JP4263964B2 - Gradient composition film production equipment - Google Patents

Gradient composition film production equipment Download PDF

Info

Publication number
JP4263964B2
JP4263964B2 JP2003301329A JP2003301329A JP4263964B2 JP 4263964 B2 JP4263964 B2 JP 4263964B2 JP 2003301329 A JP2003301329 A JP 2003301329A JP 2003301329 A JP2003301329 A JP 2003301329A JP 4263964 B2 JP4263964 B2 JP 4263964B2
Authority
JP
Japan
Prior art keywords
evaporation source
shielding plate
substrate
vapor
substrate surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003301329A
Other languages
Japanese (ja)
Other versions
JP2005068510A (en
Inventor
功 奥富
敦史 山本
貴史 草野
三孝 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2003301329A priority Critical patent/JP4263964B2/en
Publication of JP2005068510A publication Critical patent/JP2005068510A/en
Application granted granted Critical
Publication of JP4263964B2 publication Critical patent/JP4263964B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、蒸発源からの蒸気を基板の表面で受け止める際に、蒸発源と基板との間に配置した遮蔽板の遮蔽効果によって基板の表面に傾斜組成膜を形成するようにした傾斜組成膜製造装置に関し、特に傾斜組成膜の膜厚を一定の比率で連続的に変化させ規則的な勾配を持たせるための技術に関する。   The present invention relates to a gradient composition film in which a gradient composition film is formed on the surface of a substrate by a shielding effect of a shielding plate disposed between the evaporation source and the substrate when vapor from the evaporation source is received on the surface of the substrate. The present invention relates to a manufacturing apparatus, and more particularly to a technique for providing a regular gradient by continuously changing the thickness of a gradient composition film at a constant ratio.

一般に、傾斜組成合金は、目標組成を持つ複数個の合金をあらかじめ用意し、これらを組成比率の順に張り合わせて焼結一体化し、張り合わせた方向の組成分布に傾斜を持たせることによって製造することができる。このような傾斜組成合金は、近年では例えば遮熱材料、応力緩和を要する部品、接合性向上を要する接合などで多く活用されている。傾斜組成合金の製造装置としては、均熱の加熱部分を持った通常の焼結炉装置が用いられる(例えば非特許文献1参照)。   Generally, a gradient composition alloy can be manufactured by preparing a plurality of alloys having a target composition in advance, laminating them in the order of the composition ratio, integrating them by sintering, and giving a gradient to the composition distribution in the laminated direction. it can. In recent years, such gradient composition alloys are widely used in, for example, heat shielding materials, parts that require stress relaxation, and joints that require improved bondability. As an apparatus for producing a gradient composition alloy, a normal sintering furnace apparatus having a soaking part is used (for example, see Non-Patent Document 1).

蒸発源において物質(被蒸発材料)を蒸発させると、蒸発したその物質の蒸気は空間のあらゆる方向に飛び出すという性質がある。この性質を利用して、蒸発源の上部に基板を設置し、蒸発源からの蒸気をこの基板の表面で受け止めるようにすると、基板面には、蒸気が円状や楕円状に近似した模様を描きながら付着して膜が形成される。このようにすることで、基板面上に膜厚を無秩序に傾斜させた傾斜組成膜を製造することができる。この場合の傾斜組成膜の製造装置としては、真空容器の中に蒸発源と基板を内蔵した通常の真空蒸着装置を用いることができる(例えば非特許文献2参照)。   When a substance (material to be evaporated) is evaporated in an evaporation source, the vapor of the evaporated substance jumps out in all directions in the space. Using this property, if a substrate is installed on top of the evaporation source and the vapor from the evaporation source is received on the surface of the substrate, the substrate surface has a pattern that approximates a circle or ellipse. A film is formed by adhering while drawing. By doing in this way, the graded composition film | membrane which inclined the film thickness on the board | substrate surface irregularly can be manufactured. As an apparatus for manufacturing a gradient composition film in this case, a normal vacuum deposition apparatus in which an evaporation source and a substrate are built in a vacuum vessel can be used (see, for example, Non-Patent Document 2).

物質の上記性質を利用して、図17に示すように、複数の蒸発源10a,10b,10cに異なる被蒸発材料を別々に収納し、これらを同時に蒸発させ、各蒸発源からの蒸気を重畳させて基板30の表面で受け止めることにより、基板面上に組成分布を無秩序に傾斜させた傾斜組成合金膜を製造することができる。この場合の傾斜組成合金膜の製造装置としても、真空容器の中に蒸発源と基板を内蔵した通常の真空蒸着装置を用いることができる(例えば非特許文献2参照)。
社団法人未踏科学技術協会、傾斜機能材料研究会偏集「傾斜機能材料」工業調査会発行、1993年2月10日発行、第2頁、図1.1、第50頁、図2.27、第51頁、写真2.4。 日刊工業新聞社、金持徹編集「真空技術ハンドブック」1990年3月31日発行、第499頁、6.1.2蒸着装置と蒸着法、第500頁、図6.1.2真空蒸着装置の基本構成。
Utilizing the above properties of substances, as shown in FIG. 17, different evaporation materials are separately stored in a plurality of evaporation sources 10a, 10b, 10c, and these are evaporated at the same time, and vapor from each evaporation source is superimposed. Then, by accepting it on the surface of the substrate 30, it is possible to manufacture a gradient composition alloy film in which the composition distribution is randomly inclined on the substrate surface. As an apparatus for manufacturing the gradient composition alloy film in this case, a normal vacuum deposition apparatus in which an evaporation source and a substrate are built in a vacuum vessel can be used (for example, see Non-Patent Document 2).
Association of Unexplored Science and Technology Association, Functionally Gradient Material Research Group, “Gradient Functional Material” Industry Research Committee, published on February 10, 1993, page 2, figure 1.1, page 50, figure 2.27, Page 51, Photo 2.4. Nikkan Kogyo Shimbun, edited by Toru Kanmochi, “Vacuum Technology Handbook”, published on March 31, 1990, page 499, 6.1.2 Deposition equipment and deposition method, page 500, Fig. 6.1.2 Basic configuration.

しかしながら、非特許文献1のように焼結一体化して得た傾斜組成合金では、組成分布が連続的ではなく段階的に変化することになる。この状態では化学、金属、セラミックス材料分野で常用されているような良質な組成分布は得られない。これを是正するためには天文学的な個数の合金をあらかじめ用意して積層しなければならず、実用性に乏しい。   However, in the gradient composition alloy obtained by sintering and integration as in Non-Patent Document 1, the composition distribution changes stepwise rather than continuously. In this state, a high-quality composition distribution that is commonly used in the chemical, metal and ceramic material fields cannot be obtained. To correct this, an astronomical number of alloys must be prepared and laminated in advance, which is not practical.

非特許文献2のような真空蒸着技術を使用した場合には、基板面上の傾斜組成膜の組成分布は連続的な変化を持つこととなるが、その組成分布は無秩序であり、やはり化学、金属、セラミックス材料分野で常用されているような良質な組成分布は得られず、実用性に乏しい。なお、非特許文献2の図6.1.2は、真空蒸着装置の基本的な構成を示すものであり、同文献には、より良質な成膜を得るための技術については記載されていない。   When the vacuum deposition technique as in Non-Patent Document 2 is used, the composition distribution of the graded composition film on the substrate surface has a continuous change, but the composition distribution is disordered and is also chemically, A high-quality composition distribution that is commonly used in the metal and ceramic material fields cannot be obtained, and is impractical. Note that FIG. 6.1.2 of Non-Patent Document 2 shows the basic configuration of the vacuum deposition apparatus, and the document does not describe a technique for obtaining a higher-quality film. .

本発明は、このような従来技術の課題を解決するためになされたものであり、その目的とするところは、基板面上に膜厚が一定の比率で連続的に変化し規則的な勾配を持つ傾斜組成膜を形成し得る傾斜組成膜製造装置を提供することにある。   The present invention has been made in order to solve such problems of the prior art, and the object of the present invention is to continuously change the film thickness on the substrate surface at a constant ratio and to form a regular gradient. An object of the present invention is to provide a gradient composition film manufacturing apparatus capable of forming a gradient composition film.

第1の本発明に係る傾斜組成膜製造装置は、被蒸発材料を備えた蒸発源と、前記蒸発源に対向して配置された基板と、前記蒸発源と前記基板との間に配置され、前記被蒸発材料から蒸発した蒸気の一部を遮蔽するための遮蔽面とその蒸気の残部を基板面上の所定位置に誘導するための蒸気誘導端面を備えた遮蔽板と、を有し、前記蒸発源の一端と前記遮蔽板の蒸気誘導端面とを結ぶ延長線が前記基板面となす蒸気衝突角度と、前記蒸発源の他端と前記遮蔽板の蒸気誘導端面とを結ぶ延長線が前記基板面となす蒸気衝突角度がそれぞれ75度〜105度の範囲となるように前記基板、前記遮蔽板、前記蒸発源の位置を調節すると共に、前記蒸発源による第1蒸発源とは別の細長状の第2蒸発源を有し、第2蒸発源が前記遮蔽板の蒸気誘導端面に平行になるように第1蒸発源と第2蒸発源をT字型に配置したことを特徴とする。 The gradient composition film manufacturing apparatus according to the first aspect of the present invention is disposed between an evaporation source including an evaporation target material, a substrate disposed opposite to the evaporation source, and the evaporation source and the substrate. A shielding plate having a shielding surface for shielding a part of the vapor evaporated from the material to be evaporated and a vapor guiding end surface for guiding the remainder of the vapor to a predetermined position on the substrate surface, and An extension line connecting one end of the evaporation source and the vapor guiding end surface of the shielding plate and a vapor collision angle formed with the substrate surface, and an extension line connecting the other end of the evaporation source and the vapor guiding end surface of the shielding plate are the substrate. The positions of the substrate, the shielding plate, and the evaporation source are adjusted so that the vapor collision angles with the surface are in the range of 75 to 105 degrees, respectively, and the elongated shape is different from the first evaporation source by the evaporation source. A second evaporation source, and the second evaporation source is on the vapor induction end face of the shielding plate. A first evaporation source and the second evaporation source so as to line, characterized in that arranged in a T-shape.

本発明にあっては、蒸発源と基板との間に遮蔽板を配置することによって、遮蔽板の蒸気誘導端面が、遮蔽面により遮蔽されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与えるようにしている。これと共に、蒸発源の一端と蒸気誘導端面とを結ぶ延長線が基板面となす蒸気衝突角度と、蒸発源の他端と蒸気誘導端面とを結ぶ延長線が基板面となす蒸気衝突角度がそれぞれ75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜厚さの違いが一定範囲内に制限されるようにしている。   In the present invention, by arranging a shielding plate between the evaporation source and the substrate, the steam guiding end surface of the shielding plate guides the remaining portion of the vapor not shielded by the shielding surface to a predetermined position on the substrate surface. Thus, an inclination is given to the deposition amount distribution. At the same time, the vapor collision angle formed by the extension line connecting one end of the evaporation source and the vapor induction end surface with the substrate surface, and the vapor collision angle formed by the extension line connecting the other end of the evaporation source and the vapor induction end surface with the substrate surface, respectively. A synergistic effect is obtained by ensuring the uniformity of the film thickness by making the range from 75 degrees to 105 degrees, and the film thickness at the central part and the peripheral part on the substrate surface is improved. The difference is limited to a certain range.

また、遮蔽板の蒸気誘導端面に平行になるように第1蒸発源に対して細長状の第2蒸発源をT字型に配置したことで、第2蒸発源は蒸気誘導端面による誘導作用を受けないので基板面上に厚さが均一で勾配のない組成膜が形成され、第1蒸発源、第2蒸発源のそれぞれによる組成膜が合成されて良質な擬似2成分系の傾斜膜を形成することができる。In addition, by arranging the elongated second evaporation source in a T shape with respect to the first evaporation source so as to be parallel to the vapor induction end surface of the shielding plate, the second evaporation source has an induction action by the vapor induction end surface. As a result, a uniform composition film having a uniform thickness and no gradient is formed on the substrate surface, and a composition film by each of the first evaporation source and the second evaporation source is synthesized to form a high-quality pseudo binary gradient film. can do.

本発明によれば、基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な傾斜組成膜を形成することができる。   According to the present invention, it is possible to form a high-quality gradient composition film having a regular gradient by continuously changing the film thickness at each position from one end to the other end on the substrate surface at a constant ratio. .

[第1の実施の形態]
(傾斜組成膜製造装置の基本構成)
本実施の形態における傾斜組成膜製造装置は、蒸発源に収納された被蒸発材料を蒸発させ、基板面上の対象位置への蒸気の到達量に規則的な勾配を持たせて成膜することにより、基板面上の少なくとも1方向において傾斜組成を有する薄膜若しくはそれと同等の傾斜組成を有する薄膜を得るための成膜室装置と、被蒸発材料を蒸発させるための加熱装置と、成膜室装置内部の雰囲気の圧力を調整するための排気装置とを備え、これら成膜室装置と加熱装置と排気装置とが気密性を持ってステンレス部材で連結された構成である。
[First Embodiment]
(Basic configuration of gradient composition film production equipment)
The gradient composition film manufacturing apparatus in the present embodiment evaporates the material to be evaporated stored in the evaporation source, and forms a film with a regular gradient in the amount of vapor reaching the target position on the substrate surface. A film forming chamber apparatus for obtaining a thin film having a gradient composition in at least one direction on the substrate surface or a thin film having a gradient composition equivalent thereto, a heating apparatus for evaporating the material to be evaporated, and a film forming chamber apparatus The film forming chamber apparatus, the heating apparatus, and the exhaust apparatus are connected to each other with a stainless steel member having airtightness.

図1は、成膜室装置の構成を模式的に示した側面図である。ここでは、被蒸発材料が1成分の場合の傾斜組成膜製造装置について説明する。同図の成膜室装置では、被蒸発材料を収納した蒸発源100を細長形状とする。蒸発源100の一端は1a、他端は1bとする。蒸発源100に対向して基板300を配置し、蒸発源100と基板300との間に遮蔽板200を配置する。   FIG. 1 is a side view schematically showing the configuration of the film forming chamber apparatus. Here, a gradient composition film manufacturing apparatus when the material to be evaporated is a single component will be described. In the film forming chamber apparatus shown in the figure, the evaporation source 100 containing the material to be evaporated is elongated. One end of the evaporation source 100 is 1a, and the other end is 1b. The substrate 300 is disposed facing the evaporation source 100, and the shielding plate 200 is disposed between the evaporation source 100 and the substrate 300.

図2に示すように、遮蔽板200は、頂点をX1,Y1,Y2,X2とする四角形状であり、被蒸発材料から蒸発した蒸気の一部を遮蔽するための遮蔽面とその蒸気の残部を上方の基板面上の所定位置に誘導するための蒸気誘導端面を備える。ここでは、遮蔽面をX1Y1Y2X2で示し、蒸気誘導端面をX1X2で示す。   As shown in FIG. 2, the shielding plate 200 has a quadrangular shape with apexes X1, Y1, Y2, and X2, a shielding surface for shielding a part of the vapor evaporated from the material to be evaporated and the remainder of the vapor. Is provided with a steam guide end face for guiding the gas to a predetermined position on the upper substrate surface. Here, the shielding surface is indicated by X1Y1Y2X2, and the vapor guiding end surface is indicated by X1X2.

図3に示すように、基板300は、頂点をN1,M1,M2,N2とする四角形状であり、遮蔽板200によって遮蔽されなかった蒸気を付着させるための基板面を備える。ここでは、基板面をN1M1M2N2と示す。   As shown in FIG. 3, the substrate 300 has a quadrangular shape with apexes N1, M1, M2, and N2, and includes a substrate surface on which vapor that has not been shielded by the shielding plate 200 is attached. Here, the substrate surface is denoted as N1M1M2N2.

細長状の蒸発源100と遮蔽板200の遮蔽面X1Y1Y2X2は、平行となるようにそれぞれ配置される。また、遮蔽板200の遮蔽面X1Y1Y2X2と基板300の基板面N1M1M2N2も平行となるようにそれぞれ配置される。   The elongated evaporation source 100 and the shielding surfaces X1Y1Y2X2 of the shielding plate 200 are arranged so as to be parallel to each other. Further, the shielding surface X1Y1Y2X2 of the shielding plate 200 and the substrate surface N1M1M2N2 of the substrate 300 are also arranged in parallel.

(傾斜組成膜の成膜原理)
上記構成の傾斜組成膜製造装置では、加熱装置によって蒸発源100内に収納された被蒸発材料を加熱して蒸発させ、遮蔽板200の遮蔽面X1Y1Y2X2により蒸気の一部を遮蔽するとともに、遮蔽板200の蒸気誘導端面X1X2によって蒸気の残部を基板300の基板面N1M1M2N2上の所定位置に誘導し付着させ、成膜厚さの分布に規則的な勾配を持った傾斜組成膜を形成する。以下、図1を用いてより詳細に説明する。
(Gradient principle of gradient composition film)
In the gradient composition film manufacturing apparatus having the above-described configuration, the material to be evaporated housed in the evaporation source 100 is heated and evaporated by the heating device, and a part of the vapor is shielded by the shielding surface X1Y1Y2X2 of the shielding plate 200 and the shielding plate. The remaining portion of the vapor is guided to a predetermined position on the substrate surface N1M1M2N2 of the substrate 300 by the vapor induction end surface X1X2 of 200, thereby forming a gradient composition film having a regular gradient in the film thickness distribution. Hereinafter, it demonstrates in detail using FIG.

蒸発源100の一端1aから蒸発した蒸気は、一部は遮蔽面X1Y1Y2X2に遮蔽されるが、残りの大部分は基板面N1M1M2N2に到達する。この場合、その蒸気は、遮蔽板200の蒸気誘導端面X1X2と蒸発源100の一端1aとを結ぶ延長線と基板面N1M1M2N2とが交差するイ点に到達する。図1に示す蒸発源100の一端1aの僅か左側から蒸発した蒸気は、基板面N1M1M2N2のイ点の僅か右側に到達し、基板面N1M1M2N2上のイ点より左側は、蒸発した蒸気が全く到達しない部分となる。すなわち、イ点が、蒸気が到達する領域と蒸気が到達しない領域との境界の点となる。   A part of the vapor evaporated from one end 1a of the evaporation source 100 is shielded by the shielding surface X1Y1Y2X2, but most of the remainder reaches the substrate surface N1M1M2N2. In this case, the vapor reaches a point a where an extension line connecting the vapor guiding end surface X1X2 of the shielding plate 200 and the one end 1a of the evaporation source 100 intersects the substrate surface N1M1M2N2. The vapor evaporated from the left side of the one end 1a of the evaporation source 100 shown in FIG. 1 reaches the right side of the point A on the substrate surface N1M1M2N2, and the evaporated vapor does not reach the left side of the point A on the substrate surface N1M1M2N2. Part. That is, point a is a boundary point between a region where steam reaches and a region where steam does not reach.

一方、蒸発源100の他端1bから蒸発した蒸気は、基板面N1M1M2N2のロ点に到達する。蒸発源100の他端1bの僅か右側から蒸発した蒸気は、ロ点の僅か左側に到達する。すなわち、ロ点が、蒸気が到達する領域と蒸気が到達しない領域との境界の点となる。   On the other hand, the vapor evaporated from the other end 1b of the evaporation source 100 reaches the point B on the substrate surface N1M1M2N2. The vapor evaporated from the right side of the other end 1b of the evaporation source 100 reaches the left side of the point B. That is, the point B becomes a boundary point between the region where the steam reaches and the region where the steam does not reach.

蒸発源100を移動して、同図に示すように蒸発源の一端を2a、他端を2bの位置とした場合や、蒸発源の一端を3a、他端を3bの位置とした場合、蒸発源の一端を4a、他端を4bの位置とした場合においても同様である。   When the evaporation source 100 is moved and one end of the evaporation source is set to the position 2a and the other end is set to the position 2b as shown in the figure, or when one end of the evaporation source is set to the position 3a and the other end is set to the position 3b. The same applies to the case where one end of the source is at the position 4a and the other end is at the position 4b.

このような構成においては、蒸発源100は、特に細長状とすると、基板面N1M1M2N2上に到達する蒸気量にスム−ズな勾配を持たせることができ、遮蔽板200による遮蔽効果と相俟って、規則的な勾配を持たせるのに好ましい。   In such a configuration, if the evaporation source 100 is particularly elongated, the amount of vapor reaching the substrate surface N1M1M2N2 can have a smooth gradient, which is combined with the shielding effect of the shielding plate 200. Therefore, it is preferable to have a regular gradient.

しかし、このままでは、基板面N1M1M2N2への蒸気の衝突角度が基板面の中央部と周辺部とで相違することに起因して、基板面上の成膜量は基板面の中央部が多く、基板面の周辺部が少なくなる傾向があり、良質な成膜組成分布は得られない。   However, as it is, the amount of film formation on the substrate surface is large at the central portion of the substrate surface because the vapor collision angle with the substrate surface N1M1M2N2 is different between the central portion and the peripheral portion of the substrate surface. There is a tendency that the peripheral portion of the surface is reduced, and a good film-forming composition distribution cannot be obtained.

そこで、本実施の形態では、蒸発源100の一端1aおよび他端1bからの蒸気が基板面N1M1M2N2に衝突する際の交点イおよび交点ロにおける蒸気衝突角度がそれぞれ75度〜105度(実質的には90度プラス・マイナス15度)の範囲となるようにすることで、基板面N1M1M2N2上の特に中心部と周辺部とでの成膜量の違いを一定範囲内に抑制し、良質な成膜組成分布が得られるようにする。   Therefore, in the present embodiment, the vapor collision angles at the intersection points a and b when the vapors from the one end 1a and the other end 1b of the evaporation source 100 collide with the substrate surface N1M1M2N2 are 75 to 105 degrees (substantially, respectively). Is in the range of 90 degrees plus or minus 15 degrees), and the difference in film formation amount between the central portion and the peripheral portion on the substrate surface N1M1M2N2 is suppressed within a certain range, and high-quality film formation is achieved. A composition distribution should be obtained.

具体的には、蒸発源100の一端1aと遮蔽板200の蒸気誘導端面X1X2とを結ぶ延長線と基板面N1M1M2N2とが交点イでなす蒸気衝突角度が75度〜105度の範囲になるようにするとともに、蒸発源100の他端1bと遮蔽板200の蒸気誘導端面X1X2とを結ぶ延長線と基板面N1M1M2N2とが交点ロでなす蒸気衝突角度が75度〜105度の範囲となるように、蒸発源100、遮蔽板200、基板300の相対位置を調節する。   Specifically, the vapor collision angle formed between the extended line connecting the one end 1a of the evaporation source 100 and the vapor guiding end surface X1X2 of the shielding plate 200 and the substrate surface N1M1M2N2 is in the range of 75 to 105 degrees. In addition, the vapor collision angle formed by the intersection line between the extension line connecting the other end 1b of the evaporation source 100 and the vapor guiding end surface X1X2 of the shielding plate 200 and the substrate surface N1M1M2N2 is in the range of 75 to 105 degrees. The relative positions of the evaporation source 100, the shielding plate 200, and the substrate 300 are adjusted.

基板面N1M1M2N2への蒸気衝突角度を75度〜105度の範囲とするのは、後述するように、蒸気衝突角度が75度未満では、傾斜組成膜の成膜量(成膜厚さ)が、理想状態と比べて約90%以下に低下し(成膜量が小となる)、良質の成膜状態とはならないからである。蒸気衝突角が60度にまで低下すると、理想状態と比べて更に小さく75%程度に低下し(成膜量が更に小となる)、一層良質の成膜状態とはならない。蒸気衝突角が30度にまで低下すると、理想状態と比べて更に小さい25%程度に小となり(成膜量が更に小となる)、一層良質の成膜状態とはならない。   The reason why the vapor collision angle with respect to the substrate surface N1M1M2N2 is in the range of 75 ° to 105 ° is that, as will be described later, when the vapor collision angle is less than 75 °, the film formation amount (film formation thickness) of the gradient composition film is This is because the film thickness is reduced to about 90% or less compared to the ideal state (the amount of film formation is small), and the film formation state is not high. When the vapor collision angle is reduced to 60 degrees, the vapor collision angle is further reduced to about 75% as compared with the ideal state (the amount of film formation is further reduced), and the film formation state of higher quality is not achieved. When the vapor collision angle is reduced to 30 degrees, it is further reduced to about 25%, which is smaller than the ideal state (the film formation amount is further reduced), and the film formation state is not further improved.

一方、基板面N1M1M2N2への蒸気衝突角度が105度を越えた場合も、成膜量(成膜厚さ)は、理想状態と比べて約90%以下に低下し(成膜量が小となる)、同様に良質の成膜状態とはならない。蒸気衝突角度が120度となると、理想状態と比べて更に小さく75%程度に低下し(成膜量が更に小)となり一層良質の成膜状態とはならない。蒸気衝突角度が150度となると、理想状態と比べて更に小さく25%程度に低下し(成膜量が更に小)、一層良質の成膜状態とはならない。   On the other hand, even when the vapor collision angle to the substrate surface N1M1M2N2 exceeds 105 degrees, the film formation amount (film formation thickness) decreases to about 90% or less compared to the ideal state (the film formation amount becomes small). ), Similarly, a high-quality film is not formed. When the vapor collision angle is 120 degrees, it is further reduced to about 75% compared to the ideal state (the amount of film formation is further reduced), and the film formation state does not become higher. When the vapor collision angle is 150 degrees, it is further reduced to about 25% compared to the ideal state (the amount of film formation is further reduced), and the film formation state does not become even better.

以上から、傾斜組成膜の良質な組成分布を得るためには、基板面N1M1M2N2への蒸気衝突角度を75度〜105度の範囲とすることが最適である。   From the above, in order to obtain a high-quality composition distribution of the gradient composition film, it is optimal to set the vapor collision angle to the substrate surface N1M1M2N2 in the range of 75 to 105 degrees.

(蒸発源、遮蔽板、基板の相対的な位置関係)
本実施の形態では、基板面への蒸気衝突角度を75度〜105度の範囲にするとともに、蒸発源100と遮蔽板200との距離をP、遮蔽板200と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように、蒸発源100、遮蔽板200、基板300の位置を調節する。これは、P/(P+Q)の値が0.1よりも小さいと遮蔽板が蒸発源に近すぎ、この値が0.9よりも大きいと遮蔽板が基板に近すぎるため、いずれも良質な傾斜組成膜を形成することができないからである。P/(P+Q)の値を0.1〜0.9の範囲とすることで、基板面上における成膜厚さに連続性があり、かつ基板面の各位置における成膜量(成膜厚さ)が一定の比率で分布することとなる。
(Relative positional relationship between evaporation source, shielding plate, and substrate)
In the present embodiment, the vapor collision angle with the substrate surface is in the range of 75 to 105 degrees, the distance between the evaporation source 100 and the shielding plate 200 is P, and the distance between the shielding plate 200 and the substrate 300 is Q. The positions of the evaporation source 100, the shielding plate 200, and the substrate 300 are adjusted so that the value of P / (P + Q) is in the range of 0.1 to 0.9. This is because if the value of P / (P + Q) is smaller than 0.1, the shielding plate is too close to the evaporation source, and if this value is larger than 0.9, the shielding plate is too close to the substrate. This is because a gradient composition film cannot be formed. By setting the value of P / (P + Q) in the range of 0.1 to 0.9, the film formation thickness on the substrate surface is continuous, and the film formation amount (film formation thickness at each position on the substrate surface). Will be distributed at a constant ratio.

したがって、本実施の形態によれば、蒸発源100と基板300との間に遮蔽板200を設置することによって、遮蔽板200の蒸気誘導端面X1X2が遮断されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与えると共に、蒸発源100の一端1aと蒸気誘導端面X1X2とを結ぶ延長線が基板面N1M1M2N2となす蒸気衝突角度と、蒸発源100の他端1bと蒸気誘導端面X1X2とを結ぶ延長線が基板面N1M1M2N2となす蒸気衝突角度がそれぞれ75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限されるので、基板面上の一端から他端に向かう各位置における成膜量(成膜厚さ)が一定の比率で連続的に変化し規則的な勾配を持った良質な傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, by installing the shielding plate 200 between the evaporation source 100 and the substrate 300, the remainder of the vapor that is not blocked by the vapor guiding end surface X1X2 of the shielding plate 200 is placed on the substrate surface. The deposition amount distribution is inclined by being guided to a predetermined position, and the vapor collision angle formed by the extended line connecting one end 1a of the evaporation source 100 and the vapor induction end surface X1X2 with the substrate surface N1M1M2N2, and the other end 1b of the evaporation source 100 Since the vapor collision angle between the extended line connecting the substrate and the vapor guide end surface X1X2 with the substrate surface N1M1M2N2 is in the range of 75 to 105 degrees, a synergistic effect is ensured in ensuring the uniformity of the film thickness. Since the difference in film formation amount (film formation thickness) between the central part and the peripheral part on the substrate surface is limited within a certain range, each position from one end to the other end on the substrate surface Oke Amount deposited (deposition thickness) can form a high quality gradient composition film having a continuously changed regularly gradient at a constant rate.

本実施の形態によれば、蒸発源100と遮蔽板200との距離をP、遮蔽板200と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように蒸発源100、遮蔽板200、基板300の位置を調節したことで、基板面上での所定位置における成膜量の分布に規則的な勾配を持たせることができ、化学、金属、セラミックス材料分野で常用されているような良質な組成分布が得られ、さらに良質な傾斜組成膜を形成することができる。   According to the present embodiment, the value of P / (P + Q) is 0.1 to 0.3 when the distance between the evaporation source 100 and the shielding plate 200 is P and the distance between the shielding plate 200 and the substrate 300 is Q. By adjusting the positions of the evaporation source 100, the shielding plate 200, and the substrate 300 so as to be in the range of 9, it is possible to give a regular gradient to the distribution of the film formation amount at a predetermined position on the substrate surface, A high-quality composition distribution that is commonly used in the chemical, metal, and ceramic material fields can be obtained, and a higher-quality gradient composition film can be formed.

[第2の実施の形態]
本実施の形態では、2個の蒸発源、2枚の遮蔽板を備えた2成分系の傾斜成膜製造装置について説明する。
[Second Embodiment]
In the present embodiment, a two-component gradient film formation manufacturing apparatus including two evaporation sources and two shielding plates will be described.

図4の側面図に示すように、本実施の形態における傾斜成膜製造装置は、成膜室装置内に第1蒸発源110、第2蒸発源120、第1遮蔽板210、第2遮蔽板220、基板300を備える。図示しない加熱装置、排気装置の構成については第1の実施の形態と同様である。   As shown in the side view of FIG. 4, the inclined film formation manufacturing apparatus in the present embodiment includes a first evaporation source 110, a second evaporation source 120, a first shielding plate 210, and a second shielding plate in the film formation chamber apparatus. 220 and a substrate 300. The configurations of a heating device and an exhaust device (not shown) are the same as those in the first embodiment.

図5(a)の平面図および同図(b)の断面図に示すように、第1遮蔽板210は四角形状であり遮蔽面W1Z1Z2W2および第1蒸気誘導端面W1W2を備える。第2遮蔽板220は同様に遮蔽面Y1X1X2Y2および第2蒸気誘導端面X1X2を備える。   As shown in the plan view of FIG. 5A and the cross-sectional view of FIG. 5B, the first shielding plate 210 has a quadrangular shape and includes a shielding surface W1Z1Z2W2 and a first steam guide end surface W1W2. Similarly, the second shielding plate 220 includes a shielding surface Y1X1X2Y2 and a second vapor guiding end surface X1X2.

第1遮蔽板210と第2遮蔽板220は、第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2が対向するように配置される。特に本実施の形態では、第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2とが平行となるように配置する。このように配置することで、第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2により蒸気通過領域X1X2W1W2を形成する。   The first shielding plate 210 and the second shielding plate 220 are disposed so that the first steam guide end face W1W2 and the second steam guide end face X1X2 face each other. Particularly in the present embodiment, the first steam guide end face W1W2 and the second steam guide end face X1X2 are arranged in parallel. By arranging in this way, the steam passage region X1X2W1W2 is formed by the first steam guide end face W1W2 and the second steam guide end face X1X2.

また、第1蒸発源110、第2蒸発源120、第1遮蔽板210の遮蔽面W1Z1Z2W2、第2遮蔽板220の遮蔽面Y1X1X2Y2は平行となるようにそれぞれ配置する。これら遮蔽面W1Z1Z2W2、遮蔽面Y1X1X2Y2と、基板300の基板面も平行となるようにそれぞれ配置する。   Further, the first evaporation source 110, the second evaporation source 120, the shielding surface W1Z1Z2W2 of the first shielding plate 210, and the shielding surface Y1X1X2Y2 of the second shielding plate 220 are arranged in parallel. The shielding surfaces W1Z1Z2W2, the shielding surfaces Y1X1X2Y2, and the substrate surface of the substrate 300 are also arranged in parallel.

本傾斜組成膜製造装置における傾斜組成膜の成膜では、まず第1蒸発源110の一端11aと第1遮蔽板210の第1蒸気誘導端面W1W2とを結ぶ延長線が基板300の基板面N1M1M2N2に交差する交点をリ点としたとき、この延長線と基板面N1M1M2N2とがリ点でなす蒸気衝突角度が75度〜105度の範囲になるように第1蒸発源110、第1遮蔽板210、基板300の位置を調節する。   In the formation of the gradient composition film in the gradient composition film manufacturing apparatus, first, an extension line connecting the one end 11a of the first evaporation source 110 and the first vapor guiding end face W1W2 of the first shielding plate 210 is formed on the substrate surface N1M1M2N2 of the substrate 300. The first evaporation source 110, the first shielding plate 210, and the vapor collision angle formed by the extended line and the substrate surface N1M1M2N2 at the re-point when the crossing point is the re-point are in the range of 75 to 105 degrees. The position of the substrate 300 is adjusted.

さらに、第1蒸発源110の他端11bと第2遮蔽板220の第2蒸気誘導端面X1X2とを結ぶ延長線が基板面N1M1M2N2に交差する交点がリ点に一致し、かつこの延長線と基板面N1M1M2N2とがリ点でなす蒸気衝突角度が75度〜105度の範囲になるように第1蒸発源110、第2遮蔽板220、基板300の位置を調節する。   Furthermore, the intersection of the extension line connecting the other end 11b of the first evaporation source 110 and the second vapor guiding end face X1X2 of the second shielding plate 220 intersects the substrate surface N1M1M2N2, and the extension line and the substrate The positions of the first evaporation source 110, the second shielding plate 220, and the substrate 300 are adjusted so that the vapor collision angle between the surface N1M1M2N2 and the surface N1M1M2N2 is in the range of 75 to 105 degrees.

第2蒸発源120については、その一端12cと第1遮蔽板210の第1蒸気誘導端面W1W2とを結ぶ延長線が基板面N1M1M2N2に交差する交点をヌとしたとき、この延長線と基板面N1M1M2N2とがヌ点でなす蒸気衝突角度が75度〜105度の範囲になるように第2蒸発源120、第1遮蔽板210、基板300の位置を調節する。   As for the second evaporation source 120, when an extension line connecting the one end 12c and the first vapor guiding end face W1W2 of the first shielding plate 210 intersects the substrate surface N1M1M2N2, this extension line and the substrate surface N1M1M2N2 The positions of the second evaporation source 120, the first shielding plate 210, and the substrate 300 are adjusted so that the vapor collision angle between the two points is in the range of 75 to 105 degrees.

さらに、第2蒸発源120の他端12dと第2遮蔽板220の第2蒸気誘導端面X1X2とを結ぶ延長線が基板面N1M1M2N2に交差する交点がヌ点に一致し、かつこの延長線と基板面N1M1M2N2とがヌ点でなす蒸気衝突角度が75度〜105度の範囲となるように、第2蒸発源120、第2遮蔽板220、基板300の位置を調節する。   Further, the intersection of the extension line connecting the other end 12d of the second evaporation source 120 and the second vapor guiding end face X1X2 of the second shielding plate 220 intersects the substrate surface N1M1M2N2, and the extension line and the substrate. The positions of the second evaporation source 120, the second shielding plate 220, and the substrate 300 are adjusted so that the vapor collision angle between the surface N1M1M2N2 and the surface N1M1M2N2 is in the range of 75 to 105 degrees.

これらの蒸気衝突角度を75度未満とすると、基板面上の中心部と周辺部とで成膜量に少なくとも10%を越える差異が見られるようになり、厚さの均一性の観点から良質な成膜とはいえなくなる。蒸気衝突角度が105度を越えた場合も同様である。   When these vapor collision angles are less than 75 degrees, a difference of at least 10% in film formation amount is observed between the central portion and the peripheral portion on the substrate surface, which is good in terms of thickness uniformity. It cannot be said to be film formation. The same applies when the steam collision angle exceeds 105 degrees.

本傾斜組成膜製造装置では、さらに、第1蒸発源110と第1遮蔽板210との距離をP、第1遮蔽板210と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように、第1蒸発源110、第1遮蔽板210、基板300の位置を調節する。第2蒸発源120、第2遮蔽板220、基板300の位置についても同様に調節する。   In the gradient composition film manufacturing apparatus, P / (P + Q) where P is the distance between the first evaporation source 110 and the first shielding plate 210, and Q is the distance between the first shielding plate 210 and the substrate 300. The positions of the first evaporation source 110, the first shielding plate 210, and the substrate 300 are adjusted so that the values are in the range of 0.1 to 0.9. The positions of the second evaporation source 120, the second shielding plate 220, and the substrate 300 are similarly adjusted.

したがって、本実施の形態によれば、第1蒸発源110および第2蒸発源120と基板300との間に第1遮蔽板210および第2遮蔽板220を設置することによって、第1遮蔽板210の第1蒸気誘導端面W1W2および第2遮蔽板220の第2蒸気誘導端面X1X2が、遮断されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与える。これと共に、第1蒸発源110の一端11aからの蒸気と他端11bからの蒸気、第2蒸発源120の一端12cからの蒸気と他端12dからの蒸気についての全ての蒸気衝突角度が75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限されるので、基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な2成分系の傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, the first shielding plate 210 and the second shielding plate 220 are installed between the first evaporation source 110 and the second evaporation source 120 and the substrate 300, whereby the first shielding plate 210. The first steam guide end face W1W2 and the second steam guide end face X1X2 of the second shielding plate 220 guide the remaining steam that has not been shut off to a predetermined position on the substrate surface to incline the deposition amount distribution. At the same time, the vapor collision angle of the vapor from the one end 11a and the vapor from the other end 11b of the first evaporation source 110, the vapor from the one end 12c of the second evaporation source 120 and the vapor from the other end 12d is 75 degrees. A synergistic effect can be obtained by ensuring the uniformity of the film thickness by setting the range to ˜105 degrees, and the film deposition amount (film thickness) at the central portion and the peripheral portion on the substrate surface. 2) is limited to a certain range, so that the film thickness at each position from one end to the other end on the substrate surface continuously changes at a constant ratio and has a regular gradient. A component-based gradient composition film can be formed.

本実施の形態によれば、第1蒸発源110と第1遮蔽板210との距離をP、第1遮蔽板210と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように第1蒸発源110、第1遮蔽板210、基板300の位置を調節し、また第2蒸発源120、第2遮蔽板220、基板300についても同様に位置を調節したことで、基板面上での所定位置における成膜量の分布に規則的な勾配を持たせることができ、化学、金属、セラミックス材料分野で常用されているような良質な組成分布が得られ、さらに良質な傾斜組成膜を形成することができる。   According to the present embodiment, the value of P / (P + Q) when the distance between the first evaporation source 110 and the first shielding plate 210 is P, and the distance between the first shielding plate 210 and the substrate 300 is Q. The positions of the first evaporation source 110, the first shielding plate 210, and the substrate 300 are adjusted to be in the range of 0.1 to 0.9, and the second evaporation source 120, the second shielding plate 220, and the substrate 300 are also adjusted. Similarly, by adjusting the position, it is possible to give a regular gradient to the distribution of the amount of film formation at a predetermined position on the substrate surface, which is a high quality that is commonly used in the chemical, metal and ceramic materials fields. A composition distribution is obtained, and an even better quality gradient composition film can be formed.

なお、本実施の形態においては、第1遮蔽板210の第1蒸気誘導端面W1W2と、第2遮蔽板220の第2蒸気誘導端面X1X2を平行に配置して蒸気通過領域を形成するようにした(距離X1W1=距離X2W2)が、これに限られるものではない。例えば基板面上に傾斜組成膜を形成しようとする位置に応じて、第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2がハ字型となるように第1遮蔽板210と第2遮蔽板220を配置してもよい。この場合は、図5(a)において、W2とX2の距離、W1とX1の距離のいずれか一方の距離が他方の距離よりも長くなるように配置する(距離X1W1>距離X2W2または距離X1W1<距離X2W2)。   In the present embodiment, the first steam guide end face W1W2 of the first shielding plate 210 and the second steam guide end face X1X2 of the second shield plate 220 are arranged in parallel to form a steam passage region. (Distance X1W1 = Distance X2W2) is not limited to this. For example, the first shield plate 210 and the second shield plate 220 are formed so that the first steam guide end face W1W2 and the second steam guide end face X1X2 have a C shape according to the position where the gradient composition film is to be formed on the substrate surface. May be arranged. In this case, in FIG. 5A, the distance between W2 and X2 or the distance between W1 and X1 is set longer than the other distance (distance X1W1> distance X2W2 or distance X1W1 < Distance X2W2).

第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2をハ字型に配置する場合には、第1蒸気誘導端面W1W2の端W1と第2蒸気誘導端面X1X2の端X1が接触し(距離X1W1=0)、または第1蒸気誘導端面W1W2の端W2と第2蒸気誘導端面X1X2の端X2が接触するように配置してもよい(距離X2W2=0)。   When the first steam guide end face W1W2 and the second steam guide end face X1X2 are arranged in a C shape, the end W1 of the first steam guide end face W1W2 and the end X1 of the second steam guide end face X1X2 are in contact (distance X1W1 = 0), or the end W2 of the first steam guide end face W1W2 and the end X2 of the second steam guide end face X1X2 may be disposed (distance X2W2 = 0).

[第3の実施の形態]
本実施の形態では、2個の蒸発源、1枚の遮蔽板を備えた2成分系の傾斜成膜製造装置について説明する。
[Third Embodiment]
In this embodiment, a two-component gradient film formation manufacturing apparatus including two evaporation sources and one shielding plate will be described.

図6の側面図に示すように、本実施の形態における傾斜成膜製造装置は、成膜室装置内に第1蒸発源110、第2蒸発源120、遮蔽板230、基板300を備える。図示しない加熱装置、排気装置の構成については第1の実施の形態と同様である。   As shown in the side view of FIG. 6, the inclined film forming apparatus in the present embodiment includes a first evaporation source 110, a second evaporation source 120, a shielding plate 230, and a substrate 300 in the film forming chamber apparatus. The configurations of a heating device and an exhaust device (not shown) are the same as those in the first embodiment.

第1蒸発源110、第2蒸発源120は細長形状である。第1蒸発源110の一端を11a、他端を11bとし、第2蒸発源120の一端を12c、他端を12dとする。   The first evaporation source 110 and the second evaporation source 120 have an elongated shape. One end of the first evaporation source 110 is 11a, the other end is 11b, one end of the second evaporation source 120 is 12c, and the other end is 12d.

図7(a)の平面図および同図(b)の断面図に示すように、遮蔽板230は四角形状であり、頂点X3,W3,W4,X4で囲まれた遮蔽面X3W3W4X4と、その外端面に第1蒸気誘導端面W3W4、第2蒸気誘導端面X3X4を備える。第1蒸気誘導端面W3W4と第2蒸気誘導端面X3X4は対向しており、特に本実施の形態では、第1蒸気誘導端面W3W4と第2蒸気誘導端面X3X4とが平行となっている。   As shown in the plan view of FIG. 7A and the cross-sectional view of FIG. 7B, the shielding plate 230 has a quadrangular shape, the shielding surface X3W3W4X4 surrounded by the vertices X3, W3, W4, and X4, A first steam guide end face W3W4 and a second steam guide end face X3X4 are provided on the end face. The first steam guide end face W3W4 and the second steam guide end face X3X4 are opposed to each other. In particular, in the present embodiment, the first steam guide end face W3W4 and the second steam guide end face X3X4 are parallel to each other.

本傾斜組成膜製造装置における傾斜組成膜の成膜では、まず第1蒸発源110の一端11aと遮蔽板230の第1蒸気誘導端面W3W4とを結ぶ延長線と基板300の基板面N1M1M2N2とが交差する交点をリ点とするとき、この延長線と基板面N1M1M2N2とがリ点でなす蒸気衝突角度が75度〜105度の範囲になるように第1蒸発源110、遮蔽板230、基板300の位置を調節する。   In the formation of the gradient composition film in the gradient composition film manufacturing apparatus, first, the extension line connecting the one end 11a of the first evaporation source 110 and the first vapor induction end face W3W4 of the shielding plate 230 intersects the substrate surface N1M1M2N2 of the substrate 300. Of the first evaporation source 110, the shielding plate 230, and the substrate 300 so that the vapor collision angle between the extended line and the substrate surface N1M1M2N2 is 75 ° to 105 °. Adjust the position.

さらに、第1蒸発源110の他端11bと遮蔽板230の第2蒸気誘導端面X3X4とを結ぶ延長線が基板面N1M1M2N2に交差する交点がリ点に一致し、かつこの延長線と基板面N1M1M2N2とがリ点でなす蒸気衝突角度が75度〜105度の範囲になるように第1蒸発源110、遮蔽板230、基板300の位置を調節する。   Furthermore, the intersection where the extension line connecting the other end 11b of the first evaporation source 110 and the second vapor induction end face X3X4 of the shielding plate 230 intersects the substrate surface N1M1M2N2 is coincident with the re-point, and this extension line and the substrate surface N1M1M2N2 The positions of the first evaporation source 110, the shielding plate 230, and the substrate 300 are adjusted so that the vapor collision angle between the two points is in the range of 75 to 105 degrees.

第2蒸発源120については、その一端12cと遮蔽板230の第1蒸気誘導端面W3W4とを結ぶ延長線が基板面N1M1M2N2に交差する交点をヌとしたとき、この延長線と基板面N1M1M2N2とがヌ点でなす蒸気衝突角度が75度〜105度の範囲になるように第2蒸発源120、遮蔽板230、基板300の位置を調節する。   With respect to the second evaporation source 120, when an extension line connecting one end 12c of the shielding plate 230 and the first vapor induction end face W3W4 intersects the substrate surface N1M1M2N2, this extension line and the substrate surface N1M1M2N2 are The positions of the second evaporation source 120, the shielding plate 230, and the substrate 300 are adjusted so that the vapor collision angle at the point N is in the range of 75 to 105 degrees.

さらに、第2蒸発源120の他端12dと遮蔽板230の第2蒸気誘導端面X3X4とを結ぶ延長線が基板面N1M1M2N2に交差する交点がヌ点に一致し、かつこの延長線と基板面N1M1M2N2とがヌ点でなす蒸気衝突角度が75度〜105度の範囲となるように、第2蒸発源120、遮蔽板230、基板300の位置を調節する。   Further, the intersection of the extension line connecting the other end 12d of the second evaporation source 120 and the second vapor induction end face X3X4 of the shielding plate 230 intersects the substrate surface N1M1M2N2, and coincides with the point N, and this extension line and the substrate surface N1M1M2N2 The positions of the second evaporation source 120, the shielding plate 230, and the substrate 300 are adjusted so that the vapor collision angle formed between the two points is in the range of 75 to 105 degrees.

これらの蒸気衝突角度を75度未満とすると、基板面上の中心部と周辺部との成膜量に少なくとも10%を越える差異が見られるようになり、厚さの均一性の観点から良質な成膜とはいえなくなる。蒸気衝突角度が105度を越えた場合も同様である。   When these vapor collision angles are less than 75 degrees, a difference of at least 10% is observed in the amount of film formation between the central portion and the peripheral portion on the substrate surface, which is good in terms of thickness uniformity. It cannot be said to be film formation. The same applies when the steam collision angle exceeds 105 degrees.

本傾斜組成膜製造装置では、さらに、第1蒸発源110と遮蔽板230との距離をP、遮蔽板230と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように、第1蒸発源110、遮蔽板230、基板300の位置を調節する。第2蒸発源120、遮蔽板230、基板300の位置関係についても同様に調節する。   In the gradient composition film manufacturing apparatus, further, the value of P / (P + Q) is 0 when the distance between the first evaporation source 110 and the shielding plate 230 is P and the distance between the shielding plate 230 and the substrate 300 is Q. The positions of the first evaporation source 110, the shielding plate 230, and the substrate 300 are adjusted so as to be in the range of 1 to 0.9. The positional relationship among the second evaporation source 120, the shielding plate 230, and the substrate 300 is similarly adjusted.

したがって、本実施の形態によれば、第1蒸発源110および第2蒸発源120と基板300との間に遮蔽板230を配置することによって、遮蔽板230の第1蒸気誘導端面W3W4および第2蒸気誘導端面X3X4が、遮断されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与える。これと共に、第1蒸発源110の一端11aからの蒸気と他端11bからの蒸気、第2蒸発源120の一端12cからの蒸気と他端12dからの蒸気の全てについての蒸気衝突角度が75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限されるので、基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な2成分系の傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, by disposing the shielding plate 230 between the first evaporation source 110 and the second evaporation source 120 and the substrate 300, the first vapor induction end face W3W4 and the second evaporation surface of the shielding plate 230 are arranged. The steam guide end face X3X4 guides the remaining steam that has not been blocked to a predetermined position on the substrate surface, and gives an inclination to the deposition amount distribution. At the same time, the steam collision angle for all of the steam from the one end 11a and the other end 11b of the first evaporation source 110, the steam from the one end 12c of the second evaporation source 120 and the steam from the other end 12d is 75 degrees. A synergistic effect can be obtained by ensuring the uniformity of the film thickness by setting the range to ˜105 degrees, and the film deposition amount (film thickness) at the central portion and the peripheral portion on the substrate surface. 2) is limited to a certain range, so that the film thickness at each position from one end to the other end on the substrate surface continuously changes at a constant ratio and has a regular gradient. A component-based gradient composition film can be formed.

本実施の形態によれば、第1蒸発源110と遮蔽板230との距離をP、遮蔽板230と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように第1蒸発源110、遮蔽板230、基板300の位置を調節し、また第2蒸発源120、遮蔽板230、基板300についても同様に位置を調節したことで、基板面上での所定位置における成膜量の分布に規則的な勾配を持たせることができ、化学、金属、セラミックス材料分野で常用されているような良質な組成分布が得られ、さらに良質な傾斜組成膜を形成することができる。   According to the present embodiment, the value of P / (P + Q) is 0.1 to 0.1 when the distance between the first evaporation source 110 and the shielding plate 230 is P, and the distance between the shielding plate 230 and the substrate 300 is Q. By adjusting the positions of the first evaporation source 110, the shielding plate 230, and the substrate 300 so as to be in the range of 0.9, and also adjusting the positions of the second evaporation source 120, the shielding plate 230, and the substrate 300 in the same manner. It is possible to provide a regular gradient in the distribution of the film formation amount at a predetermined position on the substrate surface, and to obtain a high-quality composition distribution that is commonly used in the chemical, metal and ceramic material fields, A gradient composition film can be formed.

なお、本実施の形態においては、遮蔽板230の外端面を第1蒸気誘導端面W3W4、第2蒸気誘導端面X3X4としたが、これに限られるものではない。例えば、図7(a)(b)に示すように、頂点をY3Z3Z4Y4とする四角形状の板の中央部を四角形にくり抜き、このくり抜いた四角形の対向する端面を第1蒸気誘導端面W3W4、第2蒸気誘導端面X3X4とし、これら第1蒸気誘導端面W3W4、第2蒸気誘導端面X3X4により蒸気通過領域を形成するようにしてもよい。この場合も上記と同様の効果を得ることができる。   In the present embodiment, the outer end face of the shielding plate 230 is the first steam guide end face W3W4 and the second steam guide end face X3X4. However, the present invention is not limited to this. For example, as shown in FIGS. 7 (a) and 7 (b), the center part of a rectangular plate whose top is Y3Z3Z4Y4 is cut out into a quadrangle, and the opposite end faces of the cut out quadrangle are formed as a first steam guide end face W3W4, second The steam guide end face X3X4 may be used, and a steam passage region may be formed by the first steam guide end face W3W4 and the second steam guide end face X3X4. In this case, the same effect as described above can be obtained.

また、本実施の形態においては、遮蔽板230の第1蒸気誘導端面W1W2と、第2蒸気誘導端面X1X2を平行に配置したが、これに限られるものではない。基板面上に傾斜組成膜を形成しようとする位置に応じて、例えば第1蒸気誘導端面W1W2と第2蒸気誘導端面X1X2がハ字型となるように遮蔽板の形状を定めてもよい。この場合は、図7(a)において、第1蒸気誘導端面W3W4の端W3と第2蒸気誘導端面X3X4の端X3の距離、第1蒸気誘導端面W3W4の端W4と第2蒸気誘導端面X3X4の端X4の距離のいずれか一方の距離が他方の距離よりも長くなるようにする。   In the present embodiment, the first steam guide end face W1W2 and the second steam guide end face X1X2 of the shielding plate 230 are arranged in parallel, but the present invention is not limited to this. Depending on the position at which the gradient composition film is to be formed on the substrate surface, the shape of the shielding plate may be determined so that, for example, the first steam guide end face W1W2 and the second steam guide end face X1X2 have a square shape. In this case, in FIG. 7A, the distance between the end W3 of the first steam guide end face W3W4 and the end X3 of the second steam guide end face X3X4, the end W4 of the first steam guide end face W3W4 and the second steam guide end face X3X4. Either one of the distances of the end X4 is set to be longer than the other distance.

また、第1蒸気誘導端面W3W4と第2蒸気誘導端面X3X4をハ字型に配置する場合には、第1蒸気誘導端面W3W4の端W3と第2蒸気誘導端面X3X4の端X3が接触し、又は第1蒸気誘導端面W3W4の端W4と第2蒸気誘導端面X3X4の端X4が接触するようにしてもよい。   When the first steam guide end face W3W4 and the second steam guide end face X3X4 are arranged in a C shape, the end W3 of the first steam guide end face W3W4 and the end X3 of the second steam guide end face X3X4 are in contact with each other, or The end W4 of the first steam guide end face W3W4 and the end X4 of the second steam guide end face X3X4 may be in contact with each other.

[第4の実施の形態]
本実施の形態では、2個の蒸発源、1枚の遮蔽板を備えた2成分系の傾斜成膜製造装置の別の例について説明する。
[Fourth Embodiment]
In the present embodiment, another example of a two-component gradient film formation manufacturing apparatus including two evaporation sources and one shielding plate will be described.

図8の平面図に示すように、本実施の形態における傾斜成膜製造装置は、成膜室装置内に第1蒸発源110、第2蒸発源120、遮蔽板220、基板300(図示せず)を備える。第1蒸発源110、第2蒸発源120は細長形状である。第1蒸発源110の一端を11a、他端を11bとし、第2蒸発源120の一端を12c、他端を12dとする。図示しない基板300、加熱装置、排気装置の構成については第2の実施の形態と同様である。   As shown in the plan view of FIG. 8, the inclined film formation manufacturing apparatus in the present embodiment includes a first evaporation source 110, a second evaporation source 120, a shielding plate 220, and a substrate 300 (not shown) in the film formation chamber apparatus. ). The first evaporation source 110 and the second evaporation source 120 have an elongated shape. One end of the first evaporation source 110 is 11a, the other end is 11b, one end of the second evaporation source 120 is 12c, and the other end is 12d. The configurations of the substrate 300, the heating device, and the exhaust device (not shown) are the same as those in the second embodiment.

本実施の形態では、第1蒸発源110、遮蔽板220、基板300の基本的な位置関係については、第2の実施の形態において図4を用いて説明したものと同様であるが、本傾斜成膜製造装置は、図8に示すように第2蒸発源120が遮蔽板220の蒸気誘導端面X1X2に平行になるように第1蒸発源110と第2蒸発源120をT字型に配置した構成である。   In the present embodiment, the basic positional relationship among the first evaporation source 110, the shielding plate 220, and the substrate 300 is the same as that described in the second embodiment with reference to FIG. In the film formation manufacturing apparatus, the first evaporation source 110 and the second evaporation source 120 are arranged in a T shape so that the second evaporation source 120 is parallel to the vapor guiding end face X1X2 of the shielding plate 220 as shown in FIG. It is a configuration.

本傾斜組成膜製造装置における傾斜組成膜の成膜では、まず第1蒸発源110の一端11aと遮蔽板230の蒸気誘導端面X1X2とを結ぶ延長線と基板300の基板面N1M1M2N2とが交差する交点と、第1蒸発源110の他端11bと遮蔽板230の蒸気誘導端面X1X2とを結ぶ延長線と基板300の基板面N1M1M2N2とが交差する交点とが一致し、かつ各延長線が基板面N1M1M2N2となす蒸気衝突角度が75度〜105度の範囲になるように、第1蒸発源110、遮蔽板220、基板300の位置を調節する。これにより、基板面N1M1M2N2上に規則的な勾配をもつ傾斜組成膜を形成する。   In the formation of the gradient composition film in the gradient composition film manufacturing apparatus, first, the intersection where the extension line connecting the one end 11a of the first evaporation source 110 and the vapor guiding end surface X1X2 of the shielding plate 230 and the substrate surface N1M1M2N2 of the substrate 300 intersect. And the intersection line connecting the other end 11b of the first evaporation source 110 and the vapor guiding end face X1X2 of the shielding plate 230 and the intersection point where the substrate surface N1M1M2N2 of the substrate 300 intersects, and each extension line corresponds to the substrate surface N1M1M2N2. The positions of the first evaporation source 110, the shielding plate 220, and the substrate 300 are adjusted so that the vapor collision angle between the first evaporation source 110, the shielding plate 220, and the substrate 300 is adjusted. Thus, a gradient composition film having a regular gradient is formed on the substrate surface N1M1M2N2.

この一方、第2蒸発源120からの蒸気は、遮蔽板230の蒸気誘導端面X1X2による誘導作用を受けることがないので、基板面N1M1M2N2上に傾斜組成膜ではなく厚さが均一で勾配のない組成膜を形成することになる。   On the other hand, since the vapor from the second evaporation source 120 is not subjected to the induction action by the vapor induction end face X1X2 of the shielding plate 230, it is not a gradient composition film on the substrate surface N1M1M2N2, but has a uniform thickness and no gradient. A film will be formed.

このように、第1蒸発源110からの蒸気と第2蒸発源120からの蒸気との合成によって擬似2成分系の傾斜組成膜を形成する。第1蒸発源110と第2蒸発源120のいずれを先に蒸発させるか、あるいは同時に蒸発させるかは、適宜選択するものとする。   In this way, a pseudo two-component gradient composition film is formed by combining the vapor from the first evaporation source 110 and the vapor from the second evaporation source 120. Which of the first evaporation source 110 and the second evaporation source 120 is vaporized first or at the same time is appropriately selected.

したがって、本実施の形態によれば、第1蒸発源110の一端11aからの蒸気と他端11bからの蒸気についての基板面に対する蒸気衝突角度が75度〜105度の範囲となるように、第1蒸発源110、遮蔽板220、基板300の位置を調節したことで、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限され、また蒸気誘導端面X1X2に対して平行となるように第1蒸発源110に対して第2蒸発源120をT字型に配置したことで、基板面N1M1M2N2上に厚さが均一で勾配のない組成膜が形成され、これらの合成によって基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な擬似2成分系の傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, the vapor collision angle of the vapor from the one end 11a and the vapor from the other end 11b of the first evaporation source 110 with respect to the substrate surface is in the range of 75 degrees to 105 degrees. By adjusting the positions of the evaporation source 110, the shielding plate 220, and the substrate 300, the difference in film formation amount (film formation thickness) between the central portion and the peripheral portion on the substrate surface is limited within a certain range. Further, the second evaporation source 120 is arranged in a T shape with respect to the first evaporation source 110 so as to be parallel to the vapor guiding end face X1X2, so that the composition has a uniform thickness and no gradient on the substrate surface N1M1M2N2. A film is formed, and by these synthesis, the film thickness at each position from one end to the other end on the substrate surface is continuously changed at a constant ratio, and a gradient of a high-quality pseudo binary system having a regular gradient Composition film can be formed .

[第5の実施の形態]
本実施の形態では、3個の蒸発源、1枚の遮蔽板を備えた3成分系の傾斜成膜製造装置について説明する。
[Fifth Embodiment]
In the present embodiment, a three-component gradient film formation manufacturing apparatus including three evaporation sources and one shielding plate will be described.

図9の配置図に示すように、本実施の形態における傾斜成膜製造装置は、成膜室装置内に第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板240、基板300を備える。図示しない加熱装置、排気装置の構成については第1の実施の形態と同様である。   As shown in the layout diagram of FIG. 9, the inclined film formation manufacturing apparatus in the present embodiment includes a first evaporation source 130, a second evaporation source 140, a third evaporation source 150, a shielding plate 240, in the film formation chamber apparatus. A substrate 300 is provided. The configurations of a heating device and an exhaust device (not shown) are the same as those in the first embodiment.

図10(a)の平面図および同図(b)の断面図に示すように、遮蔽板240は三角形状であり遮蔽面K1K2K3と、その外端面に第1蒸気誘導端面K1K2、第2蒸気誘導端面K2K3、第3蒸気誘導端面K3K1を備える。   As shown in the plan view of FIG. 10 (a) and the cross-sectional view of FIG. 10 (b), the shielding plate 240 has a triangular shape, the shielding surface K1K2K3, and the first steam induction end surface K1K2 and the second steam induction on the outer end surface thereof. An end face K2K3 and a third steam guide end face K3K1 are provided.

図11の平面図に示すように、第1蒸発源130の一端を111a、他端を111bとし、第2蒸発源140の一端を112c、他端を112dとし、第3蒸発源150の一端を113e、他端を113fとする。一例として、第1蒸発源130、第2蒸発源140、第3蒸発源150は、Y字型に配置するものとする。すなわち、第1蒸発源130の他端111b、第2蒸発源140の他端112d、第3蒸発源150の他端113fを接触させた状態で、各蒸発源をそれぞれ120度の間隔をおいて配置する。このような配置をして遮蔽板240を正三角形とすることにより、基板面上の成膜の状態を正三角形とすることができる。   As shown in the plan view of FIG. 11, one end of the first evaporation source 130 is 111a, the other end is 111b, one end of the second evaporation source 140 is 112c, the other end is 112d, and one end of the third evaporation source 150 is 113e and the other end are 113f. As an example, the first evaporation source 130, the second evaporation source 140, and the third evaporation source 150 are arranged in a Y shape. That is, with the other end 111b of the first evaporation source 130, the other end 112d of the second evaporation source 140, and the other end 113f of the third evaporation source 150 in contact with each other, the respective evaporation sources are spaced apart by 120 degrees. Deploy. With such an arrangement, the shielding plate 240 is an equilateral triangle, so that the film formation state on the substrate surface can be an equilateral triangle.

図12(a)の平面図および同図(b)の断面図に示すように、基板300は四角形状である。なお、同図(a)においては遮蔽板240、蒸発源130,140,150を破線で示してある。   As shown in the plan view of FIG. 12A and the cross-sectional view of FIG. 12B, the substrate 300 has a quadrangular shape. In addition, in the same figure (a), the shielding board 240 and the evaporation sources 130, 140, and 150 are shown with the broken line.

本傾斜組成膜製造装置における傾斜組成膜の成膜では、まず第1蒸発源130の一端111aと遮蔽板240の第1蒸気誘導端面K1K2とを結ぶ延長線が基板300の基板面に交差する交点をレ、ソとしたとき、交点レ、ソを通る各延長線と基板面とのなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第1蒸発源130の位置を調節する。   In the formation of the gradient composition film in the gradient composition film manufacturing apparatus, first, an intersection line connecting the one end 111a of the first evaporation source 130 and the first vapor induction end face K1K2 of the shielding plate 240 intersects the substrate surface of the substrate 300. Is the substrate 300, the shielding plate 240, and the first evaporation source so that the vapor collision angle between the extended line passing through the intersection point and so and the substrate surface is in the range of 75 to 105 degrees. Adjust the position of 130.

さらに第1蒸発源130の他端111bと遮蔽板240の第1蒸気誘導端面K1K2とを結ぶ延長線が基板300の基板面に交差する交点をヨ、タとしたとき、交点ヨ、タを通る各延長線と基板面とのなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第1蒸発源130の位置を調節する。   Further, when an intersection point where the extension line connecting the other end 111b of the first evaporation source 130 and the first vapor guiding end face K1K2 of the shielding plate 240 intersects the substrate surface of the substrate 300 is assumed to be Y and T, the intersection points Y and TA are passed. The positions of the substrate 300, the shielding plate 240, and the first evaporation source 130 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線レソ上では第1蒸発源130からの蒸気の成分が0%となり、基板面上の直線ヨタ上では第1蒸発源130からの蒸気の成分が100%となる。これによって、基板面上には第1蒸発源130からの蒸気の組成が傾斜した傾斜組成膜が形成される。   By adjusting in this way, the vapor component from the first evaporation source 130 becomes 0% on the linear reso on the substrate surface, and the vapor component from the first evaporation source 130 on the straight yota on the substrate surface. 100%. Thereby, an inclined composition film in which the composition of the vapor from the first evaporation source 130 is inclined is formed on the substrate surface.

第2蒸発源140については、その一端112cと遮蔽板240の第2蒸気誘導端面K2K3とを結ぶ延長線が基板300の基板面に交差する交点をラ、ナとしたとき、交点ラ、ナを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第2蒸発源140の位置を調節する。   As for the second evaporation source 140, when the intersection where the extension line connecting the one end 112c and the second vapor guiding end face K2K3 of the shielding plate 240 intersects the substrate surface of the substrate 300 is defined as la and na, the intersection la and na The positions of the substrate 300, the shielding plate 240, and the second evaporation source 140 are adjusted so that the vapor collision angle formed between each extended line passing through and the substrate surface is in the range of 75 degrees to 105 degrees.

さらに第2蒸発源140の他端112dと遮蔽板240の第2蒸気誘導端面K2K3とを結ぶ延長線が基板300の基板面と交差する交点をネ、ツとしたとき、交点ネ、ツを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第2蒸発源140の位置を調節する。   Further, when an intersection point where the extension line connecting the other end 112d of the second evaporation source 140 and the second vapor guiding end face K2K3 of the shielding plate 240 intersects the substrate surface of the substrate 300 is assumed to be "N", it passes through the intersection points "N". The positions of the substrate 300, the shielding plate 240, and the second evaporation source 140 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線ラナ上では第2蒸発源140からの蒸気の成分が0%となり、基板面上の直線ネツ上では第2蒸発源140からの蒸気の成分が100%となる。これによって、基板面上には第2蒸発源140からの蒸気の組成が傾斜した傾斜組成膜が形成される。
第3蒸発源150については、その一端113eと遮蔽板240の第3蒸気誘導端面K3K1とを結ぶ延長線が基板300の基板面と交差する交点をム、ウとしたとき、交点ム、ウを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第3蒸発源150の位置を調節する。
By adjusting in this way, the vapor component from the second evaporation source 140 is 0% on the linear runner on the substrate surface, and the vapor component from the second evaporation source 140 is on the straight net on the substrate surface. 100%. Thereby, an inclined composition film in which the composition of the vapor from the second evaporation source 140 is inclined is formed on the substrate surface.
For the third evaporation source 150, when the intersection where the extension line connecting one end 113 e of the shielding plate 240 and the third vapor guiding end face K 3 K 1 of the shielding plate 240 intersects the substrate surface of the substrate 300 is defined as m, c, The positions of the substrate 300, the shielding plate 240, and the third evaporation source 150 are adjusted so that the vapor collision angle formed between each extended line passing through and the substrate surface is in the range of 75 degrees to 105 degrees.

さらに第3蒸発源150の他端113fと遮蔽板240の第3蒸気誘導端面K3K1とを結ぶ延長線が基板300の基板面と交差する交点をオ、クとしたとき、交点オ、クを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第3蒸発源150の位置を調節する。   Furthermore, when the intersection point where the extension line connecting the other end 113f of the third evaporation source 150 and the third vapor guiding end surface K3K1 of the shielding plate 240 intersects the substrate surface of the substrate 300 is defined as o and k, the intersection points o and k are passed. The positions of the substrate 300, the shielding plate 240, and the third evaporation source 150 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線ムウ上では第3蒸発源150からの蒸気の成分が100%となり、基板面上の直線オク上では第3蒸発源150からの蒸気の成分が0%となる。これによって、基板面上には第3蒸発源150からの蒸気の組成が傾斜した傾斜組成膜が形成される。
これらの蒸気衝突角度を75度未満とすると、基板面上の中心部と周辺部との成膜量に少なくとも10%を越える差異が見られるようになり、厚さの均一性の観点から良質な成膜とはいえなくなる。蒸気衝突角度が105度を越えた場合も同様である。
By adjusting in this way, the vapor component from the third evaporation source 150 is 100% on the straight line mu on the substrate surface, and the vapor component from the third evaporation source 150 is on the straight octave on the substrate surface. 0%. As a result, an inclined composition film in which the composition of the vapor from the third evaporation source 150 is inclined is formed on the substrate surface.
When these vapor collision angles are less than 75 degrees, a difference of at least 10% is observed in the amount of film formation between the central portion and the peripheral portion on the substrate surface, which is good in terms of thickness uniformity. It cannot be said to be film formation. The same applies when the steam collision angle exceeds 105 degrees.

本傾斜組成膜製造装置では、さらに、各蒸発源130,140,150と遮蔽板240との距離をP、遮蔽板240と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように、第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板240、基板300の位置を調節する。   In this gradient composition film manufacturing apparatus, the value of P / (P + Q) where P is the distance between the evaporation sources 130, 140, 150 and the shielding plate 240, and Q is the distance between the shielding plate 240 and the substrate 300. The positions of the first evaporation source 130, the second evaporation source 140, the third evaporation source 150, the shielding plate 240, and the substrate 300 are adjusted so as to be in the range of 0.1 to 0.9.

第1蒸発源130、第2蒸発源140、第3蒸発源150のいずれを先に蒸発させるか、あるいは同時に蒸発させるかといった蒸発の順序については適宜選択するものとする。   The order of evaporation such as which of the first evaporation source 130, the second evaporation source 140, and the third evaporation source 150 is evaporated first, or is evaporated at the same time, is appropriately selected.

したがって、本実施の形態によれば、各蒸発源130,140,150と基板300との間に遮蔽板240を配置することによって、遮蔽板240の第1蒸気誘導端面K1K2、第2蒸気誘導端面K2K3、第3蒸気誘導端面K3K1が、遮断されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与える。これと共に、第1蒸発源130の一端111aからの蒸気と他端111bからの蒸気、第2蒸発源140の一端112cからの蒸気と他端112dからの蒸気、第3蒸発源150の一端113eからの蒸気と他端113fからの蒸気の全てについての蒸気衝突角度が75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限されるので、基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な3成分系の傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, the first steam guide end face K1K2 and the second steam guide end face of the shield plate 240 are provided by disposing the shield plate 240 between the respective evaporation sources 130, 140, 150 and the substrate 300. K2K3 and the third steam guide end face K3K1 guide the remainder of the steam that has not been shut off to a predetermined position on the substrate surface to incline the deposition amount distribution. At the same time, steam from one end 111a and the other end 111b of the first evaporation source 130, steam from one end 112c and the other end 112d of the second evaporation source 140, from one end 113e of the third evaporation source 150, and so on. Since the vapor collision angle for all of the vapor and the vapor from the other end 113f is in the range of 75 to 105 degrees, a synergistic effect is obtained in ensuring uniformity of the film thickness, Since the difference in film formation amount (film formation thickness) between the central part and the peripheral part on the substrate surface is limited within a certain range, the film formation thickness at each position from one end to the other end on the substrate surface It is possible to form a high-quality three-component gradient composition film having a regular gradient continuously changing at a constant ratio.

本実施の形態によれば、各蒸発源130,140,150と遮蔽板240との距離をP、遮蔽板240と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板240、基板300の位置を調節したことで、基板面上での所定位置における成膜量の分布に規則的な勾配を持たせることができ、化学、金属、セラミックス材料分野で常用されているような良質な組成分布が得られ、さらに良質な傾斜組成膜を形成することができる。   According to the present embodiment, the value of P / (P + Q) is 0 when the distance between each evaporation source 130, 140, 150 and the shielding plate 240 is P, and the distance between the shielding plate 240 and the substrate 300 is Q. By adjusting the positions of the first evaporation source 130, the second evaporation source 140, the third evaporation source 150, the shielding plate 240, and the substrate 300 so as to be in the range of 1 to 0.9, a predetermined value on the substrate surface is obtained. It is possible to have a regular gradient in the distribution of the film formation amount at the position, and it is possible to obtain a high-quality composition distribution that is commonly used in the chemical, metal, and ceramic materials fields, and to form a high-quality gradient composition film be able to.

なお、本実施の形態においては、3個の蒸発源130,140,150をY字型に配置することとしたが、これに限られるものではない。基板面上に形成しようとする傾斜組成膜の形状に応じて、例えば川字型に配置するようにしてもよい。   In the present embodiment, the three evaporation sources 130, 140, 150 are arranged in a Y shape, but the present invention is not limited to this. Depending on the shape of the gradient composition film to be formed on the substrate surface, for example, it may be arranged in a river shape.

[第6の実施の形態]
本実施の形態では、3個の蒸発源、1枚の遮蔽板を備えた3成分系の傾斜成膜製造装置の別の例について説明する。
[Sixth Embodiment]
In this embodiment mode, another example of a three-component gradient film formation manufacturing apparatus including three evaporation sources and one shielding plate will be described.

図13の配置図に示すように、本実施の形態における傾斜成膜製造装置は、成膜室装置内に第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板250、基板300を備える。図示しない加熱装置、排気装置の構成については第1の実施の形態と同様である。   As shown in the layout diagram of FIG. 13, the inclined film formation manufacturing apparatus in the present embodiment includes a first evaporation source 130, a second evaporation source 140, a third evaporation source 150, a shielding plate 250, in the film formation chamber apparatus. A substrate 300 is provided. The configurations of a heating device and an exhaust device (not shown) are the same as those in the first embodiment.

図14(a)の平面図および同図(b)の断面図に示すように、遮蔽板250は四角形状であり、その中央部に三角形状の穴がくり抜かれている。このくり抜かれた三角形の各端面を第1蒸気誘導端面K1K2、第2蒸気誘導端面K2K3、第3蒸気誘導端面K3K1とし、これら第1蒸気誘導端面K1K2、第2蒸気誘導端面K2K3、第3蒸気誘導端面K3K1により蒸気通過領域を形成する。なお、同図では、各蒸発源130,140,150については破線で、基板300については鎖線で示してある。   As shown in the plan view of FIG. 14A and the cross-sectional view of FIG. 14B, the shielding plate 250 has a quadrangular shape, and a triangular hole is cut out at the center thereof. Each end face of the hollowed triangle is defined as a first steam guide end face K1K2, a second steam guide end face K2K3, and a third steam guide end face K3K1, and these first steam guide end face K1K2, second steam guide end face K2K3, and third steam guide end face. A steam passage region is formed by the end face K3K1. In the figure, the evaporation sources 130, 140, 150 are indicated by broken lines, and the substrate 300 is indicated by a chain line.

本実施の形態でも、第1蒸発源130の一端を111a、他端を111bとし、第2蒸発源140の一端を112c、他端を112dとし、第3蒸発源150の一端を113e、他端を113fとする。一例として、第1蒸発源130の他端111b、第2蒸発源140の他端112d、第3蒸発源150の他端113fを接触させた状態で、各蒸発源をそれぞれ120度の間隔をおいてY字型に配置する。   Also in the present embodiment, one end of the first evaporation source 130 is 111a, the other end is 111b, one end of the second evaporation source 140 is 112c, the other end is 112d, one end of the third evaporation source 150 is 113e, and the other end Is 113f. As an example, with the other end 111b of the first evaporation source 130, the other end 112d of the second evaporation source 140, and the other end 113f of the third evaporation source 150 in contact with each other, the respective evaporation sources are spaced apart by 120 degrees. And arranged in a Y shape.

本傾斜組成膜製造装置における傾斜組成膜の成膜では、くり抜いた三角形K1K2K3と相似形状の組成分布を基板面上に得ることができる。   In the formation of the gradient composition film in the gradient composition film manufacturing apparatus, a composition distribution having a shape similar to the hollowed triangle K1K2K3 can be obtained on the substrate surface.

まず、第1蒸発源130の一端111aと遮蔽板250の第1蒸気誘導端面K1K2とを結ぶ延長線が基板300の基板面に交差する交点をレ、ソとしたとき、交点レ、ソを通る各延長線と基板面とのなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第1蒸発源130の位置を調節する。   First, when the intersection where the extension line connecting the one end 111a of the first evaporation source 130 and the first vapor guiding end face K1K2 of the shielding plate 250 intersects the substrate surface of the substrate 300 is defined as “R” and “S”, the intersection points “L” and “S” are passed. The positions of the substrate 300, the shielding plate 240, and the first evaporation source 130 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

さらに第1蒸発源130の他端111bと遮蔽板250の第1蒸気誘導端面K1K2とを結ぶ延長線が基板300の基板面に交差する交点をヨ、タとしたとき、交点ヨ、タを通る各延長線と基板面とのなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板240、第1蒸発源130の位置を調節する。   Furthermore, when the intersection point where the extension line connecting the other end 111b of the first evaporation source 130 and the first vapor guiding end surface K1K2 of the shielding plate 250 intersects the substrate surface of the substrate 300 is assumed to be “Y” and “T”, the intersection points “Y” and “TA” are passed. The positions of the substrate 300, the shielding plate 240, and the first evaporation source 130 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線レソ上では第1蒸発源130からの蒸気の成分が100%となり、基板面上の直線ヨタ上では第1蒸発源130からの蒸気の成分が0%となる。これによって、基板面上には第1蒸発源130からの蒸気の組成が傾斜した傾斜組成膜が形成される。なお、図9においては、直線レソ上では0%、直線ヨタ上では100%となっており、本実施形態とは組成分布が逆になっている。   By adjusting in this way, the vapor component from the first evaporation source 130 becomes 100% on the linear reso on the substrate surface, and the vapor component from the first evaporation source 130 on the straight yota on the substrate surface. 0%. Thereby, an inclined composition film in which the composition of the vapor from the first evaporation source 130 is inclined is formed on the substrate surface. In FIG. 9, the composition distribution is 0% on the straight line and 100% on the straight line, and the composition distribution is opposite to that of the present embodiment.

第2蒸発源140については、その一端112cと遮蔽板250の第2蒸気誘導端面K2K3とを結ぶ延長線が基板300の基板面に交差する交点をラ、ナとしたとき、交点ラ、ナを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板250、第2蒸発源140の位置を調節する。   As for the second evaporation source 140, when the intersection point where the extension line connecting the one end 112c and the second vapor guiding end surface K2K3 of the shielding plate 250 intersects the substrate surface of the substrate 300 is defined as la and n, The positions of the substrate 300, the shielding plate 250, and the second evaporation source 140 are adjusted so that the vapor collision angle formed between each extended line passing through and the substrate surface is in the range of 75 degrees to 105 degrees.

さらに第2蒸発源140の他端112dと遮蔽板250の第2蒸気誘導端面K2K3とを結ぶ延長線が基板300の基板面と交差する交点をネ、ツとしたとき、交点ネ、ツを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板250、第2蒸発源140の位置を調節する。   Furthermore, when the intersection point where the extension line connecting the other end 112d of the second evaporation source 140 and the second vapor guiding end surface K2K3 of the shielding plate 250 intersects the substrate surface of the substrate 300 is assumed to be "N", it passes through the intersection point "N". The positions of the substrate 300, the shielding plate 250, and the second evaporation source 140 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線ラナ上では第2蒸発源140からの蒸気の成分が100%となり、基板面上の直線ネツ上では第2蒸発源140からの蒸気の成分が0%となる。これによって、基板面上には第2蒸発源140からの蒸気の組成が傾斜した傾斜組成膜が形成される。なお、図9においては、直線ラナ上では0%、直線ネツ上では100%となっており、本実施形態とは組成分布が逆になっている。   By adjusting in this way, the vapor component from the second evaporation source 140 is 100% on the linear runner on the substrate surface, and the vapor component from the second evaporation source 140 is on the straight net on the substrate surface. 0%. Thereby, an inclined composition film in which the composition of the vapor from the second evaporation source 140 is inclined is formed on the substrate surface. In FIG. 9, the composition distribution is 0% on the linear runner and 100% on the linear net, and the composition distribution is opposite to that of the present embodiment.

第3蒸発源150については、その一端113eと遮蔽板250の第3蒸気誘導端面K3K1とを結ぶ延長線が基板300の基板面と交差する交点をム、ウとしたとき、交点ム、ウを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板250、第3蒸発源150の位置を調節する。   For the third evaporation source 150, when the intersection where the extension line connecting the one end 113 e of the shielding plate 250 and the third vapor guiding end face K 3 K 1 of the shielding plate 250 intersects the substrate surface of the substrate 300 is defined as m, c, The positions of the substrate 300, the shielding plate 250, and the third evaporation source 150 are adjusted so that the vapor collision angle formed between each extended line passing through and the substrate surface is in the range of 75 degrees to 105 degrees.

さらに第3蒸発源150の他端113fと遮蔽板250の第3蒸気誘導端面K3K1とを結ぶ延長線が基板300の基板面と交差する交点をオ、クとしたとき、交点オ、クを通る各延長線と基板面とがなす蒸気衝突角度が75度〜105度の範囲となるように、基板300、遮蔽板250、第3蒸発源150の位置を調節する。   Furthermore, when the intersection where the extension line connecting the other end 113f of the third evaporation source 150 and the third vapor guiding end face K3K1 of the shielding plate 250 intersects the substrate surface of the substrate 300 is defined as “O”, “C”, the intersection “O” and “C” are passed. The positions of the substrate 300, the shielding plate 250, and the third evaporation source 150 are adjusted so that the vapor collision angle between each extension line and the substrate surface is in the range of 75 to 105 degrees.

このように調節することで、基板面上の直線ムウ上では第3蒸発源150からの蒸気の成分が0%となり、基板面上の直線オク上では第3蒸発源150からの蒸気の成分が100%となる。これによって、基板面上には第3蒸発源150からの蒸気の組成が傾斜した傾斜組成膜が形成される。なお、図9においては、直線ムウ上では100%、直線オク上では0%となっており、本実施形態とは組成分布が逆になっている。   By adjusting in this way, the vapor component from the third evaporation source 150 is 0% on the straight line mu on the substrate surface, and the vapor component from the third evaporation source 150 is on the straight octave on the substrate surface. 100%. As a result, an inclined composition film in which the composition of the vapor from the third evaporation source 150 is inclined is formed on the substrate surface. In FIG. 9, the composition distribution is 100% on the straight line mu and 0% on the straight line Oct, and the composition distribution is opposite to that of the present embodiment.

これらの蒸気衝突角度を75度未満とすると、基板面上の中心部と端部との成膜量に少なくとも10%を越える差異が見られるようになり、厚さの均一性の観点から良質な成膜とはいえなくなる。蒸気衝突角度が105度を越えた場合も同様である。   When these vapor collision angles are less than 75 degrees, a difference of at least 10% is observed in the amount of film formation between the central portion and the end portion on the substrate surface, which is good in terms of thickness uniformity. It cannot be said to be film formation. The same applies when the steam collision angle exceeds 105 degrees.

本傾斜組成膜製造装置では、さらに、各蒸発源130,140,150と遮蔽板250との距離をP、遮蔽板250と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように、第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板250、基板300の位置を調節する。   In this gradient composition film manufacturing apparatus, the value of P / (P + Q) where P is the distance between the evaporation sources 130, 140, 150 and the shielding plate 250, and Q is the distance between the shielding plate 250 and the substrate 300. The positions of the first evaporation source 130, the second evaporation source 140, the third evaporation source 150, the shielding plate 250, and the substrate 300 are adjusted so as to be in the range of 0.1 to 0.9.

第1蒸発源130、第2蒸発源140、第3蒸発源150のいずれを先に蒸発させるか、あるいは同時に蒸発させるかといった蒸発の順序については適宜選択するものとする。   The order of evaporation such as which of the first evaporation source 130, the second evaporation source 140, and the third evaporation source 150 is evaporated first, or is evaporated at the same time, is appropriately selected.

したがって、本実施の形態によれば、各蒸発源130,140,150と基板300との間に遮蔽板250を配置することによって、遮蔽板250の第1蒸気誘導端面K1K2、第2蒸気誘導端面K2K3、第3蒸気誘導端面K3K1が、遮蔽面により遮断されなかった蒸気の残部を基板面上の所定位置に誘導して成膜量分布に傾斜を与える。これと共に、第1蒸発源130の一端111aからの蒸気と他端111bからの蒸気、第2蒸発源140の一端112cからの蒸気と他端112dからの蒸気、第3蒸発源150の一端113eからの蒸気と他端113fからの蒸気の全てについての蒸気衝突角度が75度〜105度の範囲となるようにしたことで、成膜厚さの均一性を確保する上で相乗効果が得られ、基板面上における中心部と周辺部とでの成膜量(成膜厚さ)の違いが一定範囲内に制限されるので、基板面上の一端から他端に向かう各位置における成膜厚さが一定の比率で連続的に変化し規則的な勾配を持つ良質な3成分系の傾斜組成膜を形成することができる。   Therefore, according to the present embodiment, the first steam guide end face K1K2 and the second steam guide end face of the shield plate 250 are provided by disposing the shield plate 250 between the respective evaporation sources 130, 140, 150 and the substrate 300. K2K3 and the third steam guide end face K3K1 guide the remainder of the steam that has not been blocked by the shielding surface to a predetermined position on the substrate surface, thereby inclining the deposition amount distribution. At the same time, steam from one end 111a and the other end 111b of the first evaporation source 130, steam from one end 112c and the other end 112d of the second evaporation source 140, from one end 113e of the third evaporation source 150, and so on. Since the vapor collision angle for all of the vapor and the vapor from the other end 113f is in the range of 75 to 105 degrees, a synergistic effect is obtained in ensuring uniformity of the film thickness, Since the difference in film formation amount (film formation thickness) between the central part and the peripheral part on the substrate surface is limited within a certain range, the film formation thickness at each position from one end to the other end on the substrate surface It is possible to form a high-quality three-component gradient composition film having a regular gradient continuously changing at a constant ratio.

本実施の形態によれば、各蒸発源130,140,150と遮蔽板250との距離をP、遮蔽板250と基板300との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように第1蒸発源130、第2蒸発源140、第3蒸発源150、遮蔽板250、基板300の位置を調節したことで、基板面上での所定位置における成膜量の分布に規則的な勾配を持たせることができ、化学、金属、セラミックス材料分野で常用されているような良質な組成分布が得られ、さらに良質な傾斜組成膜を形成することができる。   According to the present embodiment, the value of P / (P + Q) is 0 when the distance between each evaporation source 130, 140, 150 and the shielding plate 250 is P, and the distance between the shielding plate 250 and the substrate 300 is Q. By adjusting the positions of the first evaporation source 130, the second evaporation source 140, the third evaporation source 150, the shielding plate 250, and the substrate 300 so as to be in the range of 1 to 0.9, a predetermined value on the substrate surface is obtained. It is possible to have a regular gradient in the distribution of the film formation amount at the position, and it is possible to obtain a high-quality composition distribution that is commonly used in the chemical, metal, and ceramic materials fields, and to form a high-quality gradient composition film be able to.

なお、本実施の形態においては、3個の蒸発源130,140,150をY字型に配置することとしたが、これに限られるものではない。例えば川字型に配置するようにしてもよい。   In the present embodiment, the three evaporation sources 130, 140, 150 are arranged in a Y shape, but the present invention is not limited to this. For example, it may be arranged in a river character shape.

以下、より具体的な実施例、および効果を比較するための比較例について説明する。各実施例および各比較例に用いる傾斜組成膜製造装置の基本的な構成は、第1の実施の形態で説明したものと同様である。ここでは、蒸発源100、遮蔽板200、基板300を後述する位置に内蔵した直径800mm、高さ800mmのステンレス製の成膜室装置と、高真空拡散ポンプを備えた主排気系、油回転ポンプを備えた補助排気系、粗引き排気系などからなる雰囲気の圧力を調整するための排気装置とを、配管用ステンレス鋼板によって気密に接続し、この排気装置が接続された成膜室装置と、蒸発源における被蒸発材料を蒸発させるための加熱装置とを気密に接続した構成とした。   Hereinafter, more specific examples and comparative examples for comparing effects will be described. The basic configuration of the gradient composition film manufacturing apparatus used in each example and each comparative example is the same as that described in the first embodiment. Here, an evaporation source 100, a shielding plate 200, and a substrate 300 are housed in positions to be described later, a stainless steel film forming chamber apparatus having a diameter of 800 mm and a height of 800 mm, a main exhaust system having a high vacuum diffusion pump, and an oil rotary pump An exhaust device for adjusting the pressure of the atmosphere consisting of an auxiliary exhaust system, a rough exhaust system and the like, airtightly connected by a stainless steel pipe for piping, and a film forming chamber apparatus to which the exhaust device is connected, The heating device for evaporating the material to be evaporated in the evaporation source was hermetically connected.

蒸発源100としては、直径が1mm、長さが15mmのタングステン製の棒に、例えば直径0.3mmの銅線(Cu線)を複数層に渡って均一に巻き付けたものを用いた。タングステン棒の一端を1a、他端を1bとする。   As the evaporation source 100, a tungsten rod having a diameter of 1 mm and a length of 15 mm and a copper wire (Cu wire) having a diameter of 0.3 mm, for example, uniformly wound over a plurality of layers was used. One end of the tungsten rod is 1a and the other end is 1b.

遮蔽板200としては、蒸気誘導端面X1X2の表面粗さを1.5μmにしたステンレス製のものを用いた。   As the shielding plate 200, a stainless steel plate having a surface roughness of the steam guide end face X1X2 of 1.5 μm was used.

基板300としては、縦250mm、横320mm、厚さ1mmのガラス製のものを用いた。   As the substrate 300, a glass substrate having a length of 250 mm, a width of 320 mm, and a thickness of 1 mm was used.

図15の側面図に示すように、基板300の基板面上の任意点アと蒸発源100の一端1aとを結ぶ鉛直線をアキとする。点キは、蒸発源100の一端1aに一致した点である。遮蔽板200の遮蔽面X1Y1Y2X2を延長した平面が鉛直線アキに垂直に交わる点を点サとする。   As shown in the side view of FIG. 15, a vertical line connecting an arbitrary point A on the substrate surface of the substrate 300 and one end 1 a of the evaporation source 100 is defined as Aki. The point key coincides with one end 1 a of the evaporation source 100. A point where a plane obtained by extending the shielding surface X1Y1Y2X2 of the shielding plate 200 intersects with a vertical line is perpendicular.

蒸発源100と遮蔽板200との距離Pを50mm、遮蔽板200と基板300との距離Qを50mmとした。これにより、P/(P+Q)の値は0.5となる。   The distance P between the evaporation source 100 and the shielding plate 200 was 50 mm, and the distance Q between the shielding plate 200 and the substrate 300 was 50 mm. Thereby, the value of P / (P + Q) becomes 0.5.

各実施例、各比較例では、遮蔽板200の蒸気誘導端面X1X2と鉛直線アキとの距離L(同図のX1と点サとの距離)を変えて基板面に対する蒸気衝突角度を変えたときのそれぞれについて、蒸発源100に1000Aの電流を約60秒間流し、Cuを蒸発させて成膜したときの基板面に対する蒸気衝突角度を測定し、また基板面上におけるCuの成膜厚さをエリプソメータによって測定した。   In each example and each comparative example, when the distance L between the steam guide end surface X1X2 of the shielding plate 200 and the vertical line space (the distance between X1 and point point in the figure) is changed and the vapor collision angle with respect to the substrate surface is changed. For each of the above, a current of 1000 A is passed through the evaporation source 100 for about 60 seconds, the vapor collision angle with respect to the substrate surface when Cu is evaporated to form a film, and the film thickness of Cu on the substrate surface is measured by an ellipsometer. Measured by.

図16は、測定の条件と結果をまとめた表である。距離Lについて、実施例1、実施例3では15mmとし、実施例2では0mmとした。また、比較例1では96mm、比較例2では50mm、比較例3では30mm、比較例4では29mm、比較例5では50mm、比較例6では95mmとした。   FIG. 16 is a table summarizing the measurement conditions and results. The distance L was 15 mm in Example 1 and Example 3, and 0 mm in Example 2. In Comparative Example 1, the thickness was 96 mm, Comparative Example 2 was 50 mm, Comparative Example 3 was 30 mm, Comparative Example 4 was 29 mm, Comparative Example 5 was 50 mm, and Comparative Example 6 was 95 mm.

実施例2の蒸気衝突角度は88〜92度、実施例1、実施例3の蒸気衝突角度はそれぞれ103〜105度、75〜76度であった。これらの成膜状態を観察すると、成膜厚さは、実施例2を100%としたときに実施例1で90.1%、実施例3で90.5%であり、成膜厚さの変化としてはいずれも10%未満の違いであり、実施例1乃至3については均一性の高い良質の成膜分布が得られた。   The vapor collision angle of Example 2 was 88 to 92 degrees, and the vapor collision angles of Examples 1 and 3 were 103 to 105 degrees and 75 to 76 degrees, respectively. When these film formation states are observed, the film formation thickness is 90.1% in Example 1 and 90.5% in Example 3 when Example 2 is 100%. The changes were all less than 10%, and in Examples 1 to 3, a high-quality film distribution with high uniformity was obtained.

一方、比較例1乃至6は、いずれも蒸気衝突角度が75〜105度の範囲になく、成膜の相対厚さは、距離Lが長くなるに伴い、比較例3で70.4%、比較例2で39.6%、
比較例1で24.5%まで低下し、比較例4で71.4%、比較例5で40.9%、比較例6で23.9%まで低下し、均一性の高い良質の成膜分布は得られなかった。
On the other hand, none of Comparative Examples 1 to 6 has a vapor collision angle in the range of 75 to 105 degrees, and the relative thickness of the film formation is 70.4% in Comparative Example 3 as the distance L increases. 39.6% in Example 2,
The film thickness is reduced to 24.5% in Comparative Example 1, 71.4% in Comparative Example 4, 40.9% in Comparative Example 5, and 23.9% in Comparative Example 6. Distribution was not obtained.

これらの結果から、実施例1乃至3の場合では、遮蔽板200による蒸気誘導効果と蒸気衝突角度の制御効果が明確に表れ、基板面上のCu厚さの分布は約90%以内の変動となり、良質の成膜状態を保持することが確認された。
これに対して比較例1乃至6の場合では、均一な厚さの成膜は得られなかった。これにより、蒸気衝突角度が75度未満あるいは105度を超えた場合には、成膜量(成膜厚さ)が、理想状態と比べて約90%以下に低下し(成膜量が小となる)、良質の成膜状態とはならないことが確認された。
From these results, in the case of Examples 1 to 3, the steam induction effect by the shielding plate 200 and the effect of controlling the vapor collision angle clearly appear, and the distribution of the Cu thickness on the substrate surface varies within about 90%. It was confirmed that a good film-forming state was maintained.
On the other hand, in the case of Comparative Examples 1 to 6, film formation with a uniform thickness was not obtained. As a result, when the vapor collision angle is less than 75 degrees or exceeds 105 degrees, the film formation amount (film formation thickness) decreases to about 90% or less compared to the ideal state (the film formation amount is small). It was confirmed that the film formation state was not good.

なお、遮蔽板がない場合には、蒸気衝突角度のみを制御しても、組成に十分な傾斜を与えらず、良質の傾斜組成膜の分布は得られない。   In the case where there is no shielding plate, even if only the vapor collision angle is controlled, a sufficient gradient is not given to the composition, and a distribution of a good graded composition film cannot be obtained.

また、実施例1乃至3、比較例1乃至6では単成分の例を示したが、多元系の場合でも、同様の操作で遮蔽板の配置と蒸気衝突角度を制御する事によって、良質の多元系傾斜組成膜の分布を得ることができる。   In Examples 1 to 3 and Comparative Examples 1 to 6, examples of single components are shown, but even in the case of a multi-component system, a high-quality multi-component can be obtained by controlling the arrangement of the shielding plate and the vapor collision angle by the same operation. The distribution of the system gradient composition film can be obtained.

第1の実施形態の傾斜組成膜製造装置における成膜室装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the film-forming chamber apparatus in the gradient composition film manufacturing apparatus of 1st Embodiment. 同図(a)は第1の実施形態における遮蔽板の構成を示す平面図であり、同図(b)はその断面図であり、同図(c)はその側面図である。FIG. 4A is a plan view showing the configuration of the shielding plate in the first embodiment, FIG. 4B is a sectional view thereof, and FIG. 4C is a side view thereof. 同図(a)は第1の実施形態における基板の構成を示す平面図であり、同図(b)はその断面図であり、同図(c)はその側面図である。FIG. 2A is a plan view showing the configuration of the substrate in the first embodiment, FIG. 2B is a cross-sectional view thereof, and FIG. 2C is a side view thereof. 第2の実施形態の傾斜組成膜製造装置における成膜室装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the film-forming chamber apparatus in the gradient composition film manufacturing apparatus of 2nd Embodiment. 同図(a)は第2の実施形態における遮蔽板の構成を示す平面図であり、同図(b)はその断面図である。The figure (a) is a top view which shows the structure of the shielding board in 2nd Embodiment, The figure (b) is the sectional drawing. 第3の実施形態の傾斜組成膜製造装置における成膜室装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the film-forming chamber apparatus in the gradient composition film manufacturing apparatus of 3rd Embodiment. 同図(a)は第3の実施形態における遮蔽板の構成を示す平面図であり、同図(b)はその断面図である。The figure (a) is a top view which shows the structure of the shielding board in 3rd Embodiment, The figure (b) is the sectional drawing. 第4の実施形態の傾斜組成膜製造装置における遮蔽板と蒸発源の位置関係を示す平面図である。It is a top view which shows the positional relationship of the shielding board and evaporation source in the gradient composition film manufacturing apparatus of 4th Embodiment. 第5の実施形態の傾斜組成膜製造装置における基板、遮蔽板、蒸発源の位置関係を模式的に示す配置図である。It is an arrangement figure showing typically the positional relationship of a substrate, a shielding board, and an evaporation source in a gradient composition film manufacturing apparatus of a 5th embodiment. 同図(a)は第5の実施形態における遮蔽板の構成を示す平面図であり、同図(b)はその断面図である。The figure (a) is a top view which shows the structure of the shielding board in 5th Embodiment, The figure (b) is the sectional drawing. 第5の実施形態における3個の蒸発源の位置関係を示す平面図である。It is a top view which shows the positional relationship of the three evaporation sources in 5th Embodiment. 同図(a)は第5の実施形態における基板の構成を示す平面図であり、同図(b)はその断面図である。FIG. 4A is a plan view showing the configuration of the substrate in the fifth embodiment, and FIG. 4B is a sectional view thereof. 第6の実施形態の傾斜組成膜製造装置における基板、遮蔽板、蒸発源の位置関係を模式的に示す配置図である。It is an arrangement figure showing typically the positional relationship of a substrate, a shielding board, and an evaporation source in a gradient composition film manufacturing apparatus of a 6th embodiment. 同図(a)は第6の実施形態における遮蔽板の構成を示す平面図であり、同図(b)はその断面図である。The figure (a) is a top view which shows the structure of the shielding board in 6th Embodiment, The figure (b) is the sectional drawing. 実施例の傾斜組成膜製造装置における成膜室装置の構成を模式的に示す側面図である。It is a side view which shows typically the structure of the film-forming chamber apparatus in the gradient composition film manufacturing apparatus of an Example. 実施例および比較例について測定条件、測定結果、成膜厚さの判定をまとめた表である。It is the table | surface which put together the determination of measurement conditions, a measurement result, and film-forming thickness about an Example and a comparative example. 従来の傾斜組成膜製造装置の構成を示す斜視図である。It is a perspective view which shows the structure of the conventional gradient composition film manufacturing apparatus.

符号の説明Explanation of symbols

100,110,120,130,140,150…蒸発源
200,210,220,230,240,250…遮蔽板
300…基板
100, 110, 120, 130, 140, 150 ... evaporation source 200, 210, 220, 230, 240, 250 ... shielding plate 300 ... substrate

Claims (4)

被蒸発材料を備えた蒸発源と、
前記蒸発源に対向して配置された基板と、
前記蒸発源と前記基板との間に配置され、前記被蒸発材料から蒸発した蒸気の一部を遮蔽するための遮蔽面とその蒸気の残部を基板面上の所定位置に誘導するための蒸気誘導端面を備えた遮蔽板と、を有し、
前記蒸発源の一端と前記遮蔽板の蒸気誘導端面とを結ぶ延長線が前記基板面となす蒸気衝突角度と、前記蒸発源の他端と前記遮蔽板の蒸気誘導端面とを結ぶ延長線が前記基板面となす蒸気衝突角度がそれぞれ75度〜105度の範囲となるように前記基板、前記遮蔽板、前記蒸発源の位置を調節すると共に、
前記蒸発源による第1蒸発源とは別の細長状の第2蒸発源を有し、
第2蒸発源が前記遮蔽板の蒸気誘導端面に平行になるように第1蒸発源と第2蒸発源をT字型に配置したことを特徴とする傾斜組成膜製造装置。
An evaporation source comprising the material to be evaporated;
A substrate disposed opposite the evaporation source;
Vapor induction disposed between the evaporation source and the substrate, for shielding a part of the vapor evaporated from the material to be evaporated and a remainder of the vapor to a predetermined position on the substrate surface A shielding plate with an end face,
An extension line connecting one end of the evaporation source and the vapor induction end face of the shielding plate forms a vapor collision angle with the substrate surface, and an extension line connecting the other end of the evaporation source and the vapor induction end face of the shielding plate While adjusting the position of the substrate, the shielding plate, and the evaporation source so that the vapor collision angle with the substrate surface is in the range of 75 to 105 degrees ,
Having an elongated second evaporation source different from the first evaporation source by the evaporation source;
An apparatus for producing a graded composition film , wherein the first evaporation source and the second evaporation source are arranged in a T shape so that the second evaporation source is parallel to the vapor induction end face of the shielding plate .
前記蒸発源と前記遮蔽板との距離をP、前記遮蔽板と前記基板との距離をQとしたときのP/(P+Q)の値が0.1〜0.9の範囲となるように前記基板、前記遮蔽板、前記蒸発源の位置を調節したことを特徴とする請求項に記載の傾斜組成膜製造装置。 The value of P / (P + Q) is in the range of 0.1 to 0.9, where P is the distance between the evaporation source and the shielding plate, and Q is the distance between the shielding plate and the substrate. substrate, the shielding plate, gradient composition film manufacturing apparatus according to claim 1, characterized in that to adjust the position of the evaporation source. 前記遮蔽板の遮蔽面と前記蒸発源を平行に配置したことを特徴とする請求項1又は2に記載の傾斜組成膜製造装置。 Gradient composition film manufacturing apparatus according to claim 1 or 2, characterized in that arranged parallel to the evaporation source and the shielding surface of the shielding plate. 前記遮蔽板の遮蔽面と前記基板の基板面を平行に配置したことを特徴とする請求項1乃至のいずれかに記載の傾斜組成膜製造装置。 Gradient composition film manufacturing apparatus according to any one of claims 1 to 3, characterized in that arranged parallel to the substrate surface of the substrate and the shielding surface of the shielding plate.
JP2003301329A 2003-08-26 2003-08-26 Gradient composition film production equipment Expired - Fee Related JP4263964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003301329A JP4263964B2 (en) 2003-08-26 2003-08-26 Gradient composition film production equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003301329A JP4263964B2 (en) 2003-08-26 2003-08-26 Gradient composition film production equipment

Publications (2)

Publication Number Publication Date
JP2005068510A JP2005068510A (en) 2005-03-17
JP4263964B2 true JP4263964B2 (en) 2009-05-13

Family

ID=34405983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003301329A Expired - Fee Related JP4263964B2 (en) 2003-08-26 2003-08-26 Gradient composition film production equipment

Country Status (1)

Country Link
JP (1) JP4263964B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044023A (en) * 2011-08-24 2013-03-04 Toshiba Corp Estimation method of dielectric breakdown voltage of multi-component alloy

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100436310C (en) 2005-07-13 2008-11-26 清华大学 Production of carbon nano-tube array
JP4510121B2 (en) * 2007-12-19 2010-07-21 小島プレス工業株式会社 Sputtering apparatus and method of forming a film by sputtering
US8101055B2 (en) 2007-12-19 2012-01-24 Kojima Press Industry Co., Ltd. Sputtering apparatus and method for forming coating film by sputtering
CN108977773B (en) * 2018-08-24 2021-01-26 京东方科技集团股份有限公司 Angle plate assembly and evaporation device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013044023A (en) * 2011-08-24 2013-03-04 Toshiba Corp Estimation method of dielectric breakdown voltage of multi-component alloy

Also Published As

Publication number Publication date
JP2005068510A (en) 2005-03-17

Similar Documents

Publication Publication Date Title
JP6954720B2 (en) Methods for Manufacturing Nanostructured Substrates, Nanostructured Substrates, and Use of Nanostructured Substrates or Equipment
JP5513227B2 (en) Fine structure forming method, laser irradiation apparatus, and substrate
JP2006052461A (en) Magnetron sputtering device, cylindrical cathode, and method of coating thin multicomponent film on substrate
EP1286790A1 (en) Combinatorial synthesis of material chips
JP2019516865A (en) High precision shadow mask deposition system and method thereof
US7727410B2 (en) Process for formation of three-dimensional photonic crystal
CN109642966B (en) High-resolution full-material Fresnel zone plate array and manufacturing process thereof
JP4263964B2 (en) Gradient composition film production equipment
JP4989970B2 (en) Vapor deposition method
US20130186746A1 (en) Method and Apparatus for Producing Controlled Stresses and Stress Gradients in Sputtered Films
JP4168425B2 (en) Masking mechanism for film forming equipment
JP2012241281A (en) Split target device for sputtering and sputtering method using the same
JP2007503607A (en) Mirror for deflecting device in laser system, method for manufacturing the same and deflecting device for laser system
US10867796B2 (en) Method of forming a pattern
US8182870B1 (en) Method for generating small and ultra small apertures, slits, nozzles and orifices
US20080283487A1 (en) Process for producing three-dimensional photonic crystal and the three-dimensional photonic crystal
KR101479707B1 (en) Method for patterning a thin film by controlled cracking and thin film patterning structure thereof
US20200308694A1 (en) Controlled Variable Thickness Film Deposition on a Non-Flat Substrate for High Volume Manufacturing
JP2004084072A (en) Apparatus and method for forming gradient layer on substrate in vacuum chamber
WO2021111993A1 (en) Chip-shaped electronic component setter
JP2004217987A (en) Apparatus for producing film with gradient composition
KR20000019587A (en) Collimator of sputtering apparatus
Komarenko et al. Jet Vapor Deposition
TW200921780A (en) Method for forming a corrugation multilayer
Brett et al. Glancing angle deposition: recent research results

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081030

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees