JP4263879B2 - Flux-cored wire for welding - Google Patents

Flux-cored wire for welding Download PDF

Info

Publication number
JP4263879B2
JP4263879B2 JP2002210894A JP2002210894A JP4263879B2 JP 4263879 B2 JP4263879 B2 JP 4263879B2 JP 2002210894 A JP2002210894 A JP 2002210894A JP 2002210894 A JP2002210894 A JP 2002210894A JP 4263879 B2 JP4263879 B2 JP 4263879B2
Authority
JP
Japan
Prior art keywords
flux
weight
wire
metal
conductive core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002210894A
Other languages
Japanese (ja)
Other versions
JP2003103394A (en
Inventor
貞一郎 斉藤
正 伊藤
和男 辻川
敏夫 吉沢
敏明 藤田
金久 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Welding Rod Co Ltd
Original Assignee
Nippon Welding Rod Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Welding Rod Co Ltd filed Critical Nippon Welding Rod Co Ltd
Priority to JP2002210894A priority Critical patent/JP4263879B2/en
Publication of JP2003103394A publication Critical patent/JP2003103394A/en
Application granted granted Critical
Publication of JP4263879B2 publication Critical patent/JP4263879B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Nonmetallic Welding Materials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、溶接用フラックス入りワイヤに関するものである。
【0002】
【従来の技術】
米国特許6153847号等には、溶接金属の機械的性質、耐割性等を向上させるために、金属外皮内に種々のフラックスを充填した溶接用フラックス入りワイヤが用いられている。フラックスは、脱酸剤、スラグ形成剤、アーク安定剤、金属粉末等から構成されている。しかしながら、このようなワイヤでは、金属外皮と被溶接材料との間でアークが発生するため、金属外皮が先に溶融する。そのため、フラックスの中心部が十分に溶融せず、アークが不安定になりやすい。その結果、スパッタが発生しやすくなり、溶接作業性が低下するという問題があった。特にNiまたはNi基合金からなる溶接ワイヤでは、NiまたはNi基合金の融点が鉄等に比べて低いため、このような問題が顕著であった。また、溶接用フラックス入りワイヤは、帯状の外皮材料を円筒状に丸める加工を施して外皮を形成するため、外皮の厚み寸法が所定の寸法より大きくなると円筒状に丸める加工ができなくなる。そのため、外皮内のフラックスを充填できる空間を小さくするには限界があり、フラックス含有量を少な目に調整できないという問題があった。フラックス含有量が必要以上に多くなると、フラックスに含まれる不純物により、溶接金属に割れが生じやすい。そこで、1998年に日本のコロナ社から発行された鈴木春義著の「最新溶接工学(改訂2版)」の73頁に示すように、フラックス101の略中心部に金属外皮102と一体に形成された支持部102aに支持された導電性心線103を配置することが提案された(図5参照)。このように、導電性心線103を配置すると、導電性心線103と被溶接材料との間でもアークが発生し、フラックス101の溶融が促進されて、アークが安定する。また、金属外皮102内のフラックス101を充填できる空間を小さくでき、フラックス量を適宜に調整して溶接金属の割れを抑制できる。
【0003】
【発明が解決しようとする課題】
しかしながら、このようなワイヤでは、導電性心線103を支持させるために、金属外皮102に支持部102aを形成する複雑な加工が必要になり、製造が煩雑であった。特に直径寸法が2.0mm以下に小さくなると、製造の煩雑さがより大きくなる。
【0004】
本発明の目的は、NiまたはNi基合金からなる金属外皮に複雑な加工をせずにNiまたはNi基合金からなる導電性心線を配置できる溶接用フラックス入りワイヤを提供することにある。
【0005】
【課題を解決するための手段】
本発明は、NiまたはNi基合金からなるパイプ状の金属外皮内にフラックスが充填された溶接用フラックス入りワイヤを改良の対象として、フラックスと一緒に金属外皮内に、NiまたはNi基合金からなる導電性心線を金属外皮に支持されることなく配置し、フラックスには、金属外皮と被溶接材料との間に加えて、導電性心線と被溶接材料との間でもアークが発生する程度まで金属外皮と導電性心線との間の電気抵抗値を下げることができる量の金属粉を含有させる。なお、ここでいう「金属外皮に支持されることなく」とは、例えば、図5のように金属外皮の一部に接続された状態で内包または係止等されることなく、金属外皮とは実質的に分離された状態にあるという意味である。金属外皮と導電性心線とが一部において接触しているものは、導電性心線が金属外皮に支持されておらず、本発明に含まれるものである。本発明では、金属外皮と導電性心線との間の電気抵抗値を下げることができる量の金属粉をフラックスに含有させることによって、金属外皮と導電性心線との電気的な導通を図る。これにより、金属外皮に支持されることなく、金属外皮内にフラックスと一緒に導電性心線を配置してもフラックス中の金属粉を介した金属外皮からの通電により、導電性心線と被溶接材料との間でもアークを発生させることができる。そのため、従来のように導電性心線を支持させるための複雑な加工を金属外皮に施す必要がなく、ワイヤの製造が容易になる。特に金属外皮の平均外径寸法が2.0mm以下に小さくなるような場合にこの製造の容易性が大きな効果を発揮する。
【0006】
導電性心線と被溶接材料との間でもアークが発生する程度まで金属外皮と導電性心線との間の電気抵抗値を下げることができる量の金属粉を含有させるには、例えば、フラックス中に、粒状の金属粉をフラックスに対して20〜80重量%含有させればよい。金属粉として粒状のものを用いれば、フラックス中に金属粉を略均等に分散させて混入できる利点がある。粒状の金属粉量が20重量%を下回ると、フラックスによる金属外皮と導電性心線との間の導電性を十分に高めることができず、導電性心線と被溶接物との間においてアークが十分に発生しない。そのため、アークの状態が悪くなり、スパッタが発生しやすくなる。また、80重量%を上回ると、アーク安定剤等の非金属フラックスの必要量が減少する。そのため、アークの状態が悪くなり、スパッタが発生しやすくなる。
【0007】
また、ワイヤの単位長さの重量に対するフラックスの重量の重量%を6.5〜30重量%にすれば、フラックスの効果を高めて、しかも溶接金属の割れを抑制できる。6.5重量%を下回ると、溶接金属の機械的性質、耐割性等を向上させるフラックスの効果が得られない。30重量%を上回ると、フラックスに含まれる不純物により溶接金属に割れが生じやすくなる。また、導電性心線を内包することが困難になる。
【0008】
更に、ワイヤの単位長さの重量に対する導電性心線の重量の重量%を1.5〜15重量%にすれば、アークが安定して、スパッタが発生し難くなる。1.5重量%を下回ると、導電性心線におけるアーク発生が十分でないため、アークが不安定になり、スパッタが発生しやすくなる。15重量%を上回ると、フラックスの量が制限され、アーク安定剤等の非金属フラックスの必要量が減少する。そのため、アークの状態が悪くなり、スパッタが発生しやすくなる。
【0009】
導電性心線は、多角形,円形等の種々の横断面形状のものを用いることができる。略円形状の横断面形状のものを用いれば、アーク状態を良好にできる。
【0010】
本発明のより具体的な溶接用フラックス入りワイヤでは、フラックスの金属粉含有量が50〜60重量%であり、ワイヤの単位長さの重量に対するフラックスの重量の重量%が15.5〜19.5重量%であり、ワイヤの単位長さの重量に対する導電性心線の重量の重量%が3.5〜7.5重量%である。この範囲にすれば、最も望ましい効果が得られる。
【0011】
【発明の実施の形態】
図1は、下記表1に示す試験に用いた各溶接用フラックス入りワイヤ1の断面図を示している。本図に示すように、試験用溶接用フラックス入りワイヤ1は、金属外皮(フープ)2と金属外皮2内に充填されたフラックス3とフラックス3の略中心部に金属外皮2に支持されることなく配置された導電性心線4とを有している。なお、表1の中で比較例1,6,7は、導電性心線が配置されていないが、導電性心線以外は上記と同じ構造を有している。金属外皮2は、YNiCrの成分からなるNi基合金により形成されており、フラックス3は、TiO、Al、平均粒子径10〜100μmの粒状のNi,Crからなる金属粉等を含有している。導電性心線4は、YNi−1(JIS−Z3334)の成分からなるNi基合金により形成されており、断面形状が円形を有している。
【0012】
各試験用ワイヤは、次のようにして製造した。まず図2に示すように、Ni基合金からなる幅寸法が8mmの帯状の板材2´を成形ロール10で断面形状がU字状になるように(上方に開口部を形成するように)丸める成形をした後に、フラックス充填装置11からフラックスを充填すると共に導電性心線12を挿入した。次に密閉成形ロール13でさらに丸める成形を施した。これにより、図1に示すラップ部2aが形成されて金属外皮2は円筒状に密閉される。次に、伸線工程で伸線して径寸法1.2mmの各試験用ワイヤを作った。このようにワイヤを製造すれば、従来のように導電性心線を支持させるための複雑な加工を金属外皮に施す必要がなく、ワイヤの製造が容易になる。特に直径寸法が2.0mm以下に小さくなるような場合に製造が容易になる。なお、表1に示す外皮厚みは、成形工程前の帯状の板材での金属外皮の厚みであり、心線径は、成形工程前の導電性心線の径寸法である。これらの寸法は、成形工程により減少するものである。また、表1に示すフラックス量は、成形工程後のワイヤの単位長さの重量に対するフラックスの重量の重量%であり、心線量は、成形工程後のワイヤの単位長さの重量に対する導電性心線の重量の重量%である。これら表1に示す成形工程後のフラックス量及び心線量は、ロール成形及び成形工程前の金属外皮,フラックス及び導電性心線の各重量から算出した。
【0013】
【表1】

Figure 0004263879
次に、これらの試験用ワイヤを用いて、T形溶接割れ試験を行った。本試験は、基本的にはJIS−Z−3153(1993)T形溶接割れ試験に準じた方法で行った。具体的には、図3に示すように、SM490Aからなる2つの板P1,P2を1mmのギャップGを設けてT形に溶接して試験ビードB1及び拘束ビードB2を形成し、試験ビードB1及びクレータ部の割れ長さを染色浸透探傷試験方法により求めて割れ率[(割れ長さ/クレータの長さ)×100]を算出した。なお、溶接条件は、電流200〜210A、電圧29〜30V、試験ビードの溶接速度300mm/min、拘束ビードの溶接速度250mm/minとした。また、割れはクレータ部のみで生じたのでクレータ部の割れだけを調べた。表1には、その試験結果が併せて示されている。表1より、導電性心線を配置しない比較例1,6,7のワイヤ及びフラックス量(ワイヤの単位長さの重量に対するフラックスの重量の重量%)が30重量%を上回る比較例3のワイヤでは、割れ率が高いのが分かる。これは、フラックス量が増加することによりフラックスに含まれる不純物により割れが生じたものと考えられる。また、フラックスの金属粉含有量が20重量%を下回る比較例5,8のワイヤも割れ率が高いのが分かる。これは、導電性心線への通電が不十分でアークが不安定になったためであると考えられる。また、フラックスの金属粉含有量が80重量%を上回る比較例9のワイヤも割れ率が高いのが分かる。これは、アーク安定剤等の非金属フラックスの必要量が減少するためである。
【0014】
次にSM490Aからなる12×100×250mmの板の表面に板の長手方向に延びる方向にビードを形成して、アークの状態(アークの強弱,連続性等)を目視により良好な順に◎,○,○,△,×の5段階で評価した。また、発生したスパッタの大きさ及び個数からスパッタの発生状況を◎,○,○,△,×の5段階で評価した。具体的には、溶接ビード中央部150mm当たりのスパッタ付着量が0〜1個:◎,2〜5個:○,6〜10個:○,11〜25個:△,26個以上:×を評価基準とした。表1には、その試験結果が併せて示されている。表1より、導電性心線を配置しない比較例1,6,7のワイヤでは、アークの状態が悪く、スパッタが発生しやすいのが分かる。これは、導電性心線を配置しないワイヤでは、金属外皮と被溶接材料との間でアークが発生するため、金属外皮が先に溶融し、フラックスの中心部が十分に溶融しないためである。これにより、アークが不安定になり、スパッタが発生しやすくなる。また、心線量(ワイヤの単位長さの重量に対する導電性心線の重量の重量%)が1.5重量%を下回る比較例2のワイヤもアークの状態が悪く、スパッタが発生しやすいのが分かる。これは、心線量が少ないため、導電性心線におけるアーク発生が十分でないためである。また、心線量が15重量%を上回る比較例4のワイヤもアークの状態が悪く、スパッタが発生しやすいのが分かる。これは、フラックスの量が制限され、アーク安定剤等の非金属フラックスの必要量が減少するためである。また、フラックスの金属粉含有量が20重量%を下回る比較例5,8のワイヤもアークの状態が悪く、スパッタが発生しやすいのが分かる。これは、フラックスの金属粉含有量が少なく金属外皮と導電性心線との導電性が十分に図られず、導電性心線におけるアーク発生が十分でないためである。また、フラックスの金属粉含有量が80重量%を上回る比較例9のワイヤもアークの状態が悪く、スパッタが発生しやすいのが分かる。これは、アーク安定剤等の非金属フラックスの必要量が減少するためである。
【0015】
次に、フラックスの金属粉含有量と、金属外皮と導電性心線との導電性との関係を調べた。厚み0.5mm×幅8mmの金属外皮でフラックス及び0.5mm径の導電性心線を内包した1.2mm径ワイヤを作り、フラックスの金属粉含有量を種々に変えた場合の各ワイヤの50cm当たりの電気抵抗値を調べた。表2は、その結果を示している。この電気抵抗値は、金属外皮と導電性心線との間の電気抵抗値に比例するものである。
【0016】
【表2】
Figure 0004263879
表2より、フラックスの金属粉含有量が20〜80重量%であると電気抵抗値が低く、金属外皮と導電性心線との間の導電性を高められるのが分かる。なお、80重量%を超えた場合、電気抵抗値は低いが、アーク安定剤等の非金属フラックスの必要量が減少するため、アークの状態が悪くなり、スパッタが発生しやすくなる。
【0017】
なお、本例では、ラップ部2aが形成されたラップO型の溶接用フラックス入りワイヤに本発明を適用した例を示したが、図4(A)に示すような金属外皮が重ならずに突き当たって接合しているバットO型、図4(B)に示すシームレス型、図4(C)に示すT型に本発明を適用できるのは勿論である。
【0018】
また、本例では、フラックスの金属粉として、粒状のものを用いたが、鱗片状、線状等の他の形状の金属粉を用いても構わない。
【0019】
また、本例では、導電性心線として、円形の横断面形状を有するものを用いたが、角形等の他の横断面形状を有するものを用いても構わない。
【0020】
【発明の効果】
本発明によれば、金属外皮と導電性心線との間の電気抵抗値を下げることができる量の金属粉をフラックスに含有させることによって、金属外皮と導電性心線との導電を図った。これにより、金属外皮に支持されることなく、金属外皮内にフラックスと一緒に導電性心線を配置してもフラックスを介した金属外皮からの通電により、導電性心線と被溶接材料との間でもアークを発生させることができる。そのため、従来のように導電性心線を支持させるための複雑な加工を金属外皮に施す必要がなく、ワイヤの製造が容易になる。特に金属外皮の平均外径寸法が2.0mm以下に小さくなるような場合に製造が容易になる。
【図面の簡単な説明】
【図1】本発明の実施の形態を含む試験用溶接用フラックス入りワイヤの断面図である。
【図2】図1に示す試験用溶接用フラックス入りワイヤの製造工程を説明するために用いる図である。
【図3】図1に示す試験用溶接用フラックス入りワイヤのT形溶接割れ試験の態様を説明するための図である。
【図4】(A)〜(C)は、本発明の他の実施の形態の溶接用フラックス入りワイヤの断面図である。
【図5】従来の溶接用フラックス入りワイヤの断面図である。
【符号の説明】
1 溶接用フラックス入りワイヤ
2 金属外皮(フープ)
3 フラックス
4 導電性心線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a flux-cored wire for welding.
[0002]
[Prior art]
For example, US Pat. No. 6,153,847 uses a flux-cored wire for welding in which various fluxes are filled in a metal shell in order to improve the mechanical properties, split resistance, etc. of the weld metal. The flux is composed of a deoxidizer, a slag former, an arc stabilizer, a metal powder, and the like. However, in such a wire, since an arc is generated between the metal skin and the material to be welded, the metal skin melts first. For this reason, the central portion of the flux is not sufficiently melted, and the arc tends to become unstable. As a result, there is a problem that spatter is likely to occur and welding workability is lowered. In particular, in a welding wire made of Ni or a Ni-based alloy, such a problem is remarkable because the melting point of Ni or the Ni-based alloy is lower than that of iron or the like. Further, since the flux-cored wire for welding forms the outer skin by subjecting the strip-shaped outer skin material to a cylindrical shape, the cylindrical core cannot be rounded when the thickness of the outer skin exceeds a predetermined dimension. Therefore, there is a limit in reducing the space in the outer skin where the flux can be filled, and there is a problem that the flux content cannot be adjusted to a small extent. If the flux content increases more than necessary, the weld metal is likely to crack due to impurities contained in the flux. Therefore, as shown on page 73 of “Latest Welding Engineering (Revised 2nd Edition)” by Haruyoshi Suzuki, published by Corona Corporation of Japan in 1998, it is formed integrally with the metal skin 102 at the approximate center of the flux 101. It has been proposed to arrange the conductive core wire 103 supported by the support portion 102a (see FIG. 5). As described above, when the conductive core wire 103 is disposed, an arc is generated between the conductive core wire 103 and the material to be welded, the melting of the flux 101 is promoted, and the arc is stabilized. Moreover, the space which can be filled with the flux 101 in the metal shell 102 can be made small, and the amount of the flux can be adjusted as appropriate to prevent cracking of the weld metal.
[0003]
[Problems to be solved by the invention]
However, with such a wire, in order to support the conductive core wire 103, a complicated process for forming the support portion 102a on the metal outer skin 102 is required, and the manufacture is complicated. In particular, when the diameter is reduced to 2.0 mm or less, the manufacturing complexity increases.
[0004]
An object of the present invention is to provide a flux-cored wire for welding in which a conductive core wire made of Ni or a Ni-based alloy can be arranged without complicated processing on a metal skin made of Ni or a Ni-base alloy.
[0005]
[Means for Solving the Problems]
The present invention is intended to improve a flux cored wire for welding in which a flux is filled in a pipe-shaped metal shell made of Ni or a Ni-based alloy, and is made of Ni or a Ni-based alloy in the metal shell together with the flux. Conductive cores are placed without being supported by the metal sheath, and the flux generates an arc between the conductive core and the material to be welded in addition to the metal sheath and the material to be welded. The metal powder is contained in an amount that can lower the electrical resistance value between the metal sheath and the conductive core wire. Here, “without being supported by the metal skin” means, for example, the metal skin without being included or locked in a state of being connected to a part of the metal skin as shown in FIG. It means that they are in a substantially separated state. The metal sheath and the conductive core wire that are in contact with each other are not supported by the metal sheath and are included in the present invention. In the present invention, the metal sheath and the conductive core wire are electrically connected by including an amount of metal powder in the flux that can reduce the electrical resistance value between the metal sheath and the conductive core wire. . As a result, even if the conductive core wire is placed together with the flux in the metal skin without being supported by the metal skin, the conductive core wire and the coated wire are energized by the current from the metal skin through the metal powder in the flux. An arc can also be generated between the welding materials. Therefore, it is not necessary to perform complicated processing for supporting the conductive core wire as in the conventional case on the metal sheath, and the manufacture of the wire is facilitated. In particular, when the average outer diameter of the metal skin is reduced to 2.0 mm or less, the ease of manufacturing exhibits a great effect.
[0006]
In order to contain an amount of metal powder that can lower the electrical resistance value between the metal sheath and the conductive core wire to such an extent that an arc is generated even between the conductive core wire and the material to be welded, for example, flux The granular metal powder may be contained in an amount of 20 to 80% by weight based on the flux. If a granular metal powder is used, there is an advantage that the metal powder can be dispersed and mixed substantially uniformly in the flux. When the amount of the granular metal powder is less than 20% by weight, the electrical conductivity between the metal sheath and the conductive core due to the flux cannot be sufficiently increased, and an arc is formed between the conductive core and the work piece. Does not occur sufficiently. For this reason, the arc state is deteriorated and sputtering is likely to occur. Moreover, when it exceeds 80 weight%, the required amount of nonmetallic fluxes, such as an arc stabilizer, will reduce. For this reason, the arc state is deteriorated and sputtering is likely to occur.
[0007]
Moreover, if the weight% of the weight of the flux with respect to the weight of the unit length of the wire is set to 6.5 to 30% by weight, the effect of the flux can be enhanced and cracking of the weld metal can be suppressed. If it is less than 6.5% by weight, the effect of flux that improves the mechanical properties, split resistance, etc. of the weld metal cannot be obtained. If it exceeds 30% by weight, cracks are likely to occur in the weld metal due to impurities contained in the flux. Moreover, it becomes difficult to enclose the conductive core wire.
[0008]
Furthermore, if the weight percent of the conductive core wire with respect to the weight of the unit length of the wire is set to 1.5 to 15 weight percent, the arc is stabilized and it becomes difficult for spatter to occur. If the amount is less than 1.5% by weight, arc generation in the conductive core wire is not sufficient, so that the arc becomes unstable and sputtering is likely to occur. If it exceeds 15% by weight, the amount of flux is limited, and the required amount of non-metallic flux such as arc stabilizer is reduced. For this reason, the arc state is deteriorated and sputtering is likely to occur.
[0009]
As the conductive core wire, those having various cross-sectional shapes such as a polygon and a circle can be used. If an approximately circular cross-sectional shape is used, the arc state can be improved.
[0010]
In the more specific welding flux-cored wire of the present invention, the metal powder content of the flux is 50 to 60% by weight, and the weight percent of the flux weight with respect to the unit length of the wire is 15.5 to 19%. 5% by weight, and the weight% of the weight of the conductive core to the weight of the unit length of the wire is 3.5 to 7.5% by weight. Within this range, the most desirable effect can be obtained.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows a cross-sectional view of each welding flux-cored wire 1 used in the test shown in Table 1 below. As shown in the figure, the flux cored wire 1 for test welding is supported by the metal sheath 2 at the metal skin (hoop) 2, the flux 3 filled in the metal skin 2, and the approximate center of the flux 3. It has the conductive core wire 4 arrange | positioned without. In Table 1, Comparative Examples 1, 6, and 7 have no conductive core wire, but have the same structure as the above except for the conductive core wire. The metal shell 2 is formed of a Ni-based alloy composed of a YNiCr 3 component, and the flux 3 is made of TiO 2 , Al 2 O 3 , metal powder composed of granular Ni, Cr having an average particle diameter of 10 to 100 μm, and the like. Contains. The conductive core wire 4 is formed of a Ni-based alloy composed of a component of YNi-1 (JIS-Z3334) and has a circular cross-sectional shape.
[0012]
Each test wire was manufactured as follows. First, as shown in FIG. 2, a strip-shaped plate material 2 'made of a Ni-based alloy and having a width of 8 mm is rounded with a forming roll 10 so that the cross-sectional shape is U-shaped (to form an opening above). After molding, the flux was filled from the flux filling device 11 and the conductive core wire 12 was inserted. Next, forming which further rounds with the airtight forming roll 13 was performed. Thereby, the lap | wrap part 2a shown in FIG. 1 is formed, and the metal shell 2 is sealed cylindrically. Next, each test wire having a diameter of 1.2 mm was made by drawing in the wire drawing step. If the wire is manufactured in this way, it is not necessary to perform a complicated process for supporting the conductive core wire on the metal sheath as in the conventional case, and the manufacture of the wire is facilitated. Manufacture is facilitated particularly when the diameter is reduced to 2.0 mm or less. In addition, the outer skin thickness shown in Table 1 is the thickness of the metal outer skin in the strip | belt-shaped board | plate material before a shaping | molding process, and a core wire diameter is a diameter dimension of the electroconductive core wire before a shaping | molding process. These dimensions are reduced by the molding process. The amount of flux shown in Table 1 is the weight percent of the weight of the flux with respect to the weight of the unit length of the wire after the molding process, and the core dose is the conductive core with respect to the weight of the unit length of the wire after the molding process. The weight percentage of the weight of the wire. The amount of flux and the core dose after the forming process shown in Table 1 were calculated from the respective weights of the metal outer sheath, the flux and the conductive core before the roll forming and forming processes.
[0013]
[Table 1]
Figure 0004263879
Next, a T-shaped weld cracking test was performed using these test wires. This test was basically performed by a method according to JIS-Z-3153 (1993) T-type weld crack test. Specifically, as shown in FIG. 3, two plates P1 and P2 made of SM490A are welded to a T shape with a gap G of 1 mm to form a test bead B1 and a restraint bead B2, and test bead B1 and The crack length of the crater portion was determined by a dye penetration test method, and the crack rate [(crack length / crater length) × 100] was calculated. The welding conditions were as follows: current 200 to 210 A, voltage 29 to 30 V, test bead welding speed 300 mm / min, and constraining bead welding speed 250 mm / min. Moreover, since the crack occurred only in the crater portion, only the crack in the crater portion was examined. Table 1 also shows the test results. From Table 1, the wires of Comparative Example 1, 6 and 7 in which no conductive core wire is arranged and the amount of flux (weight% of the weight of the flux with respect to the weight of the unit length of the wire) exceed 30% by weight. Then, it turns out that the crack rate is high. It is considered that this is because cracks are caused by impurities contained in the flux due to an increase in the amount of flux. Moreover, it turns out that the crack rate is also high for the wires of Comparative Examples 5 and 8 in which the metal powder content of the flux is less than 20 wt%. This is considered to be because the electric current to the conductive core wire was insufficient and the arc became unstable. It can also be seen that the wire of Comparative Example 9 in which the metal powder content of the flux exceeds 80% by weight also has a high cracking rate. This is because the required amount of non-metallic flux such as arc stabilizers is reduced.
[0014]
Next, a bead is formed on the surface of the SM490A 12 × 100 × 250 mm plate extending in the longitudinal direction of the plate, and the state of the arc (the strength of the arc, the continuity, etc.) is visually observed in the order of goodness. , ○ , Δ, × were evaluated in five stages. Further, the spatter generation status was evaluated in five stages of ◎, ○, ○ , Δ, and × from the size and number of spatters generated. Specifically, the spatter deposition amount per 150 mm of the weld bead center portion is 0 to 1: ◎, 2 to 5: ○, 6 to 10: ○ , 11 to 25: Δ, 26 or more: × Was used as an evaluation standard. Table 1 also shows the test results. From Table 1, it can be seen that in the wires of Comparative Examples 1, 6, and 7 in which the conductive core wires are not disposed, the arc state is poor and sputtering is likely to occur. This is because, in a wire without a conductive core wire, an arc is generated between the metal shell and the material to be welded, so that the metal shell is melted first and the center portion of the flux is not sufficiently melted. As a result, the arc becomes unstable and sputtering is likely to occur. Further, the wire of Comparative Example 2 in which the core dose (weight% of the weight of the conductive core with respect to the weight of the unit length of the wire) is less than 1.5% by weight is also in a poor arc state and is likely to generate spatter. I understand. This is because arc generation in the conductive core wire is not sufficient because the cardiac dose is small. Also, it can be seen that the wire of Comparative Example 4 in which the cardiac dose exceeds 15% by weight also has a poor arc state and is likely to generate spatter. This is because the amount of flux is limited and the required amount of non-metallic flux such as arc stabilizers is reduced. In addition, it can be seen that the wires of Comparative Examples 5 and 8 in which the metal powder content of the flux is less than 20% by weight are also in a poor arc state and spatter is likely to occur. This is because the metal powder content of the flux is small and the metal sheath and the conductive core are not sufficiently conductive, and arcing in the conductive core is not sufficient. Also, it can be seen that the wire of Comparative Example 9 in which the metal powder content of the flux exceeds 80% by weight is also in a poor arc state and spatter is likely to occur. This is because the required amount of non-metallic flux such as arc stabilizers is reduced.
[0015]
Next, the relationship between the metal powder content of the flux and the conductivity between the metal sheath and the conductive core wire was examined. A 1.2 mm diameter wire containing a flux and a conductive core wire with a diameter of 0.5 mm is formed with a metal sheath of thickness 0.5 mm × width 8 mm, and 50 cm of each wire when the metal powder content of the flux is variously changed. The electrical resistance value per hit was examined. Table 2 shows the results. This electrical resistance value is proportional to the electrical resistance value between the metal shell and the conductive core wire.
[0016]
[Table 2]
Figure 0004263879
From Table 2, it can be seen that when the metal powder content of the flux is 20 to 80% by weight, the electrical resistance value is low, and the conductivity between the metal sheath and the conductive core can be increased. If it exceeds 80% by weight, the electrical resistance value is low, but the necessary amount of non-metallic flux such as an arc stabilizer is reduced, so that the arc state is deteriorated and sputtering is likely to occur.
[0017]
In this example, an example in which the present invention is applied to a wrap O-type flux-cored wire for welding in which a lap portion 2a is formed is shown. However, the metal skin as shown in FIG. Needless to say, the present invention can be applied to the butt O type that is abutted and joined, the seamless type shown in FIG. 4B, and the T type shown in FIG. 4C.
[0018]
Further, in this example, a granular metal powder is used as the flux metal powder, but metal powder having other shapes such as a scale shape and a linear shape may be used.
[0019]
In this example, the conductive core wire has a circular cross-sectional shape, but a conductive core wire having another cross-sectional shape such as a square may be used.
[0020]
【The invention's effect】
According to the present invention, the metal sheath and the conductive core wire are made conductive by including in the flux an amount of metal powder that can lower the electrical resistance value between the metal sheath and the conductive core wire. . As a result, even if the conductive core wire is arranged together with the flux in the metal skin without being supported by the metal skin, the conductive core wire and the material to be welded are energized by the current from the metal skin via the flux. An arc can be generated even between the two. Therefore, it is not necessary to perform complicated processing for supporting the conductive core wire as in the conventional case on the metal sheath, and the manufacture of the wire is facilitated. Manufacture is facilitated particularly when the average outer diameter of the metal shell is as small as 2.0 mm or less.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a flux cored wire for testing welding that includes an embodiment of the present invention.
FIG. 2 is a view used for explaining a manufacturing process of the welding flux cored wire shown in FIG. 1;
3 is a view for explaining an aspect of a T-shaped weld cracking test of the flux cored wire for test welding shown in FIG.
4A to 4C are cross-sectional views of welding flux-cored wires according to other embodiments of the present invention.
FIG. 5 is a cross-sectional view of a conventional welding flux-cored wire.
[Explanation of symbols]
1 Flux-cored wire for welding 2 Metal hull
3 Flux 4 Conductive core wire

Claims (2)

NiまたはNi基合金からなるパイプ状の金属外皮内にフラックスが充填された溶接用フラックス入りワイヤにおいて、
前記フラックスと一緒に前記金属外皮内には、NiまたはNi基合金からなる導電性心線が前記金属外皮に支持されることなく配置されており、
前記フラックス中には、粒状の金属粉が前記フラックスに対して20〜80重量%含有されており、
前記ワイヤの単位長さの重量に対する前記フラックスの重量の重量%が6.5〜30重量%であり、
前記ワイヤの単位長さの重量に対する前記導電性心線の重量の重量%が1.5〜15重量%であり、
前記導電性心線は、略円形状の横断面形状を有していることを特徴とする溶接用フラックス入りワイヤ。
In a flux-cored wire for welding in which a flux is filled in a pipe-shaped metal sheath made of Ni or a Ni-based alloy,
In the metal skin together with the flux, a conductive core wire made of Ni or a Ni-based alloy is arranged without being supported by the metal skin,
In the flux, 20-80% by weight of granular metal powder is contained with respect to the flux,
The weight% of the weight of the flux with respect to the weight of the unit length of the wire is 6.5 to 30% by weight;
The weight% of the weight of the conductive core with respect to the weight of the unit length of the wire is 1.5 to 15% by weight,
The conductive cored wire has a substantially circular cross-sectional shape, and is a flux-cored wire for welding.
NiまたはNi基合金からなる金属外皮内にフラックスが充填された溶接用フラックス入りワイヤにおいて、
前記フラックスの略中心部に前記金属外皮に支持されることなく、NiまたはNi基合金からなる導電性心線が配置されており、
前記フラックス中には、粒状の金属粉が前記フラックスに対して50〜60重量%含有されており、
前記ワイヤの単位長さの重量に対する前記フラックスの重量の重量%が15.5〜19.5重量%であり、
前記ワイヤの単位長さの重量に対する前記導電性心線の重量の重量%が3.5〜7.5重量%であり、
前記導電性心線は、略円形状の横断面形状を有していることを特徴とする溶接用フラックス入りワイヤ。
In a flux-cored wire for welding in which a flux is filled in a metal shell made of Ni or a Ni-based alloy,
Without being supported by the metal shell at a substantially central portion of the flux, a conductive core wire made of Ni or a Ni-based alloy is disposed,
In the flux, a granular metal powder is contained in an amount of 50 to 60% by weight with respect to the flux,
The weight percentage of the weight of the flux with respect to the weight of the unit length of the wire is 15.5 to 19.5 weight%,
The weight% of the weight of the conductive core with respect to the weight of the unit length of the wire is 3.5 to 7.5% by weight,
The conductive cored wire has a substantially circular cross-sectional shape, and is a flux-cored wire for welding.
JP2002210894A 2001-07-19 2002-07-19 Flux-cored wire for welding Expired - Lifetime JP4263879B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002210894A JP4263879B2 (en) 2001-07-19 2002-07-19 Flux-cored wire for welding

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2001220200 2001-07-19
JP2001-220200 2001-07-19
JP2002210894A JP4263879B2 (en) 2001-07-19 2002-07-19 Flux-cored wire for welding

Publications (2)

Publication Number Publication Date
JP2003103394A JP2003103394A (en) 2003-04-08
JP4263879B2 true JP4263879B2 (en) 2009-05-13

Family

ID=26619041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002210894A Expired - Lifetime JP4263879B2 (en) 2001-07-19 2002-07-19 Flux-cored wire for welding

Country Status (1)

Country Link
JP (1) JP4263879B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189819A (en) * 2016-04-11 2017-10-19 日本ウエルディング・ロッド株式会社 Wire for welding dissimilar material and method for manufacturing the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4906394B2 (en) * 2006-04-28 2012-03-28 日本ウエルディング・ロッド株式会社 Manufacturing method of welding wire

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017189819A (en) * 2016-04-11 2017-10-19 日本ウエルディング・ロッド株式会社 Wire for welding dissimilar material and method for manufacturing the same

Also Published As

Publication number Publication date
JP2003103394A (en) 2003-04-08

Similar Documents

Publication Publication Date Title
KR910009158B1 (en) Consumable welding electrode
US20030136774A1 (en) Straight polarity metal cored wire
JP2007536089A (en) Weld filler for welding dissimilar alloy steel and method using the same
KR101306053B1 (en) Weld wire electrode for gas metal arc welding
EP2610361B1 (en) Flux-cored welding wire for carbon steel and process for arc welding
JP2003211285A (en) Welding wire and its production method
JP6348059B2 (en) First electrode welding torch for multi-electrode submerged arc welding and welding method using the same
EP1277538B1 (en) Flux-contained welding wire
US3059093A (en) Welding process and electrode for aluminum
JP4263879B2 (en) Flux-cored wire for welding
US2683207A (en) Stranded welding rod
CN211840673U (en) Quincunx flux-cored wire with conductive center
US20180236610A1 (en) Bimetallic welding electrode
KR102587375B1 (en) Multielectrode gas shielded arc single-sided welding method and multielectrode gas shielded arc single-sided welding device
WO1998039138A1 (en) A wire, a core and a process for electrical arc welding
US2054054A (en) Welding electrode for magnesium and its alloys
KR101205332B1 (en) A welding wire
CN111482732A (en) Improved crack resistant wire electrode containing added sulfur source and magnesium oxide
JPS6216747B2 (en)
JP3247236B2 (en) Manufacturing method of flux cored wire for arc welding
JP2000158187A (en) Flux cored wire for gas shield arc welding, and manufacture
JPH0240435B2 (en) GASUSHIIRUDOAAKUYOSETSUYOFURATSUKUSUIRIWAIYA
JP3197404B2 (en) Flux-cored wire for gas shielded arc welding
JPH07299586A (en) Wire for gas metal arc welding for austenite stainless steel
JP2000317677A (en) Solid wire for carbon dioxide gas arc welding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050705

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070717

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090213

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263879

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term