to be Solved by the Invention]
Conventionally, nitrogen oxides contained in combustion exhaust gas, etc. are contacted with ammonia by the catalytic reduction method (Patent Document 1), the adsorption removal method using manganese oxide-cerium oxide (Patent Document 2), and the photocatalyst-supported composition is adsorbed with NOx and irradiated with ultraviolet rays. And a method of decomposing (Patent Document 3), a method of combining plasma decomposition and an ozone absorbent (Patent Document 4), and the like. However, in the ammonia catalytic reduction method, there is a risk of mixing flammable substances in the combustion-supporting substance. In the catalyst filling type, a large-scale facility is required to process a large amount of gas, and in the plasma type, There is a problem that it is substantially difficult to decompose a large amount of gas. Further, no effective removal means has been known for the adduct of nitrogen oxide and hydrogen halide, which is one of the removal targets in the present invention. Furthermore, even in the production process of fluorides such as nitrogen trifluoride, nitrogen oxides, nitrogen oxide halides, and the like can be found due to air and water contamination from the reactor, or the effects of oxygen and moisture contained in trace amounts in the raw materials. In some cases, these hydrogen halide adducts were produced. In such a case, it is necessary to increase the scale of the purification equipment or to increase the number of stages in order to purify the gas. In particular, in the case of a hydrogen halide adduct, it was difficult to selectively remove it from the gas. Furthermore, when these compounds are removed with water, nitrous acid or nitrite ions are detected in the water. Nitrous acid is not preferable because it causes generation of nitric oxide which is extremely difficult to remove as shown in the formula (1).
3HNO 2 → 2NO + HNO 3 + H 2 O (1)
[0003]
From the above, highly efficient and simple removal of unnecessary nitrogen oxides, nitrogen oxide halides, nitrogen fluorides, and their complexes with hydrogen halides, oxidizing nitrous acid to nitric acid, There has been a need for a method that does not generate secondary pollutants such as nitric oxide.
[0004]
[Patent Document 1]
JP-A-9-213596 [Patent Document 2]
JP 2002-371830 A [Patent Document 3]
JP 2003-063852 A [Patent Document 4]
Japanese Patent Laid-Open No. 2001-259362
[Means for Solving the Problems]
As a result of intensive studies in view of the above problems, the present inventors have determined that hydrogen oxide and hydrofluoric acid (HF) are obtained by using a nitrogen oxide, a nitrogen oxide halide , and a complex gas of these hydrogen halides as a wet scrubber solution. ), Hydrochloric acid (HCl), hydrobromic acid (HBr), hydroiodic acid (HI), and the use of a mixed aqueous solution with a halogen acid, the nitrogen compound can be removed, and the present invention has been achieved. .
[0006]
That is, in the present invention, when removing NOx, NOxAy, HNOx, NOx · nHA, NOxAy · nHA, HNOx · nHA , or a mixture thereof in a wet scrubber, hydrogen peroxide and hydrofluoric acid (HF) are used as the scrubber liquid . A method for removing a nitrogen compound, characterized by using an aqueous solution containing a halogen acid that is one of hydrochloric acid (HCl), hydrobromic acid (HBr), and hydroiodic acid (HI) (where A = halogen, x ≧ 0.5, y> 0 , n is to provide a representative.) an integer of 1 or more.
[0007]
Hereinafter, the present invention will be described in detail.
When nitrogen oxides are introduced into the water scrubber, for example, NO 2 is partially absorbed into the scrubber liquid and becomes nitrous acid and nitric acid. When absorbed as nitrous acid, nitrogen oxide such as nitric oxide, which is difficult to remove, is regenerated as described above. Moreover, even if these nitrogen oxides are introduced into a hydrogen peroxide solution, the oxidizing power is weak and it is difficult to avoid the formation of nitrous acid. However, as a result of intensive studies, it has been found that the oxidizing power of the scrubber liquid is dramatically improved by mixing halogen acid with a hydrogen peroxide solution, and nitrous acid can be converted to nitric acid (formula (2)). .
HNO 2 + H 2 O 2 + HA = HNO 3 + H 2 O + HA (2)
A is F, Cl, Br, or I.
[0008]
In this case, the halogen acid acts catalytically and itself does not undergo a chemical change. In the case of nitrogen oxide halide, halogen acid and hydrogen peroxide are produced by reaction with water. However, if the oxidation rate of the scrubber liquid is not increased in advance, a sufficient removal effect cannot be obtained. . In the present invention, the halogen acid used includes hydrofluoric acid (HF), hydrochloric acid (HCl), hydrobromic acid (HBr), hydroiodic acid (HI), etc., and hydrofluoric acid and hydrochloric acid are particularly preferable. .
[0009]
In the present invention, the target nitrogen oxides, nitrogen oxide halides , and complex gases thereof with hydrogen halide are, in the general formula, NOx, NOxAy, HNOx, NOx · nHA, NOxAy · nHA, or HNOx. NHA (where A = halogen, x ≧ 0.5, y> 0, n represents an integer of 1 or more). The addition of HF is linked in a chain by hydrogen bonds, and the maximum value is unknown. However, the existence of a complex with HF has been known for a long time (F. seel and W. Birnkraut, Angewante Chemie 73, 531-2 (1961), etc.). Specifically, NO 2 · 4HF, NO 2 · 8HF, NO 2 · 12HF, NOF · 4HF, NO 2 F · 4HF, NO 2 F · 8HF, NO 2 F · 12HF and the like.
[0010]
In the present invention, the concentration of hydrogen peroxide in the scrubber liquid is preferably 10 ppm or more and 50% by volume or less, and more preferably 100 ppm or more and 10% by volume or less. If the concentration is less than 10 ppm, the effect is hardly recognized, and if the concentration exceeds 50% by volume, a significant improvement in the effect is not recognized. The concentration of the halogen acid is preferably in the range of 0.1 to 30% by volume, more preferably 1 to 10% by volume. Below 0.1% by volume, the effect of addition is not significant, and no significant difference is observed in the effect even if added more than 30% by volume.
[0011]
Further, in order to maintain the hydrogen peroxide or acid concentration, fluorine may be added to a gas containing nitrogen oxides if the type of halogen acid is hydrofluoric acid. Since the reaction between fluorine and water produces hydrogen peroxide and hydrofluoric acid as shown in the formula (3), the efficiency is high.
2H 2 O + F 2 (g) = H 2 O 2 (g) + 2HF (g) (3)
[0012]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to this Example.
[0013]
Example 1, Comparative Examples 1 and 2
Using a 100 ml volumetric flask, the nitrous acid concentration was adjusted to 0.22 mmol, and this was used as a standard solution. Mix with three types of hydrogen peroxide aqueous solution (Comparative Example 1), hydrogen peroxide and hydrofluoric acid aqueous solution (Example 1), and hydrogen peroxide and potassium hydroxide aqueous solution (Comparative Example 2). The ion concentration was measured with an ion chromatograph. The results are shown in Table 1. As can be seen from Table 1, nitrite ions were converted into nitrate ions only in the mixed solution of hydrogen peroxide and hydrofluoric acid, and the oxidation ability was not expressed in the other solutions.
[0014]
[Table 1]
Figure 0004265940
[0015]
Example 2 and Comparative Example 3
After introducing NO 2 gas diluted to 1000 ppm with He up to 93 kPa into a 1 L container whose pressure has been reduced to a vacuum in advance, pure water or a mixed aqueous solution of hydrogen peroxide (0.32 mmol) and hydrofluoric acid (0.12 mmol) is added to 100 CC. It was introduced and stirred for 1 hour. Thereafter, the collection rate of nitrogen oxides in the solution was determined from the concentrations of nitrite ions and nitrate ions in the solution. As a result, in pure water, 35% by volume as nitrite ions and 35% by volume as nitric acid, a total of 70% by volume of nitrogen oxide components were collected. On the other hand, in the mixed solution of hydrogen peroxide and hydrofluoric acid, 85% by volume of the nitrogen oxide component was all collected as nitrate ions. From the above, it was found that the mixed liquid of hydrogen peroxide and hydrofluoric acid has the effect of improving the collection rate in the liquid simultaneously with the effect of oxidizing nitrous acid that regenerates impurities into nitric acid.
[0016]
Examples 3-5, Comparative Examples 4-6
Next, pure water and a mixture of hydrogen peroxide and hydrofluoric acid, NO 2 · 2HF instead of NO 2, NO 2 F · 2HF, Example 2 was introduced NOF · 2HF in 1L containers, comparative example The same experiment as 3 was performed. Table 2 shows the collection rate of each nitrate ion and nitrite ion, and their total. From this result, it was found that by using a mixed solution of hydrogen peroxide and hydrofluoric acid, all nitrite ions can be converted to nitrate ions, and the collection rate can be improved. Similar results were obtained by mixing hydrochloric acid, hydrofluoric acid, or hydroiodic acid instead of hydrofluoric acid.
[0017]
[Table 2]
Figure 0004265940
[0018]
Examples 6-8, Comparative Examples 7-9
NO 2 (Example 6, Comparative Example 7), NO 2 F (Example 7, Comparative Example) diluted to 5000 ppm with N 2 from the bottom of a scrubber equipped with a Raschig ring packed tower having an inner diameter of 2.5 cm and a length of 100 cm. 8) Gas containing NOF (Example 8, Comparative Example 9) was circulated, and circulating water (or an aqueous solution) was dropped and circulated at a flow rate of 0.5 L / min from the top of the tower. As a result, when pure water was used as the scrubber liquid, the collection rates were 75%, 86%, and 76%, and almost 100% could be collected using a mixed solution of hydrogen peroxide and hydrofluoric acid. It was.
[0019]
【The invention's effect】
By the method of the present invention, unnecessary nitrogen oxides, nitrogen oxide halides , and complex gases of these hydrogen halides contained in the crude product in the synthesis process of exhaust gas such as combustion exhaust gas and nitrogen fluoride Can be made harmless or purified and removed with high efficiency.

Claims (1)

湿式スクラバーにおいて、NOx、NOxAy、HNOx、NOx・nHA、NOxAy・nHA、HNOx・nHA、またはこれらの混合物を除去するに際し、スクラバー液として過酸化水素とフッ酸(HF)、塩酸(HCl)、臭化水素酸(HBr)、ヨウ化水素酸(HI)のいずれかであるハロゲン酸とを含有した水溶液を使用することを特徴とする窒素化合物の除去方法。
ただし、A=ハロゲン、x≧0.5、y>0、nは、1以上の整数を表す。
In a wet scrubber, when removing NOx, NOxAy, HNOx, NOx · nHA, NOxAy · nHA, HNOx · nHA , or a mixture thereof, hydrogen peroxide, hydrofluoric acid (HF), hydrochloric acid (HCl), odor A method for removing a nitrogen compound, comprising using an aqueous solution containing a halogen acid which is either hydrofluoric acid (HBr) or hydroiodic acid (HI) .
However, A = halogen, x ≧ 0.5, y> 0, n represents an integer of 1 or more.
JP2003189187A 2003-07-01 2003-07-01 Method for removing nitrogen compounds Expired - Fee Related JP4265940B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189187A JP4265940B2 (en) 2003-07-01 2003-07-01 Method for removing nitrogen compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189187A JP4265940B2 (en) 2003-07-01 2003-07-01 Method for removing nitrogen compounds

Publications (2)

Publication Number Publication Date
JP2005021785A JP2005021785A (en) 2005-01-27
JP4265940B2 true JP4265940B2 (en) 2009-05-20

Family

ID=34187466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189187A Expired - Fee Related JP4265940B2 (en) 2003-07-01 2003-07-01 Method for removing nitrogen compounds

Country Status (1)

Country Link
JP (1) JP4265940B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010034467B4 (en) * 2010-08-13 2012-12-06 Dge Dr.-Ing. Günther Engineering Gmbh Process for the purification and treatment of nitrous exhaust gases containing at least one additional acid compound

Also Published As

Publication number Publication date
JP2005021785A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US7998445B2 (en) Method and apparatus for the treatment of nitrogen oxides using an ozone and catalyst hybrid system
US20040005263A1 (en) Process for reducing NOx in waste gas streams using sodium chlorite
WO2001076725A1 (en) Method for treating exhaust gas containing fluorine-containing compound
JP2005262128A (en) Treatment method of gas including fluorine containing compound and apparatus
JP4265940B2 (en) Method for removing nitrogen compounds
JP2976041B2 (en) How to remove organic halides
JP4265939B2 (en) Method for removing nitrogen compounds
KR101392805B1 (en) Absorption material for removing PFC and acid gas
KR101491497B1 (en) Method for Removing Elemental Mercury in the Flue Gas
JP3260825B2 (en) How to purify harmful gases
JP4362894B2 (en) How to collect bromine
JP4498053B2 (en) Method for decomposing nitrogen compounds
JP2006231105A (en) Method for removing oxidizing gas
KR100338322B1 (en) Method for purifying hf gas produced from semiconductor manufacturing process
JP4459648B2 (en) Method and apparatus for treating gas containing fluorine-containing compound
JP3228459B2 (en) Decomposition method of halide gas
KR101448475B1 (en) Absorption material for removing PFC and acid gas
JPH0673613B2 (en) Exhaust gas purification method
JP2514144B2 (en) NF3 Decomposition gas treatment method
CN113660996B (en) Acid exhaust gas treating agent, acid exhaust gas treating method, and acid exhaust gas treating apparatus
JPS6312322A (en) Treatment of exhaust gas
JP2009078237A (en) Treating method for exhaust gas from semiconductor and liquid crystal manufacturing apparatus
CN107215854A (en) A kind of devices and methods therefor for producing nitric acid
JPH07284635A (en) Processing of gas mixture
JPH08206445A (en) Purification of exhaust gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees