JP4263072B2 - Hydraulic drive device - Google Patents

Hydraulic drive device Download PDF

Info

Publication number
JP4263072B2
JP4263072B2 JP2003375007A JP2003375007A JP4263072B2 JP 4263072 B2 JP4263072 B2 JP 4263072B2 JP 2003375007 A JP2003375007 A JP 2003375007A JP 2003375007 A JP2003375007 A JP 2003375007A JP 4263072 B2 JP4263072 B2 JP 4263072B2
Authority
JP
Japan
Prior art keywords
pressure
volume
hydraulic
hydraulic pump
displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003375007A
Other languages
Japanese (ja)
Other versions
JP2005140175A (en
Inventor
教正 小椋
真樹 花井
典幸 石丸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyooki Kogyo Co Ltd
Original Assignee
Toyooki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyooki Kogyo Co Ltd filed Critical Toyooki Kogyo Co Ltd
Priority to JP2003375007A priority Critical patent/JP4263072B2/en
Publication of JP2005140175A publication Critical patent/JP2005140175A/en
Application granted granted Critical
Publication of JP4263072B2 publication Critical patent/JP4263072B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20546Type of pump variable capacity
    • F15B2211/20553Type of pump variable capacity with pilot circuit, e.g. for controlling a swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/2053Type of pump
    • F15B2211/20561Type of pump reversible
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6306Electronic controllers using input signals representing a pressure
    • F15B2211/6313Electronic controllers using input signals representing a pressure the pressure being a load pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/60Circuit components or control therefor
    • F15B2211/63Electronic controllers
    • F15B2211/6303Electronic controllers using input signals
    • F15B2211/6336Electronic controllers using input signals representing a state of the output member, e.g. position, speed or acceleration

Landscapes

  • Servomotors (AREA)
  • Fluid-Pressure Circuits (AREA)

Description

本発明は、回転数を制御可能な電動モータにより回転する液圧ポンプから吐出する圧液により液圧アクチュエータを駆動する液圧駆動装置に関し、特に、液圧アクチュエータを高圧小流量と低圧大流量とで制御する液圧駆動装置に関する。   The present invention relates to a hydraulic drive device that drives a hydraulic actuator by pressure liquid discharged from a hydraulic pump that is rotated by an electric motor capable of controlling the number of rotations. It is related with the hydraulic-pressure drive device controlled by.

この種の液圧駆動装置は、回転数を制御可能な電動モータとしてのサーボモータに正逆回転可能な2個の固定容量形の液圧ポンプを同軸に結合し、一方の液圧ポンプを圧力制御用に充当し、圧力制御用以外の他方の液圧ポンプの吐出口を絞り弁、方向切換弁を介し低圧側としてのタンクへ連通可能としてアンロード手段を構成し、また、他方の液圧ポンプの吐出口を逆止め弁を介して負荷回路に接続し、逆止弁の自由流れの方向を負荷回路方向とすると共に、逆止め弁の出口に圧力制御用とした一方の液圧ポンプの吐出口を接続する。そして、方向切換弁が他方の液圧ポンプの吐出口をタンクへ連通するのを遮断した状態では、両方の液圧ポンプの流量が合流して負荷回路へ流入し、サーボモータの回転数を操作して流量を制御し、この場合が前記低圧大流量で制御する状態となる。また、方向切換弁が他方の液圧ポンプの吐出口をタンクへ連通した状態では、サーボモータは低速で回転して圧力制御用とした一方の液圧ポンプの必要トルクを発生し、この場合が前記高圧小流量で制御する状態となる。このようにして、圧力制御用とした一方の液圧ポンプを押しのけ容積の小さなものにできてサーボモータを出力の小さい小形のものにできる。この液圧駆動装置は、例えば下記の特許文献に開示されている。
特開平10−159806号公報(2−3頁、図1)
This type of hydraulic drive unit is coaxially connected to a servo motor as an electric motor capable of controlling the number of rotations, and two fixed capacity type hydraulic pumps that can rotate in the forward and reverse directions. Appropriate for control, the discharge port of the other hydraulic pump other than for pressure control can be connected to a tank on the low pressure side via a throttle valve and a direction switching valve to constitute an unloading means. The discharge port of the pump is connected to the load circuit via a check valve, and the direction of free flow of the check valve is set to the load circuit direction. Connect the discharge port. When the direction switching valve blocks the other hydraulic pump discharge port from communicating with the tank, the flow rates of both hydraulic pumps merge and flow into the load circuit to control the rotation speed of the servo motor. Then, the flow rate is controlled, and in this case, the control is performed with the low pressure and large flow rate. In addition, when the direction switching valve communicates the discharge port of the other hydraulic pump to the tank, the servo motor rotates at a low speed and generates the necessary torque of one hydraulic pump for pressure control. It will be in the state controlled by the said high voltage | pressure small flow volume. In this way, one hydraulic pump used for pressure control can be made to have a small displacement volume, and the servo motor can be made to a small one with a small output. This hydraulic driving device is disclosed in, for example, the following patent document.
JP-A-10-159806 (page 2-3, FIG. 1)

ところが、かかる従来の液圧駆動装置では、高圧小流量の制御で用いる押しのけ容積の小さな一方の液圧ポンプと、低圧大流量の制御で一方の液圧ポンプと共に用いる押しのけ容積の大きな他方の液圧ポンプとを備えなければならず、液圧ポンプが2台となって、装置全体が大型化してしまう問題があった。   However, in such a conventional hydraulic pressure drive device, one hydraulic pump having a small displacement volume used for controlling a high pressure and a small flow rate, and the other hydraulic pressure having a large displacement volume used together with one hydraulic pressure pump for controlling a low pressure and a large flow rate. There is a problem that the number of hydraulic pumps becomes two and the entire apparatus becomes large.

本発明の課題は、回転数制御可能な電動モータにより回転する液圧ポンプを、低圧大流量の制御と高圧小流量の制御とを可能にする単一の液圧ポンプで構成し、装置全体のコンパクト化を図り得る液圧駆動装置を提供することにある。   An object of the present invention is to configure a hydraulic pump that is rotated by an electric motor capable of controlling the number of revolutions, with a single hydraulic pump that enables control of a low pressure and a large flow rate and a control of a high pressure and a small flow rate. An object of the present invention is to provide a hydraulic drive device that can be made compact.

かかる課題を達成すべく、本発明は課題を解決するため次の手段をとった。即ち、
回転数を制御可能な電動モータと、二つのポートを有し電動モータによる正回転で一方のポートから圧液を吐出すると共に逆回転で他方のポートから圧液を吐出する正逆回転可能な液圧ポンプと、二つのポートを有し液圧ポンプから吐出する圧液によって駆動される液圧アクチュエータと、この液圧アクチュエータ側からフィードバックされる実際値を目標値に一致するよう前記電動モータの回転数を制御する制御部とを備え、前記液圧ポンプの両ポートと前記液圧アクチュエータの両ポートとを接続し、前記液圧ポンプは、斜板の傾斜角度を変更自在とし、斜板を最大傾斜角度にして押しのけ容積を最も大きくした最大容積と、斜板を最小傾斜角度にして押しのけ容積を前記最大容積より小さくかつ零より大きくした最小容積とに切換可能に設けて圧力制御弁を備え、斜板の最大傾斜角度を調整ねじ軸の回動操作で調整自在にすると共に、斜板の最小傾斜角度を斜板の設定部材への当接で設定して設け、前記圧力制御弁は前記液圧ポンプから吐出する圧液の圧力と調整自在にしたばねのばね力に基づく設定圧力とを対向作用し、前記液圧ポンプから前記液圧アクチュエータに吐出する圧液の圧力が前記設定圧力未満で押しのけ容積を前記最大容積に切換えると共に、前記液圧ポンプから前記液圧アクチュエータに吐出する圧液の圧力が前記設定圧力以上で押しのけ容積を前記最小容積に切換え、前記液圧ポンプを前記設定圧力未満で押しのけ容積を前記最大容積に切換えた状態で、前記液圧アクチュエータ側から位置の実際値を前記制御部へフィードバックし、前記液圧ポンプを前記設定圧力以上で押しのけ容積を前記最小容積に切換えた状態で、前記液圧アクチュエータ側から圧力若しくは荷重の実際値を前記制御部へフィードバックし、前記制御部は位置の実際値を位置の目標値に一致するよう前記電動モータの回転数を制御すると共に、圧力若しくは荷重の実際値を圧力若しくは荷重の目標値に一致するよう前記電動モータの回転数を制御することを特徴とする液圧駆動装置がそれである。
In order to achieve this problem, the present invention has taken the following measures in order to solve the problem. That is,
An electric motor capable of controlling the number of rotations, and a fluid that has two ports and can be rotated forward and backward by discharging pressure liquid from one port by forward rotation by the electric motor and discharging pressure liquid from the other port by reverse rotation A pressure pump, a hydraulic actuator having two ports and driven by pressure fluid discharged from the hydraulic pump, and rotation of the electric motor so that the actual value fed back from the hydraulic actuator side matches the target value A control unit for controlling the number of ports, and connecting both ports of the hydraulic pump and both ports of the hydraulic actuator, the hydraulic pump can change the inclination angle of the swash plate, and the maximum volume to the inclination angle and the greatest volume displacement which was, switchable volume displacement by the swash plate to the minimum inclination angle and the minimum volume, which was greater than and zero less than the maximum volume Provided with a pressure control valve, as well as to freely adjust the maximum inclination angle of the swash plate in the rotating operation of the adjusting screw shaft, by setting the minimum inclination angle of the swash plate in abutment against the swash plate of the setting member is provided The pressure control valve opposes the pressure of the hydraulic fluid discharged from the hydraulic pump and a set pressure based on the spring force of an adjustable spring, and discharges the hydraulic fluid from the hydraulic pump to the hydraulic actuator. together with the pressure switch the volume displacement of less than the set pressure to the maximum volume, switching the volume displacement at a pressure of liquid to be discharged to the hydraulic actuator from the hydraulic pump is the set pressure above the minimum volume, the In a state where the displacement of the hydraulic pump is less than the set pressure and the displacement volume is switched to the maximum volume, the actual value of the position is fed back from the hydraulic actuator side to the control unit, and the hydraulic pump is In the state where the displacement volume is switched to the minimum volume above the set pressure, the actual value of pressure or load is fed back to the control unit from the hydraulic actuator side, and the control unit returns the actual position value to the target position value. And the rotational speed of the electric motor is controlled so that the actual value of the pressure or load matches the target value of the pressure or load. That is it.

以上詳述したように、請求項1に記載の発明は、回転数を制御可能な電動モータで回転する液圧ポンプとして、液圧アクチュエータに吐出する圧液の圧力が設定圧力未満で押しのけ容積を最大容積に切換えると共に、液圧アクチュエータに吐出する圧液の圧力が設定圧力以上で押しのけ容積を最小容積に切換える液圧ポンプを備えている。このため、前記設定圧力未満の前記最大容積で前記液圧アクチュエータを低圧大流量で制御できると共に、前記設定圧力以上の前記最小容積で前記液圧アクチュエータを高圧小流量で制御できるから、低圧大流量の制御と高圧小流量の制御とを単一の液圧ポンプで可能にできて装置全体のコンパクト化を図ることができる。また、液圧ポンプは設定圧力以上で押しのけ容積を最小容積に切換えるため、従来の高圧小流量の制御で使用する一方の液圧ポンプと比較して、必要トルクを増加することなくでき、液圧ポンプを回転する回転数制御可能な電動モータを大型で高価格なものとすることなく、出力の小さい小型のものを維持できる。   As described above in detail, the invention according to claim 1 is a hydraulic pump that is rotated by an electric motor capable of controlling the number of rotations, and the displacement of the hydraulic fluid discharged to the hydraulic actuator is less than the set pressure and the displacement volume is reduced. A hydraulic pump is provided for switching to the maximum volume and switching the displacement volume to the minimum volume when the pressure of the hydraulic fluid discharged to the hydraulic actuator is equal to or higher than the set pressure. Therefore, the hydraulic actuator can be controlled with a low pressure and a large flow rate with the maximum volume less than the set pressure, and the hydraulic actuator can be controlled with a high pressure and a small flow rate with the minimum volume equal to or higher than the set pressure. And a high pressure and small flow rate can be controlled by a single hydraulic pump, and the entire apparatus can be made compact. Also, since the hydraulic pump switches the displacement volume to the minimum volume when the pressure is higher than the set pressure, compared with one hydraulic pump used in the conventional high pressure and small flow rate control, the required torque can be increased without increasing the hydraulic pressure. A small motor with a small output can be maintained without making the electric motor capable of controlling the rotational speed of rotating the pump large and expensive.

また、液圧アクチュエータ側からフィードバックした圧力若しくは荷重の実際値を圧力若しくは荷重の目標値に一致するよう制御部で電動モータの回転数を制御しているため、液圧アクチュエータを高圧小流量で精度良く圧力制御又は荷重制御することができる。 Moreover, because of the control the rotational speed of the electric motor in the control unit to match the actual value of the pressure or load that is fed back from the hydraulic actuator side to the target value of the pressure or load, precision hydraulic actuator in a high pressure low flow rate Pressure control or load control can be performed well.

また、設定圧力を調整自在にしているため、この設定圧力の変更に伴い液圧アクチュエータを高圧小流量制御で圧力制御又は荷重制御を開始する値を自動的に変更することができる。 Moreover, because of the freely adjust the pressure control setting, you can change the value to initiate pressure control or load control fluid pressure actuator according to the change of the set pressure in the high pressure small flow rate control automatically.

以下、本発明を実施するための一実施形態を図面に基づき説明する。
図1において、1は正逆回転可能な液圧ポンプで、一方のポート1Aと他方のポート1Bとを有し、正回転したときには他方のポート1Bから吸入した作動液を一方のポート1Aから圧液として吐出すると共に、逆回転したときには一方のポート1Aから吸入した作動液を他方のポート1Bから圧液として吐出する。2は回転数を制御可能な電動モータとしてのサーボモータで、液圧ポンプ1を回転するよう液圧ポンプ1と結合する。3は液圧アクチュエータとしての複動シリンダで、ピストンロッド3Aを有し、キャップ側ポート4Aへの圧液の供給でピストンロッド3Aを図1下方向へワークWに向けて駆動し、ピストンロッド3Aの先端に取付けた図示しない加工具によりワークWを加圧加工する。また、複動シリンダ3はヘッド側ポート4Bへの圧液の供給でピストンロッド3Aを図1上方向へワークWから離間する方向に駆動し、原位置に復帰する。
Hereinafter, an embodiment for carrying out the present invention will be described with reference to the drawings.
In FIG. 1, 1 is a hydraulic pump capable of rotating forward and reverse, and has one port 1A and the other port 1B. When forwardly rotating, hydraulic fluid sucked from the other port 1B is pressurized from one port 1A. In addition to discharging as a liquid, the hydraulic fluid sucked from one port 1A is discharged as a pressurized liquid from the other port 1B when rotating in the reverse direction. A servo motor 2 as an electric motor capable of controlling the number of rotations is coupled to the hydraulic pump 1 to rotate the hydraulic pump 1. Reference numeral 3 denotes a double-acting cylinder as a hydraulic actuator, which has a piston rod 3A, and is driven toward the workpiece W downward in FIG. 1 by supplying pressurized liquid to the cap side port 4A. The workpiece W is pressed by a processing tool (not shown) attached to the tip of the workpiece. Further, the double acting cylinder 3 drives the piston rod 3A in the direction away from the workpiece W in the upward direction of FIG. 1 by supplying the pressurized liquid to the head side port 4B, and returns to the original position.

5は第1流路で、複動シリンダ3のキャップ側ポート4Aと液圧ポンプ1の一方のポート1Aとを接続する。6は第2流路で、複動シリンダ3のヘッド側ポート4Bと液圧ポンプ1の他方のポート1Bとを接続する。第1流路5は第1逆止め弁7を介し低圧側としての作動液を貯蔵するタンクTに接続すると共に、第2流路6は第2逆止め弁8を介しタンクTに接続する。第1逆止め弁7はタンクTから第1流路5への流れを許容すると共に第1流路5からタンクTへの流れを阻止する向きに設ける。第2逆止め弁8はタンクTから第2流路6への流れを許容すると共に第2流路6からタンクTへの流れを阻止する向きに設ける。両逆止め弁7、8は接続ロッド9を介して接続し、液圧ポンプ1を正回転して一方のポート1Aから圧液を吐出した際には第1流路5より第1逆止め弁7に圧液が作用して第1逆止め弁7を閉じると共に第2逆止め弁8を接続ロッド9を介して押圧して開作動し、また、液圧ポンプ1を逆回転して他方のポート1Bから圧液を吐出した際には第2流路6より第2逆止め弁8に圧液が作用して第2逆止め弁8を閉じると共に第1逆止め弁7を接続ロッド9を介して押圧して開作動自在に設ける。     Reference numeral 5 denotes a first flow path that connects the cap-side port 4A of the double-acting cylinder 3 and one port 1A of the hydraulic pump 1. Reference numeral 6 denotes a second flow path that connects the head side port 4B of the double acting cylinder 3 and the other port 1B of the hydraulic pump 1. The first flow path 5 is connected via a first check valve 7 to a tank T storing hydraulic fluid as a low pressure side, and the second flow path 6 is connected to the tank T via a second check valve 8. The first check valve 7 is provided in a direction that allows the flow from the tank T to the first flow path 5 and prevents the flow from the first flow path 5 to the tank T. The second check valve 8 is provided in a direction that allows the flow from the tank T to the second flow path 6 and prevents the flow from the second flow path 6 to the tank T. Both check valves 7 and 8 are connected via a connecting rod 9, and when the hydraulic pump 1 rotates forward and pressure fluid is discharged from one port 1 </ b> A, the first check valve 5 is connected to the first check valve 5. 7 pressurizes the second check valve 8 via the connecting rod 9 to open and closes the first check valve 7, and opens the other one by rotating the hydraulic pump 1 in the reverse direction. When the pressure fluid is discharged from the port 1B, the pressure fluid acts on the second check valve 8 from the second flow path 6 to close the second check valve 8 and connect the first check valve 7 to the connecting rod 9. It is provided so that it can be opened by pressing.

10は第1流路5から分岐してタンクTに接続する第1排出流路、11は第2流路6から分岐してタンクTに接続する第2排出流路である。12は第1排出流路10に配設した第1リリーフ弁で、第1流路5の圧力が異常上昇して設定圧力を越えると第1流路5の圧液をタンクTに排出する。13は第2排出流路11に配設した第2リリーフ弁で、設定圧力を第1リリーフ弁12と同一に設定し、第2流路6の圧力が異常上昇して設定圧力を越えると第2流路6の圧液をタンクTに排出する。   Reference numeral 10 denotes a first discharge flow path branched from the first flow path 5 and connected to the tank T. Reference numeral 11 denotes a second discharge flow path branched from the second flow path 6 and connected to the tank T. Reference numeral 12 denotes a first relief valve disposed in the first discharge channel 10, which discharges the pressurized liquid in the first channel 5 to the tank T when the pressure in the first channel 5 abnormally rises and exceeds the set pressure. Reference numeral 13 denotes a second relief valve disposed in the second discharge passage 11. The set pressure is set to be the same as that of the first relief valve 12. If the pressure in the second passage 6 rises abnormally and exceeds the set pressure, The pressure liquid in the two flow paths 6 is discharged to the tank T.

14はサーボモータ2の回転数を検出するロータリエンコーダ等の回転数検出センサで、検出したサーボモータ2の実際の回転数をフィードバック配線15でサーボモータドライバ16にフィードバックする。17は第1流路5に配設した圧力検出センサで、複動シリンダ3のキャップ側ポート4Aに供給する圧液の圧力を検出し、検出した圧力の実際値をフィードバック配線18でコントローラ19にフィードバックする。20は複動シリンダ3のピストンロッド3Aの位置を検出する位置検出センサで、ここでは位置の変位に応じたパルスを出力するリニアスケールを用い、検出した位置の実際値をフィードバック配線21でコントローラ19にフィードバックする。コントローラ19はフィードバック配線21よりフィードバックされる位置の実際値を動作指令として入力する位置の目標値に一致するようサーボモータドライバ16に位置指令(回転数を指令する)を出力すると共に、フィードバック配線18よりフィードバックされる圧力の実際値を動作指令として入力する圧力の目標値に一致するようサーボモータドライバ16に圧力指令(回転数を指令する)を出力する。サーボモータドライバ16はフィードバック配線15よりフィードバックされるサーボモータ2の回転数がコントローラ19より入力される位置指令または圧力指令に一致するようサーボモータ2の回転数を制御する。そして、サーボモータドライバ16とコントローラ19とで制御部を構成する。   A rotational speed detection sensor 14 such as a rotary encoder that detects the rotational speed of the servo motor 2 feeds back the detected actual rotational speed of the servo motor 2 to the servo motor driver 16 through the feedback wiring 15. Reference numeral 17 denotes a pressure detection sensor disposed in the first flow path 5, which detects the pressure of the pressurized liquid supplied to the cap side port 4 </ b> A of the double acting cylinder 3, and sends the detected actual value to the controller 19 via the feedback wiring 18. provide feedback. Reference numeral 20 denotes a position detection sensor for detecting the position of the piston rod 3A of the double acting cylinder 3. Here, a linear scale that outputs a pulse corresponding to the displacement of the position is used. To give feedback. The controller 19 outputs a position command (commands the number of rotations) to the servo motor driver 16 so that the actual value of the position fed back from the feedback wiring 21 matches the target value of the position input as an operation command, and also feeds back the feedback wiring 18. A pressure command (commanding the number of revolutions) is output to the servo motor driver 16 so that the actual value of the pressure fed back further matches the target value of the pressure inputted as the operation command. The servo motor driver 16 controls the rotation speed of the servo motor 2 so that the rotation speed of the servo motor 2 fed back from the feedback wiring 15 matches the position command or pressure command input from the controller 19. The servo motor driver 16 and the controller 19 constitute a control unit.

液圧ポンプ1は、ばね1Dで最大傾斜角度方向に付勢される斜板1Cの傾斜角度を変更自在とし、斜板1Cを最大傾斜角度にして押しのけ容積を最も大きくした最大容積と、斜板1Cを最小傾斜角度にして押しのけ容積を前記最大容積より小さくかつ零より大きくした最小容積とに切換可能に設けた可変容量形ピストンポンプであり、圧力制御弁22を備える。圧力制御弁22は、液圧ポンプ1の正回転で一方のポート1Aから吐出する圧液の一部をパイロット圧液として斜板1Cに作用する第1位置Aと、斜板1Cに作用したパイロット圧液をタンクTに排出する第2位置Bとを有する。圧力制御弁22は、液圧ポンプ1の一方のポート1Aから吐出する圧液の圧力と調整自在にしたばね23のばね力とを対向作用し、液圧ポンプ1の一方のポート1Aから吐出する圧液の圧力がばね23のばね力に基づく設定圧力未満で第2位置Bに切換ると共に、液圧ポンプ1の一方のポート1Aから吐出する圧液の圧力がばね23のばね力に基づく設定圧力以上で第1位置Aに切換るよう設けている。液圧ポンプ1は圧力制御弁22の第1位置Aで斜板1Cにパイロット圧液を作用して押しのけ容積を最小容積に切換えると共に、圧力制御弁22の第2位置Bで斜板1Cに作用したパイロット圧液をタンクTに排出して押しのけ容積を最大容積に切換える。   The hydraulic pump 1 can change the inclination angle of the swash plate 1C urged by the spring 1D in the direction of the maximum inclination angle, the maximum volume with the maximum displacement volume with the swash plate 1C being the maximum inclination angle, and the swash plate This is a variable displacement piston pump provided with a pressure control valve 22 that can be switched to a minimum volume that is smaller than the maximum volume and greater than zero with 1C as the minimum inclination angle. The pressure control valve 22 includes a first position A that acts on the swash plate 1C by using a part of the pressure liquid discharged from one port 1A by the forward rotation of the hydraulic pump 1 as a pilot pressure liquid, and a pilot that acts on the swash plate 1C. And a second position B for discharging the pressurized liquid to the tank T. The pressure control valve 22 opposes the pressure of the hydraulic fluid discharged from one port 1 A of the hydraulic pump 1 and the spring force of the adjustable spring 23, and discharges it from one port 1 A of the hydraulic pump 1. The pressure of the hydraulic fluid is switched to the second position B below the set pressure based on the spring force of the spring 23, and the pressure of the hydraulic fluid discharged from one port 1A of the hydraulic pump 1 is set based on the spring force of the spring 23. It is provided to switch to the first position A above the pressure. The hydraulic pump 1 applies pilot pressure liquid to the swash plate 1C at the first position A of the pressure control valve 22 to switch the displacement volume to the minimum volume, and acts on the swash plate 1C at the second position B of the pressure control valve 22. The pilot pressure liquid thus discharged is discharged to the tank T and the displacement volume is switched to the maximum volume.

次に、液圧ポンプ1の内部構成を、図2及び図3に基づき説明する。
30はポンプ本体で、一端面に開口して中空孔31を穿設し、中空孔31の開口を閉塞するよう蓋部材32を複数の締結ボルト33により一端面に固定する。34は図1のサーボモータ2に連結する駆動軸で、ポンプ本体30及び蓋部材32に軸受を介し回転駆動自在に設け、中間部にはスプラインから成る係合手段35を介し中空孔31内へ収装したシリンダブロック36を一体的に回転するよう支持する。シリンダブロック36は軸心の周りに間隙を有して複数のシリンダ孔37を軸方向に貫通して形成し、このシリンダ孔37にピストン38を摺動自在に嵌挿してシリンダ室39を区画形成する。ピストン38はシリンダブロック36の軸方向一端面より軸方向に突出し、この突出した先端部にはシュー40を回転自在に枢支する。シュー40はリティナ41で支持され、ピストン38はシュー40を介して斜板1Cと当接する。シリンダブロック36は軸方向他端面を蓋部材32に固定した弁板42と摺接自在に設け、弁板42にはシリンダブロック36の回転でシリンダ室39が交互に連通するよう一方のポート1Aと他方のポート1Bとを略対向位置に円弧状に貫通形成する。一方のポート1Aは蓋部材32に穿設の流路43Aを介して図1の第1流路5に接続し、他方のポート1Bは蓋部材32に穿設の流路43Bを介して図1の第2流路6に接続する。
Next, the internal configuration of the hydraulic pump 1 will be described with reference to FIGS.
Reference numeral 30 denotes a pump body, which opens to one end surface and has a hollow hole 31, and a lid member 32 is fixed to the one end surface by a plurality of fastening bolts 33 so as to close the opening of the hollow hole 31. 1 is a drive shaft connected to the servo motor 2 in FIG. 1, and is provided on the pump body 30 and the lid member 32 via a bearing so as to be rotatable. The intermediate portion is inserted into the hollow hole 31 via an engagement means 35 formed of a spline. The accommodated cylinder block 36 is supported to rotate integrally. The cylinder block 36 is formed with a plurality of cylinder holes 37 penetrating in the axial direction with a gap around the shaft center, and a piston 38 is slidably inserted into the cylinder hole 37 to form a cylinder chamber 39. To do. The piston 38 protrudes in the axial direction from one axial end surface of the cylinder block 36, and a shoe 40 is rotatably supported on the protruding tip. The shoe 40 is supported by a retainer 41, and the piston 38 contacts the swash plate 1C via the shoe 40. The cylinder block 36 is slidably contacted with a valve plate 42 whose other axial end surface is fixed to the lid member 32. One port 1A is connected to the valve plate 42 so that cylinder chambers 39 are alternately communicated by the rotation of the cylinder block 36. The other port 1B is formed in a circular arc shape at a substantially opposite position. One port 1A is connected to the first flow path 5 in FIG. 1 through a flow path 43A formed in the lid member 32, and the other port 1B is connected to the first flow path 43B in the cover member 32 through FIG. To the second flow path 6.

斜板1Cは中空孔31内でシリンダブロック36と同軸上に一定の角度範囲内において傾斜角度を変更自在にポンプ本体30に支承し、ピストン38の往復摺動量を変更自在に設ける。斜板1Cを最大傾斜角度方向に付勢するばね1Dは、中空孔31内で斜板1Cのシュー40が当接する面の背面にばね力を付与するよう設ける。44はばね1Dのばね力に抗して斜板1Cを最小傾斜角度方向へ押圧可能にする操作ピストンで、蓋部材32よりポンプ本体30の中空孔31内へ突設した軸部45に外嵌し、背面側に形成した作用室46へ圧力制御弁22の第1位置Aで前記パイロット圧液を導入したり圧力制御弁22の第2位置Bで作用室46へ導入したパイロット圧液をタンクTに排出したりして軸方向へ摺動自在に設ける。47は斜板1Cの最大傾斜角度を調整する調整ねじ軸で、蓋部材32へ液密に螺合し、軸方向一端部を作用室46内に突出して操作ピストン44の背面に当接すると共に、軸方向他端部を蓋部材32より外部に突出し、軸方向他端部の回動操作により軸方向へ進退自在にして斜板1Cの最大傾斜角度を調整自在にする。48は斜板1Cの最小傾斜角度を設定する設定部材で、斜板1Cの背面と対向して中空孔31内に設置し、斜板1C背面の当接により斜板1Cの最小傾斜角度を設定する。   The swash plate 1C is supported on the pump main body 30 so that the inclination angle can be changed within a predetermined angle range coaxially with the cylinder block 36 in the hollow hole 31, and the reciprocating sliding amount of the piston 38 can be changed. The spring 1D that urges the swash plate 1C in the direction of the maximum inclination angle is provided so as to apply a spring force to the back surface of the surface of the swash plate 1C that contacts the shoe 40 in the hollow hole 31. Reference numeral 44 denotes an operation piston that can press the swash plate 1C in the direction of the minimum inclination angle against the spring force of the spring 1D, and is fitted on the shaft portion 45 that protrudes from the lid member 32 into the hollow hole 31 of the pump body 30. The pilot pressure liquid is introduced into the working chamber 46 formed on the back side at the first position A of the pressure control valve 22 or the pilot pressure liquid introduced into the working chamber 46 at the second position B of the pressure control valve 22 is tanked. It is discharged to T or provided so as to be slidable in the axial direction. 47 is an adjustment screw shaft that adjusts the maximum inclination angle of the swash plate 1C. The adjustment screw shaft is fluid-tightly screwed into the lid member 32, protrudes one end in the axial direction into the working chamber 46, contacts the back surface of the operation piston 44, and The other end in the axial direction protrudes to the outside from the lid member 32, and the maximum inclination angle of the swash plate 1C can be adjusted by moving the other end in the axial direction so as to advance and retract in the axial direction. 48 is a setting member for setting the minimum inclination angle of the swash plate 1C, and is installed in the hollow hole 31 so as to face the back surface of the swash plate 1C, and sets the minimum inclination angle of the swash plate 1C by contact with the back surface of the swash plate 1C. To do.

圧力制御弁22は蓋部材32に備え、蓋部材32には弁孔49と弁孔49より大径のばね孔50とを連設する。弁孔49には作用室46へ接続する負荷流路51を内周面に開口し、負荷流路51の開口箇所よりばね孔50連設側へ離間した軸方向一方側の内周面にタンクTへ接続する排出流路52を開口すると共に、負荷流路51の開口箇所より軸方向他方側に離間した内周面に導入流路53を開口する。導入流路53は流路43Aを介して一方のポート1Aに接続し、一方のポート1Aから吐出する圧液の一部をパイロット圧液として導入する。54はスプール形状の弁体で、弁孔49へ軸方向摺動自在に嵌挿し、導入孔53のパイロット圧液が軸方向一端に作用してばね孔50側に向けて付勢される。設定圧力を設定するばね23は、ばね孔50に収装し、ばね受け55を介して弁体54をパイロット圧液の圧力に抗して付勢する。56はばね23のばね力を調整自在にする調整ねじで、ばね孔50に螺合して外部からの回動操作により軸方向へ進退自在にしてばね23力を調整自在にする。スプール54は軸方向の略中央にランド部54Aを有し、導入路53より軸方向一端に作用するパイロット圧液の圧力がばね23のばね力に基づく設定圧力未満では、ランド部54Aが負荷流路51と導入流路53との間に位置し、負荷流路51を排出流路52に切換連通すると共に導入流路53を遮断する(図1の第2位置B)。また、スプール54は軸方向一端に作用するパイロット圧液の圧力がばね23のばね力に基づく設定圧力以上では、ランド部54Aが図4に示す如き、負荷流路51と排出流路52との間に位置し、負荷流路51を導入流路53に切換連通すると共に排出流路52を遮断する(図1の第1位置A)。斜板1Cは圧力制御弁22の第1位置Aで、導入流路53のパイロット圧液が負荷流路51より作用室46へ導入されることで、操作ピストン44に押圧されて背面が設定部材48に当接する図5に示す最小傾斜角度となり、シリンダ室39の押しのけ容積を最小容積に切換える。また、斜板1Cは圧力制御弁22の第2位置Bで、作用室46へ導入したパイロット圧液が負荷流路51より排出流路52を流れてタンクTに排出されることで、ばね1Dにより付勢されて図2に示す最大傾斜角度となり、シリンダ室39の押しのけ容積を最大容積に切換える。   The pressure control valve 22 is provided in the lid member 32, and a valve hole 49 and a spring hole 50 having a larger diameter than the valve hole 49 are connected to the lid member 32. In the valve hole 49, a load channel 51 connected to the working chamber 46 is opened on the inner circumferential surface, and a tank is formed on the inner circumferential surface on one axial side separated from the opening portion of the load channel 51 toward the spring hole 50 continuous side. The discharge flow path 52 connected to T is opened, and the introduction flow path 53 is opened on the inner peripheral surface separated from the opening portion of the load flow path 51 on the other side in the axial direction. The introduction flow path 53 is connected to one port 1A through the flow path 43A, and introduces a part of the pressure liquid discharged from the one port 1A as a pilot pressure liquid. A spool-shaped valve body 54 is fitted into the valve hole 49 so as to be slidable in the axial direction, and the pilot pressure liquid in the introduction hole 53 acts on one end in the axial direction and is urged toward the spring hole 50 side. The spring 23 for setting the set pressure is accommodated in the spring hole 50 and urges the valve body 54 against the pressure of the pilot pressure fluid via the spring receiver 55. Reference numeral 56 denotes an adjustment screw that allows the spring force of the spring 23 to be adjusted. The adjustment screw 56 is screwed into the spring hole 50 so as to advance and retreat in the axial direction by a rotation operation from the outside so that the spring 23 force can be adjusted. The spool 54 has a land portion 54A substantially in the center in the axial direction. If the pressure of the pilot pressure fluid acting on one end in the axial direction from the introduction path 53 is less than the set pressure based on the spring force of the spring 23, the land portion 54A It is located between the path 51 and the introduction flow path 53, switches the load flow path 51 to the discharge flow path 52 and shuts off the introduction flow path 53 (second position B in FIG. 1). Further, when the pressure of the pilot pressure fluid acting on one end in the axial direction of the spool 54 is equal to or higher than the set pressure based on the spring force of the spring 23, the land portion 54A has a load flow path 51 and a discharge flow path 52 as shown in FIG. The load channel 51 is switched between the introduction channel 53 and the discharge channel 52 is blocked (first position A in FIG. 1). The swash plate 1C is in the first position A of the pressure control valve 22, and the pilot pressure liquid in the introduction flow path 53 is introduced into the working chamber 46 from the load flow path 51, so that the operation piston 44 is pressed and the back surface is set as a setting member. The minimum inclination angle shown in FIG. 5 is brought into contact with 48, and the displacement volume of the cylinder chamber 39 is switched to the minimum volume. Further, the swash plate 1C is in the second position B of the pressure control valve 22, and the pilot pressure liquid introduced into the working chamber 46 flows from the load flow path 51 through the discharge flow path 52 and is discharged to the tank T, whereby the spring 1D. 2 and the maximum inclination angle shown in FIG. 2 is obtained, and the displacement volume of the cylinder chamber 39 is switched to the maximum volume.

次に、かかる構成の作動を説明する。
複動シリンダ3のピストンロッド3Aが上方の原位置に停止している図1の状態で、コントローラ19への動作指令によりサーボモータ2で液圧ポンプ1を正回転すると、液圧ポンプ1は他方のポート1Bから吸入した作動液を一方のポート1Aから圧液として吐出し、この圧液は第1流路5を流れて複動シリンダ3のキャップ側ポート4Aに供給され、複動シリンダ3はピストンロッド3Aを下方向へ駆動し、ヘッド側ポート4Bの作動液は第2流路6を流れて液圧ポンプ1の他方のポート1Bに吸入される。このとき、液圧ポンプ1は、一方のポート1Aから吐出する圧液の圧力がばね23のばね力に基づく設定圧力未満で、圧力制御弁22が第2位置Bに位置し、斜板1Cがばね1Dで付勢されて図2に示す最大傾斜角度であり、シリンダ室39の押しのけ容積を最大容積に切換えており、図6にXで示す低圧大流量で複動シリンダ3を制御する。また、ヘッド側ポート4Bから排出される作動液量は、キャップ側ポート4Aに供給される圧液量と比較してピストンロッド3Aの体積に相当する分少なく、この不足分の作動液は逆止め弁8が接続ロッド9に押圧されて開作動することでタンクTから補給される。
Next, the operation of this configuration will be described.
When the piston rod 3A of the double acting cylinder 3 is stopped at the upper original position, when the hydraulic pump 1 is rotated forward by the servo motor 2 in response to an operation command to the controller 19, the hydraulic pump 1 The hydraulic fluid sucked in from the port 1B is discharged as pressure fluid from one port 1A, and this pressure fluid flows through the first flow path 5 and is supplied to the cap side port 4A of the double acting cylinder 3. The piston rod 3A is driven downward, and the hydraulic fluid in the head side port 4B flows through the second flow path 6 and is sucked into the other port 1B of the hydraulic pump 1. At this time, in the hydraulic pump 1, the pressure of the hydraulic fluid discharged from one port 1A is less than the set pressure based on the spring force of the spring 23, the pressure control valve 22 is located at the second position B, and the swash plate 1C is The maximum tilt angle shown in FIG. 2 is urged by the spring 1D, the displacement volume of the cylinder chamber 39 is switched to the maximum volume, and the double-acting cylinder 3 is controlled with a low pressure and a large flow rate indicated by X in FIG. The amount of hydraulic fluid discharged from the head side port 4B is smaller than the amount of hydraulic fluid supplied to the cap side port 4A by an amount corresponding to the volume of the piston rod 3A. The valve 8 is replenished from the tank T by being pressed by the connecting rod 9 and opening.

ピストンロッド3Aの下方向への駆動で、位置検出センサ20がピストンロッド3Aの実際の位置を検出し、コントローラ19はフィードバック配線21よりフィードバックされる位置の実際値を位置の目標値に一致させるよう位置指令をサーボモータドライバ16へ出力し、サーボモータドライバ16はフィードバック配線15よりフィードバックされるサーボモータ2の回転数がコントローラ19より入力される位置指令に一致するようサーボモータ2の回転数を制御する。   When the piston rod 3A is driven downward, the position detection sensor 20 detects the actual position of the piston rod 3A, and the controller 19 matches the actual value of the position fed back from the feedback wiring 21 with the target position value. The position command is output to the servo motor driver 16, and the servo motor driver 16 controls the rotation speed of the servo motor 2 so that the rotation speed of the servo motor 2 fed back from the feedback wiring 15 matches the position command input from the controller 19. To do.

ピストンロッド3AがワークWの近傍まで下方に駆動して位置の実際値が位置の目標値に一致すると、ピストンロッド3Aの位置制御が完了し、引き続き、ピストンロッド3Aを下方へ駆動する。そして、ピストンロッド3AがワークWに当接すると、一方のポート1Aから吐出してキャップ側ポート4Aに供給される圧液の圧力が上昇し、この圧液の圧力がばね23のばね力に基づく設定圧力以上になると、液圧ポンプ1は、圧力制御弁22が第1位置Aに切換り図4に示す状態となり、導入路53のパイロット圧液が負荷流路51より作用室46に導入され、斜板1Cが操作ピストン44で押圧されて設定部材48に当接する図5に示す最小傾斜角度になり、シリンダ室39の押しのけ容積を最小容積に切換え、図6にYで示す高圧小流量で複動シリンダ3を制御する。   When the piston rod 3A is driven downward to the vicinity of the workpiece W and the actual position value matches the target position value, the position control of the piston rod 3A is completed, and the piston rod 3A is subsequently driven downward. When the piston rod 3A comes into contact with the workpiece W, the pressure of the pressure liquid discharged from the one port 1A and supplied to the cap side port 4A increases. The pressure of the pressure liquid is based on the spring force of the spring 23. When the pressure becomes higher than the set pressure, the hydraulic pump 1 switches the pressure control valve 22 to the first position A and enters the state shown in FIG. 4, and the pilot pressure fluid in the introduction passage 53 is introduced into the working chamber 46 from the load passage 51. 5, the swash plate 1C is pressed by the operating piston 44 to abut against the setting member 48, the minimum inclination angle shown in FIG. 5 is reached, the displacement volume of the cylinder chamber 39 is switched to the minimum volume, and the high pressure and small flow rate indicated by Y in FIG. The double acting cylinder 3 is controlled.

そして、複動シリンダ3のキャップ側ポート4Aに供給する圧液の圧力の実際値を圧力検出センサ17で検出してフィードバック配線18よりコントローラ19にフィードバックし、コントローラ19は圧力の実際値を圧力の目標値に一致させるよう圧力指令をサーボモータドライバ16へ出力し、サーボモータドライバ16はフィードバック配線15よりフィードバックされるサーボモータ2の回転数がコントローラ19より入力される圧力指令に一致するようサーボモータ2の回転数を制御し、ピストンロッド3AによるワークWの加圧を圧力制御する。   Then, the actual pressure value of the pressure fluid supplied to the cap side port 4A of the double acting cylinder 3 is detected by the pressure detection sensor 17 and fed back to the controller 19 from the feedback wiring 18, and the controller 19 converts the actual pressure value to the pressure value. A pressure command is output to the servo motor driver 16 so as to match the target value, and the servo motor driver 16 causes the servo motor 2 so that the rotation speed of the servo motor 2 fed back from the feedback wiring 15 matches the pressure command inputted from the controller 19. 2 to control the pressurization of the workpiece W by the piston rod 3A.

ワークWの加圧加工が完了すると、コントローラ19への動作指令によりサーボモータ2で液圧ポンプ1を逆回転し、液圧ポンプ1は一方のポート1Aから吸入した作動液を他方のポート1Bから圧液として吐出し、この圧液は第2流路6を流れて複動シリンダ3のヘッド側ポート4Bに供給され、複動シリンダ3はピストンロッド3Aを上方へ駆動し、キャップ側ポート4Aの作動液は第1流路5を流れ、液圧ポンプ1の一方のポート1Aに吸入される。このとき、液圧ポンプ1は一方のポート1Aが吸入側となって低圧であるため、圧力制御弁22がばね23のばね力で第2位置Bに切換り、斜板1Cがばね1Dで付勢されて図2に示す最大傾斜角度になり、シリンダ室39の押しのけ容積を最大容積に切換え、低圧大流量で複動シリンダ3を制御する。また、キャップ側ポート4Aから排出される作動液量は、ヘッド側ポート4Bに供給される圧液量と比較してピストンロッド3Aの体積に相当する分多く、この余分な作動液は逆止め弁7が接続ロッド9に押圧されて開作動することでタンクTに排出される。   When the pressurization of the workpiece W is completed, the hydraulic pump 1 is reversely rotated by the servo motor 2 according to an operation command to the controller 19, and the hydraulic pump 1 draws the hydraulic fluid sucked from one port 1A from the other port 1B. Discharged as pressure fluid, this pressure fluid flows through the second flow path 6 and is supplied to the head-side port 4B of the double-acting cylinder 3. The double-acting cylinder 3 drives the piston rod 3A upward, and the cap-side port 4A The hydraulic fluid flows through the first flow path 5 and is sucked into one port 1A of the hydraulic pump 1. At this time, since one port 1A is at the suction side and the hydraulic pump 1 is at a low pressure, the pressure control valve 22 is switched to the second position B by the spring force of the spring 23, and the swash plate 1C is attached by the spring 1D. 2, the maximum tilt angle shown in FIG. 2 is reached, the displacement volume of the cylinder chamber 39 is switched to the maximum volume, and the double-action cylinder 3 is controlled with a low pressure and a large flow rate. Further, the amount of hydraulic fluid discharged from the cap side port 4A is larger than the amount of hydraulic fluid supplied to the head side port 4B by an amount corresponding to the volume of the piston rod 3A. 7 is pressed by the connecting rod 9 to open, and discharged to the tank T.

ピストンロッド3Aを図1の原位置まで復帰すると、コントローラ19はサーボモータドライバ16に停止指令を出力して液圧ポンプ1を停止し、ピストンロッド3Aを図1の原位置で停止する。   When the piston rod 3A is returned to the original position in FIG. 1, the controller 19 outputs a stop command to the servo motor driver 16 to stop the hydraulic pump 1 and stop the piston rod 3A at the original position in FIG.

かかる作動で、一方のポート1Aから複動シリンダ3に吐出する圧液の圧力が圧力制御弁22のばね23のばね力に基づく設定圧力未満でシリンダ室39の押しのけ容積を最大容積に切換えると共に、一方のポート1Aから複動シリンダ3に吐出する圧液の圧力がばね23のばね力に基づく設定圧力以上でシリンダ室39の押しのけ容積を最小容積に切換える液圧ポンプ1を備えているため、ばね23のばね力に基づく設定圧力未満の最大容積で複動シリンダ3を図6にXで示す低圧大流量で制御できると共に、ばね23のばね力に基づく設定圧力以上の最小容積で複動シリンダ3を図6にYで示す高圧小流量で制御できるから、低圧大流量の制御と高圧小流量の制御とを単一の液圧ポンプ1で可能にできて装置全体のコンパクト化を図ることができる。また、液圧ポンプ1はばね23のばね力に基づく設定圧力以上でシリンダ室39の押しのけ容積を最小容積に切換えるため、従来の高圧小流量の制御で使用する一方の液圧ポンプと比較して、必要トルクを増加することなくでき、液圧ポンプ1を回転するサーボモータ2を大型で高価格なものとすることなく、出力の小さい小型のものを維持できる。   With this operation, the displacement of the cylinder chamber 39 is switched to the maximum volume when the pressure of the hydraulic fluid discharged from the one port 1A to the double acting cylinder 3 is less than the set pressure based on the spring force of the spring 23 of the pressure control valve 22, and Since the hydraulic pump 1 is provided that switches the displacement volume of the cylinder chamber 39 to the minimum volume when the pressure of the hydraulic fluid discharged from the one port 1A to the double acting cylinder 3 is equal to or higher than the set pressure based on the spring force of the spring 23, the spring The double acting cylinder 3 can be controlled with a low pressure and a large flow rate indicated by X in FIG. 6 with a maximum volume less than a set pressure based on the spring force of 23, and a double volume cylinder 3 with a minimum volume greater than or equal to the set pressure based on the spring force of the spring 23. 6 can be controlled by a high pressure and a small flow rate indicated by Y in FIG. 6, so that the control of the low pressure and the large flow rate and the control of the high pressure and the small flow rate can be performed by a single hydraulic pump 1 and the overall apparatus can be made compact. Can. Further, since the hydraulic pump 1 switches the displacement volume of the cylinder chamber 39 to the minimum volume at a set pressure or more based on the spring force of the spring 23, it is compared with one hydraulic pump used in the conventional high pressure / small flow rate control. The required torque can be increased without increasing the servo motor 2 that rotates the hydraulic pump 1, and the small output with a small output can be maintained without making the servo motor 2 large and expensive.

また、複動シリンダ3側からフィードバックした圧力の実際値を圧力の目標値に一致するようサーボモータドライバ16、コントローラ19でサーボモータ2の回転数を制御しているため、複動シリンダ3を高圧小流量で精度良く圧力制御することができる。さらにまた、圧力制御弁22のばね23のばね力を調整ねじ56の回動操作により調整することで設定圧力を調整自在にしているため、この設定圧力の変更に伴い複動シリンダ3を高圧小流量制御で圧力制御を開始する値を自動的に変更することができる。   Further, since the servo motor driver 16 and the controller 19 control the rotational speed of the servo motor 2 so that the actual pressure value fed back from the double acting cylinder 3 side matches the target pressure value, the double acting cylinder 3 has a high pressure. The pressure can be accurately controlled with a small flow rate. Furthermore, since the set pressure can be adjusted by adjusting the spring force of the spring 23 of the pressure control valve 22 by rotating the adjusting screw 56, the double-acting cylinder 3 is made small in accordance with the change in the set pressure. The value at which pressure control is started in the flow rate control can be automatically changed.

なお、一実施形態では、回転数を制御可能な電動モータとしてサーボモータ2を用いたが、三相誘導電動モータをインバータ制御で回転数を制御可能としたりインバータモータやステッピングモータを用いたりしても良い。また、一実施形態で設けた圧力検出センサ17に替えて、ピストンロッド3Aの先端に圧電式のロードセル等の荷重検出センサを設け、ピストンロッド3AでワークWを加圧加工する際に、荷重検出センサで検出した荷重の実際値をフィードバックして荷重の目標値と一致するようサーボモータ2の回転数を制御する荷重制御としても良い In the embodiment, the servo motor 2 is used as an electric motor capable of controlling the rotation speed. However, the rotation speed of the three-phase induction electric motor can be controlled by inverter control, or an inverter motor or a stepping motor is used. Also good. Further, in place of the pressure detection sensor 17 provided in the embodiment, a load detection sensor such as a piezoelectric load cell is provided at the tip of the piston rod 3A, and the load detection is performed when the workpiece W is pressed by the piston rod 3A. Load control for controlling the number of revolutions of the servo motor 2 so as to match the target value of the load by feeding back the actual value of the load detected by the sensor may be adopted .

本発明の一実施形態を示し、液圧駆動装置の一部をブロックで示した液圧回路図である。FIG. 3 is a hydraulic circuit diagram showing a block of a part of the hydraulic driving device according to the embodiment of the present invention. 本発明の一実施形態で、液圧駆動装置を構成する液圧ポンプの縦断面図である。It is a longitudinal cross-sectional view of the hydraulic pump which comprises the hydraulic drive apparatus by one Embodiment of this invention. 図2の線A−Aに沿った断面図である。FIG. 3 is a cross-sectional view taken along line AA in FIG. 2. 図3と異なる作動状態を示す図3に相当する断面図である。FIG. 4 is a cross-sectional view corresponding to FIG. 3 showing an operating state different from FIG. 3. 図2と異なる作動状態を示す図2に相当する縦断面図である。It is a longitudinal cross-sectional view equivalent to FIG. 2 which shows the operation state different from FIG. 本発明の一実施形態を示し、液圧ポンプの圧力−流量特性を示すグラフである。It is a graph which shows one Embodiment of this invention and shows the pressure-flow rate characteristic of a hydraulic pump.

符号の説明Explanation of symbols

1:液圧ポンプ
1A:一方のポート
1B:他方のポート
2:サーボモータ(電動モータ)
3:複動シリンダ(液圧アクチュエータ)
16:サーボモータドライバ(制御部)
17:圧力検出センサ
19:コントローラ(制御部)
22:圧力制御弁
1: Hydraulic pump 1A: One port 1B: The other port 2: Servo motor (electric motor)
3: Double acting cylinder (hydraulic actuator)
16: Servo motor driver (control unit)
17: Pressure detection sensor 19: Controller (control unit)
22: Pressure control valve

Claims (1)

回転数を制御可能な電動モータと、二つのポートを有し電動モータによる正回転で一方のポートから圧液を吐出すると共に逆回転で他方のポートから圧液を吐出する正逆回転可能な液圧ポンプと、二つのポートを有し液圧ポンプから吐出する圧液によって駆動される液圧アクチュエータと、この液圧アクチュエータ側からフィードバックされる実際値を目標値に一致するよう前記電動モータの回転数を制御する制御部とを備え、前記液圧ポンプの両ポートと前記液圧アクチュエータの両ポートとを接続し、前記液圧ポンプは、斜板の傾斜角度を変更自在とし、斜板を最大傾斜角度にして押しのけ容積を最も大きくした最大容積と、斜板を最小傾斜角度にして押しのけ容積を前記最大容積より小さくかつ零より大きくした最小容積とに切換可能に設けて圧力制御弁を備え、斜板の最大傾斜角度を調整ねじ軸の回動操作で調整自在にすると共に、斜板の最小傾斜角度を斜板の設定部材への当接で設定して設け、前記圧力制御弁は前記液圧ポンプから吐出する圧液の圧力と調整自在にしたばねのばね力に基づく設定圧力とを対向作用し、前記液圧ポンプから前記液圧アクチュエータに吐出する圧液の圧力が前記設定圧力未満で押しのけ容積を前記最大容積に切換えると共に、前記液圧ポンプから前記液圧アクチュエータに吐出する圧液の圧力が前記設定圧力以上で押しのけ容積を前記最小容積に切換え、前記液圧ポンプを前記設定圧力未満で押しのけ容積を前記最大容積に切換えた状態で、前記液圧アクチュエータ側から位置の実際値を前記制御部へフィードバックし、前記液圧ポンプを前記設定圧力以上で押しのけ容積を前記最小容積に切換えた状態で、前記液圧アクチュエータ側から圧力若しくは荷重の実際値を前記制御部へフィードバックし、前記制御部は位置の実際値を位置の目標値に一致するよう前記電動モータの回転数を制御すると共に、圧力若しくは荷重の実際値を圧力若しくは荷重の目標値に一致するよう前記電動モータの回転数を制御することを特徴とする液圧駆動装置。 An electric motor capable of controlling the number of rotations, and a fluid that has two ports and can be rotated forward and backward by discharging pressure liquid from one port by forward rotation by the electric motor and discharging pressure liquid from the other port by reverse rotation A pressure pump, a hydraulic actuator having two ports and driven by pressure fluid discharged from the hydraulic pump, and rotation of the electric motor so that the actual value fed back from the hydraulic actuator side matches the target value A control unit for controlling the number of ports, and connecting both ports of the hydraulic pump and both ports of the hydraulic actuator, the hydraulic pump can change the inclination angle of the swash plate, and the maximum volume to the inclination angle and the greatest volume displacement which was, switchable volume displacement by the swash plate to the minimum inclination angle and the minimum volume, which was greater than and zero less than the maximum volume Provided with a pressure control valve, as well as to freely adjust the maximum inclination angle of the swash plate in the rotating operation of the adjusting screw shaft, by setting the minimum inclination angle of the swash plate in abutment against the swash plate of the setting member is provided The pressure control valve opposes the pressure of the hydraulic fluid discharged from the hydraulic pump and a set pressure based on the spring force of an adjustable spring, and discharges the hydraulic fluid from the hydraulic pump to the hydraulic actuator. together with the pressure switch the volume displacement of less than the set pressure to the maximum volume, switching the volume displacement at a pressure of liquid to be discharged to the hydraulic actuator from the hydraulic pump is the set pressure above the minimum volume, the In a state where the displacement of the hydraulic pump is less than the set pressure and the displacement volume is switched to the maximum volume, the actual value of the position is fed back from the hydraulic actuator side to the control unit, and the hydraulic pump is In the state where the displacement volume is switched to the minimum volume above the set pressure, the actual value of pressure or load is fed back to the control unit from the hydraulic actuator side, and the control unit returns the actual position value to the target position value. And the rotational speed of the electric motor is controlled so that the actual value of the pressure or load matches the target value of the pressure or load. .
JP2003375007A 2003-11-04 2003-11-04 Hydraulic drive device Expired - Fee Related JP4263072B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003375007A JP4263072B2 (en) 2003-11-04 2003-11-04 Hydraulic drive device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003375007A JP4263072B2 (en) 2003-11-04 2003-11-04 Hydraulic drive device

Publications (2)

Publication Number Publication Date
JP2005140175A JP2005140175A (en) 2005-06-02
JP4263072B2 true JP4263072B2 (en) 2009-05-13

Family

ID=34686503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003375007A Expired - Fee Related JP4263072B2 (en) 2003-11-04 2003-11-04 Hydraulic drive device

Country Status (1)

Country Link
JP (1) JP4263072B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673596A (en) * 2016-04-05 2016-06-15 广东精铟海洋工程股份有限公司 Double hydraulic control system with automatic pressure-maintaining function and test method of double hydraulic control system

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4893401B2 (en) * 2007-03-22 2012-03-07 株式会社不二越 Inverter driven hydraulic device
JP2008291865A (en) * 2007-05-22 2008-12-04 Yuken Kogyo Co Ltd Cylinder driving device
JP5437581B2 (en) * 2008-03-11 2014-03-12 豊興工業株式会社 hydraulic unit
WO2010134369A1 (en) * 2009-05-22 2010-11-25 国際計測器株式会社 Hydraulic system and general-purpose test device
JP2015096757A (en) * 2013-11-15 2015-05-21 学校法人立命館 Hydraulic drive unit
JP6285761B2 (en) * 2014-03-12 2018-02-28 コータキ精機株式会社 Hydraulic device and valve device
AU2016231996B2 (en) * 2015-03-13 2019-11-21 Bae Systems Plc Hydraulic system
CN105298966B (en) * 2015-11-20 2017-05-03 江南阀门有限公司 Control method of piston type adjusting valve for piston type adjusting valve monitoring and controlling system
CN108506251B (en) * 2018-03-05 2020-03-24 北京航空航天大学 Electric hydrostatic actuator of asymmetric pump-controlled asymmetric hydraulic cylinder
CN108457926B (en) * 2018-03-05 2020-05-05 北京航空航天大学 Force-controlled electric hydrostatic integrated pump-controlled symmetrical cylinder actuator
CN116658493B (en) * 2023-08-01 2023-10-24 华侨大学 Negative flow system and electric engineering mechanical device based on variable rotation speed and variable displacement

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105673596A (en) * 2016-04-05 2016-06-15 广东精铟海洋工程股份有限公司 Double hydraulic control system with automatic pressure-maintaining function and test method of double hydraulic control system
CN105673596B (en) * 2016-04-05 2017-05-10 广东精铟海洋工程股份有限公司 Double hydraulic control system with automatic pressure-maintaining function and test method of double hydraulic control system

Also Published As

Publication number Publication date
JP2005140175A (en) 2005-06-02

Similar Documents

Publication Publication Date Title
JP4263072B2 (en) Hydraulic drive device
US4833971A (en) Self-regulated hydraulic control system
US10830348B2 (en) Device and method for controlling a hydraulic machine
CN110914547B (en) Hydraulic drive device
US6299233B1 (en) Convertible top assembly with hydraulic actuating device
JP2013513768A (en) Control system for swash plate pump
KR101675659B1 (en) Pump control apparatus
US20220010792A1 (en) Hydraulic system
US10072654B2 (en) Electrically controlled pressure control valve for an adjustable hydrostatic pump
JP2005308047A (en) Hydraulic driving device
JP2008291865A (en) Cylinder driving device
JP2005036870A (en) Dual rotation type hydraulic pump device
CN101451524B (en) Dual volume pump
JP2008298226A (en) Hydraulic driven device
JP2008291863A (en) Hydraulic drive unit
JP3816227B2 (en) Fluid pressure device
US11434935B2 (en) Hydraulic pressure supply device
JP3787063B2 (en) Displacement control device for variable displacement pump
WO2022270178A1 (en) Hydraulic drive device
JP2004138208A (en) Hydraulic drive
JP2003184811A (en) Hydraulic drive
JP4573051B2 (en) Cylinder device drive control method
JP2002295406A (en) Hydraulic device
JPH0740695Y2 (en) Maximum flow controller for variable displacement pump
JPH075933A (en) Liquid pressure controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061023

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080325

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080715

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20090106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090210

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263072

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees