JP4265477B2 - 燃料噴射制御装置 - Google Patents

燃料噴射制御装置 Download PDF

Info

Publication number
JP4265477B2
JP4265477B2 JP2004153687A JP2004153687A JP4265477B2 JP 4265477 B2 JP4265477 B2 JP 4265477B2 JP 2004153687 A JP2004153687 A JP 2004153687A JP 2004153687 A JP2004153687 A JP 2004153687A JP 4265477 B2 JP4265477 B2 JP 4265477B2
Authority
JP
Japan
Prior art keywords
temperature
electronic component
drive signal
fuel injection
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004153687A
Other languages
English (en)
Other versions
JP2005337038A (ja
Inventor
太郎 杉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2004153687A priority Critical patent/JP4265477B2/ja
Publication of JP2005337038A publication Critical patent/JP2005337038A/ja
Application granted granted Critical
Publication of JP4265477B2 publication Critical patent/JP4265477B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関の一燃焼サイクル間に複数回の燃料噴射を行なう燃料噴射制御装置に関する。
例えば、ディーゼルエンジンのコモンレール式燃料噴射制御装置では、特許文献1に開示されるように、ディーゼルエンジンにおける吸入、圧縮、爆発、排気からなる一燃焼サイクル間に、燃料噴射弁(インジェクタ)から燃料を複数回噴射させている。これにより、エンジン騒音や振動の低下、排気ガスの改善を図っている。
例えば、メイン噴射の前に、少量の燃料を噴射することにより(パイロット噴射)、予混合燃焼によるスモーク(黒煙)やパティキュレート(粒子状物質)の低減を図ることができるとともに、着火遅れの短縮により騒音・振動の低減も図ることができる。また、メイン噴射の後に、アフター噴射を行なうことにより拡散燃焼を活発化させれば、スモーク等の再燃焼を促進でき、結果としてスモーク等の低減に寄与できる。また、このように複数回に分けて噴射を行なうことにより、メイン噴射における噴射期間を短縮できるので、急激な燃焼を抑えて、騒音・振動の低減、スモーク等の低減を図ることができる。
また、近年では、ディーゼルエンジンの排気ガス中からパティキュレートを除去するため、排気通路にパティキュレートフィルタが配置されるようになっている。しかし、パティキュレートフィルタによって捕集されたパティキュレートが過剰になると、パティキュレートフィルタにおける捕集能力が低下したり、パティキュレートフィルタにおける排気ガスの流通抵抗が増大したりする。このため、ディーゼルエンジンの排気工程中にポスト噴射を行なうことで、燃料をパティキュレートフィルタに供給し、その燃料の燃焼熱を利用して、堆積したパティキュレートを燃焼により除去する場合もある。
特開平11−62677号公報
上述した一燃焼サイクルにおけるインジェクタの燃料噴射回数は、排気ガスの更なるクリーン化及び振動・騒音の更なる低減のため、増加する傾向にある。この結果、インジェクタ駆動回路を構成する電子部品の損失、つまり自己発熱が増大して、その電子部品の温度が過度に上昇する可能性が高くなる。インジェクタ駆動回路の電子部品の温度が過度に上昇すると、その電子部品が損傷する可能性が生じるので、部品温度を管理することが益々重要になってきている。
しかしながら、従来は、温度管理を行なうために、通常、インジェクタ駆動回路を含むECUのハウジング内温度を測定しているにすぎないため、電子部品の温度を正確に測定することはできない。特に、上述したように、インジェクタの燃料噴射回数が増すにつれて、電子部品内部の温度が過渡的に大きく上昇する可能性があるが、そのような過渡的な温度上昇を、ECUのハウジング内温度から認識することは不可能である。
本発明は、上述した点に鑑みてなされたものであり、燃焼噴射を行なわせる駆動信号を出力する駆動信号出力回路の電子部品の温度をより正確に求め、その温度に基づいて、電子部品の温度上昇を抑制するように処置することが可能な燃料噴射制御装置を提供することを目的とする。
上記目的を達成するために、請求項1に記載の燃料噴射制御装置は、
内燃機関に燃料を噴射する燃料噴射手段と、
燃料噴射手段から燃料を噴射させるための駆動信号を出力する駆動信号出力回路を備え、内燃機関の一燃焼サイクル間に燃料噴射手段が燃料を複数回噴射するように、駆動信号出力回路から駆動信号を出力させる制御手段とを備えてものであって、
駆動信号出力回路を構成する電子部品の周辺温度を検出する周辺温度検出手段と、
周辺温度を基準とし、さらに駆動信号出力回路の動作条件により定められる電子部品の自己発熱による過渡的な温度上昇分を加味して、駆動信号出力回路の電子部品の温度を算出する算出手段と、
算出手段によって算出された温度が所定の上限温度を越えた場合に、電子部品の温度を低下させる温度低下手段とを備えることを特徴とする。
上述したように、請求項1に記載の燃料噴射制御装置は、周辺温度を基準とし、さらに駆動信号出力回路の動作条件により定められる電子部品の自己発熱による過渡的な温度上昇分を加味して、駆動信号出力回路の電子部品の温度を算出する算出手段を備えている。駆動信号出力回路における動作条件は、制御仕様から決定できる。そして、駆動信号出力回路の動作条件が決まれば、その駆動信号出力回路を構成する電子部品における自己発熱による過渡的な温度上昇分も算出できる。このようにして、自己発熱による温度上昇分を加味して、電子部品の温度を算出することにより、より正確な電子部品の温度を算出することができる。
請求項2に記載したように、算出手段は、駆動信号出力回路が最も過酷な条件で動作した場合における、電子部品において発生する損失に基づいて予め周辺温度と電子部品の温度との温度差を算出し記憶しておき、温度差を検出された周辺温度に加えることによって、電子部品の温度を算出しても良い。
このように、最も過酷な条件で動作した場合の電子部品の損失から、周辺温度と電子部品の温度との温度差を算出すれば、その温度差は、あらゆる動作状態において、実際の温度差以上となる。従って、その温度差を用いて算出される電子部品の温度も、実際の電子部品以上の温度となるので、簡単な処理で、確実に電子部品の過剰な温度上昇を防止することができる。
請求項3に記載したように、算出手段は、内燃機関の一燃焼サイクル間における駆動信号の出力回数毎に、電子部品において発生する損失に基づいて予め周辺温度と電子部品の温度との温度差を算出し記憶しておき、制御手段によって駆動信号出力回路から出力される駆動信号の出力回数に対応する温度差を抽出し、検出された周辺温度に加えることによって電子部品の温度を算出するようにしても良い。内燃機関の一燃焼サイクル間における駆動信号の出力回数に応じて、電子部品において発生する損失は変化するため、結果として、自己発熱による上昇温度も変化する。従って、上述したように駆動信号の出力回数に応じた周辺温度と電子部品の温度との温度差を用いて、電子部品の温度を算出するようにすることで、より実際の電子部品の温度に近似した温度を算出することができる。
請求項4に記載したように、温度差は、駆動信号の出力毎に、所定の特性で変動する温度リップルのピーク温度に基づいて算出されることが好ましい。駆動信号出力回路は、間欠的に駆動信号を出力するので、その駆動信号の出力に起因する電子部品の温度は、駆動信号の出力ごとに上昇・下降を繰り返すことになる。このように電子部品の温度変化は、所定の特性で変動する温度リップルを有する。この場合、瞬時的とは言え、電子部品の温度は、その温度リップルのピーク温度まで上昇する。従って、電子部品を確実に保護するためには、そのピーク温度から電子部品の温度を算出し、必要に応じて、温度低下のための処置を取ることが好ましい。
請求項5に記載したように、電子部品は、スイッチング素子であり、電子部品の温度として、スイッチング素子内部の接合温度が用いられることが好ましい。スイッチング素子内部において、接合温度が最も高い温度となるためである。
請求項6に記載したように、温度低下手段は、制御手段からなり、当該制御手段は、電子部品の温度が所定の上限温度を越えた場合に、内燃機関の一燃焼サイクル間における駆動信号の出力回数を減少させることによって、電子部品の温度を低下させることができる。駆動信号の出力回数、すなわち噴射回数を減少させることによって、駆動信号出力回路の損失が減少し、電子部品の自己発熱による温度上昇も小さくなるためである。この際、省略しても、ドライバビリティ及び排気ガスのクリーン化に影響の少ない噴射を選択的に停止させる。
請求項7に記載したように、温度低下手段は、送風手段を含み、電子部品の温度が所定の上限温度を越えた場合に、制御手段に対して外気を送風することにより、電子部品の温度を低下させても良い。
請求項8に記載したように、電子部品に対して、当該電子部品の放熱を促進するためのヒートシンク部が設けられ、周辺温度検出手段は、ヒートシンク部の温度を周辺温度として検出することが好ましい。
周辺温度を基準として、電子部品の温度(接合温度)を求める場合、周辺温度と電子部品との表面温度との温度差及び電子部品の表面温度と接合温度との温度差を加算することになる。このとき、周辺温度と電子部品の表面温度との温度差が大きいと算出する温度差に誤差が含まれ易くなる。それに対し、周辺温度として、ヒートシンク部の温度を検出することで、周辺温度と電子部品の表面温度との温度差を極力小さくすることができる。
(第1実施形態)
以下、本発明の第1実施形態における燃料噴射制御装置について、図面に基づいて説明する。なお、本実施形態による燃料噴射制御装置は、内燃機関としてディーゼルエンジンに適用された例について説明する。
図1は、本実施形態における燃料噴射制御装置が適用されるディーゼルエンジンの構成を示す構成図である。このディーゼルエンジンにおいては、エンジン本体1に、吸入空気が流通する吸気通路2と、エンジン本体1の各気筒からの排気ガスが流通する排気通路3とが接続され、排気通路3の途中にはパティキュレートフィルタ(DPF)4が設けてある。パティキュレートフィルタ4は、コーディエライトや炭化珪素等の多孔質セラミック体からなり、入口4aから流入した排気ガスが、多孔質の隔壁を透り、出口4bから下流へと流れる。このとき、パティキュレートフィルタ4には、排気ガスに含まれる排気微粒子(パティキュレート)が捕集され、運転時間を経るとともに堆積していく。また、パティキュレートフィルタ4のフィルタ本体の表面には、白金やパラジウム等の貴金属を主成分とする酸化触媒が担持されており、この酸化触媒は所定の温度条件下で排気微粒子を酸化、燃焼し、除去する。さらに、排気通路3におけるパティキュレートフィルタ4の下流側には、パティキュレート以外の排気ガスの有害成分を浄化するためのディーゼル用酸化触媒(DOC)14が設けられている。
本実施形態におけるディーゼルエンジンでは、エンジン本体1の各気筒に燃料を供給する、インジェクタを含む燃料供給装置5が設けられている。この燃料供給装置5の構成については後に詳しく説明する。また、この燃料噴射装置5による、噴射燃料量及び燃料噴射時期等を制御するECU6が設けられている。ECU6は、このようにディーゼルエンジンの運転状態を制御することに加え、上述したパティキュレートフィルタ4の再生処理制御を行なう。
ECU6には、ディーゼルエンジンの実際の運転状態を示す種々の信号が入力され、これらの入力信号に基づいて、上述した噴射燃料量及び燃料噴射時期等を制御して、ディーゼルエンジンを所望の状態で運転させる。
まず、ECU6には、パティキュレート堆積量に関連する値として、パティキュレートフィルタ4の上流側と下流側との圧力差を検出する差圧センサ8の検出信号が入力される。排気通路3には、パティキュレートフィルタ4の上流側で分岐する第1の分岐通路13aと、パティキュレートフィルタ4の下流側で分岐する第2の分岐通路13bとが接続されている。差圧センサ8は、これらの両分岐通路13a,13bに介設されて、パティキュレートフィルタ4の入口(上流側)4aと出口(下流側)4bとの間の差圧を検出する。差圧センサ8によって検出される差圧は、パティキュレートフィルタ4におけるパティキュレートの堆積量(以下、適宜、PM堆積量という)と相関関係を有し、堆積量が増加して圧力損失が大きくなるにつれて、差圧も増大する。
吸気通路2にはエアフローメータ7が設けられ、吸入空気の流量(以下、適宜、吸気量という)を検出し、その検出信号をECU6に入力する。また、運転者によって操作されるアクセルペダルの開度を検出する開度センサ9、及びエンジンの回転速度を検出するクランク角センサ10、及びパティキュレートフィルタ4の酸化触媒の温度を検出する温度センサ11からの検出信号もECU6に入力される。
さらに、ディーゼル用酸化触媒14による有害成分の除去効果を確認するために、ディーゼル用酸化触媒14の下流側にはO2センサ12が設けられている。O2センサ12によって排気ガス中の空気量を検出することにより、有害成分の残存量を求めることができる。なお、ガスセンサを用いて、有害成分の量を直接検出するようにしても良い。
次に、燃料噴射装置5の構成について、図2を用いて詳しく説明する。本実施形態における燃料噴射装置5は、コモンレール式燃料噴射装置として構成されている。
図2において、20はインジェクタであり、エンジン本体1の各気筒に1対1に対応して設けられている。このインジェクタ20が、ECU6からの駆動信号に応じて開閉駆動され、その開弁時間の長さに応じた噴射量で燃料を噴射する。燃料は、全インジェクタ20に共通のコモンレール21から各インジェクタ20に供給される。
コモンレール21には、燃料ポンプ22によって燃料タンク24からくみ上げられた燃料が圧送される。その圧送される燃料量を調節するために、燃料ポンプ22と燃料タンク24との間には、調量弁23が設けられている。ECU6は、コモンレール21内の燃料圧力(コモンレール圧力)を検出する圧力センサ25の検出信号に基づいて、コモンレール圧力が目標圧力となるように、調量弁23の流路断面積を制御する。このようにして、コモンレール21からインジェクタ20を介して1000気圧以上に加圧された燃料の噴射を可能としている。
次に、ECU6の内部構成について説明する。図3は、ECU6を構成する各部品をプリント基板に配置した配置例を示す図であり、図4は、ECU6の回路構成を示す回路構成図である。
まず図4に基づいて、ECU6の回路構成について説明する。図4に示すように、ECU6は、各種の検出信号等に基づいて、インジェクタ(インジェクタソレノイド)20に駆動信号を出力すべき時期及び駆動信号の長さ、つまり燃料の噴射時期及び燃料噴射量を制御するマイコン30と、このマイコン30等のECU6内の各部に電源を供給する電源部31と、マイコン30からの指示に従って、駆動信号をインジェクタソレノイドに通電する駆動信号出力回路32とからなる。さらに、ECU6内の温度を検出する温度検出素子としてのサーミスタ41が設けられており、このサーミスタ41からの検出信号は、A/D変換部を介してマイコン30に入力される。
駆動信号出力回路32は、バッテリ電源に接続されており、制御IC38によって、チャージFET35、切離FET36、定電流FET37及び気筒FET39をオン・オフすることにより、チャージコンデンサ34に高電圧を蓄積するとともに、その蓄積した高電圧とバッテリ電源からの低電圧を用いてインジェクタ20に駆動信号を通電する。
駆動信号出力回路32において、チャージインダクタ33の一端が、バッテリ電源に接続され、他端がチャージFET35に接続されている。チャージインダクタ33とチャージFET35との間には、逆流防止用のダイオードを介してチャージコンデンサ34の一端が接続されている。このチャージコンデンサ34の他端は接地されている。この構成により、制御IC38がチャージFET35を所定周期でオン・オフすると、チャージコンデンサ34がバッテリ電圧よりも高い電圧に充電される。
そして、インジェクタ20への駆動信号の通電がなされる場合、制御IC38は、まず、切離FET37と気筒FET39をそれぞれオンして、チャージコンデンサ34の充電電圧をインジェクタ20に対して放出する。これにより、インジェクタ20の開弁時にインジェクタソレノイドに大電流を流すことができ、インジェクタ20の開弁応答性を向上することができる。
上述した大電流が流れた後に切離FET36がオフされ、引き続き、定電流FET37を通じてインジェクタソレノイドへの一定電流の通電が行なわれる。すなわち、制御IC38は、インジェクタソレノイドに流れる駆動電流の大きさを抵抗40の端子電圧から検出し、その駆動電流が一定となるように定電流FET37をオン・オフ制御する。ただし、大電流によってインジェクタ20を開弁させた際に、インジェクタ20内の可動部のバウンドによっても開弁状態を維持できるように、開弁から所定時間経過するまでは、駆動電流が所定の高電流となるように定電流FET37をオン・オフ制御する。その所定時間経過後は、開弁状態を保持するのに最低限必要な低電流での定電流駆動に切り換えて、閉弁時間の短縮及び不要なエネルギーの消費を抑える。
上述した駆動信号は、各種の検出信号に基づいて判断されるエンジンの運転状態に応じて、吸入、圧縮、爆発、排気からなる一燃焼サイクル間に、例えば最大で9回出力される。すなわち、一燃焼サイクル間において、最大で9段の燃料噴射が行なわれる。図5は、一燃焼サイクル間における各種の噴射を示している。
図5に示すように、圧縮工程において、パイロット噴射が最大で3段実施される。このパイロット噴射は、少量の燃料を噴射することにより、予混合燃焼によるスモーク(黒煙)やパティキュレート(粒子状物質)の低減を図るとともに、着火遅れの短縮により騒音・振動の低減を図るために行なわれる。また、爆発工程においては、プレ噴射、メイン噴射、及びアフター噴射が行なわれる。メイン噴射の後に、アフター噴射を行なうことにより拡散燃焼が活発化され、スモーク等の再燃焼を促進でき、結果としてスモーク等の低減に寄与できる。また、プレ噴射とメイン噴射を含め、複数回に分けて噴射を行なうことにより、メイン噴射における噴射期間を短縮できるので、急激な燃焼を抑えて、騒音・振動の低減、スモーク等の低減を図ることができる。また、排気工程中にポスト噴射を行なうことで、燃料をパティキュレートフィルタ4に供給し、その燃料の燃焼熱を利用して、堆積したパティキュレートを燃焼により除去できる。
ここで、例えばエンジン本体1が4気筒である場合、図3に示すように、チャージFET35及び定電流FET37は2気筒に対して1つずつの計2個、切離FET36及び気筒FET39は、各気筒ごとに計4個設けられる。そして、上述したように、一燃料サイクル間に最大で駆動信号を9回出力することになるため、駆動信号出力回路32の構成部品、特に短い時間でオン・オフするスイッチング素子である各FET35,36,37は、損失が高くなり、自己発熱による温度上昇が大きくなる。
この温度上昇は、駆動信号の出力ごとに過渡的に生じるため、単にECU6内の温度や各FET35,36,37の表面温度をセンサによって検出しても、その過渡的な温度上昇を認識することは困難である。そのため、本実施形態では、それらの各FET35,36,37を測温対象部品として、特に、駆動信号の出力ごとに過渡的に発生する温度上昇分を加味して、その測温対象部品の温度を算出することとした。これにより、測温対象部品の内部温度、すなわち最も温度が上昇する各FET35,36,37の接合温度Tjを精度良く算出することが可能になる。そして、算出した接合温度Tjが過度に上昇した場合には、その接合温度Tjを低下させるために、燃料の噴射段数を減少させる。これにより、各FET35,36,37を過熱による損傷から保護することができる。
以下に、切離FET36を例に取って、過渡的な温度上昇の発生について説明し、その後、本実施形態における、熱から切離FET36を保護するための処理について説明する。
図6は、切離FET36における熱的な等価回路を示す。なお、Wは切離FET36の動作によって発生する発生損失であり、ターンオン損失P1、定常損失P2、ターンオフ損失P3からなる。また、Tcは切離FET36の部品表面温度、Taは切離FET36の周辺温度を示す。さらに、Rth(j−c)は接合部―部品表面間の熱抵抗であり、Rth(c−a)は部品表面―周辺間の熱抵抗である。
ここで、定常的には、接合温度Tjは以下の式によって求めることができる。
(数1)
Tj=W×{Rth(j−c)+Rth(c−a)}+Ta
ただし、駆動信号出力回路32は、図5に示すように、パルス状の駆動信号を非常に短い時間間隔で出力するので、発生損失Wに含まれるターンオン損失P1、定常損失P2、ターンオフ損失P3もパルス状に発生する。ここで、ターンオン損失P1に着目して、そのターンオン損失P1の発生時間間隔をt1、ターンオン損失P1の消滅から次回のターンオン損失P1の発生までの時間間隔をt2とすると、過渡的に上昇・下降する接合温度Tjと部品表面温度Tcとの温度差は、図7に示す過渡熱抵抗曲線を用いて以下の数式2から算出することができる。
(数2)
Tj−Tc=P1×{t1/t2×R(∞)+(1−t1/t2)×R(t1+t2)−R(t2)+R(t1)}
このようにして各損失P1,P2,P3による接合温度Tjと部品表面温度Tcとの温度差をそれぞれ求めることができ、それぞれの損失P1,P2,P3による温度差は重ね合わせの理によって組み合わせることができる。さらに、一燃焼サイクルにおける複数段の噴射のそれぞれの損失による温度差も重ね合わせることによって、図5に示すように、切離FETの接合温度Tjを求めることができる。切離FET36の接合温度Tjは、図5に示されるように、駆動信号の発生に応じて上昇及び下降し、温度リップルを有する。短い期間における、温度リップルの部品表面温度Tcへの影響は僅かであり、部品表面温度Tcや周辺温度Taを測定しただけでは、上述した過渡的な接合温度の温度上昇を正確に認識することはできない。なお、切離FET36等の測温対象部品の接合温度Tjが高ければ、時間の経過とともに、部品表面温度及びECU6内の温度が徐々に増加していくことになる。
そのため、本実施形態では、駆動信号出力回路32の最も過酷な動作条件である9段噴射時における、接合温度Tjと部品表面温度Tcとの温度差、及び部品表面温度Tcと周辺温度Taとの温度差を予め算出し、記憶しておく。そして、実際にECU6が、燃料噴射制御を実行する場合に、検出した周辺温度Taに対して記憶している各温度差を加えて切離FET36の接合温度Tjを算出する。
ここで、接合温度Tjは、検出温度Taとそれぞれの温度差から、温度リップルのピーク温度に基づいて算出される。切離FET36の接合温度Tjは、図5に示されるように温度リップルを有し、この場合、瞬時的とは言え、切離FET36の接合温度Tjは、その温度リップルのピーク温度まで上昇する。従って、切離FET36を確実に保護するためには、そのピーク温度から接合温度Tjを算出し、必要に応じて、温度低下のための処置を取ることが好ましい。
また、最も過酷な条件で動作した場合の損失から、接合温度Tjと部品表面温度Tcとの温度差、及び部品表面温度と周辺温度Taとの温度差を算出すれば、その温度差は、あらゆる動作状態において、実際の温度差以上となる。従って、その温度差を用いて算出される切離FET36の接合温度Tjも、実際の接合温度Tj以上となるので、簡単な処理で、確実に切離FET36の過剰な温度上昇を防止できる。
次に、熱から切離FET36を保護するための具体的処理について図8のフローチャートに基づいて説明する。まず、ステップS110では、サーミスタ41の検出信号に基づいて、ECU6内部の温度を切離FET36の周辺温度Taとして検出する。次にステップS120では、予め記憶されている、駆動信号出力回路32の最も過酷な動作条件である9段噴射時における、接合温度Tjと部品表面温度Tcとの温度差と部品表面温度Tcと周辺温度Taとの温度差とを加算した温度差Tj−a(MAX)を、検出した周辺温度Taに加算して、最大接合温度Tj(MAX)を求める。
次に、ステップS130では、この最大接合温度Tjが、過熱状態を判定するための所定温度(例えば、150℃)以下であるか否かを判定する。最大接合温度Tjが所定温度以下と判定された場合には、切離FET36を熱から保護する必要がない状況であるため、ステップS180において、最大9段の噴射を行なう通常の燃料噴射制御を実行する。
一方、最大接合温度Tj(MAX)が所定温度よりも大きいと判定された場合には、切離FET36の接合温度Tjを低下させるために、ステップS140において、噴射段数を所定段数以下(例えば、最大6段噴射)に制限した燃料噴射制御を実行する。この場合、車両のドライバビリティや排ガス(Nox,パティキュレート)に対する影響の少ない噴射を停止させる。例えば、パイロット噴射を2段もしくは1段に制限したり、アフター噴射を停止させたり、パティキュレートの堆積量が少ない場合には、ポスト噴射を停止させたりする。
このような噴射段数を制限した燃料噴射制御を実行することにより、切離FET36の損失が低下し、接合温度Tjが低下する。この接合温度Tjの低下度合を判定するために、ステップS150では、周辺温度Taを検出し、ステップS160では、検出した周辺温度Taと記憶している温度差Tj−a(MAX)とを加算して、最大接合温度Tj(MAX)を求める。ステップS170では、この最大接合温度Tj(MAX)が、接合温度Tjの低下を判定するための所定温度(例えば、130℃)以下となったか否かを判定する。そして、最大接合温度Tjが所定温度以下に低下するまで、噴射段数を制限した燃料噴射制御を継続するとともに、所定温度以下に低下した場合には、通常の燃料噴射制御に戻す。
このようにすれば、測温対象部品における接合温度Tjの過渡的な温度上昇を考慮しつつ、簡単な処理で、各部品を過熱状態から保護することができる。
(第2実施形態)
次に、本発明の第2実施形態による燃料噴射制御装置について説明する。なお、本実施形態による燃料噴射制御装置の構成は、前述の第1実施形態と同様であるため、その説明を省略する。
前述の第1実施形態では、周辺温度Taを検出し、この周辺温度Taに最も過酷な動作状態における接合温度Tjと部品表面温度Tcとの温度差、及び部品表面温度Tcと周辺温度Taとの温度差を加算することによって接合温度Tjを算出していた。それに対して、本実施形態では、実際の噴射段数を確認して、その噴射段数による損失に応じた温度差Tj−aを検出温度Taに加算することにより、より正確な接合温度Tjの算出を可能としたものである。
図9のフローチャートは、本実施形態における制御内容の、第1実施形態からの変更部分を示している。図9に示すように、ステップS110にて周辺温度Taを検出した後、ステップS112において、燃料噴射制御における現状の噴射段数を確認する。そして、ステップS114において、噴射段数に応じた周辺温度Taと接合温度Tjとの温度差Tj−aを抽出する。すなわち、本実施形態においては、予め、噴射段数ごとに、周辺温度Taと接合温度Tjとの温度差がTj−aが算出されて記憶されており、その中から該当する温度差Tj−aを抽出するのである。
そして、ステップS122では、検出した周辺温度Taと抽出した温度差Tj−aを加算することにより。接合温度Tjを算出する。
内燃機関の一燃焼サイクル間における燃料の噴射段数に応じて、切離FET36等の測温対象部品において発生する損失は変化するため、結果として、自己発熱による上昇温度も変化する。従って、上述したように燃料の噴射段数、つまり駆動信号の出力回数に応じた周辺温度Taと接合温度Tjとの温度差Tj−aを用いて、接合温度Tjを算出するようにすることで、より実際の接合温度Tjに近似した温度を算出することができる。
以上、本発明の好ましい実施形態について説明したが、本発明による燃料噴射制御装置は、上述した実施形態に何ら制限されることなく、種々変形して実施することが可能である。
例えば、サーミスタ41は、上述した実施形態においては、ECU6内温度を検出するものとして説明したが、測温対象部品がヒートシンク部を備える場合には、できる限りそのヒートシンク部に近接してサーミスタ41を配置することにより、周辺温度Taと部品表面温度Tcとの温度差の誤差が小さくできるため、結果として接合温度Tjの算出誤差を小さくすることができる。
なお、測温対象部品がMOSFETである場合には、MOS構造におけるドレイン部分がヒートシンク部とみなすことができ、このドレイン部分に近接するようにサーミスタ41を配置する。例えば、サーミスタ41とドレイン部分とを電気的に接続できない場合には、図10(a)に示すように、ドレイン部分に凸部を設け、その凸部と絶縁状態を保ちながら交差するようにサーミスタ41を形成することができる。また、サーミスタ41とドレイン部分とを電気的に接続可能な場合には、図10(b)に示すように、ドレイン部分にサーミスタ41の一端を接続して、サーミスタ41の電極として用いることができる。
また、上述した実施形態においては、測温対象部品の温度が過剰に上昇したと判定したとき噴射段数を制限することによって温度の低下を図るものであった。しかしながら、測温対象部品の温度を低下させるためには、例えば送風手段としてのファンを設け、測温対象部品の温度上昇時に、ECU6の内部あるいは外部表面に外気を送風するようにしても良い。この場合も、部品の温度上昇時にのみ送風を行なうようにすることにより、騒音および消費電力の低減を図ることができる。
実施形態における、燃料噴射制御装置が適用されるディーゼルエンジンの構成を示す構成図である。 燃料噴射装置の構成を示す構成図である。 ECU6を構成する各部品をプリント基板に配置した配置例を示す模式図である。 ECU6の回路構成を示す回路構成図である。 一燃焼サイクル間におけるインジェクタ駆動信号による各種の噴射、駆動信号による損失、及び損失によって発生する接合温度の変化を示すタイムチャートである。 切離FETにおける熱的な等価回路を示す等価回路図である。 切離FETにおける過渡熱抵抗曲線を示すグラフである。 過熱から切離FET36を保護するための処理を示すフローチャートである。 第2実施形態の過熱保護処理において、第1実施形態からの変更部分を説明するためのフローチャートである。 (a),(b)は、変形例による、サーミスタの配置例を説明するための説明図である。
符号の説明
1 エンジン
2 吸気通路
3 排気通路
4 パティキュレートフィルタ(DPF)
5 燃料噴射装置
6 ECU
30 マイコン
31 電源部
32 駆動信号出力回路
33 チャージインダクタ
34 チャージコンデンサ
35 チャージFET
36 切離FET
37 定電流FET
38 制御IC
39 気筒FET
40 抵抗
41 サーミスタ

Claims (8)

  1. 内燃機関に燃料を噴射する燃料噴射手段と、
    前記燃料噴射手段から燃料を噴射させるための駆動信号を出力する駆動信号出力回路を有し、前記内燃機関の一燃焼サイクル間に前記燃料噴射手段が燃料を複数回噴射するように、前記駆動信号出力回路から前記駆動信号を出力させる制御手段とを備えた燃料噴射制御装置であって、
    前記駆動信号出力回路を構成する電子部品の周辺温度を検出する周辺温度検出手段と、
    前記周辺温度を基準とし、さらに前記駆動信号出力回路の動作条件により定められる前記電子部品の自己発熱による過渡的な温度上昇分を加味して、前記駆動信号出力回路の電子部品の温度を算出する算出手段と、
    前記算出手段によって算出された温度が所定の上限温度を越えた場合に、前記電子部品の温度を低下させる温度低下手段とを備えることを特徴とする燃料噴射制御装置。
  2. 前記算出手段は、前記駆動信号出力回路が最も過酷な条件で動作した場合における、前記電子部品において発生する損失に基づいて予め前記周辺温度と電子部品の温度との温度差を算出し記憶しておき、当該温度差を前記検出された周辺温度に加えることによって、前記電子部品の温度を算出することを特徴とする請求項1に記載の燃料噴射制御装置。
  3. 前記算出手段は、前記内燃機関の一燃焼サイクル間における前記駆動信号の出力回数毎に、前記電子部品において発生する損失に基づいて予め前記周辺温度と電子部品の温度との温度差を算出し記憶しておき、前記制御手段によって駆動信号出力回路から出力される駆動信号の出力回数に対応する温度差を抽出し、前記検出された周辺温度に加えることによって前記電子部品の温度を算出することを特徴とする請求項1に記載の燃料噴射装置。
  4. 前記温度差は、前記駆動信号の出力毎に、所定の特性で変動する温度リップルのピーク温度に基づいて算出されることを特徴とする請求項2または請求項3に記載の燃料噴射制御装置。
  5. 前記電子部品は、スイッチング素子であり、前記電子部品の温度として、前記スイッチング素子内部の接合温度が用いられることを特徴とする請求項1乃至請求項4のいずれかに記載の燃料噴射制御装置。
  6. 前記温度低下手段は、前記制御手段からなり、
    前記制御手段は、前記電子部品の温度が所定の上限温度を越えた場合に、前記内燃機関の一燃焼サイクル間における前記駆動信号の出力回数を減少させることによって、前記電子部品の温度を低下させることを特徴とする請求項1乃至請求項5のいずれかに記載の燃料噴射制御装置。
  7. 前記温度低下手段は、送風手段を含み、
    前記電子部品の温度が所定の上限温度を越えた場合に、前記制御手段に対して外気を送風することにより、前記電子部品の温度を低下させることを特徴とする請求項1乃至請求項6のいずれかに記載の燃料噴射制御装置。
  8. 前記電子部品に対して、当該電子部品の放熱を促進するためのヒートシンク部が設けられ、
    前記周辺温度検出手段は、前記ヒートシンク部の温度を前記周辺温度として検出することを特徴とする請求項1に記載の燃料噴射制御装置。
JP2004153687A 2004-05-24 2004-05-24 燃料噴射制御装置 Expired - Fee Related JP4265477B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004153687A JP4265477B2 (ja) 2004-05-24 2004-05-24 燃料噴射制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004153687A JP4265477B2 (ja) 2004-05-24 2004-05-24 燃料噴射制御装置

Publications (2)

Publication Number Publication Date
JP2005337038A JP2005337038A (ja) 2005-12-08
JP4265477B2 true JP4265477B2 (ja) 2009-05-20

Family

ID=35490892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004153687A Expired - Fee Related JP4265477B2 (ja) 2004-05-24 2004-05-24 燃料噴射制御装置

Country Status (1)

Country Link
JP (1) JP4265477B2 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4637036B2 (ja) * 2006-03-02 2011-02-23 本田技研工業株式会社 内燃機関の制御装置
JP2007285139A (ja) * 2006-04-13 2007-11-01 Denso Corp ディーゼル機関の制御装置
JP2008014275A (ja) * 2006-07-07 2008-01-24 Toyota Motor Corp 内燃機関の制御装置
EP2045459B1 (en) 2007-10-04 2012-03-07 Delphi Technologies Holding S.à.r.l. A method of controlling fuel injection apparatus
JP5648622B2 (ja) * 2011-11-24 2015-01-07 株式会社デンソー 燃料噴射制御装置用電磁弁駆動装置
JP5900369B2 (ja) * 2013-02-06 2016-04-06 株式会社デンソー 電磁弁駆動装置
JP6104302B2 (ja) 2015-03-12 2017-03-29 三菱電機株式会社 車載エンジン制御装置
JP6104340B1 (ja) * 2015-09-30 2017-03-29 三菱電機株式会社 車載エンジン制御装置
JP6471108B2 (ja) * 2016-02-02 2019-02-13 日立オートモティブシステムズ株式会社 内燃機関の燃料制御装置及び燃料噴射制御方法
DE112017001070T5 (de) 2016-03-30 2018-11-29 Hitachi Automotive Systems, Ltd. Steuerschaltung
JP6736996B2 (ja) * 2016-06-14 2020-08-05 アイシン精機株式会社 電源遮断装置

Also Published As

Publication number Publication date
JP2005337038A (ja) 2005-12-08

Similar Documents

Publication Publication Date Title
JP4953107B2 (ja) 内燃機関の排気装置
JP4265477B2 (ja) 燃料噴射制御装置
JP5840829B2 (ja) Scrシステム
EP1722078A1 (en) Device for purifying exhaust gas of internal combustion engine and method for purifying exhaust gas
JP6641238B2 (ja) ディーゼルエンジン
JP2004011446A (ja) 内燃機関の燃料噴射制御装置
EP2737192B1 (en) Exhaust gas control apparatus for internal combustion engines, and control method for exhaust gas control apparatus for internal combustion engines
US9988960B2 (en) Exhaust gas control apparatus of internal combustion
US8950177B2 (en) Detecting particulate matter load density within a particulate filter
JP2017155707A (ja) 内燃機関の排気浄化システム
JP5834773B2 (ja) 内燃機関の排気浄化装置
US9784200B2 (en) Exhaust purification system
US9458753B2 (en) Diesel engine with reduced particulate material accumulation and related method
JP5267676B2 (ja) 内燃機関の排気浄化装置
US10072551B2 (en) Exhaust purification system
US9528421B2 (en) Exhaust device of internal combustion engine
JP4033189B2 (ja) 内燃機関の排気浄化装置
JP2017150411A (ja) 内燃機関の排気浄化システム
JP2006152871A (ja) 内燃機関の触媒昇温システム
JP6654585B2 (ja) 内燃機関の排気浄化装置
JP2009243467A (ja) グロープラグ制御装置及びグロープラグ制御システム
JP2014234806A (ja) 内燃機関
JP6095413B2 (ja) 火花点火式内燃機関の制御装置
JP6790787B2 (ja) 内燃機関の排気ガス浄化装置
JP2008088891A (ja) 内燃機関の排気浄化装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090209

R150 Certificate of patent or registration of utility model

Ref document number: 4265477

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130227

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140227

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees