JP4263662B2 - Optical transmission device, optical transmission method, and optical transmission system - Google Patents

Optical transmission device, optical transmission method, and optical transmission system Download PDF

Info

Publication number
JP4263662B2
JP4263662B2 JP2004175579A JP2004175579A JP4263662B2 JP 4263662 B2 JP4263662 B2 JP 4263662B2 JP 2004175579 A JP2004175579 A JP 2004175579A JP 2004175579 A JP2004175579 A JP 2004175579A JP 4263662 B2 JP4263662 B2 JP 4263662B2
Authority
JP
Japan
Prior art keywords
optical
path
optical transmission
section
transmission device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004175579A
Other languages
Japanese (ja)
Other versions
JP2005354592A (en
Inventor
久保  勉
智由 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2004175579A priority Critical patent/JP4263662B2/en
Publication of JP2005354592A publication Critical patent/JP2005354592A/en
Application granted granted Critical
Publication of JP4263662B2 publication Critical patent/JP4263662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Small-Scale Networks (AREA)
  • Optical Communication System (AREA)

Description

本発明は、光リングネットワークにおける始点および終点の異なる2本の光パス間の切替を実現する光伝送装置、光伝送方法および光伝送システムに関する。   The present invention relates to an optical transmission apparatus, an optical transmission method, and an optical transmission system that realize switching between two optical paths having different start points and end points in an optical ring network.

帯域増強と信頼性確保を両立するデュアルホーミングあるいはマルチホーミングを用いて光ネットワークとこれに接続される利用者の機器との接続を行うことがある。また、プロバイダ複数社と契約している利用者の場合、各々のプロバイダが別々の通信事業者ビルに収容されているような状況も考えられる。このようなマルチホーミングの利点として、光伝送路すなわち光ファイバの切断に対処可能なだけではなく通信事業者ビルの災害/停電時にも通信を確保できることが挙げられる。   In some cases, the optical network and a user device connected to the optical network are connected using dual homing or multi-homing which achieves both bandwidth enhancement and reliability. In addition, in the case of a user who has contracted with a plurality of providers, there may be a situation in which each provider is accommodated in a separate telecommunications carrier building. As an advantage of such multihoming, it is possible not only to cope with an optical transmission line, that is, to cut an optical fiber, but also to secure communication even in the event of a disaster / power outage in a carrier building.

従来のディジタル電話網では、交換機設置ビルの障害時に障害ビル配下の局からの通信を確保するため、隣接ビルヘも回線を設定する2重帰属が一般的である。よって利用者ばかりでなく通信事業者内でも、ここからの踏襲により、現在の光ネットワーク構成においてもビル障害対策として接続装置の2重帰属は広く行われている。   In a conventional digital telephone network, in order to ensure communication from a station under a troubled building in the event of a failure in a building where an exchange is installed, a double assignment in which a line is also set to an adjacent building is common. Therefore, not only the users but also the telecommunication carriers have followed this, and in the current optical network configuration, the double assignment of connection devices is widely performed as a countermeasure against building failures.

従来、接続先の光ネットワーク上の伝送路に障害が発生して通信不可能になった場合の救済は、主要局間を2系統以上のシステムでそれぞれ異なるルートを介して接続しておき、使用するシステムを切り替えるとともに接続装置側の切替機能を用いて通信を復旧するようにしていたが、近年、1系統のシステムの中に冗長を持つことが可能な光リングネットワークが普及している。   Conventionally, when a transmission path on a connection destination optical network fails and communication becomes impossible, the main stations are used by connecting two or more systems via different routes. However, in recent years, an optical ring network that can have redundancy in one system has become widespread.

リングネットワークの切替方法には、パスの受信側において当該パスを単位として切替えを行う単一方向パススイッチリングUPSR(Unidirectional Path Switch Ring)を用いる方法や、パスを多重したセクション単位で切替えを行う双方向ラインスイッチリングBLSR(Bidirectional Line Switch Ring)を用いる方法が知られている。この種の技術については、例えば非特許文献1に開示されている。   The ring network switching method includes a method using a unidirectional path switch ring (UPSR) that performs switching in units of the path on the path receiving side, and both switching in units of sections in which paths are multiplexed. A method using a directional line switch ring (BLSR) is known. This type of technology is disclosed in Non-Patent Document 1, for example.

双方向ラインスイッチリングBLSRを用いる切替方法では、図5に図示するように、光リングネットワークを構成するノード4とノード5との間で伝送障害が発生した場合、ループバックを行うため、例えば大洋をまたいで大陸間を接続するようなリングネットワークに適用すると、切替後のパスの総距離が大洋間距離の3倍にもなり得ることがあり、伝送遅延が大幅に増加してしまう。   In the switching method using the bidirectional line switch ring BLSR, as shown in FIG. 5, when a transmission failure occurs between the node 4 and the node 5 constituting the optical ring network, loop back is performed. When applied to a ring network that connects continents across the continent, the total path distance after switching may be three times the distance between oceans, resulting in a significant increase in transmission delay.

そうした伝送遅延を回避するため、双方向ラインスイッチリングBLSRを用いる切替方法では、図6に図示するように、リングネットワークを構成するノード4とノード5との間で伝送障害が発生した場合、図7に図示する切替シーケンスを参照することによって、ループバックを行わずに伝送障害のあるノード間を迂回するよう切替える大洋横断方式(Transoceanic Application)と呼ばれる技術も知られており、これについては非特許文献2に開示されている。なお、光リングネットワークにおける切替方式は、非特許文献3に開示されているように、上記のパスを光パス(OCh:Optical Channel)に、セクションを光多重セクション(OMS:Optical Multiplex Section)に置き換えた、OCh占有切替とOMS共有切特が一般的である。
Fiber Network Service Survivability, Artech House, 1992 ITU-T Recommendation G.841,Annex A, 2001 Optical Network, 2nd ed., Morgan Kaufmann Publishers, 2001
In order to avoid such a transmission delay, in the switching method using the bidirectional line switch ring BLSR, as shown in FIG. 6, when a transmission failure occurs between the node 4 and the node 5 constituting the ring network, A technique called Transoceanic Application that refers to the switching sequence shown in Fig. 7 and switches to bypass between nodes with a transmission failure without performing loopback is also known. It is disclosed in Document 2. As described in Non-Patent Document 3, the switching method in the optical ring network replaces the above path with an optical path (OCh: Optical Channel) and the section with an optical multiplex section (OMS: Optical Multiplex Section). In addition, OCh occupation switching and OMS sharing cut-off are common.
Fiber Network Service Survivability, Artech House, 1992 ITU-T Recommendation G.841, Annex A, 2001 Optical Network, 2nd ed., Morgan Kaufmann Publishers, 2001

しかしながら、従来の1系統のシステムの中に冗長を持つことが可能な光リングネットワークでは、現用光波長の始終端点とその予備波長の始終端点が同一でなければならないという制約がある。このため、始終端点の異なる2本の現用の光パスを必要とする場合はこの2本の光パスに対してそれぞれ予備の光パスをあらかじめ設定しておくことになるが、予備の有効性が低く無駄が多い。一方で、予備を持たない現用だけで光パスを2本設定しても相互に救済することは不可能である。
よって従来においては、予備の指定だけをすることで光ネットワーク側において有効な帯域確保を行うことができ、またあらかじめ予備を設定しておくことで負荷の分散を可能にする柔軟なネットワーク接続を実現する切替、すなわち光リングネットワークにおける始点および終点の異なる2本の光パス間の切替を実現することができないという問題がある。
However, in the conventional optical ring network that can have redundancy in one system, there is a restriction that the start / end point of the working optical wavelength and the start / end point of the backup wavelength must be the same. For this reason, when two working optical paths having different start and end points are required, spare optical paths are set in advance for the two optical paths. Low and wasteful. On the other hand, it is impossible to relieve each other even if two optical paths are set only for the current use without a spare.
Therefore, in the past, effective bandwidth can be secured on the optical network side only by specifying spare, and flexible network connection that enables load distribution by setting spare beforehand Switching, that is, switching between two optical paths having different start and end points in an optical ring network cannot be realized.

そこで本発明は、このような事情に鑑みてなされたもので、光リングネットワークにおける始点および終点が異なる2本の光パス間の切替を実現することができる光伝送装置、光伝送方法および光伝送システムを提供することを目的としている。   Accordingly, the present invention has been made in view of such circumstances, and an optical transmission device, an optical transmission method, and an optical transmission capable of realizing switching between two optical paths having different start points and end points in an optical ring network. The purpose is to provide a system.

上記目的を達成するため、請求項1に記載の発明では、時計回りおよび反時計回りのリング経路に接続し波長多重化された複数の光信号を伝送する光伝送装置において、前記リング経路の中の経路の切替対象区間の情報に、前記複数の光信号のうち一方の前記リング経路で伝送され前記切替対象区間を使用して提供される第1の光信号と、該第1の光信号の切替先として他方の前記リング経路で伝送され該第1の光信号と始点および終点が異なる第2の光信号の組み合わせを対応付けて記憶するマップを備え、前記切替対象区間の情報を含む経路切替指示を受けて、前記リング経路を介して接続する他の光伝送装置に前記切替対象区間の情報を通知する通知手段と、前記通知手段により通知された前記切替対象区間の情報に基づいて前記マップを参照し、前記切替対象区間を回避するように前記第1の光信号から前記第2の光信号へ経路切替えする経路切替手段と、を具備することを特徴とする。   In order to achieve the above object, according to the first aspect of the present invention, there is provided an optical transmission apparatus for transmitting a plurality of wavelength-multiplexed optical signals connected to clockwise and counterclockwise ring paths. The information on the switching target section of the path includes a first optical signal transmitted using one of the plurality of optical signals and provided using the switching target section, and the first optical signal A path switch including a map that stores a combination of the first optical signal transmitted through the other ring path as a switching destination and a second optical signal having a different starting point and ending point, and includes information on the switching target section In response to the instruction, a notification means for notifying the other optical transmission apparatus connected via the ring path of the information of the switching target section, and the mapping based on the information of the switching target section notified by the notification means. Refers to the, characterized in that it comprises a and a path switching means for switching the path to the second optical signal from said first optical signal so as to avoid the switching target section.

請求項2に記載の発明では、請求項1に記載の発明において、障害が発生した際に障害発生区間を検出し、前記通知手段に前記障害発生区間を前記切替対象区間として前記経路切替指示を送信する障害検出手段を更に備えたことを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, when a failure occurs, a failure occurrence section is detected, and the route switching instruction is given to the notification means with the failure occurrence section as the change target section. It further comprises a failure detection means for transmitting.

請求項3に記載の発明では、時計回りおよび反時計回りのリング経路に接続し波長多重化された複数の光信号を伝送する光伝送装置の光伝送方法において、前記切替対象区間の情報を含む経路切替指示を受けて、前記リング経路を介して接続する他の光伝送装置に前記切替対象区間の情報を通知する通知処理と、通知された前記切替対象区間の情報に基づいて、前記リング経路の中の経路の切替対象区間の情報に前記複数の光信号のうち一方の前記リング経路で伝送され前記切替対象区間を使用して提供される第1の光信号と、該第1の光信号の切替先として他方の前記リング経路で伝送され該第1の光信号と始点及び終点が異なる第2の光信号の組み合わせを対応付けて記憶するマップを参照し、前記切替対象区間を回避するように前記第1の光信号から前記第2の光信号へ経路切替えする経路切替処理と、を具備することを特徴とする。   According to a third aspect of the present invention, in an optical transmission method of an optical transmission device for transmitting a plurality of wavelength-multiplexed optical signals connected to clockwise and counterclockwise ring paths, the information on the section to be switched is included. In response to a path switching instruction, the ring path is based on a notification process for notifying the other optical transmission apparatus connected via the ring path of the information on the switching target section and the notified information on the switching target section. A first optical signal that is transmitted on one of the ring paths among the plurality of optical signals and is provided using the switching target section, and the first optical signal. As a switching destination, a map is stored that associates and stores a combination of the first optical signal transmitted through the other ring path and a second optical signal having a different starting point and ending point so as to avoid the switching target section. To the first Characterized by comprising the a path switching process for switching the path from the optical signals to the second optical signal.

請求項4に記載の発明では、請求項3に記載の発明において、障害が発生した際に障害発生区間を検出し、前記通知手段に前記障害発生区間を前記切替対象区間として前記経路切替指示を送信する障害検出処理を更に備えたことを特徴とする。   According to a fourth aspect of the present invention, in the third aspect of the present invention, when a failure occurs, a failure occurrence section is detected, and the route switching instruction is given to the notification means with the failure occurrence section as the switching target section. A failure detection process for transmission is further provided.

請求項5に記載の発明では、請求項1に記載の光伝送装置を複数備え、前記光伝送装置を光伝送路で互いに接続し、前記第1および前記第2の光信号を時計回りおよび反時計回りのリング経路を介して伝送することを特徴とする。   According to a fifth aspect of the present invention, a plurality of the optical transmission devices according to the first aspect are provided, the optical transmission devices are connected to each other through an optical transmission line, and the first and second optical signals are rotated clockwise and counterclockwise. Transmission is performed via a clockwise ring path.

本発明によれば、光伝送装置は、リング経路の中の経路の切替対象区間の情報に、波長多重化された複数の光信号のうち一方のリング経路で伝送され切替対象区間を使用して提供される第1の光信号と、該第1の光信号の切替先として他方のリング経路で伝送され該第1の光信号と始点および終点が異なる第2の光信号の組み合わせを対応付けて記憶するマップを備えている。そして、切替対象区間の情報を含む経路切替指示を受けて、リング経路により相互に接続される他の光伝送装置に切替対象区間を通知する。通知を受けた光伝送装置は、通知された切替対象区間の情報に基づいてマップを参照し、切替対象区間を回避するように第1の光信号から第2の光信号へ経路切替えする構成となっている。そのため、光伝送装置は、光リングネットワークにおける始点および終点が異なる2本の光パス間の切替を行うことが可能となる。   According to the present invention, an optical transmission device uses a switching target section that is transmitted on one ring path among a plurality of wavelength-multiplexed optical signals as information on a switching target section of a path in a ring path. The first optical signal to be provided is associated with a combination of a second optical signal transmitted through the other ring path as a switching destination of the first optical signal and having a start point and an end point different from those of the first optical signal. It has a map to remember. Then, in response to a path switching instruction including information on the switching target section, the switching target section is notified to other optical transmission apparatuses connected to each other through the ring path. The optical transmission device that has received the notification refers to the map based on the notified information about the switching target section, and switches the path from the first optical signal to the second optical signal so as to avoid the switching target section. It has become. Therefore, the optical transmission apparatus can switch between two optical paths having different start points and end points in the optical ring network.

また、本発明によれば、光伝送装置は、障害が発生した際に、障害発生区間を検出し、障害発生区間を切替対象区間として経路切替指示を通知する構成となっている。そのため、光伝送装置は、障害発生時に障害を検出して、障害区間を回避するように光リングネットワークにおける始点および終点が異なる2本の光パス間の切替を行うことが可能となる。   Further, according to the present invention, when a failure occurs, the optical transmission device is configured to detect a failure occurrence section and notify a route switching instruction using the failure occurrence section as a switching target section. Therefore, the optical transmission device can detect a failure when a failure occurs and switch between two optical paths having different start points and end points in the optical ring network so as to avoid the failure section.

以下、図面を参照して本発明の実施の形態について説明する。図1は、本発明の実施の一形態による光リングネットワーク10の構成を示すネットワーク図である。光リングネットワーク10は、互いに光伝送路で接続される光伝送装置1〜8(以下、装置と略称する)から構成される。以下では接続装置Aから光リングネットワーク10を経て接続装置Zに光信号を伝送する一例について説明する。光リングネットワーク10内の第1の光波長W1は装置3、装置4を経由して装置5へ接続されている。ここで、装置3と装置4を接続する光伝送路あるいは装置4と装置5を接続する光伝送路に障害が発生した場合、装置2、装置1、装置8、装置7を経由して装置6へ接続される第2の光波長W2を設定する。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a network diagram showing a configuration of an optical ring network 10 according to an embodiment of the present invention. The optical ring network 10 includes optical transmission devices 1 to 8 (hereinafter, abbreviated as devices) that are connected to each other via optical transmission lines. Hereinafter, an example in which an optical signal is transmitted from the connection device A to the connection device Z via the optical ring network 10 will be described. The first optical wavelength W1 in the optical ring network 10 is connected to the device 5 via the devices 3 and 4. Here, when a failure occurs in the optical transmission path connecting the apparatus 3 and the apparatus 4 or in the optical transmission path connecting the apparatus 4 and the apparatus 5, the apparatus 6 passes through the apparatus 2, the apparatus 1, the apparatus 8, and the apparatus 7. The second optical wavelength W2 connected to is set.

接続装置Aは、装置3に出力していた光信号を装置2に出力し、また接続装置Zは装置5から入力していた光信号を装置6から入力するよう変更する。このため、光波長W1および光波長W2のリング内光波長それぞれに予備の光波長を準備する必要がない。また負荷分散を行う場合には、第1の光波長の設定に続けて予備の光波長を設定すればよい。   The connecting device A outputs the optical signal output to the device 3 to the device 2, and the connecting device Z changes the optical signal input from the device 5 to be input from the device 6. For this reason, it is not necessary to prepare a spare optical wavelength for each of the optical wavelengths W1 and W2 in the ring. When load distribution is performed, a spare optical wavelength may be set following the setting of the first optical wavelength.

次に、実際の切替動作について説明する。前述した大洋横断方式(Transoceanic Application)と同様に、本切替にはリング内のノード配置を示すマップとAPSバイトのような切替用の通知手段を利用する。各装置のマップには、図4に示すように故障位置とその故障を経由する光パスに対する現用/予備の対を記録し、またリング内の全装置で当該マップを同期しておく。故障が発生すると、故障発生区間の両端の装置は切替用通知手段を使用して該区間から順にその外側の装置へと故障(位置)を通知していく。通知を受けた各装置は、各々で保持しているマップを検索し、該故障区間を使用している光パスに対してブリッジ(光波長の設定)およびスイッチの処理を行う。このようにして、互いに反対回りのリングによって運ばれ始点も終点も異なる任意の2本の光パス間の切替を実現できる。   Next, the actual switching operation will be described. Similar to the transoceanic application described above, this switching uses a map indicating the arrangement of nodes in the ring and a switching notification means such as an APS byte. In the map of each device, as shown in FIG. 4, the current position / spare pair for the optical path passing through the failure position and the failure is recorded, and the map is synchronized with all the devices in the ring. When a failure occurs, the devices at both ends of the failure occurrence section notify the failure (position) in order from the section to the outer devices using the switching notification means. Receiving the notification, each device searches a map held by each device, and performs bridge (optical wavelength setting) and switch processing for the optical path using the failure section. In this way, it is possible to realize switching between any two optical paths that are carried by rings opposite to each other and that have different start points and end points.

こうした切替え動作の具体的な一例について説明する。例えば、図2に示すように、装置4から装置5に向かう光伝送路に障害が発生した場合について説明する。同図において、装置5では継続的に時計回りの信号(光波長W1を含む)を受信しているが、光波長W1の信号を受信できなくなった場合、即ちSF(Signal Failure)の場合には、他の波長や光監視波長も参照して、時計回りの光伝送路に障害が発生したことを認識する。続いて、装置5は時計回りの光伝送路上で自装置直前の伝送路(すなわち図3に図示した一例の場合、装置4と装置5の間)を障害部位と判定し、該障害部位の情報を該装置下流での警報抑止などの情報とともに、障害発生の通知手段により、通常のルートに加えて障害伝送路を使用しないルート、すなわち逆回りのリングも使用して障害発生を示す通知を行う。ここで障害発生の通知手段としては、光信号フォーマットのオーバヘッドバイトや光監視波長のデータ通信チャネルなどを使用すればよい。   A specific example of such switching operation will be described. For example, as shown in FIG. 2, a case where a failure occurs in the optical transmission path from the device 4 to the device 5 will be described. In the figure, the device 5 continuously receives a clockwise signal (including the optical wavelength W1). However, when the signal of the optical wavelength W1 cannot be received, that is, in the case of SF (Signal Failure). Referring to other wavelengths and optical monitoring wavelengths, it recognizes that a failure has occurred in the clockwise optical transmission line. Subsequently, the apparatus 5 determines that the transmission path immediately before itself (that is, between the apparatus 4 and the apparatus 5 in the example shown in FIG. 3) is a faulty part on the clockwise optical transmission path, and information on the faulty part. In addition to information such as alarm suppression downstream of the device, the failure occurrence notification means notifies the failure occurrence using a route that does not use the failure transmission path in addition to the normal route, that is, a reverse ring. . Here, the failure occurrence notification means may be an overhead byte of the optical signal format, a data communication channel of the optical monitoring wavelength, or the like.

この通知を受信した途中の各装置は、通知された障害部位を使用する光波長の予備波長の入力点として当該装置が指定されているかどうか、図4に示すような各装置毎に保持しているマップを検索する。予備波長の入力点に指定されている場合は、光波長を出力し送信設定を行う。この例では、上記マップ上において装置3→装置4→装置5の予備が、装置2→装置1→装置8→装置7→装置6に指定されているので、装置5から時計回りに送信されてきた通知を受信した装置2は、障害光パスとは反対回りのリングに予備として指定されている光波長(この例では反時計回り)である光波長W2を出力設定する。またこのとき、装置Aにおいても切替を行う。さらに、元の光波長W1を出力していた装置3は該出力を停止する。   Each device in the middle of receiving this notification holds for each device as shown in FIG. 4 whether or not the device is designated as an input point for the standby wavelength of the optical wavelength that uses the notified faulty part. Search for a map. If the input point of the backup wavelength is designated, the optical wavelength is output and transmission setting is performed. In this example, since the spare device 3 → device 4 → device 5 is designated as device 2 → device 1 → device 8 → device 7 → device 6 on the map, it is transmitted clockwise from the device 5. The apparatus 2 that has received the notification sets the output of the optical wavelength W2 that is the optical wavelength designated as a backup (counterclockwise in this example) in the ring opposite to the fault optical path. At this time, the device A also performs switching. Further, the device 3 that has output the original optical wavelength W1 stops the output.

続いて、装置2より反時計回りに送信されてきた光波長に対して、装置1および装置8および装置7は、いずれも通過の設定を行い、出力点である装置6において分岐および受信の設定を行う。これら入出力点の中間に位置する装置の設定は、この段階ではなく反時計回りの通知を受信した時点で行う設定動作に含めることも可能である。さらに元の光波長W1を受信していた装置5は、該受信設定を解除し、あわせて装置Zにおいても切替を行うことで、装置Aから装置Zに向かう信号が救済されて片方向切替が完了する。同様の流れにより、装置5→装置4→装置3の光波長も、装置6→装置7→装置8→装置1→装置2に切り替えれば、双方向切替を実現できる。   Subsequently, the device 1, the device 8, and the device 7 all set pass for the optical wavelength transmitted counterclockwise from the device 2, and branch and receive settings are made in the device 6 that is the output point. I do. The setting of the device located in the middle of these input / output points can be included in the setting operation performed when a counterclockwise notification is received instead of this stage. Further, the device 5 that has received the original optical wavelength W1 cancels the reception setting and also performs switching in the device Z, so that the signal directed from the device A to the device Z is relieved and the one-way switching is performed. Complete. According to the same flow, if the light wavelength of the device 5 → the device 4 → the device 3 is also switched from the device 6 → the device 7 → the device 8 → the device 1 → the device 2, bidirectional switching can be realized.

このように、本発明によるリング内光波長の切替においては、光リングネットワークにおける始点および終点の異なる2本の光パス間の切替を実現し、予め予備の光パスを計算しておくだけにすれば予備の光波長の共用が可能になり、光ネットワーク側において有効な帯域確保を行うことができ、また、予め予備の光パスを設定した場合には負荷分散も可能なネットワーク接続を実現することが可能である。なお、本発明の要旨は、上述した実施の形態に限定されるものではなく、例えば単一の光パスの故障に本切替方法を適用することも勿論可能である。さらに、リング上の隣接する任意の2装置間の光伝送路に双方向とも障害が発生した場合にも、障害発生通知が該区間を通過して到達しない点を除き同様のシーケンスにより本発明が適用可能であることは言うまでもない。加えて、本切替を実現する光伝送装置は、従来の切替を実現する構成と比較して、特殊な装置や部品を使用する必要がないことがわかる。   As described above, in the switching of the optical wavelength in the ring according to the present invention, switching between two optical paths having different starting points and ending points in the optical ring network is realized, and only a spare optical path is calculated in advance. For example, it is possible to share a spare optical wavelength, to secure an effective bandwidth on the optical network side, and to realize a network connection capable of load balancing when a spare optical path is set in advance. Is possible. Note that the gist of the present invention is not limited to the above-described embodiment, and it is of course possible to apply this switching method to a single optical path failure, for example. Furthermore, even when a failure occurs in both directions on the optical transmission line between any two adjacent devices on the ring, the present invention is performed in the same sequence except that the failure occurrence notification does not pass through the section. Needless to say, it is applicable. In addition, it can be seen that the optical transmission device that realizes this switching does not need to use a special device or component as compared with the configuration that realizes the conventional switching.

続いて以下に、ネットワーク保守やトラヒックエンジニアリングを目的とした切替コマンドによる手動切替の実施例を説明する。
図1に示すように装置4から装置5に向かう光伝送路の敷設環境の改善工事を行うなど、あらかじめ本区間を経由する光パスを別経路に一括で切り替えておく場合や、単一の重要な光パスを抽出して別経路に収容する場合がある。
図2において、装置の制御システムから装置4から装置5に向かう光伝送路を経由する光パスの切替命令が装置5の監視制御部に発行される。例えば、W1の信号に対する強制切替(Forced Switch:FS)や手動切替(Manual Switch:MS)の命令を受信すると、装置5は該切替対象区間の情報を、対象区間の通知手段により、双方向のリングを介して通知を行う。ここでの通知手段としても、光信号フォーマットのオーバヘッドバイトや光監視波長のデータ通信チャネルなどが利用可能である。
この通知を受信した途中の各装置は、通知にある切替対象区間を使用する光波長の予備波長の入力点として当該装置が指定されているかどうか、図4に示すような各装置毎に保持しているマップを検索する。マップの検索において、手動切替の場合の切替対象区間は、図4のマップにおける障害部位に該当する。予備波長の入力点に指定されている場合は、光波長を出力し送信設定を行う。この例では上記マップ上において3→4→5の予備が2→1→8→7→6に指定されているので、装置5からの通知を受信した装置2は予備として指定されている光波長W2を出力設定する。またこのとき、装置Aにおいても切替を行う。さらに、元の光波長W1を出力していた装置3は該出力を停止する。
さらに、装置2より反時計回りに送信されてきた光波長に対して、装置1および装置8及び装置7はいずれも通過の設定を行い、出力点である装置6において分岐および受信の設定を行う。これらの入出力点の中間に位置する装置の設定は、この段階ではなく反時計回りの通知を受信した時点で行う設定動作に含めることも可能である。さらに、元の光波長W1を受信していた装置5は該受信設定を解除し、あわせて装置Zにおいても切替を行うことで、装置Aから装置Zに向かう信号が救済されて片方向切替が完了する。
同様の流れにより5→4→3の光波長も6→7→8→1→2に切り替えれば、双方向切替を実現できる。
Next, an example of manual switching using a switching command for the purpose of network maintenance and traffic engineering will be described below.
As shown in FIG. 1, the optical path passing through this section is switched to another route at once, for example, when the construction environment of the optical transmission path from the device 4 to the device 5 is improved, or a single important In some cases, a simple optical path is extracted and accommodated in another route.
In FIG. 2, a command for switching an optical path passing through an optical transmission path from the device 4 to the device 5 from the device control system is issued to the monitoring control unit of the device 5. For example, when a command for forced switching (Forced Switch: FS) or manual switching (Manual Switch: MS) with respect to the signal of W1 is received, the device 5 sends the information of the switching target section bidirectionally by means of the notification section of the target section. Notification via the ring. As the notification means here, an overhead byte of an optical signal format, a data communication channel of an optical monitoring wavelength, or the like can be used.
Each device in the middle of receiving this notification holds for each device as shown in FIG. 4 whether or not the device is designated as an input point for the standby wavelength of the optical wavelength that uses the switching target section in the notification. Find the map you are in. In the map search, the switching target section in the case of manual switching corresponds to the faulty part in the map of FIG. If the input point of the backup wavelength is designated, the optical wavelength is output and transmission setting is performed. In this example, since the 3 → 4 → 5 reserve is designated as 2 → 1 → 8 → 7 → 6 on the map, the device 2 that has received the notification from the device 5 has the optical wavelength designated as the reserve. Set W2 to output. At this time, the device A also performs switching. Further, the device 3 that has output the original optical wavelength W1 stops the output.
Further, the devices 1, 8 and 7 set the passage for the optical wavelength transmitted counterclockwise from the device 2, and set the branching and receiving in the device 6 which is the output point. . The setting of the device located in the middle of these input / output points can be included in the setting operation performed when a counterclockwise notification is received instead of this stage. Further, the device 5 that has received the original optical wavelength W1 cancels the reception setting, and also performs switching in the device Z, so that the signal from the device A to the device Z is relieved and unidirectional switching is performed. Complete.
If the light wavelength of 5 → 4 → 3 is switched from 6 → 7 → 8 → 1 → 2 by the same flow, bidirectional switching can be realized.

本発明の実施の一形態による光リングネットワーク10の構成を示すネットワーク図である。1 is a network diagram showing a configuration of an optical ring network 10 according to an embodiment of the present invention. 本発明による切替動作を説明するための図である。It is a figure for demonstrating the switching operation | movement by this invention. 図2に対応した切替シーケンスの一例を示すシーケンス図である。FIG. 3 is a sequence diagram illustrating an example of a switching sequence corresponding to FIG. 2. 光リングネットワーク10を構成する光伝送装置に保持される光パスマップの一例を示す図である。FIG. 3 is a diagram illustrating an example of an optical path map held in an optical transmission device configuring the optical ring network 10. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art. 従来技術を説明するための図である。It is a figure for demonstrating a prior art.

符号の説明Explanation of symbols

1〜8 光伝送装置
10 光リングネットワーク

1-8 Optical transmission equipment 10 Optical ring network

Claims (5)

ング経路に接続され、隣接する他の光伝送装置に光信号を伝送する光伝送装置において、
隣接する光伝送装置の区間毎に、前記リング経路の時計回りあるいは反時計回りのいずれか一方を現用とし、他方を予備として、前記リング経路において前記第1の接続装置が第1の光伝送装置を介し、及び前記第2の接続装置が第2の光伝送装置を介し、前記第1の光伝送装置と前記第2の光伝送装置間を接続する、前記区間を含む現用の光パスの情報と、当該現用の光パスに対して反対回りのリング経路において前記第1の接続装置が第3の光伝送装置を介し、及び前記第2の接続装置が第4の光伝送装置を介し、前記第3の光伝送装置と前記第4の光伝送装置間を接続する、前記区間を含まない予備の光パスの情報とを記憶するマップを備え、
前記区間の情報を含む経路切替指示を受けて、前記リング経路を介して接続する他の光伝送装置に、前記区間の情報を前記現用の光パスあるいは前記現用の光パスと反対回りの光パスを用いて通知する通知手段と、
前記通知手段により通知された前記区間の情報に基づいて前記マップを参照し、前記区間を回避するように、前記現用の光パスに対応する前記予備の光パスに経路切替を行う経路切替手段と、
を具備することを特徴とする光伝送装置。
Is connected to-ring path, an optical transmission apparatus for transmitting an optical signal to another adjacent optical transmission device,
For each section of the adjacent optical transmission apparatus, either the clockwise or counterclockwise rotation of the ring path is used as the active line, and the other is reserved, and the first connection apparatus is the first optical transmission apparatus in the ring path. And the information on the working optical path including the section connecting the first optical transmission apparatus and the second optical transmission apparatus via the second optical transmission apparatus via the second optical transmission apparatus And the first connection device via a third optical transmission device and the second connection device via a fourth optical transmission device in a ring path opposite to the working optical path , A map for storing information on a spare optical path connecting the third optical transmission device and the fourth optical transmission device and not including the section ;
Receiving path switching instruction including information of the section, the other optical transmission device connected via a ring path, prior SL-ku between information the optical path or the working of the optical path on the opposite around the working of A notification means for notification using an optical path ;
Referring to the map based on the information of the section that has been notified by the notification unit, so as to avoid the section, a path switching means for performing path switching in the auxiliary optical path corresponding to the optical path of the current ,
An optical transmission device comprising:
障害が発生した際に障害発生区間を検出し、前記通知手段に前記障害発生区間を前記区間として前記経路切替指示を送信する障害検出手段を更に備えたことを特徴とする請求項1に記載の光伝送装置。 Detecting a faulty segment when a failure occurs, according to the faulty segment to claim 1, wherein, further comprising a failure detection means for transmitting the path switching instruction as the section on the notification unit Optical transmission device. 隣接する光伝送装置の区間毎に、リング経路の時計回りあるいは反時計回りのいずれか一方を現用とし、他方を予備として、前記リング経路において前記第1の接続装置が第1の光伝送装置を介し、及び前記第2の接続装置が第2の光伝送装置を介し、前記第1の光伝送装置と前記第2の光伝送装置間を接続する、前記区間を含む現用の光パスの情報と、当該現用の光パスに対して反対回りのリング経路において前記第1の接続装置が第3の光伝送装置を介し、及び前記第2の接続装置が第4の光伝送装置を介し、前記第3の光伝送装置と前記第4の光伝送装置間を接続する、前記区間を含まない予備の光パスの情報とを記憶するマップを備えた、前記リング経路に接続され、隣接する他の光伝送装置に光信号を伝送する光伝送装置の光伝送方法であり
通知手段が、前記区間の情報を含む経路切替指示を受けて、前記リング経路を介して接続する他の光伝送装置に、前記区間の情報を前記現用の光パスあるいは前記現用の光パスと反対回りの光パスを用いて通知する通知処理と、
経路切替手段が、前記通知手段により通知された前記区間の情報に基づいて、前記マップを参照し、前記区間を回避するように、前記現用の光パスに対応する前記予備の光パスに経路切替を行う経路切替処理と、
を具備することを特徴とする光伝送方法。
For each section of the adjacent optical transmission apparatus, either the clockwise or counterclockwise direction of the ring path is used as the active line, and the other is used as a backup, and the first connecting apparatus is connected to the first optical transmission apparatus in the ring path. And the second connection device connects the first optical transmission device and the second optical transmission device via the second optical transmission device, and information on the working optical path including the section. The first connection device passes through the third optical transmission device, the second connection device passes through the fourth optical transmission device, and the second connection device passes through the ring path opposite to the current optical path. Other optical lights connected to the ring path and having a map for storing information on a spare optical path that does not include the section and connects between the third optical transmission apparatus and the fourth optical transmission apparatus the optical transmission of the optical transmission apparatus for transmitting an optical signal to the transmission device Is a law,
Notifying means receives the path switching instruction including information of the section, the other optical transmission device connected via a ring path, the optical path of the optical path or the current of the current information between previous SL-ku A notification process for notification using an optical path opposite to
Path switching means, on the basis of the information of the section that has been notified by the notification unit, by referring to the map, so as to avoid the section, the path switching on the auxiliary optical path corresponding to the optical path of the current Route switching processing to perform
An optical transmission method comprising:
障害が発生した際に障害発生区間を検出し、前記通知手段に前記障害発生区間を前記区間として前記経路切替指示を送信する障害検出処理を更に備えたことを特徴とする請求項3に記載の光伝送方法。 Detecting a faulty segment when a failure occurs, wherein the faulty segment to the notification unit to claim 3, further comprising a failure detection processing of transmitting the path switching instruction as between the District Optical transmission method. ング経路に接続され、隣接する他の光伝送装置に光信号を伝送する光伝送装置であり、隣接する光伝送装置の区間毎に、前記リング経路の時計回りあるいは反時計回りのいずれか一方を現用とし、他方を予備として、前記リング経路において前記第1の接続装置が第1の光伝送装置を介し、及び前記第2の接続装置が第2の光伝送装置を介し、前記第1の光伝送装置と前記第2の光伝送装置間を接続する、前記区間を含む現用の光パスの情報と、当該現用の光パスに対して反対回りのリング経路において前記第1の接続装置が第3の光伝送装置を介し、及び前記第2の接続装置が第4の光伝送装置を介し、前記第3の光伝送装置と前記第4の光伝送装置間を接続する、前記区間を含まない予備の光パスの情報とを記憶するマップを備え、前記区間の情報を含む経路切替指示を受けて、前記リング経路を介して接続する他の光伝送装置に、前記区間の情報を前記現用の光パスあるいは前記現用の光パスと反対回りの光パスを用いて通知する通知手段と、前記通知手段により通知された前記区間の情報に基づいて前記マップを参照し、前記区間を回避するように、前記現用の光パスに対応する前記予備の光パスに経路切替を行う経路切替手段と、
からなる光伝送装置を、
リング経路に複数接続して構成された光伝送システム。
Is connected to-ring path, an optical transmission apparatus for transmitting an optical signal to another adjacent optical transmission apparatus, for each section of the adjacent optical transmission apparatus, either the clockwise or counterclockwise of the ring path was the working, as a preliminary the other, wherein in the ring path the first connecting device through a first optical transmission apparatus, and the second connection apparatus via the second optical transmission apparatus, the first Information on the working optical path including the section connecting the optical transmission apparatus and the second optical transmission apparatus, and the first connection apparatus in the ring path opposite to the working optical path 3, and the second connection device connects the third optical transmission device and the fourth optical transmission device via the fourth optical transmission device, and does not include the section. It includes a map storing a spare light path information, before Receiving path switching instruction including information of the section, the other optical transmission device connected via a ring path, the information between previous SL-ku opposite around the optical path or the working optical paths of the current light a notification unit that notifies by using the path, referring to the map based on the information of the notified the section by the notification unit, so as to avoid the section, the spare light corresponding to the optical path of the current Route switching means for switching the route to the path;
An optical transmission device consisting of
An optical transmission system constructed by connecting multiple rings.
JP2004175579A 2004-06-14 2004-06-14 Optical transmission device, optical transmission method, and optical transmission system Expired - Fee Related JP4263662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004175579A JP4263662B2 (en) 2004-06-14 2004-06-14 Optical transmission device, optical transmission method, and optical transmission system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004175579A JP4263662B2 (en) 2004-06-14 2004-06-14 Optical transmission device, optical transmission method, and optical transmission system

Publications (2)

Publication Number Publication Date
JP2005354592A JP2005354592A (en) 2005-12-22
JP4263662B2 true JP4263662B2 (en) 2009-05-13

Family

ID=35588637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004175579A Expired - Fee Related JP4263662B2 (en) 2004-06-14 2004-06-14 Optical transmission device, optical transmission method, and optical transmission system

Country Status (1)

Country Link
JP (1) JP4263662B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5434318B2 (en) * 2009-07-09 2014-03-05 富士通株式会社 COMMUNICATION DEVICE AND COMMUNICATION PATH PROVIDING METHOD
JP5521663B2 (en) * 2010-03-15 2014-06-18 富士通株式会社 COMMUNICATION DEVICE, COMMUNICATION SYSTEM, AND COMMUNICATION METHOD
JP6361465B2 (en) 2014-10-27 2018-07-25 富士通株式会社 Transmission apparatus and redundancy providing method

Also Published As

Publication number Publication date
JP2005354592A (en) 2005-12-22

Similar Documents

Publication Publication Date Title
US5903370A (en) System for an optical domain
US6850487B2 (en) Method and apparatus for guaranteeing a failure-recovery time in a wavelength-division multiplexing network
US6331905B1 (en) Network switch failure restoration
US7852752B2 (en) Method and apparatus for designing backup communication path, and computer product
CN1333554C (en) Method for combining multi-section protection and mesh network recovery
US8600229B2 (en) Method and system for shared protection in wavelength division multiplexing loop network
JP4455993B2 (en) OCHP device and method based on WDM layer
US8873380B2 (en) System and method for setting redundant path segments in a multi-ring communication network
JP2006033319A (en) Optical transmission system
JP5206211B2 (en) WDM network and node equipment
JP2000078080A (en) Optical switching device
JP4263662B2 (en) Optical transmission device, optical transmission method, and optical transmission system
US20010055309A1 (en) System and method for communicating between distant regions
WO2002007390A1 (en) Self-relief method and re-estabishing method for traffic
JP3354116B2 (en) WDM optical communication network
GB2332832A (en) Path protection with flexible routing
JP5540827B2 (en) Transmission apparatus and transmission path switching method
JP2002281055A (en) Network system
JP2827735B2 (en) Clock switching method
JP2002009698A (en) Method for restoring fault of optical transmission network
JP3399901B2 (en) Optical transmission network system
JP2001024679A (en) Method for recovering defective unidirectional broadcast path in communication transoceanic ms/sp ring
JP2867865B2 (en) Protection line switching control method
JPH06284101A (en) Method of data protection in data transmission equipment
JP3964030B2 (en) Ring network switching method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060714

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees