JP4264222B2 - Heat exchanger and air conditioner - Google Patents

Heat exchanger and air conditioner Download PDF

Info

Publication number
JP4264222B2
JP4264222B2 JP2002129900A JP2002129900A JP4264222B2 JP 4264222 B2 JP4264222 B2 JP 4264222B2 JP 2002129900 A JP2002129900 A JP 2002129900A JP 2002129900 A JP2002129900 A JP 2002129900A JP 4264222 B2 JP4264222 B2 JP 4264222B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat exchanger
refrigerant pipe
side tank
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002129900A
Other languages
Japanese (ja)
Other versions
JP2003322432A (en
Inventor
康修 上坊寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002129900A priority Critical patent/JP4264222B2/en
Publication of JP2003322432A publication Critical patent/JP2003322432A/en
Application granted granted Critical
Publication of JP4264222B2 publication Critical patent/JP4264222B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0316Assemblies of conduits in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0308Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other
    • F28D1/0325Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another
    • F28D1/0333Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits the conduits being formed by paired plates touching each other the plates having lateral openings therein for circulation of the heat-exchange medium from one conduit to another the plates having integrated connecting members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、熱交換器及びその熱交換器を備えた空気調和装置に関し、特に蒸発器としての熱交換器に関する。
【0002】
【従来の技術】
従来、この種の熱交換器としては、特に車両用の空気調和装置に使用されるものとして、図8に示す熱交換器10が知られている。
図8に示す熱交換器10は、導入側タンク部11と、排出側タンク部12と、導入側タンク部11と排出側タンク部12とを接続する複数の冷媒配管13とから構成されている。また、冷媒と熱交換する外部流体が、冷媒配管13の外側を冷媒配管13の長手方向に対して略直交方向に通過するように構成されている。
【0003】
上記の構成からなる熱交換器10においては、液冷媒は、導入側タンク部11から流入し、冷媒配管13を下側から上側へ向かって流れる。液冷媒は、冷媒配管13を流れる際に、空気(外部流体)との熱交換により空気の熱を吸収して蒸発、気化する。気化した冷媒は、排出側タンク部12を通り、熱交換器10から流出する。
【0004】
ここで、冷媒配管13内の液冷媒と気化冷媒との混在領域では、外部流体から吸収した熱は、液冷媒の気化に使われ、液冷媒と気化冷媒の温度は一定に保たれる。気化冷媒のみの領域(過熱ガス域)では、外部流体から吸収した熱は、気化冷媒温度上昇に使われる。液冷媒と気化冷媒の混在領域を通過する外部流体は、冷媒の温度が一定に保たれているため、熱交換により所定の温度まで冷却されるが、過熱ガス域を通過する外部流体は、冷媒の温度が上昇しているため、十分な熱交換がされず、所定の温度まで冷却されない状態、つまり温度が高いままで流出する。
【0005】
【発明が解決しようとする課題】
ところで、従来の熱交換器においては、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が大きく、したがって、過熱ガス域を通過する温度が高い空気の比率が高く、温度分布のムラが大きくなり、快適な空調には使いにくいという問題があった。
【0006】
この発明は、このような事情を考慮してなされたもので、その目的は、温度分布のムラが小さく快適な空調に使い易い熱交換器を提供することにある。
【0007】
【課題を解決するための手段】
本発明の熱交換器では、上記課題を解決するため、以下の手段を採用した。
請求項1にかかる発明は、液冷媒が流入する導入側タンク部と、気化冷媒のみになった過熱気化冷媒が流れ出る排出側タンク部と、該導入側、排出側の2つのタンク部間に配設されて両者を接続する冷媒配管とを備え、前記導入側タンク部に導入した冷媒を、前記冷媒配管を通じて下側から上側へ向かって流して前記排出側タンク部に導いて排出する過程で、前記冷媒配管の長手方向に略直交する方向に、前記冷媒配管の外面に接触するように外部流体を流し、該外部流体と前記冷媒配管を流れる前記冷媒との間で熱交換させて、該冷媒を蒸発、気化させて気化冷媒のみの前記過熱気化冷媒とする熱交換器において、前記冷媒配管に、前記過熱気化冷媒の流れる方向を、前記外部流体の流れる方向と略平行となるように規制する第一の規制部が設けられていることを特徴とする。
【0008】
この発明にかかる熱交換器によれば、第一の規制部により、過熱した気化冷媒の流れの向きが、前記外部流体と平行となるため、外部流体の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する外部流体の比率が小さくなり、熱交換器を通過する外部流体の温度ムラが小さくなる。
【0009】
請求項2にかかる発明は、請求項1記載の熱交換器において、冷媒配管の内部に、外部流体と冷媒との熱交換面積を拡大させる熱交換面積拡大手段が設けられていることを特徴とする。
【0010】
この発明にかかる熱交換器によれば、冷媒配管の内部に設けられた熱交換面積拡大手段により、外部流体と冷媒との熱交換面の面積が拡大し、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域(例えば過熱ガス域)の熱交換を補うことができるため、熱交換器を通過する外部流体の温度ムラが小さくなる。
【0011】
請求項3にかかる発明は、請求項1記載の熱交換器において、冷媒配管には、冷媒配管内部の冷媒の流れを乱れさせるよう構成された、冷媒流れかく乱手段が備えられることを特徴とする。
【0012】
この発明にかかる熱交換器によれば、冷媒流れかく乱手段により、冷媒配管内の冷媒流れが乱され、冷媒流れ内部の熱伝達が促進され、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域、例えば過熱ガス域、の熱交換を補うことができるため、熱交換器を通過する外部流体の温度ムラが小さくなる。
【0013】
請求項4にかかる発明は、請求項1記載の熱交換器において、冷媒配管の長手方向のほぼ中央に、冷媒の流れを蛇行させる第二の規制部が設けられていることを特徴とする。
【0014】
この発明にかかる熱交換器によれば、第二の規制部により、冷媒の流れは冷媒配管内を蛇行し、冷媒配管内で冷媒が外部流体の上流側または下流側に偏ることがなく、ひいては過熱ガス域の面積が拡大するのを防げ、このため、熱交換器を通過する外部流体の温度ムラが小さくなる。
【0015】
請求項5にかかる発明は、請求項1から4のいずれかに記載の熱交換器において、導入側タンク部、排出側タンク部および冷媒配管を、冷媒配管の長手方向に二分される同一形状の2つの分割体として構成したことを特徴とする。
【0016】
この発明にかかる熱交換器によれば、導入側タンク部、排出側タンク部および冷媒配管を、同一形状の2つの分割体として構成するため、組み立て工程を減らせる。また、部品の種類が1種類であることから、例えば、プレス形成の型費用などの、生産時の設備投資費用が抑えられ、コスト低減効果が大きくなる。
【0017】
請求項6にかかる発明は、請求項5記載の熱交換器において、2つの分割体を展開し一部をつなぎ合わせて一体に形成し、つなぎ合わせた部分を折り曲げることで2つの分割体を重ね合わせることを特徴とする。
【0018】
この発明にかかる熱交換器によれば、導入側タンク部、排出側タンク部および冷媒配管を、2つの分割体の一部をつなぎ合わせて一体に形成し、つなぎ合わせた部分を折り曲げて重ね合わせて構成するため、組み立て工程を減らせる。部品の種類が1種類であることから、例えば、プレス形成の型費用などの、生産時の設備投資費用が抑えられ、コスト低減効果が大きくなる。
【0019】
請求項7にかかる発明は、請求項1に記載の熱交換器において、導入側タンク部、排出側タンク部を中空体から構成し、冷媒配管を、冷媒配管の長手方向に二分される同一形状の2つの配管分割体として構成したことを特徴とする。
【0020】
この発明にかかる熱交換器によれば、導入側タンク部、排出側タンク部は中空体から構成されるため、導入側タンク部および排出側タンク部の肉厚の確保が容易になる。また、2つの配管分割体の形成も、導入側、排出側の2つのタンク部が別部品となるため、例えば、深絞り加工などの導入側、排出側の2つのタンク部形成工程が不要となり、製作が容易になる。
【0021】
請求項8にかかる発明は、請求項1から7のいずれかに記載の熱交換器を備えることを特徴とする空気調和装置。
【0022】
この発明にかかる空気調和装置によれば、熱交換器の冷媒配管の熱交換面積に対する過熱ガス域の面積が狭く、過熱ガス域を通過する外部流体の比率を小さくすることができ、熱交換器を通過する外部流体の温度ムラが小さくなる。
【0023】
【発明の実施の形態】
以下、図面を参照し、この発明の実施の形態について説明する。図1はこの発明における熱交換器の第1の実施形態の分解斜視図である。図1において熱交換器100は、導入側タンク部101と、排出側タンク部102と、導入側タンク部101と排出側タンク部102とを接続する複数の冷媒配管103とから構成され、かつ、これら導入側タンク部101と排出側タンク部102と冷媒配管103とを内部に形成された熱交換セグメント110を複数接続・積層されたものとしても構成される。熱交換セグメント110は、プレス形成された分割体111、112を重ね合わせて構成され、導入側タンク部101が、熱交換セグメント110の下部に形成され、排出側タンク部102が、熱交換セグメント110の上部に形成され、冷媒配管103が、導入側タンク部101と排出側タンク部102との間に形成されている。また、排出側タンク部102と冷媒配管103との間に、第一壁部(第一の規制部)113が、分割体111の長手方向に略直交方向で、分割体111、112を重ね合わせたときに、冷媒配管103を塞ぐように設けられ、第一壁部113の空気の下流側に、第一開口部114が設けられている。冷媒配管103の第一壁部113より中央側に、第二壁部(第一の規制部)115が、分割体111の長手方向に略直交方向で、分割体111、112を重ね合わせたときに、冷媒配管103を塞ぐように設けられ、第二壁部115の空気の上流側に、第二開口部116が設けられている。導入側タンク部101に、導入側タンク開口部117が設けられ、排出側タンク部102に、排出側タンク開口部118が設けられている。
【0024】
上記の構成からなる熱交換器100においては、図1に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、冷媒配管103流れる際に、空気との熱交換により空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、分割体111と分割体112との外側を、熱交換セグメント110の長手方向に対して略直交方向に通過するようにされている。
【0025】
上記の構成からなる熱交換器100においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管103の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。
【0026】
図2はこの発明における熱交換器の第2の実施形態の分解斜視図である。図2において、熱交換器200は、熱交換セグメント210を複数接続・積層されて構成される。熱交換セグメント210は、この基本的構成は、図1に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図2において、熱交換セグメント210の導入側タンク部101と冷媒配管103との間に、第三壁部211が、分割体111の長手方向に略直交方向で、分割体111、112を重ね合わせたときに、冷媒配管103を塞ぐように設けられ、第三開口部212が、第三壁部211の空気の下流側に設けられている。冷媒配管103の第三壁部211より中央側に、第四壁部213が、分割体111の長手方向に略直交方向で、分割体111、112を重ね合わせたときに、冷媒配管103を塞ぐように設けられ、第四開口部214が、第四壁部213の空気の上流側に設けられている。
【0027】
上記の構成からなる熱交換器200においては、図2に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、第三壁部211と第四壁部213との間と冷媒配管103とを流れる際に、空気との熱交換により空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、分割体111と分割体112との外側を、熱交換セグメント210の長手方向に対して略直交方向に通過するようにされている。
【0028】
上記の構成からなる熱交換器200においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管103の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。さらに、熱交換セグメント210は、同一形状の2つの分割体111、112から構成されているため、組み立て工程の増加が防止できる。また、部品の種類が1種類であることから、例えば、プレス形成の型が1種類で済み、設備投資費用を抑えることができるため、コスト低減効果が大きくなって、生産性の面からも快適な空調に使いやすくなる。
【0029】
図3はこの発明における熱交換器の第3の実施形態の分解斜視図である。図3において、熱交換器300は、熱交換セグメント310を複数接続・積層されて構成される。熱交換セグメント310は、この基本的構成は、図2に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図3において、熱交換セグメント310の冷媒配管103の略中央に、第五壁部(第二規制部)311が、分割体111の長手方向に略直交方向で、分割体111、112を重ね合わせたときに、冷媒配管103を塞ぐように設けられ、第五開口部312が、第五壁部311の空気下流側に設けられている。
【0030】
上記の構成からなる熱交換器300においては、図3に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を第四開口部214から第五開口部312へ、第五開口部312から第二開口部116へと、下側から上側へ向かって流れる。液冷媒は、第三壁部211と第四壁部213との間と冷媒配管103とを流れる際に、空気との熱交換により空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、分割体111と分割体112との外側を、熱交換セグメント310の長手方向に対して略直交方向に通過するようにされている。
【0031】
上記の構成からなる熱交換器300においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管103の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなる。さらに、第五壁部311により、冷媒の流れは冷媒配管103内を蛇行し、冷媒配管103内で冷媒が空気の上流側または下流側に偏ることが防がれ、ひいては過熱ガス域の面積が拡大するのを防ぐことができる。このため、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。また、熱交換セグメント310は、同一形状の2つの分割体111、112から構成されているため、組み立て工程の増加が防止できる。また、部品の種類が1種類であることから、例えば、プレス形成の型が1種類で済み、設備投資費用を抑えることができるため、コスト低減効果が大きくなって、生産性の面からも快適な空調に使いやすくなる。
【0032】
図4はこの発明における熱交換器の第4の実施形態の分解斜視図である。図4において、熱交換器400は、熱交換セグメント410を複数接続・積層されて構成される。熱交換セグメント410は、この基本的構成は、図2に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図4において、熱交換セグメント410の冷媒配管103内に、波形断面を有したインナーフィン(熱交換面積拡大手段)411が、その稜線および谷線が熱交換セグメント410の長手方向と略平行となるように配置されている。
【0033】
上記の構成からなる熱交換器400においては、図4に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、冷媒配管103を流れる際に、インナーフィン411を介して空気と熱交換を行い、空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、分割体111と分割体112との外側を、熱交換セグメント410の長手方向に対して略直交方向に通過するようにされている。
【0034】
上記の構成からなる熱交換器400においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなる。さらに、冷媒配管103の内部に設けられたインナーフィン411により、空気と冷媒との熱交換面の面積が拡大し、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域、例えば過熱ガス域、の熱交換を補うことができるため、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。また、熱交換セグメント410は、同一形状の2つの分割体111、112から構成されているため、組み立て工程の増加が防止できる。また、部品の種類が1種類であることから、例えば、プレス形成の型が1種類で済み、設備投資費用を抑えることができるため、コスト低減効果が大きくなって、生産性の面からも快適な空調に使いやすくなる。
【0035】
図5はこの発明における熱交換器の第5の実施形態の分解斜視図である。図5において、熱交換器500は、熱交換セグメント510を複数接続・積層されて構成される。熱交換セグメント510は、この基本的構成は、図2に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図5において、熱交換セグメント510の冷媒配管103に、冷媒配管103内に向かって突起(冷媒流れかく乱手段)511が、複数個、例えば4個、分割体111、112にそれぞれ膨出して形成されている。これら4個の突起511は、いずれも同一の形状、例えば図5に示すような円錐台形形状を有している。
【0036】
上記の構成からなる熱交換器500においては、図5に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、冷媒配管103を流れる際に、突起511によって流れを乱され、空気との熱交換を行い、空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、分割体111と分割体112との外側を、熱交換セグメント510の長手方向に対して略直交方向に通過するようにされている。
【0037】
上記の構成からなる熱交換器500においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなる。さらに、突起511により、冷媒配管103内の冷媒流れが乱され、冷媒流れ内部の熱伝達が促進され、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域、例えば過熱ガス域、の熱交換を補うことができるため、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調にさらに使いやすくなる。また、熱交換セグメント510は、同一形状の2つの分割体111、112から構成されているため、組み立て工程の増加が防止できる。また、部品の種類が1種類であることから、例えば、プレス形成の型が1種類で済み、設備投資費用を抑えることができるため、コスト低減効果が大きくなって、生産性の面からも快適な空調に使いやすくなる。
【0038】
図6はこの発明における熱交換器の第6の実施形態の要部展開図である。図6において、熱交換器600は、熱交換セグメント610を複数接続・積層されて構成される。熱交換セグメント610は、この基本的構成は、図2に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図6において、熱交換セグメント610は、プレス形成された第二の分割体(分割体)611を折り曲げ中心612から折り曲げ、重ね合わせて構成されている。
【0039】
上記の構成からなる熱交換器600においては、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、冷媒配管103を流れる際に、空気との熱交換を行い、空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。さらに、冷媒と熱交換する空気(外部流体)が、第二の分割体611を折り曲げ中心612から折り曲げたものの外側を、熱交換セグメント610の長手方向に対して略直交方向に通過するようにされている。
【0040】
上記の構成からなる熱交換器600においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。さらに、第二の分割体611を折り曲げ中心612から折り曲げ、重ね合わせて構成されているため、組み立て工程の増加が防止でき、部品の種類が1種類であることから、例えば、プレス形成の型が1種類で済み、設備投資費用を抑えることができるため、コスト低減効果が大きくなり、生産性の面からも快適な空調に使いやすくなる。
【0041】
図7はこの発明における熱交換器の第7の実施形態の要部分解斜視図である。図7において、熱交換器700は、熱交換セグメント710を複数接続・積層されて構成される。熱交換セグメント710は、この基本的構成は、図2に示すものと同一であり、同一構成要素には同一符号を付し、その説明を省略する。図7において、熱交換セグメント710は、導入側タンク部101となる中空円筒(中空体)711と、排出側タンク部102となる中空円筒(中空体)712と、冷媒配管103となるプレス形成された配管分割体713、714の重ね合わせとで構成されている。
【0042】
上記の構成からなる熱交換器700においては、図7に示すように、液冷媒は、導入側タンク開口部117から導入側タンク部101に流入し、第三開口部212から第三壁部211と第四壁部213との間に流れ、空気と平行に流れ、第四開口部214から冷媒配管103に流れ、冷媒配管103を下側から上側へ向かって流れる。液冷媒は、冷媒配管103を流れる際に、空気との熱交換を行い、空気の熱を吸収して蒸発、気化する。気化冷媒のみになった過熱気化冷媒は、第二開口部116から第一壁部113と第二壁部115との間に流れ、空気と平行に流れ、第一開口部114から排出側タンク部102を通り排出側タンク開口部118から流れ出る。
【0043】
上記の構成からなる熱交換器700においては、冷媒配管103内の過熱ガス域は、第一壁部113と第二壁部115との間の冷媒が空気と平行に流れる部分にあたり、空気の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する空気の比率が小さくなり、したがって、熱交換器を通過する空気の温度ムラが小さくなり、快適な空調に使いやすくなる。さらに、導入側タンク部101に中空円筒711と、排出側タンク部102に中空円筒712とを用いているため、導入側タンク部101と排出側タンク部102とが肉厚不足になる可能性を解消することができ、2つの配管分割体713、714の形成も、排出側、導入側の2つのタンク部101、102が別部品となるため、深絞り加工等の該排出側、導入側の2つのタンク部101、102形成工程が不要となり、製作が容易になって、快適な空調に使いやすくなる。
【0044】
なお、上記の実施の形態においては、熱交換セグメントの間にコルゲートフィンが挟まれていないものに適応して説明したが、この熱交換セグメントの間にコルゲートフィンが挟まれていないものに限られることなく、熱交換セグメントの間にコルゲートフィンが挟まれているものに適応することができるものである。
【0045】
また、上記の実施の形態においては、第一開口部114を空気の下流側に、第二開口部116を空気の上流側に、第三の開口部212を空気の下流側に、第四開口部214を空気の上流側に、第五開口部312を空気の下流側に設けるものについて説明したが、各開口部の設けられる位置は、上記の位置に限られることなく、第一開口部114を空気の上流側に、第二開口部116を空気の下流側に、第三開口部212を空気の上流側に、第四開口部214を空気の下流側に、第五開口部312を空気の上流側に設けたものにも適応できるものである。
【0046】
【発明の効果】
以上説明したように、請求項1に係る発明によれば、第一の規制部により、過熱した気化冷媒の流れの向きが、前記外部流体と平行となるため、外部流体の上流側または下流側から見たときの、冷媒配管の熱交換面積に対する過熱ガス域の面積の比率が小さくなる。このため、過熱ガス域を通過する外部流体の比率が小さくなり、したがって、熱交換器を通過する外部流体の温度ムラが小さくなり、快適な空調に使いやすくなるという効果を奏する。
【0047】
請求項2に係る発明によれば、冷媒配管の内部に設けられた熱交換面積拡大手段により、外部流体と冷媒との熱交換面の面積が拡大し、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域、例えば過熱ガス域、の熱交換を補うことができるため、熱交換器を通過する外部流体の温度ムラが小さくなり、快適な空調に使いやすくなるという効果を奏する。
【0048】
請求項3に係る発明によれば、冷媒流れかく乱手段により、冷媒配管内の冷媒流れが乱され、冷媒流れ内部の熱伝達が促進され、同じ時間内での熱交換量が増加し、または、より短時間で同じ熱量を交換できる。これにより熱交換能力の劣る領域、例えば過熱ガス域、の熱交換を補うことができるため、熱交換器を通過する外部流体の温度ムラが小さくなり、快適な空調にさらに使いやすくなるという効果を奏する。
【0049】
請求項4に係る発明によれば、第二の規制部により、冷媒の流れは冷媒配管内を蛇行し、冷媒配管内で冷媒が外部流体の上流側または下流側に偏ることが防がれ、ひいては過熱ガス域の面積が拡大するのを防ぐことができ、快適な空調にさらに使いやすくなるという効果を奏する。
【0050】
請求項5に係る発明によれば、導入側タンク部、排出側タンク部および冷媒配管を、同一形状の2つの分割体として構成するため、組み立て工程の増加が防止できる。また、部品の種類が1種類であることから、例えば、プレス形成の型費用などの、生産時の設備投資費用を抑えることができるため、コスト低減効果が大きくなり、製作製の面からも、快適な空調に使いやすくなるという効果を奏する。
【0051】
請求項6に係る発明によれば、導入側タンク部、排出側タンク部および冷媒配管を、2つの分割体の一部をつなぎ合わせて一体に形成し、つなぎ合わせた部分を折り曲げて重ね合わせて構成するため、組み立て工程の増加が防止でき、部品の種類が1種類であることから、例えば、プレス形成の型費用などの、生産時の設備投資費用を抑えることができるため、コスト低減効果が大きくなり、製作性の面からも、快適な空調にさらに使いやすくなるという効果を奏する。
【0052】
請求項7に係る発明によれば、導入側タンク部、排出側タンク部は中空体から構成されるため、導入側タンク部および排出側タンク部の肉厚の確保が容易になる。また、2つの配管分割体の形成も、導入側、排出側の2つのタンク部が別部品となるため、例えば、深絞り加工などの導入側、排出側の2つのタンク部形成工程が不要となり、製作が容易になって、製作性の面からも、快適な空調にさらに使いやすくなるという効果を奏する。
【0053】
請求項8に係る発明によれば、熱交換器の冷媒配管の熱交換面積に対する過熱ガス域の面積が狭く、過熱ガス域を通過する外部流体の比率を小さくすることができ、熱交換器を通過する外部流体の温度ムラが小さくなるため、快適な空調を実現する空気調和装置を提供できるという効果を奏する。
【図面の簡単な説明】
【図1】 本発明による熱交換器の一実施形態を示す図であって、この熱交換器の分解斜視図である。
【図2】 本発明による熱交換器の別の実施形態を示す図であって、この熱交換器の分解斜視図である。
【図3】 本発明による熱交換器のさらに別の実施形態を示す図であって、この熱交換器の分解斜視図である。
【図4】 本発明による熱交換器のさらに別の実施形態を示す図であって、この熱交換器の分解斜視図である。
【図5】 本発明による熱交換器のさらに別の実施形態を示す図であって、この熱交換器の分解斜視図である。
【図6】 本発明による熱交換器のさらに別の実施形態を示す図であって、この熱交換器を要部展開図である。
【図7】 本発明による熱交換器のさらに別の実施形態を示す図であって、この熱交換器の要部分解斜視図である。
【図8】 従来の熱交換器の一例を示す分解斜視図である。
【符号の説明】
100、200,300,400,500,600,700 熱交換器
101 導入側タンク部
102 排出側タンク部
103 冷媒配管
111、112 分割体
113 第一壁部(第一の規制部)
115 第二壁部(第一の規制部)
311 第五壁部(第二の規制部)
411 インナーフィン(熱交換面積拡大手段)
511 突起(冷媒流れかく乱手段)
711、712 中空円筒(中空体)
713、714 配管分割体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanger and an air conditioner including the heat exchanger, and more particularly to a heat exchanger as an evaporator.
[0002]
[Prior art]
Conventionally, as this type of heat exchanger, a heat exchanger 10 shown in FIG. 8 is known as being used particularly for an air conditioner for a vehicle.
The heat exchanger 10 shown in FIG. 8 includes an introduction side tank unit 11, a discharge side tank unit 12, and a plurality of refrigerant pipes 13 that connect the introduction side tank unit 11 and the discharge side tank unit 12. . In addition, the external fluid that exchanges heat with the refrigerant passes through the outside of the refrigerant pipe 13 in a direction substantially orthogonal to the longitudinal direction of the refrigerant pipe 13.
[0003]
In the heat exchanger 10 having the above configuration, the liquid refrigerant flows in from the introduction-side tank unit 11 and flows through the refrigerant pipe 13 from the lower side to the upper side. When the liquid refrigerant flows through the refrigerant pipe 13, the liquid refrigerant absorbs the heat of the air by heat exchange with air (external fluid) and evaporates and vaporizes. The vaporized refrigerant flows out of the heat exchanger 10 through the discharge side tank unit 12.
[0004]
Here, in the mixed region of the liquid refrigerant and the vaporized refrigerant in the refrigerant pipe 13, the heat absorbed from the external fluid is used for vaporization of the liquid refrigerant, and the temperatures of the liquid refrigerant and the vaporized refrigerant are kept constant. In the region of only the vaporized refrigerant (superheated gas region), the heat absorbed from the external fluid is used to raise the vaporized refrigerant temperature. The external fluid that passes through the mixed region of the liquid refrigerant and the vaporized refrigerant is cooled to a predetermined temperature by heat exchange because the temperature of the refrigerant is kept constant, but the external fluid that passes through the superheated gas region is Since the temperature of the liquid is increased, sufficient heat exchange is not performed, and the liquid is not cooled to a predetermined temperature, that is, the temperature remains high.
[0005]
[Problems to be solved by the invention]
By the way, in the conventional heat exchanger, the ratio of the area of the superheated gas region to the heat exchange area of the refrigerant pipe is large, and therefore the ratio of the high temperature air passing through the superheated gas region is high, and the temperature distribution is largely uneven. Therefore, there was a problem that it was difficult to use for comfortable air conditioning.
[0006]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide a heat exchanger that is easy to use for comfortable air conditioning with small unevenness in temperature distribution.
[0007]
[Means for Solving the Problems]
The heat exchanger of the present invention employs the following means in order to solve the above problems.
The invention according to claim 1 Liquid refrigerant flows An introduction side tank section; Overheated vaporized refrigerant that has become only vaporized refrigerant flows out A discharge-side tank section, and a refrigerant pipe disposed between the two inlet-side and discharge-side tank sections to connect the two, and the refrigerant introduced into the introduction-side tank section is passed through the refrigerant pipe. From the bottom to the top In the process of discharging to the discharge side tank portion, an external fluid is caused to flow in a direction substantially perpendicular to the longitudinal direction of the refrigerant pipe so as to contact the outer surface of the refrigerant pipe, and then flows through the external fluid and the refrigerant pipe. Heat exchange with the refrigerant causes the refrigerant to evaporate and vaporize. The above-mentioned superheated vaporized refrigerant only with vaporized refrigerant In the heat exchanger, the refrigerant pipe is The superheated refrigerant A first restricting portion is provided for restricting the flow direction of the liquid so that the flow direction of the external fluid is substantially parallel to the flow direction of the external fluid.
[0008]
According to the heat exchanger according to the present invention, the flow direction of the superheated vaporized refrigerant is parallel to the external fluid by the first restricting portion, and therefore when viewed from the upstream side or the downstream side of the external fluid. The ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is reduced. For this reason, the ratio of the external fluid that passes through the superheated gas region is reduced, and the temperature unevenness of the external fluid that passes through the heat exchanger is reduced.
[0009]
The invention according to claim 2 is characterized in that, in the heat exchanger according to claim 1, heat exchange area expanding means for expanding the heat exchange area between the external fluid and the refrigerant is provided inside the refrigerant pipe. To do.
[0010]
According to the heat exchanger according to the present invention, the heat exchange area expanding means provided inside the refrigerant pipe expands the area of the heat exchange surface between the external fluid and the refrigerant, and the amount of heat exchange within the same time is increased. It can increase or exchange the same amount of heat in a shorter time. As a result, heat exchange in a region (for example, a superheated gas region) with inferior heat exchange capability can be compensated for, so that the temperature unevenness of the external fluid passing through the heat exchanger is reduced.
[0011]
According to a third aspect of the present invention, in the heat exchanger according to the first aspect, the refrigerant pipe is provided with a refrigerant flow disturbing means configured to disturb the flow of the refrigerant inside the refrigerant pipe. .
[0012]
According to the heat exchanger according to the present invention, the refrigerant flow disturbance means disturbs the refrigerant flow in the refrigerant pipe, promotes heat transfer inside the refrigerant flow, and increases the amount of heat exchange within the same time, or The same amount of heat can be exchanged in a shorter time. As a result, heat exchange in a region with inferior heat exchange capability, for example, a superheated gas region, can be compensated for, so that temperature unevenness of the external fluid passing through the heat exchanger is reduced.
[0013]
According to a fourth aspect of the present invention, in the heat exchanger according to the first aspect of the present invention, a second restricting portion that causes the flow of the refrigerant to meander is provided at substantially the center in the longitudinal direction of the refrigerant pipe.
[0014]
According to the heat exchanger according to the present invention, the flow of the refrigerant meanders in the refrigerant pipe by the second restricting portion, and the refrigerant is not biased upstream or downstream of the external fluid in the refrigerant pipe. The area of the superheated gas region can be prevented from expanding, and therefore the temperature unevenness of the external fluid passing through the heat exchanger is reduced.
[0015]
According to a fifth aspect of the present invention, in the heat exchanger according to any one of the first to fourth aspects, the introduction-side tank portion, the discharge-side tank portion, and the refrigerant pipe have the same shape that is bisected in the longitudinal direction of the refrigerant pipe. It is characterized by comprising as two divided bodies.
[0016]
According to the heat exchanger according to the present invention, the introduction-side tank part, the discharge-side tank part, and the refrigerant pipe are configured as two divided bodies having the same shape, so that the assembly process can be reduced. Moreover, since there is only one type of part, for example, the cost of capital investment during production, such as die cost for press forming, can be suppressed, and the cost reduction effect is increased.
[0017]
According to a sixth aspect of the present invention, in the heat exchanger according to the fifth aspect of the present invention, the two divided bodies are unfolded and joined together to form a single body, and the joined parts are folded to overlap each other. It is characterized by matching.
[0018]
According to the heat exchanger according to the present invention, the introduction-side tank portion, the discharge-side tank portion, and the refrigerant pipe are integrally formed by joining a part of two divided bodies, and the joined part is folded and overlapped. As a result, the assembly process can be reduced. Since there is only one type of component, for example, the capital investment cost during production, such as the die cost of press forming, can be suppressed, and the cost reduction effect is increased.
[0019]
The invention according to claim 7 is the heat exchanger according to claim 1, wherein the introduction-side tank portion and the discharge-side tank portion are formed of a hollow body, and the refrigerant pipe is divided into two in the longitudinal direction of the refrigerant pipe. It is characterized by comprising as two piping division bodies.
[0020]
According to the heat exchanger according to the present invention, the introduction-side tank portion and the discharge-side tank portion are formed of hollow bodies, so that it is easy to ensure the thickness of the introduction-side tank portion and the discharge-side tank portion. In addition, since the two tank parts on the introduction side and the discharge side are separate parts in the formation of the two pipe division bodies, for example, the two tank part formation steps on the introduction side and the discharge side such as deep drawing are not required. Manufacturing becomes easy.
[0021]
The invention according to claim 8 is an air conditioner comprising the heat exchanger according to any one of claims 1 to 7.
[0022]
According to the air conditioner of the present invention, the area of the superheated gas region is narrow with respect to the heat exchange area of the refrigerant pipe of the heat exchanger, and the ratio of the external fluid that passes through the superheated gas region can be reduced. The temperature unevenness of the external fluid that passes through is reduced.
[0023]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is an exploded perspective view of a first embodiment of a heat exchanger according to the present invention. In FIG. 1, the heat exchanger 100 includes an introduction-side tank unit 101, a discharge-side tank unit 102, and a plurality of refrigerant pipes 103 that connect the introduction-side tank unit 101 and the discharge-side tank unit 102, and A plurality of heat exchange segments 110 each having the introduction side tank portion 101, the discharge side tank portion 102, and the refrigerant pipe 103 formed therein are connected and stacked. The heat exchange segment 110 is configured by superposing the press-formed divided bodies 111 and 112, the introduction side tank portion 101 is formed at the lower part of the heat exchange segment 110, and the discharge side tank portion 102 is constituted by the heat exchange segment 110. The refrigerant pipe 103 is formed between the introduction side tank unit 101 and the discharge side tank unit 102. In addition, a first wall portion (first regulating portion) 113 overlaps the divided bodies 111 and 112 in a direction substantially orthogonal to the longitudinal direction of the divided body 111 between the discharge side tank portion 102 and the refrigerant pipe 103. The refrigerant pipe 103 is closed, and a first opening 114 is provided on the downstream side of the air of the first wall 113. When the second wall portion (first restricting portion) 115 overlaps the longitudinal direction of the divided body 111 in a direction substantially orthogonal to the first wall portion 113 of the refrigerant pipe 103 and overlaps the divided bodies 111 and 112. The second opening 116 is provided on the upstream side of the air of the second wall 115 so as to close the refrigerant pipe 103. The introduction side tank portion 101 is provided with an introduction side tank opening 117, and the discharge side tank portion 102 is provided with a discharge side tank opening 118.
[0024]
In the heat exchanger 100 having the above-described configuration, as shown in FIG. 1, the liquid refrigerant flows into the introduction-side tank portion 101 from the introduction-side tank opening 117, and moves from the lower side to the upper side through the refrigerant pipe 103. Flowing. When the liquid refrigerant flows through the refrigerant pipe 103, it absorbs the heat of the air by heat exchange with the air and evaporates and vaporizes. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Further, the air (external fluid) that exchanges heat with the refrigerant passes through the outside of the divided body 111 and the divided body 112 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 110.
[0025]
In the heat exchanger 100 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. The ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe 103 when viewed from the side or the downstream side becomes small. For this reason, the ratio of the air that passes through the superheated gas region is reduced, and hence the temperature unevenness of the air that passes through the heat exchanger is reduced, making it easy to use for comfortable air conditioning.
[0026]
FIG. 2 is an exploded perspective view of a second embodiment of the heat exchanger according to the present invention. In FIG. 2, the heat exchanger 200 is configured by connecting and stacking a plurality of heat exchange segments 210. The basic configuration of the heat exchange segment 210 is the same as that shown in FIG. 1, and the same components are denoted by the same reference numerals and the description thereof is omitted. In FIG. 2, the third wall portion 211 overlaps the divided bodies 111 and 112 in a direction substantially orthogonal to the longitudinal direction of the divided body 111 between the introduction side tank portion 101 and the refrigerant pipe 103 of the heat exchange segment 210. The refrigerant pipe 103 is closed, and the third opening 212 is provided on the downstream side of the air of the third wall 211. When the fourth wall portion 213 overlaps the divided bodies 111 and 112 in a direction substantially orthogonal to the longitudinal direction of the divided body 111 on the center side of the third wall portion 211 of the refrigerant pipe 103, the refrigerant pipe 103 is blocked. The fourth opening 214 is provided on the upstream side of the air of the fourth wall 213.
[0027]
In the heat exchanger 200 configured as described above, as shown in FIG. 2, the liquid refrigerant flows into the introduction side tank portion 101 from the introduction side tank opening portion 117 and from the third opening portion 212 to the third wall portion 211. And the fourth wall portion 213, flows parallel to the air, flows from the fourth opening 214 to the refrigerant pipe 103, and flows from the lower side to the upper side of the refrigerant pipe 103. When the liquid refrigerant flows between the third wall portion 211 and the fourth wall portion 213 and the refrigerant pipe 103, the liquid refrigerant absorbs the heat of the air by heat exchange with the air and evaporates and vaporizes. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Furthermore, the air (external fluid) that exchanges heat with the refrigerant passes through the outside of the divided body 111 and the divided body 112 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 210.
[0028]
In the heat exchanger 200 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. The ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe 103 when viewed from the side or the downstream side becomes small. For this reason, the ratio of the air that passes through the superheated gas region is reduced, and hence the temperature unevenness of the air that passes through the heat exchanger is reduced, making it easy to use for comfortable air conditioning. Furthermore, since the heat exchange segment 210 is composed of two divided bodies 111 and 112 having the same shape, an increase in the assembly process can be prevented. In addition, since there is only one type of part, for example, only one type of press forming is required, and the capital investment cost can be suppressed, so the cost reduction effect is increased and the productivity is also comfortable. Easy to use for air conditioning.
[0029]
FIG. 3 is an exploded perspective view of a third embodiment of the heat exchanger according to the present invention. In FIG. 3, the heat exchanger 300 is configured by connecting and stacking a plurality of heat exchange segments 310. The basic configuration of the heat exchange segment 310 is the same as that shown in FIG. 2, and the same components are denoted by the same reference numerals and the description thereof is omitted. In FIG. 3, a fifth wall portion (second regulating portion) 311 is overlapped with the longitudinal direction of the divided body 111 in a direction substantially orthogonal to the longitudinal direction of the divided body 111 at approximately the center of the refrigerant pipe 103 of the heat exchange segment 310. The refrigerant pipe 103 is closed, and the fifth opening 312 is provided on the air downstream side of the fifth wall 311.
[0030]
In the heat exchanger 300 configured as described above, as shown in FIG. 3, the liquid refrigerant flows into the introduction side tank portion 101 from the introduction side tank opening portion 117 and from the third opening portion 212 to the third wall portion 211. Between the second opening 214 and the fourth wall 213, in parallel with the air, from the fourth opening 214 to the refrigerant pipe 103, and from the fourth opening 214 to the fifth opening 312, the fifth opening From the part 312 to the second opening 116, it flows from the lower side to the upper side. When the liquid refrigerant flows between the third wall portion 211 and the fourth wall portion 213 and the refrigerant pipe 103, the liquid refrigerant absorbs the heat of the air by heat exchange with the air and evaporates and vaporizes. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Furthermore, air (external fluid) that exchanges heat with the refrigerant passes through the outside of the divided body 111 and the divided body 112 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 310.
[0031]
In the heat exchanger 300 configured as described above, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. The ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe 103 when viewed from the side or the downstream side becomes small. For this reason, the ratio of the air passing through the superheated gas region is reduced, and accordingly, the temperature unevenness of the air passing through the heat exchanger is reduced. Furthermore, the fifth wall portion 311 prevents the refrigerant flow from meandering in the refrigerant pipe 103 and prevents the refrigerant from being biased to the upstream side or downstream side of the air in the refrigerant pipe 103, and consequently the area of the superheated gas region is reduced. It can be prevented from expanding. For this reason, the temperature unevenness of the air passing through the heat exchanger is reduced, and it is easy to use for comfortable air conditioning. Moreover, since the heat exchange segment 310 is comprised from the two division bodies 111 and 112 of the same shape, the increase in an assembly process can be prevented. In addition, since there is only one type of part, for example, only one type of press forming is required, and the capital investment cost can be suppressed, so the cost reduction effect is increased and the productivity is also comfortable. Easy to use for air conditioning.
[0032]
FIG. 4 is an exploded perspective view of a fourth embodiment of the heat exchanger according to the present invention. In FIG. 4, the heat exchanger 400 is configured by connecting and stacking a plurality of heat exchange segments 410. The basic configuration of the heat exchange segment 410 is the same as that shown in FIG. 2, and the same components are denoted by the same reference numerals and the description thereof is omitted. In FIG. 4, an inner fin (heat exchange area expanding means) 411 having a corrugated cross section is formed in the refrigerant pipe 103 of the heat exchange segment 410, and its ridge line and valley line are substantially parallel to the longitudinal direction of the heat exchange segment 410. Are arranged as follows.
[0033]
In the heat exchanger 400 having the above configuration, as shown in FIG. 4, the liquid refrigerant flows into the introduction side tank portion 101 from the introduction side tank opening portion 117 and from the third opening portion 212 to the third wall portion 211. And the fourth wall portion 213, flows parallel to the air, flows from the fourth opening 214 to the refrigerant pipe 103, and flows from the lower side to the upper side of the refrigerant pipe 103. When the liquid refrigerant flows through the refrigerant pipe 103, it exchanges heat with air through the inner fins 411, absorbs the heat of the air, and evaporates and vaporizes. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Further, the air (external fluid) that exchanges heat with the refrigerant passes through the outside of the divided body 111 and the divided body 112 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 410.
[0034]
In the heat exchanger 400 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. When viewed from the side or the downstream side, the ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is reduced. For this reason, the ratio of the air passing through the superheated gas region is reduced, and accordingly, the temperature unevenness of the air passing through the heat exchanger is reduced. Furthermore, the area of the heat exchange surface between the air and the refrigerant is increased by the inner fins 411 provided inside the refrigerant pipe 103, the amount of heat exchange within the same time increases, or the same amount of heat in a shorter time. Can be replaced. As a result, heat exchange in a region with inferior heat exchange capability, for example, a superheated gas region, can be compensated for, so that the temperature unevenness of the air passing through the heat exchanger is reduced and it is easy to use for comfortable air conditioning. Moreover, since the heat exchange segment 410 is comprised from the two division bodies 111 and 112 of the same shape, the increase in an assembly process can be prevented. In addition, since there is only one type of part, for example, only one type of press forming is required, and the capital investment cost can be suppressed, so the cost reduction effect is increased and the productivity is also comfortable. Easy to use for air conditioning.
[0035]
FIG. 5 is an exploded perspective view of a fifth embodiment of the heat exchanger according to the present invention. In FIG. 5, the heat exchanger 500 is configured by connecting and stacking a plurality of heat exchange segments 510. The basic configuration of the heat exchange segment 510 is the same as that shown in FIG. 2, and the same components are denoted by the same reference numerals and the description thereof is omitted. In FIG. 5, protrusions (refrigerant flow disturbing means) 511 are formed on the refrigerant pipe 103 of the heat exchange segment 510 so as to bulge into the divided bodies 111 and 112, for example, four pieces. ing. These four protrusions 511 all have the same shape, for example, a truncated cone shape as shown in FIG.
[0036]
In the heat exchanger 500 having the above-described configuration, as shown in FIG. 5, the liquid refrigerant flows into the introduction side tank portion 101 from the introduction side tank opening 117 and from the third opening 212 to the third wall portion 211. And the fourth wall portion 213, flows parallel to the air, flows from the fourth opening 214 to the refrigerant pipe 103, and flows from the lower side to the upper side of the refrigerant pipe 103. When the liquid refrigerant flows through the refrigerant pipe 103, the flow is disturbed by the protrusions 511, and heat exchange with the air is performed, and the heat of the air is absorbed and evaporated. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Further, the air (external fluid) that exchanges heat with the refrigerant passes through the outside of the divided body 111 and the divided body 112 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 510.
[0037]
In the heat exchanger 500 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall 113 and the second wall 115 flows in parallel with the air, and upstream of the air. When viewed from the side or the downstream side, the ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is reduced. For this reason, the ratio of the air passing through the superheated gas region is reduced, and accordingly, the temperature unevenness of the air passing through the heat exchanger is reduced. Further, the protrusion 511 disturbs the refrigerant flow in the refrigerant pipe 103, promotes heat transfer inside the refrigerant flow, increases the amount of heat exchange within the same time, or can exchange the same amount of heat in a shorter time. . As a result, heat exchange in a region with inferior heat exchange capability, for example, a superheated gas region, can be compensated for, so that temperature unevenness of the air passing through the heat exchanger is reduced, and it is easier to use for comfortable air conditioning. Moreover, since the heat exchange segment 510 is comprised from the two division bodies 111 and 112 of the same shape, the increase in an assembly process can be prevented. In addition, since there is only one type of part, for example, only one type of press forming is required, and the capital investment cost can be suppressed, so the cost reduction effect is increased and the productivity is also comfortable. Easy to use for air conditioning.
[0038]
FIG. 6 is an exploded view of the essential parts of a sixth embodiment of the heat exchanger according to the present invention. In FIG. 6, the heat exchanger 600 is configured by connecting and stacking a plurality of heat exchange segments 610. The basic configuration of the heat exchange segment 610 is the same as that shown in FIG. 2, and the same components are denoted by the same reference numerals and description thereof is omitted. In FIG. 6, the heat exchange segment 610 is configured by bending a second divided body (divided body) 611 formed by pressing from a folding center 612 and overlapping it.
[0039]
In the heat exchanger 600 having the above-described configuration, the liquid refrigerant flows into the introduction-side tank portion 101 from the introduction-side tank opening portion 117, and from the third opening portion 212 to the third wall portion 211 and the fourth wall portion 213. , Flows parallel to the air, flows from the fourth opening 214 to the refrigerant pipe 103, and flows through the refrigerant pipe 103 from the lower side to the upper side. When the liquid refrigerant flows through the refrigerant pipe 103, it exchanges heat with air and absorbs the heat of the air to evaporate and vaporize. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102. Further, air (external fluid) that exchanges heat with the refrigerant passes through the outside of the second divided body 611 bent from the bending center 612 in a direction substantially orthogonal to the longitudinal direction of the heat exchange segment 610. ing.
[0040]
In the heat exchanger 600 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. When viewed from the side or the downstream side, the ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is reduced. For this reason, the ratio of the air that passes through the superheated gas region is reduced, and hence the temperature unevenness of the air that passes through the heat exchanger is reduced, making it easy to use for comfortable air conditioning. Furthermore, since the second divided body 611 is bent from the bending center 612 and overlapped, an increase in the assembly process can be prevented and there is only one type of part. Since only one type is required and the capital investment cost can be reduced, the cost reduction effect is increased, and it is easy to use for comfortable air conditioning in terms of productivity.
[0041]
FIG. 7 is an exploded perspective view of an essential part of a seventh embodiment of the heat exchanger according to the present invention. In FIG. 7, the heat exchanger 700 is configured by connecting and stacking a plurality of heat exchange segments 710. The basic configuration of the heat exchange segment 710 is the same as that shown in FIG. 2, and the same components are denoted by the same reference numerals and the description thereof is omitted. In FIG. 7, the heat exchange segment 710 is formed by press forming a hollow cylinder (hollow body) 711 that becomes the introduction-side tank portion 101, a hollow cylinder (hollow body) 712 that becomes the discharge-side tank portion 102, and the refrigerant pipe 103. The pipe division bodies 713 and 714 are overlapped.
[0042]
In the heat exchanger 700 having the above-described configuration, as shown in FIG. 7, the liquid refrigerant flows into the introduction side tank portion 101 from the introduction side tank opening portion 117 and from the third opening portion 212 to the third wall portion 211. And the fourth wall portion 213, flows parallel to the air, flows from the fourth opening 214 to the refrigerant pipe 103, and flows from the lower side to the upper side of the refrigerant pipe 103. When the liquid refrigerant flows through the refrigerant pipe 103, it exchanges heat with air and absorbs the heat of the air to evaporate and vaporize. The superheated vaporized refrigerant that has become only the vaporized refrigerant flows between the first opening 113 and the second wall 115 from the second opening 116, flows parallel to the air, and discharges from the first opening 114 to the discharge side tank. It flows out from the discharge side tank opening 118 through 102.
[0043]
In the heat exchanger 700 having the above-described configuration, the superheated gas region in the refrigerant pipe 103 corresponds to a portion where the refrigerant between the first wall portion 113 and the second wall portion 115 flows in parallel with the air, and upstream of the air. When viewed from the side or the downstream side, the ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is reduced. For this reason, the ratio of the air that passes through the superheated gas region is reduced, and hence the temperature unevenness of the air that passes through the heat exchanger is reduced, making it easy to use for comfortable air conditioning. Furthermore, since the hollow cylinder 711 is used for the introduction side tank unit 101 and the hollow cylinder 712 is used for the discharge side tank unit 102, there is a possibility that the introduction side tank unit 101 and the discharge side tank unit 102 will be insufficient in thickness. The two pipe division bodies 713 and 714 can also be eliminated because the two tank parts 101 and 102 on the discharge side and the introduction side are separate parts. The process of forming the two tank portions 101 and 102 is not necessary, and the manufacturing is facilitated, making it easy to use for comfortable air conditioning.
[0044]
In the above-described embodiment, the description has been made by adapting to the case where the corrugated fin is not sandwiched between the heat exchange segments, but is limited to the one in which the corrugated fin is not sandwiched between the heat exchange segments. It can adapt to what has corrugated fins sandwiched between heat exchanging segments.
[0045]
In the above embodiment, the first opening 114 is on the downstream side of the air, the second opening 116 is on the upstream side of the air, the third opening 212 is on the downstream side of the air, and the fourth opening. In the above description, the portion 214 is provided on the upstream side of the air and the fifth opening 312 is provided on the downstream side of the air. However, the positions where the openings are provided are not limited to the above positions, and the first opening 114 is provided. The second opening 116 on the downstream side of the air, the third opening 212 on the upstream side of the air, the fourth opening 214 on the downstream side of the air, and the fifth opening 312 on the air. It can also be applied to those provided on the upstream side.
[0046]
【The invention's effect】
As described above, according to the first aspect of the invention, since the direction of the flow of the superheated vaporized refrigerant is parallel to the external fluid by the first restricting portion, the upstream side or the downstream side of the external fluid. The ratio of the area of the superheated gas area to the heat exchange area of the refrigerant pipe is small when viewed from above. For this reason, the ratio of the external fluid that passes through the superheated gas region is reduced, and therefore, the temperature unevenness of the external fluid that passes through the heat exchanger is reduced, and it is easy to use for comfortable air conditioning.
[0047]
According to the second aspect of the present invention, the heat exchange area expanding means provided in the refrigerant pipe increases the area of the heat exchange surface between the external fluid and the refrigerant, and the amount of heat exchange within the same time increases. Or the same amount of heat can be exchanged in a shorter time. This makes it possible to compensate for heat exchange in a region with inferior heat exchange capacity, for example, a superheated gas region, thereby reducing the temperature unevenness of the external fluid passing through the heat exchanger and making it easy to use for comfortable air conditioning. .
[0048]
According to the invention of claim 3, the refrigerant flow disturbance means disturbs the refrigerant flow in the refrigerant pipe, promotes heat transfer inside the refrigerant flow, increases the amount of heat exchange within the same time, or The same amount of heat can be exchanged in a shorter time. This makes it possible to compensate for heat exchange in areas where heat exchange capacity is inferior, for example, superheated gas areas, so that the temperature unevenness of the external fluid passing through the heat exchanger is reduced, making it easier to use for comfortable air conditioning. Play.
[0049]
According to the invention according to claim 4, the second restricting portion prevents the refrigerant flow from meandering in the refrigerant pipe, and the refrigerant is prevented from being biased upstream or downstream of the external fluid in the refrigerant pipe. As a result, it is possible to prevent the area of the superheated gas region from expanding, and it is possible to further improve the ease of use for comfortable air conditioning.
[0050]
According to the invention which concerns on Claim 5, since the introduction side tank part, the discharge side tank part, and refrigerant | coolant piping are comprised as two division bodies of the same shape, the increase in an assembly process can be prevented. In addition, since there is only one type of part, for example, the cost of capital investment during production, such as the cost of molds for press forming, can be suppressed, so the cost reduction effect is increased, and from the standpoint of manufacturing, It has the effect of being easy to use for comfortable air conditioning.
[0051]
According to the invention which concerns on Claim 6, the introduction side tank part, the discharge side tank part, and the refrigerant | coolant piping are formed integrally by joining a part of two division bodies, and the joined part is bent and overlapped. Because of the configuration, the assembly process can be prevented from increasing, and since there is only one type of component, for example, the cost of capital investment at the time of production, such as die cost for press forming, can be suppressed. From the viewpoint of manufacturability, it is also easier to use for comfortable air conditioning.
[0052]
According to the seventh aspect of the present invention, since the introduction-side tank portion and the discharge-side tank portion are formed of a hollow body, it is easy to ensure the thickness of the introduction-side tank portion and the discharge-side tank portion. In addition, since the two tank parts on the introduction side and the discharge side are separate parts in the formation of the two pipe division bodies, for example, the two tank part formation steps on the introduction side and the discharge side such as deep drawing are not required. It is easy to manufacture, and from the viewpoint of manufacturability, it has the effect of being easier to use for comfortable air conditioning.
[0053]
According to the invention which concerns on Claim 8, the area of the superheated gas area with respect to the heat exchange area of the refrigerant | coolant piping of a heat exchanger is narrow, the ratio of the external fluid which passes a superheated gas area can be made small, Since the temperature unevenness of the passing external fluid is reduced, an effect of providing an air conditioner that realizes comfortable air conditioning can be provided.
[Brief description of the drawings]
FIG. 1 is a diagram showing an embodiment of a heat exchanger according to the present invention, and is an exploded perspective view of the heat exchanger.
FIG. 2 is a diagram showing another embodiment of the heat exchanger according to the present invention, and is an exploded perspective view of the heat exchanger.
FIG. 3 is a diagram showing still another embodiment of the heat exchanger according to the present invention, and is an exploded perspective view of the heat exchanger.
FIG. 4 is a view showing still another embodiment of the heat exchanger according to the present invention, and is an exploded perspective view of the heat exchanger.
FIG. 5 is a diagram showing still another embodiment of the heat exchanger according to the present invention, and is an exploded perspective view of the heat exchanger.
FIG. 6 is a view showing still another embodiment of the heat exchanger according to the present invention, and is a development view of main parts of the heat exchanger.
FIG. 7 is a view showing still another embodiment of the heat exchanger according to the present invention, and is an exploded perspective view of a main part of the heat exchanger.
FIG. 8 is an exploded perspective view showing an example of a conventional heat exchanger.
[Explanation of symbols]
100, 200, 300, 400, 500, 600, 700 heat exchanger
101 Introducing tank section
102 Discharge side tank
103 Refrigerant piping
111, 112 divisions
113 1st wall part (1st regulation part)
115 Second wall (first regulating part)
311 Fifth Wall (Second Regulatory Department)
411 Inner fin (heat exchange area expansion means)
511 Protrusion (refrigerant flow disturbing means)
711, 712 Hollow cylinder (hollow body)
713, 714 Piping segment

Claims (8)

液冷媒が流入する導入側タンク部と、気化冷媒のみになった過熱気化冷媒が流れ出る排出側タンク部と、該導入側、排出側の2つのタンク部間に配設されて両者を接続する冷媒配管とを備え、
前記導入側タンク部に導入した冷媒を、前記冷媒配管を通じて下側から上側へ向かって流して前記排出側タンク部に導いて排出する過程で、前記冷媒配管の長手方向に略直交する方向に、前記冷媒配管の外面に接触するように外部流体を流し、該外部流体と前記冷媒配管を流れる前記冷媒との間で熱交換させて、該冷媒を蒸発、気化させて気化冷媒のみの前記過熱気化冷媒とする熱交換器において、
前記冷媒配管に、前記過熱気化冷媒の流れる方向を、前記外部流体の流れる方向と略平行となるように規制する第一の規制部が設けられていることを特徴とする熱交換器。
An inlet side tank portion into which liquid refrigerant flows, a discharge side tank portion from which superheated vaporized refrigerant that is only vaporized refrigerant flows out , and a refrigerant that is disposed between the two tank portions on the inlet side and the exhaust side and connects the two. With piping,
In the process of flowing the refrigerant introduced into the introduction side tank part from the lower side to the upper side through the refrigerant pipe and leading it to the discharge side tank part, the direction is substantially perpendicular to the longitudinal direction of the refrigerant pipe. The superheated vaporization of only the vaporized refrigerant is caused by flowing an external fluid so as to be in contact with the outer surface of the refrigerant pipe, exchanging heat between the external fluid and the refrigerant flowing through the refrigerant pipe, and evaporating and vaporizing the refrigerant. In the heat exchanger as a refrigerant ,
The heat exchanger according to claim 1, wherein a first restricting portion that restricts a direction in which the superheated vapor refrigerant flows in the refrigerant pipe so as to be substantially parallel to a direction in which the external fluid flows is provided.
請求項1記載の熱交換器において、
前記冷媒配管の内部に、前記外部流体と前記冷媒との熱交換面積を拡大させる熱交換面積拡大手段が設けられていることを特徴とする熱交換器。
The heat exchanger according to claim 1, wherein
A heat exchanger for expanding heat exchange area for expanding the heat exchange area between the external fluid and the refrigerant is provided inside the refrigerant pipe.
請求項1記載の熱交換器において、
前記冷媒配管の内部に、前記冷媒の流れをかく乱させる冷媒流れかく乱手段が設けられていることを特徴とする熱交換器。
The heat exchanger according to claim 1, wherein
A heat exchanger for disturbing the flow of the refrigerant is provided inside the refrigerant pipe.
請求項1記載の熱交換器において、
前記冷媒配管の長手方向のほぼ中央に、前記冷媒の流れを蛇行させる第二の規制部が設けられていることを特徴とする熱交換器。
The heat exchanger according to claim 1, wherein
A heat exchanger characterized in that a second restricting portion for meandering the flow of the refrigerant is provided at substantially the center in the longitudinal direction of the refrigerant pipe.
請求項1から4のいずれかに記載の熱交換器において、
前記排出側タンク部、前記導入側タンク部および前記冷媒配管を、該冷媒配管の長手方向に二分される同一形状の2つの分割体として構成したことを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 4,
The heat exchanger, wherein the discharge side tank part, the introduction side tank part, and the refrigerant pipe are configured as two divided bodies having the same shape that are divided in the longitudinal direction of the refrigerant pipe.
請求項5記載の熱交換器において、
前記2つの分割体を展開し一部をつなぎ合わせて一体に形成し、つなぎ合わせた部分を折り曲げることで前記2つの分割体を重ね合わせることを特徴とする熱交換器。
The heat exchanger according to claim 5, wherein
A heat exchanger characterized in that the two divided bodies are expanded and partly joined together to form a single body, and the joined parts are folded together to be overlapped.
請求項1記載の熱交換器において、
前記排出側タンク部、前記導入側タンク部を中空体から構成し、前記冷媒配管を、該冷媒配管の長手方向に二分される同一形状の2つの配管分割体として構成したことを特徴とする熱交換器。
The heat exchanger according to claim 1, wherein
The heat is characterized in that the discharge side tank part and the introduction side tank part are constituted by a hollow body, and the refrigerant pipe is constituted as two pipe divided bodies having the same shape divided in the longitudinal direction of the refrigerant pipe. Exchanger.
請求項1から7のいずれかに記載の熱交換器を備えることを特徴とする空気調和装置。An air conditioner comprising the heat exchanger according to any one of claims 1 to 7.
JP2002129900A 2002-05-01 2002-05-01 Heat exchanger and air conditioner Expired - Fee Related JP4264222B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002129900A JP4264222B2 (en) 2002-05-01 2002-05-01 Heat exchanger and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002129900A JP4264222B2 (en) 2002-05-01 2002-05-01 Heat exchanger and air conditioner

Publications (2)

Publication Number Publication Date
JP2003322432A JP2003322432A (en) 2003-11-14
JP4264222B2 true JP4264222B2 (en) 2009-05-13

Family

ID=29543175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002129900A Expired - Fee Related JP4264222B2 (en) 2002-05-01 2002-05-01 Heat exchanger and air conditioner

Country Status (1)

Country Link
JP (1) JP4264222B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1817534B1 (en) * 2004-11-30 2009-12-02 Valeo Systemes Thermiques Sas Heat exchanger with heat storage
JP2011017516A (en) * 2009-07-10 2011-01-27 Mitsubishi Electric Corp Plate laminated type cooling device and method of manufacturing the same
JP2012207858A (en) * 2011-03-30 2012-10-25 Kamekawa Kogyo Kk Heating medium evaporation reduction device in solar hot water system
JP5721611B2 (en) * 2011-11-28 2015-05-20 株式会社神戸製鋼所 Heat pump equipment
JP2015064146A (en) * 2013-09-25 2015-04-09 三浦工業株式会社 Plate type heat exchanger
CN106642831A (en) * 2016-12-31 2017-05-10 潍坊小禾节能科技有限公司 Composite heat exchanger for organic Rankine cycle power generating system

Also Published As

Publication number Publication date
JP2003322432A (en) 2003-11-14

Similar Documents

Publication Publication Date Title
US8550153B2 (en) Heat exchanger and method of operating the same
KR100240864B1 (en) Evaporator
US6827139B2 (en) Heat exchanger for exchanging heat between internal fluid and external fluid and manufacturing method thereof
US6209628B1 (en) Heat exchanger having several heat exchanging portions
US20140060789A1 (en) Heat exchanger and method of operating the same
JP4254015B2 (en) Heat exchanger
JP4358981B2 (en) Air conditioning condenser
WO2011136047A1 (en) Vehicle interior heat exchanger
US6814135B2 (en) Stacked-type evaporator
JPH10325645A (en) Refrigerant evaporator
JP4264222B2 (en) Heat exchanger and air conditioner
JP3965901B2 (en) Evaporator
US6098703A (en) Lamination type heat exchanger having refrigerant passage divided by inner fin into subpassages
JP2001050686A (en) Evaporator
JP4857074B2 (en) Plate type heat exchanger
US6253840B1 (en) Refrigerant evaporator including refrigerant passage with inner fin
JP3632248B2 (en) Refrigerant evaporator
JP4195577B2 (en) Heat exchanger and air conditioner
JP2002228299A (en) Composite heat exchanger
EP0935115A2 (en) Heat exchanger constructed by plural heat conductive plates
JPH10170098A (en) Laminated evaporator
JPH02106697A (en) Lamination type heat exchanger
CN114341573B (en) heat exchanger
JPH0370946A (en) Lamination type heat exchanger
JPH11337292A (en) Heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050310

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees