JP4260971B2 - Voltage-type self-excited power converter - Google Patents

Voltage-type self-excited power converter Download PDF

Info

Publication number
JP4260971B2
JP4260971B2 JP08565299A JP8565299A JP4260971B2 JP 4260971 B2 JP4260971 B2 JP 4260971B2 JP 08565299 A JP08565299 A JP 08565299A JP 8565299 A JP8565299 A JP 8565299A JP 4260971 B2 JP4260971 B2 JP 4260971B2
Authority
JP
Japan
Prior art keywords
voltage
converter
power
circuit
command value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08565299A
Other languages
Japanese (ja)
Other versions
JP2000287457A (en
Inventor
誠二 田中
博雄 小西
英俊 伊東
敏之 林
昌洋 高崎
清 竹中
直樹 宜保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP08565299A priority Critical patent/JP4260971B2/en
Publication of JP2000287457A publication Critical patent/JP2000287457A/en
Application granted granted Critical
Publication of JP4260971B2 publication Critical patent/JP4260971B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/30Reactive power compensation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Control Of Electrical Variables (AREA)
  • Inverter Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電圧形自励式電力変換装置に係わり、可変容量の無効電力、有効電力を融通する電力変換制御方式に関する。
【0002】
【従来の技術】
有効電力と無効電力が高速、かつ独立に制御できることから、自励式電力変換装置の適用開発が進んでいる。制御系の高速化のために、変換器の出力交流電流をdq変換し、d軸成分とq軸成分を非干渉で高速に電流制御する非干渉ベクトル制御方式が提案されている。また、電圧型自励式変換器を構成要素とし、直流電圧制御系と無効電力制御系(または電流制御系)を備えて直流電圧と無効電力を同時に制御し、これにより電圧形PWM変換器の出力電圧を制御する制御方式が提案されている。以下に、この一例を説明する。
【0003】
図7は自励式無効電力補償装置の主回路と制御回路の構成を示し、平成4年度電学論Bの論文「自励式無効電力補償装置の制御方式の開発(112巻1号、67〜73頁)」に開示された自励式無効電力補償装置である。
【0004】
単線図で示す主回路側は、電力系統1と電圧形自励式変換器(以下、単に変換器と称する)3の交流側を変換用変圧器2で連系し、変換器3の直流側には直流平滑コンデンサ4を接続し、その直流電圧Edが直流電圧検出器5で検出する。
【0005】
制御回路側は、Q演算回路50が系統電圧Vs及び系統電流Isの瞬時値から演算した瞬時Qは、無効電力基準値Qdpと減算され、この差がAQR回路16の無効電力指令Iqkとなる。また、直流電圧Edは直流電圧基準値Edpと減算され、直流電圧制御回路11の入力信号ΔEdとなる。直流電圧制御回路11の出力Idkは有効電流指令値で、ΔEdを零にするように働く。
【0006】
変流器20からの系統電流の瞬時値は、3相/2相変換回路8で3相/2相変換後、d/q軸変換回路9で有効電流軸成分IdH、無効電流軸成分IqHとして検出される。有効電流指令Idkは有効電流軸成分IdHと減算して有効電流制御回路13に入力する。有効電流制御回路13はこの差を零にするように働く信号Rout を出力する。同様に、無効電力指令Iqkは無効電流軸成分IqHと減算して無効電流制御回路15に入力する。無効電流制御回路15はこの差を零にするように働く信号Iout を出力する。
【0007】
また、有効電流制御回路出力Rout は系統電圧からd/q軸変換器回路9で検出したd軸フィードフォワード電圧VdH、および変換用変圧器インピーダンスXによる電圧降下補正を行うインピーダンス回路19とq軸電流検出値IqHを掛け算した出力信号と、それぞれ図示の符号で加算して、d軸電圧指令値VdFを得る。同様に、無効電流制御回路出力Iout はq軸フィードフォワード電圧VqH、およびインピーダンスXによる電圧降下の補正を行うインピーダンス回路18とd軸電流検出値IdHを掛け算した出力信号と、をそれぞれ図示の符号で加算して、q軸電圧指令値VqFを得る。
【0008】
さらに、d軸電圧指令値VdFとq軸電圧指令値VqFを入力するPWMパルス回路40は、2相/3相変換後、変換器3用のゲートパルス信号を生成する。この結果、変換器3は直流基準設定値Edpに等しい直流コンデンサの電圧Edを維持しながら、設定された無効電力Qdpを発生する無効電力補償装置として動作する。
【0009】
【発明が解決しようとする課題】
従来の電圧形自励式変換装置は、起動時や事故からの復帰時に過電流を発生する場合があり、以下に説明する。
【0010】
電圧形自励変換器は直流コンデンサに蓄えられたエネルギーを使って変換器出力Viを得るために、変換器の運転前に直流コンデンサを基準値(1pu)まで充電しておく必要がある。一般には、初充電装置を使って直流コンデンサの電圧が定格の1puまで充電されるので、変換器はフィードフォワード電圧VdHの効果で起動時から系統電圧と同じ電圧を発生するので、変換器の直流巻線には殆ど電流が流れない。
【0011】
ところで、自励式変換器を構成するために使うスッチング素子、例えばGTO(Gate Turn Off Transistor)と逆並列に還流ダイオードが設置されているので、このダイオードを使って系統から充電する方法が考えられる。この場合、還流ダイオードと直流コンデンサが三相全波整流回路として動作するため、充電電圧の大きさは系統の短絡容量比(SCR)と変換用変圧器のインピーダンスにより変わるが、定格電圧の70%(0.7pu)程度までしか充電されない。この状態で変換器を起動すると、変換器の発生電圧は系統電圧の約70%となるので、系統電圧と変換器を連系する変換用変圧器に約30%の電位差が印加される。ここで、変換用変圧器の%インピーダンスを20%と仮定すると、電流制御は瞬時には応動できないために変換器の直流巻線に1.5pu(=0.3/0.2)の過電流が起動した瞬間に流れる。
【0012】
また、欠相運転状態から復帰の場合にも過電流が流れる。たとえば、変換器の至近端で1線地絡事故が発生すると、系統電圧の大きさ(実効値)が約67%まで低下するため、直流コンデンサの電圧も低下する。この場合、事故から復帰するときに系統電圧は100%に復帰するが、変換器は直流電圧が定格より低い状態から運転するため、起動時の場合と同様に変換器の直流巻線に過電流が流れる。このように、起動時や事故からの復旧時に過電流が流れると、変換器の半導体素子を破壊する恐れがあるので、変換器の運転が継続できなくなる。
【0013】
本発明の目的は、上記した起動時や事故復旧時における過電流の発生を防止し、初充電装置を使用することなく安全、かつ簡単に起動ないし事故からの復帰を行える自励式半導体電力変換装置の制御装置を提供することにある。
【0014】
【課題を解決するための手段】
上記目的を達成する本発明は、電力系統と連系運転される自励式半導体変換器を備え、有効電力または無効電力の制御を行う電圧形自励式電力変換装置において、dqベクトル制御部とPWM制御部を有し、前者によるd軸電圧指令値及びq軸電圧指令値を後者に入力して、変換器制御のPWMパルスを発生する制御装置に、前記d軸電圧指令値を前記変換器の直流コンデンサの電圧で割り算した後に前記PWM制御部に入力する割算回路を設けたことを特徴とする。
【0015】
または、前記d軸電圧指令値及び前記q軸電圧指令値の各々を、前記変換器の直流コンデンサの電圧で割り算した後に前記PWM制御部にそれぞれ入力する割算回路を設けたことを特徴とする。
【0016】
より限定した本発明の電圧形自励式電力変換装置は、前記有効電力と無効電力に対応する変換器出力電流の有効電流と無効電流の各検出値を、各々の基準設定値に一致させるべく所定の調節演算を行う有効電流制御回路及び無効電流制御回路と、前記有効電流制御回路の出力、系統電圧からdq変換して得られるd軸フィードフォワード検出電圧、及び変換用変圧器の電圧降下補正を行うインピーダンスに前記無効電流の検出値を掛け算した信号を、所定の符号関係で加算する第1の加算回路と、同様に、前記無効電流制御回路の出力、q軸フィードフォワード検出電圧、及び前記インピーダンスに前記有効電流の検出値を掛け算した信号を、所定の符号関係で加算する第2の加算回路と、前記第1及び第2の加算回路の出力を直流コンデンサの検出電圧で割り算した信号をd軸電圧指令値及びq軸電圧指令値とし、PWMパルス発生回路に印加するように構成した制御装置を備えることを特徴とする。
【0017】
また、前記変換用変圧器のインピーダンスによる電圧降下補正を行うための有効電流及び無効電流を、前記検出値によらず指令値を用いるように構成したことを特徴とする。
【0018】
以下に、本発明の作用を説明する。本発明は自励式電圧形変換装置のベクトル制御部とPWM制御部間の換算を適正化することで、上記の課題を解決したものである。まず、図2を参照して、dqベクトル制御の原理を説明する。三相交流回路では系統電圧をVsとすると、変換器の出力電流ia、ib、ic の応答が数1で与えられる。
【0019】
【数1】

Figure 0004260971
【0020】
数1をdq座標に変換すると、数2で表せる。
【0021】
【数2】
Figure 0004260971
【0022】
数2ではd座標とq座標の間で干渉があることを示している。そこで、電流制御回路からの制御出力をIout、Routと設定すると、数2の非干渉項が消えて数3が求まり、さらに数4に示す非干渉制御の応答式が得られる。
【0023】
【数3】
Figure 0004260971
【0024】
ここで、Iout、Rout は電流制御回路から出力される設定電圧である。
【0025】
【数4】
Figure 0004260971
【0026】
この非干渉制御によるd軸電圧指令値VdFとq軸電圧指令値VqFがPWMパルス回路に入力する。本発明は、これらVdFとVqFに直流コンデンサの電圧Edの情報を反映させることにより、変換器が発生する変換器出力電圧Viと系統電圧Vsとの電位差を最小にする。
【0027】
すなわち、定格の大きさを1puとすると、交流電圧が定格電圧のときd軸フィードフォワード電圧VdHは1puとなり、また直流コンデンサの電圧が基準値(定格)のときEdも1puである。ところが、系統から充電する場合などには、直流電圧Edが0.7pu程度となるので、このEdに依存する変換器出力Viと系統電圧Vs間に電位差が生じて過電流が流れる。次に、その理由について説明する。
【0028】
PWM制御方式の変換器が出力する交流電圧Viと直流電圧Edとの間には数5の関係がある。
【0029】
【数5】
Figure 0004260971
【0030】
ここで、kは変換器の変調度である。交流電圧Viは直流電圧Edと変調度kの乗算値に、定数√3/2√2≒0.612を掛けたものである。また、変調度kはPWMパルス回路において、互いに90°異なるd軸電圧指令値VdFとq軸電圧指令値VqFの合成ベクトルとなり、数6に示すようにVdFとVqFの二乗和の平方根に比例する。ただし、K0は定格変調度である。
【0031】
【数6】
Figure 0004260971
【0032】
ここで、定格変調度K0を直流電圧Edで割算すれば、変換器の出力電圧ViはEdの影響を受けなくなる。なお、定格変調度K0をEdで割算する処理は、予めVdFとVqFをEdで割っておくのと等価であり、数7のように示される。
【0033】
【数7】
Figure 0004260971
【0034】
いま、変換器起動時の系統充電による直流電圧Edを0.7puとすると、変調度kは数8で示される。
【0035】
【数8】
Figure 0004260971
【0036】
すなわち、定格より低いEd(pu)の逆数値を乗算したVdHとVqHがPWMパルス回路に印加される。
【0037】
これにより、起動時に系統から充電される直流電圧が定格より低いことによる変換器出力の低下が防止でき、系統電圧と等しい電圧を起動時から出力するので、起動時の過電流の発生を回避できる。同じことが、系統事故からの復帰時の直流電圧にも言えるので、過電流の発生を回避した変換器の運転が直ちに可能になる。
【0038】
【発明の実施の形態】
本発明の複数の実施例について、図面を参照しながら詳細に説明する。図1は、本発明の第1の実施例による自励式半導体電力変換装置の構成を示す。この実施例は変換器が2多重の場合で、変換装置が直流系(共通直流コンデンサ)で接続されたBTB(Back To Back)構成で、全く同じ構成の制御回路を持つ場合である。なお、本例を2多重の変換器構成で示したのは、後述のシミュレーション装置の都合からで、単独の変換器であってもよい。
【0039】
主回路は、単線で示した3相の交流系統1と変換器31、32は、変換用変圧器21、22で連系されている。インピーダンス回路2’は変圧器2のインピーダンスXを模式的に示したもので、説明を簡単にするために巻数比は1とする。変換器31、32に接続する直流コンデンサ4は、順変換器として運転される場合は直流出力、逆変換器として運転される場合は交流出力のためのエネルギーを蓄積する。
【0040】
この主回路から制御回路へ供給する検出信号の取得のため、変流器20、電圧検出用変圧器30及び直流電圧検出器5を設けている。本実施例の制御回路は図7の構成に加えて、有効電力設定器7AとAPR回路17及び割算回路13B、15Bを設けている。
【0041】
次に、制御回路の構成と動作を説明する。系統電圧の瞬時値は電圧検出器30から、系統電流の瞬時値は変流器20からそれぞれ検出され、P、Q演算回路50’で瞬時P、Qが演算される。瞬時Q、Pはそれぞれ減算器71、71Aで無効電力基準設定器7の出力Qdp、有効電力基準設定器7Aの出力Pdpと差をとり、AQR回路16、APR回路17によりその偏差が0となるように制御する有効電力指令Ipk、無効電力指令Iqkとなる。
【0042】
直流電圧検出器5からの直流電圧Edは減算器61で、直流電圧基準値設定器6の出力Edpと差をとり、この偏差△Edが直流電圧制御回路11の入力となる。また、直流電圧制御回路11の上限リミッタに有効電力指令Ipk、下限リミッタに−Ipkが印加される。直流電圧制御回路11は偏差△Edを0にするように働く。すなわち、直流電圧制御回路11の出力Idkは、直流コンデンサ4の電圧を基準電圧に等しくするのに必要なd軸有効電流指令値である。
【0043】
一方、変流器20により検出した系統電流の瞬時値は、3相/2相変換回路8で3相/2相変換後、d/q軸変換回路9で有効電流軸成分IdH、無効電流軸成分IqHとして検出される。この検出を正しく行うために、系統電圧の位相を検出する同期信号発生回路10を設けている。
【0044】
減算器12で、直流電圧制御回路11からのd軸有効電流指令Idkと有効電流軸成分IdHの差を求め、d軸有効電流制御回路13に入力する。有効電流制御回路13はこの差を零にするように働く信号Rout を出力し、結果として直流電圧Edが基準値Edpに等しくなる。同様に、無効電力指令Iqkは減算器14で無効電流軸成分IqHと差をとり、q軸電流制御回路15に入力される。電流制御回路15はこの偏差を零にするように働く信号Iout を出力し、結果として変換器は無効電力基準設定値Qdpに等しい無効電力を発生する。なお、電流制御回路13、15には比例積分演算が用いられるが、他の演算方法によってもよい。
【0045】
d軸電流制御回路13の出力Routは、変換用変圧器2のインピーダンスXによる電圧降下補正を行うためのインピーダンス回路19と無効電力指令値Iqkを掛け算した出力信号、及び系統電圧からdq変換して得たd軸フィードフォワード電圧VdHと、加算器13Aで図示の符号(+、−、+)により加算した後、割算器13Bで直流電圧Edによる割算を行い、PWM回路40のd軸電圧指令値VdFを得る。同様に、q軸電流制御回路15の出力Ioutは、インピーダンスXによる電圧降下補正を行うインピーダンス回路18とd軸有効電流指令Idkを掛け算した出力信号、及び系統電圧からdq変換して得たq軸フィードフォワード電圧VqHと、加算器15Aで図示の符号(+、+、+)により加算した後、割算器15Bで直流電圧Edによる割算を行い、PWM回路40のq軸電圧指令値VqFを得る。
【0046】
以上のように、直流電圧Edで割算したd軸電圧指令値VdFとq軸電圧指令値VqFがPWM発生器40に印加される。この結果、直流電圧が低い場合に、変調度kはその低い割合に逆比例して大きくなるため、変換器出力は系統電圧と等しい電圧を出力するようになり、直流電圧Edの大きさに依存しない変換器出力Viを常に得ることができる。
【0047】
本実施例によれば、系統からの充電方式による定格より低い直流コンデンサの電圧で起動した場合に、直流電圧Edの影響が割算回路13B、15Bによって取り除かれるので、系統電圧と等しい変換器出力が得られ、電位差による過電流を発生しなくなる。同様に系統事故時も、変換器からの出力電圧Viが直流電圧Edに依存せず、系統電圧Vsと同じフィードフォワード電圧VdHのみで制御されるので、直流コンデンサの電圧が低い場合にも過電流を発生せず、直ちに復帰運転が可能になる。このように、起動時に従来の初充電装置による充電が不要で、また、系統と変換器出力との電位差による過電流の発生が抑制できるので、運転継続性が大幅に改善される。
【0048】
次に、上記自励式変換器を逆変換器、他励式変換器を順変換器とし、500kmの直流線路で連系されたハイブリッドシステムを対象に、EMTP(Electro‐Magnetic Transients Program)を用いたシミュレーションによる解析結果を説明する。
【0049】
図3に、解析対象の試験回路(直流送電システム)を示す。逆変換器側は図1に示したと同様の主回路及び制御回路100である。なお、変換器31、32の直流側は直列接続としているが、並列接続でもよい。順変換器側は、他励式の変換器31A、32Aは変換用装置用変圧器21A、22Aで交流系統1Aに連系され、制御回路100Aによって定電流制御されている。逆変換器側は直流電圧一定制御を行うので、自励式変換器31、32は直流電圧Edを直流電圧基準値Edpと等しくするように、逆変換器側から取り出される有効電力Pと逆変換器と順変換器で発生する損失分を補う、いわゆるしわとりの動作をする。本解析では、順変換器と逆変換器に与える直流電圧基準値Edpを順変換器は1.16pu,逆変換器は1.0puに設定している。
【0050】
図4は、試験回路の自励端にて3LG事故を発生させた時のEMTP解析波形である。(a)従来方式では、直流電圧での割算がないので、事故から復帰時に1.5pu以上(シミュレーションでは、1.8pu)の変換器電流が流れており、変換器を停止してスッチング素子の破壊を防止する必要がある。
【0051】
(b)本発明の方式では、直流電圧での割算を行うので、変換器電流は事故からの復帰時にも指令値Idkと殆ど同じ変換器電流となり、過電流が発生しないため、変換器は運転を継続することができる。
【0052】
次に、本発明の第2の実施例を説明する。図5は、第2の実施例による自励式半導体電力変換装置の構成を示し、図1と同等の要素には同一の符号を付している。第1の実施例との相違は、変換用変圧器のインピーダンスによる電圧降下補正を行うための有効電流信号及び無効電流信号に、それぞれ有効電流軸成分IdH、無効電流軸成分IqHを用いる構成とした点である。第1の実施例で使用する有効電流信号指令値Idk、及び無効電流指令値Iqkに比べ、実際に変換用変圧器に流れている電流IdHとIqHを使って電流制御を行うので、更に精度の良いインピーダンス電圧降下の補正ができる。
【0053】
以上、本発明の第1、第2の実施例を詳細に説明した。ここでは、PWM回路に入力されるd軸電圧指令値VdFとq軸電圧指令値VqFを、直流電圧Edで割算することにより過電流を抑制している。しかし、この構成に限られるものではない。シミュレーションの結果から、過電流抑制効果はd軸電圧指令値VdFによる方が、q軸電圧指令値に比べて大きいことが判明している。従って、d軸電圧指令値VdFのみを直流電圧Edで割算する構成も実用できる。この場合、割算回路を少なくできるので、制御ブロック全体の演算時間を低減できる。
【0054】
また、図1、図5では変換器の直流側を並列接続(2多重)にした構成を示しているが、図3の逆変換器側に示すように直流側を直列接続した場合についても同様に適用できることは明らかである。
【0055】
図6は本発明の適用例で、図1または図5の電圧型自励式変換器で構成したHVDC回路を示す。この場合、順/逆いずれかの変換器で直流電圧一定制御を行う必要がある。例えば、順変換器側に直流電圧一定制御を分担させると、電圧マージン0.1puの場合、順変換器の直流電圧基準器の設定値を1puとし、逆変換器の直流電圧基準器の設定値を0.9puとする。
【0056】
順変換器側の直流電圧一定制御回路11は直流電圧Edを1puとするように働かせるため、制御回路11の上下限リミッタが制御出力に影響を与えないようにする。上限リミッタとして、P指令値を電力マージン分(△Pd)だけ大きく設定した大きさの信号IpkR(=Ipk+△Pd)を、下限リミッタとして−IpkRを設定する。
【0057】
一方、逆変換器側のP設定値は指令値通りのPを出力させる必要があるため、上限リミッタはIpk、下限リミッタは−Ipkとする。この結果、逆変換器側は直流電圧基準器の設定が0.9puなので、減算器71Aで直流電圧Edの1puと差が取られ、直流電圧一定制御回路11の入力△Edは常に−0.1puが入力されて下限リミッタが選択され、その出力Idkは下限リミッタの設定値Ipkとなる。この結果、逆変換器はAPR回路出力Ipkに従った有効電力Pを出力することになる。
【0058】
【発明の効果】
本発明によれば、電力系と連系運転され有効電力や無効電力の制御を行う自励式電圧形電力変換装置の制御装置に、PWMパルス回路に印加する電圧指令値を、その時の変換器直流側のコンデンサの電圧で割り算する回路を設けたので、起動時や事故からの復帰時にコンデンサ電圧が定格より低くても過電流の発生を防止できる。この結果、過電流による変換器の運転停止が回避でき、運転継続性が大幅に改善できる。また、初充電装置を使わない系統充電方式が採用できるので、起動や事故からの復帰が容易、かつ、高速化できる。
【図面の簡単な説明】
【図1】本発明の第1の実施例による自励式半導体電力変換装置の構成図。
【図2】dqベクトル制御の原理を説明する三相交流系統と電力変換装置の主回路図。
【図3】EMTP解析の対象試験回路のシステム構成図。
【図4】EMTP解析結果の波形図。
【図5】本発明の第2の実施例による自励式半導体電力変換装置の構成図。
【図6】本発明の電圧形自励式変換器を適用したHVDC回路の構成図。
【図7】従来の自励式無効電力補償装置の構成図。
【符号の説明】
1,1A…系統、2,21,22…変換器用変圧器、2’…インピーダンス回路、3,31,32…変換器、4…直流コンデンサ、5…直流電圧検出器、6…直流電圧基準設定器、7…Q基準設定器、7A…P基準設定器、8…3相/2相変換回路、9…d/q軸変換回路、10…同期信号発生回路、11…直流電圧一定制御回路、12,14,61,71…減算回路、13…d軸電流制御回路、15…q軸電流制御回路、13A,15A…減算回路、13B,15B…割算回路、16…AQR回路、17…APR回路、20…変流器、30…電圧検出用変圧器、40…PWMパルス回路、50…P,Q演算回路。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a voltage-type self-excited power converter, and more particularly, to a power conversion control system that accommodates variable capacity reactive power and active power.
[0002]
[Prior art]
Since active power and reactive power can be controlled at high speed and independently, application development of a self-excited power converter is progressing. In order to increase the speed of the control system, a non-interference vector control method has been proposed in which the output AC current of the converter is subjected to dq conversion and the d-axis component and the q-axis component are controlled at high speed without interference. In addition, a voltage-type self-excited converter is used as a component, and a DC voltage control system and a reactive power control system (or current control system) are provided to control DC voltage and reactive power simultaneously. A control method for controlling the voltage has been proposed. An example of this will be described below.
[0003]
FIG. 7 shows the configuration of the main circuit and the control circuit of the self-excited reactive power compensator. The paper “Establishment of control method for self-excited reactive power compensator (Vol. 112, No. 1, 67-73” Page) ”is a self-excited reactive power compensator.
[0004]
The main circuit side shown in the single line diagram is such that the power system 1 and the AC side of the voltage source self-excited converter (hereinafter simply referred to as a converter) 3 are interconnected by a conversion transformer 2 and are connected to the DC side of the converter 3. Is connected to a DC smoothing capacitor 4 and its DC voltage Ed is detected by a DC voltage detector 5.
[0005]
On the control circuit side, the instantaneous Q calculated by the Q calculation circuit 50 from the instantaneous values of the system voltage Vs and the system current Is is subtracted from the reactive power reference value Qdp, and this difference becomes the reactive power command Iqk of the AQR circuit 16. Further, the DC voltage Ed is subtracted from the DC voltage reference value Edp to become an input signal ΔEd of the DC voltage control circuit 11. The output Idk of the DC voltage control circuit 11 is an effective current command value, and works to make ΔEd zero.
[0006]
The instantaneous value of the system current from the current transformer 20 is converted into the effective current axis component IdH and the reactive current axis component IqH by the d / q axis conversion circuit 9 after the three phase / 2 phase conversion by the three phase / 2 phase conversion circuit 8. Detected. The effective current command Idk is subtracted from the effective current axis component IdH and input to the effective current control circuit 13. The active current control circuit 13 outputs a signal Rout that works to make this difference zero. Similarly, the reactive power command Iqk is subtracted from the reactive current axis component IqH and input to the reactive current control circuit 15. The reactive current control circuit 15 outputs a signal Iout that works to make this difference zero.
[0007]
Further, the effective current control circuit output Rout includes the d-axis feedforward voltage VdH detected by the d / q-axis converter circuit 9 from the system voltage, and the impedance circuit 19 for correcting the voltage drop by the transformer impedance X for conversion and the q-axis current. The d-axis voltage command value VdF is obtained by adding the output signal multiplied by the detection value IqH and the respective signs shown. Similarly, the reactive current control circuit output Iout is a q-axis feedforward voltage VqH, an impedance circuit 18 for correcting a voltage drop due to the impedance X, and an output signal obtained by multiplying the d-axis current detection value IdH, respectively, by the illustrated symbols. The q-axis voltage command value VqF is obtained by addition.
[0008]
Further, the PWM pulse circuit 40 that receives the d-axis voltage command value VdF and the q-axis voltage command value VqF generates a gate pulse signal for the converter 3 after the two-phase / three-phase conversion. As a result, the converter 3 operates as a reactive power compensator that generates the set reactive power Qdp while maintaining the voltage Ed of the DC capacitor equal to the DC reference set value Edp.
[0009]
[Problems to be solved by the invention]
The conventional voltage type self-excited converter may generate an overcurrent at the time of start-up or recovery from an accident, and will be described below.
[0010]
In order to obtain the converter output Vi using the energy stored in the DC capacitor, the voltage type self-excited converter needs to be charged to the reference value (1 pu) before the converter is operated. Generally, since the voltage of the DC capacitor is charged to the rated 1 pu using the initial charging device, the converter generates the same voltage as the system voltage from the start-up due to the effect of the feedforward voltage VdH. Almost no current flows through the winding.
[0011]
By the way, since a free-wheeling diode is installed in antiparallel with a switching element used to construct a self-excited converter, for example, GTO (Gate Turn Off Transistor), a method of charging from the system using this diode can be considered. In this case, since the freewheeling diode and the DC capacitor operate as a three-phase full-wave rectifier circuit, the magnitude of the charging voltage varies depending on the short-circuit capacity ratio (SCR) of the system and the impedance of the conversion transformer, but 70% of the rated voltage. It is charged only up to (0.7 pu). When the converter is started in this state, the voltage generated by the converter becomes about 70% of the system voltage, so that a potential difference of about 30% is applied to the conversion transformer that connects the system voltage and the converter. Here, assuming that the% impedance of the conversion transformer is 20%, the current control cannot respond instantaneously, so that 1.5 pu (= 0.3 / 0.2) overcurrent is applied to the DC winding of the converter. Flows at the moment when it starts.
[0012]
Also, an overcurrent flows when returning from an open phase operating state. For example, when a one-line ground fault occurs at the closest end of the converter, the magnitude (effective value) of the system voltage is reduced to about 67%, and the voltage of the DC capacitor is also reduced. In this case, the system voltage returns to 100% when returning from an accident. However, since the converter is operated from a state where the DC voltage is lower than the rated value, an overcurrent is applied to the DC winding of the converter as in the case of starting. Flows. As described above, if an overcurrent flows at the time of start-up or recovery from an accident, the semiconductor element of the converter may be destroyed, and the operation of the converter cannot be continued.
[0013]
An object of the present invention is to provide a self-excited semiconductor power conversion device that prevents the occurrence of overcurrent at the time of start-up or accident recovery, and that can be started up or recovered from an accident safely and easily without using an initial charging device. It is to provide a control device.
[0014]
[Means for Solving the Problems]
The present invention that achieves the above object includes a dq vector control unit and PWM control in a voltage-type self-excited power conversion device that includes a self-excited semiconductor converter that is interconnected with a power system and controls active power or reactive power. A d-axis voltage command value and a q-axis voltage command value by the former are input to the latter to generate a PWM pulse for converter control. A division circuit is provided that inputs to the PWM control unit after dividing by the voltage of the capacitor.
[0015]
Alternatively, there is provided a division circuit that divides each of the d-axis voltage command value and the q-axis voltage command value by a voltage of a DC capacitor of the converter and then inputs the divided circuit to the PWM control unit. .
[0016]
The voltage type self-excited power conversion device of the present invention more limited is predetermined so that the detected values of the active current and the reactive current of the converter output current corresponding to the active power and the reactive power correspond to the respective reference set values. An active current control circuit and a reactive current control circuit that perform an adjustment calculation of the above, an output of the active current control circuit, a d-axis feedforward detection voltage obtained by dq conversion from the system voltage, and a voltage drop correction of the conversion transformer Similarly to the first addition circuit that adds a signal obtained by multiplying the impedance to be detected by the detection value of the reactive current in a predetermined sign relationship, the output of the reactive current control circuit, the q-axis feedforward detection voltage, and the impedance A signal obtained by multiplying the detection value of the effective current by a predetermined sign relationship, and outputs of the first and second addition circuits are connected to a DC condenser. The detected voltage signal divided by the a d-axis voltage command value and the q-axis voltage command value, characterized in that it comprises a structure with a control device so as to apply to the PWM pulse generating circuit.
[0017]
The effective current and the reactive current for correcting the voltage drop due to the impedance of the conversion transformer are configured to use command values regardless of the detection values.
[0018]
The operation of the present invention will be described below. The present invention solves the above problem by optimizing the conversion between the vector control unit and the PWM control unit of the self-excited voltage source converter. First, the principle of dq vector control will be described with reference to FIG. In the three-phase AC circuit, when the system voltage is Vs, the response of the converter output currents ia, ib, ic is given by the following equation (1).
[0019]
[Expression 1]
Figure 0004260971
[0020]
When Formula 1 is converted into dq coordinates, it can be expressed by Formula 2.
[0021]
[Expression 2]
Figure 0004260971
[0022]
Equation 2 indicates that there is interference between the d coordinate and the q coordinate. Therefore, when the control output from the current control circuit is set to Iout and Rout, the non-interference term in Equation 2 disappears and Equation 3 is obtained, and the response equation for non-interference control shown in Equation 4 is obtained.
[0023]
[Equation 3]
Figure 0004260971
[0024]
Here, Iout and Rout are set voltages output from the current control circuit.
[0025]
[Expression 4]
Figure 0004260971
[0026]
The d-axis voltage command value VdF and the q-axis voltage command value VqF by this non-interference control are input to the PWM pulse circuit. The present invention minimizes the potential difference between the converter output voltage Vi generated by the converter and the system voltage Vs by reflecting the information on the voltage Ed of the DC capacitor in these VdF and VqF.
[0027]
That is, when the rated magnitude is 1 pu, the d-axis feedforward voltage VdH is 1 pu when the AC voltage is the rated voltage, and Ed is also 1 pu when the DC capacitor voltage is the reference value (rated). However, when charging from the system, etc., the DC voltage Ed is about 0.7 pu, so that a potential difference is generated between the converter output Vi depending on this Ed and the system voltage Vs, and an overcurrent flows. Next, the reason will be described.
[0028]
There is a relationship of Equation 5 between the AC voltage Vi output from the PWM control type converter and the DC voltage Ed.
[0029]
[Equation 5]
Figure 0004260971
[0030]
Here, k is the modulation degree of the converter. The AC voltage Vi is obtained by multiplying the product of the DC voltage Ed and the modulation factor k by a constant √3 / 2√2≈0.612. In the PWM pulse circuit, the modulation degree k is a combined vector of a d-axis voltage command value VdF and a q-axis voltage command value VqF that are 90 ° different from each other, and is proportional to the square root of the square sum of VdF and VqF as shown in Equation 6. . However, K 0 is the rated degree of modulation.
[0031]
[Formula 6]
Figure 0004260971
[0032]
Here, if the rated modulation degree K 0 is divided by the DC voltage Ed, the output voltage Vi of the converter is not affected by Ed. Note that the process of dividing the rated modulation degree K 0 by Ed is equivalent to dividing VdF and VqF by Ed in advance, and is expressed as Equation 7.
[0033]
[Expression 7]
Figure 0004260971
[0034]
Now, assuming that the DC voltage Ed due to system charging at the time of starting the converter is 0.7 pu, the modulation degree k is expressed by the following equation (8).
[0035]
[Equation 8]
Figure 0004260971
[0036]
That is, VdH and VqH multiplied by the inverse value of Ed (pu) lower than the rating are applied to the PWM pulse circuit.
[0037]
As a result, the converter output can be prevented from lowering due to the DC voltage charged from the system at the time of startup being lower than the rated value, and since a voltage equal to the system voltage is output from the startup, the occurrence of overcurrent at startup can be avoided. . The same can be said for the DC voltage at the time of recovery from a system fault, so that the converter can be operated immediately without the occurrence of overcurrent.
[0038]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a configuration of a self-excited semiconductor power conversion device according to a first embodiment of the present invention. In this embodiment, there are two converters, and the converter has a BTB (Back To Back) configuration connected by a DC system (common DC capacitor), and has a control circuit with exactly the same configuration. Note that this example is shown in a two-multiplex converter configuration because of the convenience of the simulation apparatus described later, and may be a single converter.
[0039]
In the main circuit, the three-phase AC system 1 indicated by a single line and the converters 31 and 32 are interconnected by conversion transformers 21 and 22. The impedance circuit 2 ′ schematically shows the impedance X of the transformer 2, and the turns ratio is 1 for simplicity of explanation. The DC capacitor 4 connected to the converters 31 and 32 stores energy for DC output when operated as a forward converter, and for AC output when operated as an inverse converter.
[0040]
In order to acquire a detection signal supplied from the main circuit to the control circuit, a current transformer 20, a voltage detection transformer 30, and a DC voltage detector 5 are provided. The control circuit of the present embodiment is provided with an active power setting device 7A, an APR circuit 17, and division circuits 13B and 15B in addition to the configuration of FIG.
[0041]
Next, the configuration and operation of the control circuit will be described. The instantaneous value of the system voltage is detected from the voltage detector 30, and the instantaneous value of the system current is detected from the current transformer 20. The instantaneous values P and Q are calculated by the P and Q calculation circuit 50 ′. The instants Q and P are subtracted by the subtracters 71 and 71A from the output Qdp of the reactive power reference setting unit 7 and the output Pdp of the active power reference setting unit 7A, respectively, and the deviations are zeroed by the AQR circuit 16 and the APR circuit 17. Thus, the active power command Ipk and the reactive power command Iqk are controlled.
[0042]
The DC voltage Ed from the DC voltage detector 5 is subtracted by the subtractor 61 and is output from the output Edp of the DC voltage reference value setting device 6, and this deviation ΔEd becomes an input to the DC voltage control circuit 11. Further, the active power command Ipk is applied to the upper limiter of the DC voltage control circuit 11, and -Ipk is applied to the lower limiter. The DC voltage control circuit 11 works to make the deviation ΔEd zero. That is, the output Idk of the DC voltage control circuit 11 is a d-axis effective current command value necessary for making the voltage of the DC capacitor 4 equal to the reference voltage.
[0043]
On the other hand, the instantaneous value of the system current detected by the current transformer 20 is converted into the effective current axis component IdH and the reactive current axis by the d / q axis conversion circuit 9 after the three-phase / two-phase conversion by the three-phase / two-phase conversion circuit 8. Detected as component IqH. In order to perform this detection correctly, a synchronization signal generation circuit 10 for detecting the phase of the system voltage is provided.
[0044]
The subtractor 12 obtains the difference between the d-axis effective current command Idk from the DC voltage control circuit 11 and the effective current axis component IdH and inputs the difference to the d-axis effective current control circuit 13. The active current control circuit 13 outputs a signal Rout that works to make this difference zero, and as a result, the DC voltage Ed becomes equal to the reference value Edp. Similarly, the reactive power command Iqk is subtracted by the subtractor 14 from the reactive current axis component IqH and input to the q-axis current control circuit 15. The current control circuit 15 outputs a signal Iout that serves to make this deviation zero, and as a result, the converter generates reactive power equal to the reactive power reference set value Qdp. In addition, although the proportional integral calculation is used for the current control circuits 13 and 15, other calculation methods may be used.
[0045]
The output Rout of the d-axis current control circuit 13 is dq converted from the output signal obtained by multiplying the impedance circuit 19 for performing voltage drop correction by the impedance X of the conversion transformer 2 and the reactive power command value Iqk and the system voltage. The obtained d-axis feedforward voltage VdH is added by the adder 13A using the signs (+,-, +) shown in the figure, and then divided by the DC voltage Ed by the divider 13B to obtain the d-axis voltage of the PWM circuit 40. A command value VdF is obtained. Similarly, the output Iout of the q-axis current control circuit 15 is the q-axis obtained by dq conversion from the output signal obtained by multiplying the impedance circuit 18 for correcting the voltage drop by the impedance X and the d-axis effective current command Idk, and the system voltage. After adding the feedforward voltage VqH by the sign (+, +, +) illustrated in the adder 15A, the divider 15B performs division by the DC voltage Ed, and the q-axis voltage command value VqF of the PWM circuit 40 is obtained. obtain.
[0046]
As described above, the d-axis voltage command value VdF and the q-axis voltage command value VqF divided by the DC voltage Ed are applied to the PWM generator 40. As a result, when the DC voltage is low, the modulation degree k increases in inverse proportion to the low ratio, so that the converter output outputs a voltage equal to the system voltage and depends on the magnitude of the DC voltage Ed. The converter output Vi not to be obtained can always be obtained.
[0047]
According to the present embodiment, when starting with a voltage of a DC capacitor lower than the rating by the charging method from the system, the influence of the DC voltage Ed is removed by the dividing circuits 13B and 15B. And no overcurrent due to a potential difference is generated. Similarly, in the event of a system fault, the output voltage Vi from the converter does not depend on the DC voltage Ed and is controlled only by the same feedforward voltage VdH as the system voltage Vs. The return operation can be performed immediately. In this way, charging by the conventional initial charging device is not required at the time of start-up, and the occurrence of overcurrent due to the potential difference between the system and the converter output can be suppressed, so that operation continuity is greatly improved.
[0048]
Next, simulation using EMTP (Electro-Magnetic Transients Program) for a hybrid system interconnected by a 500 km DC line with the self-excited converter as an inverse converter and the separately excited converter as a forward converter. The analysis result by will be described.
[0049]
FIG. 3 shows a test circuit (DC power transmission system) to be analyzed. The inverse converter side is the same main circuit and control circuit 100 as shown in FIG. Note that the DC sides of the converters 31 and 32 are connected in series, but may be connected in parallel. On the forward converter side, separately-excited converters 31A and 32A are connected to the AC system 1A by conversion device transformers 21A and 22A, and are subjected to constant current control by the control circuit 100A. Since the inverse converter side performs constant DC voltage control, the self-excited converters 31 and 32 and the active power P extracted from the inverse converter side and the inverse converter so that the DC voltage Ed is equal to the DC voltage reference value Edp. And it works so-called wrinkle to compensate for the loss generated in the forward converter. In this analysis, the DC voltage reference value Edp given to the forward converter and the reverse converter is set to 1.16 pu for the forward converter and 1.0 pu for the reverse converter.
[0050]
FIG. 4 is an EMTP analysis waveform when a 3LG accident occurs at the self-excited end of the test circuit. (A) In the conventional method, since there is no division by the DC voltage, a converter current of 1.5 pu or more (1.8 pu in the simulation) flows at the time of recovery from the accident, the converter is stopped, and the switching element is stopped. It is necessary to prevent destruction.
[0051]
(B) In the method of the present invention, since the division by the DC voltage is performed, the converter current becomes almost the same as the command value Idk at the time of recovery from the accident, and no overcurrent is generated. Driving can be continued.
[0052]
Next, a second embodiment of the present invention will be described. FIG. 5 shows a configuration of a self-excited semiconductor power conversion device according to the second embodiment, and elements equivalent to those in FIG. The difference from the first embodiment is that the effective current axis component IdH and the reactive current axis component IqH are used for the effective current signal and the reactive current signal for correcting the voltage drop due to the impedance of the conversion transformer, respectively. Is a point. Compared with the active current signal command value Idk and the reactive current command value Iqk used in the first embodiment, the current control is performed using the currents IdH and IqH actually flowing through the conversion transformer. Good impedance voltage drop can be corrected.
[0053]
The first and second embodiments of the present invention have been described in detail above. Here, the overcurrent is suppressed by dividing the d-axis voltage command value VdF and the q-axis voltage command value VqF input to the PWM circuit by the DC voltage Ed. However, the configuration is not limited to this. From the simulation results, it has been found that the overcurrent suppression effect is greater with the d-axis voltage command value VdF than with the q-axis voltage command value. Therefore, a configuration in which only the d-axis voltage command value VdF is divided by the DC voltage Ed can also be used. In this case, since the number of division circuits can be reduced, the calculation time of the entire control block can be reduced.
[0054]
1 and 5 show a configuration in which the DC side of the converter is connected in parallel (double multiplexing), but the same applies to the case where the DC side is connected in series as shown in the inverse converter side of FIG. It is clear that it can be applied to.
[0055]
FIG. 6 is an application example of the present invention and shows an HVDC circuit constituted by the voltage type self-excited converter of FIG. 1 or FIG. In this case, it is necessary to perform constant DC voltage control with either a forward / reverse converter. For example, when DC voltage constant control is assigned to the forward converter side, when the voltage margin is 0.1 pu, the setting value of the DC voltage reference device of the forward converter is set to 1 pu, and the setting value of the DC voltage reference device of the reverse converter Is set to 0.9 pu.
[0056]
Since the DC voltage constant control circuit 11 on the forward converter side works so that the DC voltage Ed is set to 1 pu, the upper and lower limiters of the control circuit 11 do not affect the control output. A signal IpkR (= Ipk + ΔPd) having a magnitude in which the P command value is set larger by the power margin (ΔPd) is set as the upper limiter, and −IpkR is set as the lower limiter.
[0057]
On the other hand, since the P set value on the inverse converter side needs to output P as the command value, the upper limiter is set to Ipk, and the lower limiter is set to -Ipk. As a result, since the setting of the DC voltage reference device is 0.9 pu on the inverse converter side, the subtractor 71A takes a difference from 1 pu of the DC voltage Ed, and the input ΔEd of the DC voltage constant control circuit 11 is always −0. 1pu is input to select the lower limiter, and its output Idk becomes the set value Ipk of the lower limiter. As a result, the inverse converter outputs the active power P according to the APR circuit output Ipk.
[0058]
【The invention's effect】
According to the present invention, a voltage command value to be applied to a PWM pulse circuit is applied to a control device of a self-excited voltage source power converter that is connected to a power system and controls active power and reactive power. Since a circuit that divides by the voltage of the capacitor on the side is provided, overcurrent can be prevented even if the capacitor voltage is lower than the rated value at the time of start-up or recovery from an accident. As a result, the operation stop of the converter due to overcurrent can be avoided, and the operation continuity can be greatly improved. In addition, since a system charging method that does not use the initial charging device can be adopted, it is easy to start up and recover from an accident, and the speed can be increased.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of a self-excited semiconductor power conversion device according to a first embodiment of the present invention.
FIG. 2 is a main circuit diagram of a three-phase AC system and a power conversion device for explaining the principle of dq vector control.
FIG. 3 is a system configuration diagram of a target test circuit for EMTP analysis.
FIG. 4 is a waveform diagram of an EMTP analysis result.
FIG. 5 is a configuration diagram of a self-excited semiconductor power conversion device according to a second embodiment of the present invention.
FIG. 6 is a configuration diagram of an HVDC circuit to which the voltage source self-excited converter of the present invention is applied.
FIG. 7 is a configuration diagram of a conventional self-excited reactive power compensator.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1,1A ... System, 2, 21, 22 ... Transformer for converter, 2 '... Impedance circuit, 3, 31, 32 ... Converter, 4 ... DC capacitor, 5 ... DC voltage detector, 6 ... DC voltage reference setting 7 ... Q reference setting device, 7A ... P reference setting device, 8 ... 3-phase / 2-phase conversion circuit, 9 ... d / q axis conversion circuit, 10 ... synchronization signal generation circuit, 11 ... DC voltage constant control circuit, 12, 14, 61, 71 ... subtraction circuit, 13 ... d-axis current control circuit, 15 ... q-axis current control circuit, 13A, 15A ... subtraction circuit, 13B, 15B ... division circuit, 16 ... AQR circuit, 17 ... APR Circuit: 20 ... Current transformer, 30 ... Voltage detection transformer, 40 ... PWM pulse circuit, 50 ... P, Q arithmetic circuit.

Claims (4)

電力系統と変換用変圧器を介して連系運転される自励式半導体変換器を備え、有効電力または無効電力の制御を行う電圧形自励式電力変換装置において、
前記自励式半導体変換器の端部に接続され、前記系統とは反対側の端部に接続される直流コンデンサを、起動時に前記電力系統から前記変換器の還流ダイオードを介して充電する構成を有し、
一方、dqベクトル制御部とPWM制御部を有し、前者によるd軸電圧指令値及びq軸電圧指令値を後者に入力して、変換器制御のPWMパルスを発生する制御装置に、前記d軸電圧指令値を前記変換器の前記直流コンデンサの電圧で割り算した後に前記PWM制御部に入力する割算回路を設けたことを特徴とする電圧形自励式電力変換装置。
In a voltage-type self-excited power converter that includes a self-excited semiconductor converter that is interconnected and operated via a power transformer and a conversion transformer, and controls active power or reactive power,
A DC capacitor connected to the end of the self-excited semiconductor converter and connected to the end opposite to the system is charged from the power system via a free-wheeling diode of the converter at startup. And
On the other hand, the controller includes a dq vector control unit and a PWM control unit, and inputs a d-axis voltage command value and a q-axis voltage command value by the former to the latter, and generates a converter-controlled PWM pulse. voltage said voltage type self-commutated power conversion apparatus is characterized by providing a divider circuit for inputting to the PWM control unit after divided by the DC capacitor of the voltage command value the transducer.
電力系統と変換用変圧器を介して連系運転される自励式半導体変換器を備え、有効電力または無効電力の制御を行う電圧形自励式電力変換装置において、
前記自励式半導体変換器の端部に接続され、前記系統とは反対側の端部に接続される直流コンデンサを、起動時に前記電力系統から前記変換器の還流ダイオードを介して充電する構成を有し、
一方、dqベクトル制御部とPWM制御部を有し、前者によるd軸電圧指令値及びq軸電圧指令値を後者に入力して、変換器制御のPWMパルスを発生する制御装置に、前記d軸電圧指令値及び前記q軸電圧指令値の各々を、前記変換器の前記直流コンデンサの電圧で割り算した後に前記PWM制御部にそれぞれ入力する割算回路を設けたことを特徴とする電圧形自励式電力変換装置。
In a voltage-type self-excited power converter that includes a self-excited semiconductor converter that is interconnected and operated via a power transformer and a conversion transformer, and controls active power or reactive power,
A DC capacitor connected to the end of the self-excited semiconductor converter and connected to the end opposite to the system is charged from the power system via a free-wheeling diode of the converter at startup. And
On the other hand, the controller includes a dq vector control unit and a PWM control unit, and inputs a d-axis voltage command value and a q-axis voltage command value by the former to the latter, and generates a converter-controlled PWM pulse. A voltage-type self-excited type characterized by comprising a dividing circuit for dividing each of the voltage command value and the q-axis voltage command value by the voltage of the DC capacitor of the converter and then inputting the divided voltage command value to the PWM controller. Power conversion device.
電力系統と変換用変圧器を介して連系運転される自励式半導体変換器を備え、有効電力または無効電力の制御を行う電圧形自励式電力変換装置において、
前記自励式半導体変換器の端部に接続され、前記系統とは反対側の端部に接続される直流コンデンサを、起動時に前記電力系統から前記変換器の還流ダイオードを介して充電する構成を有し、
前記有効電力と無効電力に対応する変換器出力電流の有効電流と無効電流の各検出値を、各々の基準設定値に一致させるべく所定の調節演算を行う有効電流制御回路及び無効電流制御回路と、前記有効電流制御回路の出力、系統電圧からdq変換して得られるd軸フィードフォワード検出電圧、及び前記変換用変圧器の電圧降下補正を行うインピーダンスに前記無効電流の検出値を掛け算した信号を、所定の符号関係で加算する第1の加算回路と、同様に、前記無効電流制御回路の出力、q軸フィードフォワード検出電圧、及び前記インピーダンスに前記有効電流の検出値を掛け算した信号を、所定の符号関係で加算する第2の加算回路と、前記第1及び第2の加算回路の出力を前記直流コンデンサの検出電圧で割り算した信号をd軸電圧指令値及びq軸電圧指令値とし、PWMパルス発生回路に印加するように構成した制御装置を備えることを特徴とする電圧形自励式電力変換装置。
In a voltage-type self-excited power converter that includes a self-excited semiconductor converter that is interconnected and operated via a power transformer and a conversion transformer, and controls active power or reactive power,
A DC capacitor connected to the end of the self-excited semiconductor converter and connected to the end opposite to the system is charged from the power system via a free-wheeling diode of the converter at startup. And
An active current control circuit and a reactive current control circuit for performing a predetermined adjustment calculation so that the detected values of the active current and the reactive current of the converter output current corresponding to the active power and the reactive power match the respective reference setting values; , the output of the active current control circuit, d-axis feedforward detection voltage obtained by dq conversion from system voltage, and the multiplication signal of the detected value of the reactive current to the impedance performing voltage drop correction of the conversion transformer Similarly, the first addition circuit for adding in a predetermined sign relationship, and similarly, a signal obtained by multiplying the output of the reactive current control circuit, the q-axis feedforward detection voltage, and the impedance by the detection value of the effective current is predetermined. second adding circuit, said first and signal the d-axis voltage command to the output of the second adder circuit divided by the detection voltage of said DC capacitor is added in the coding relationship The value and the q-axis voltage command value, the voltage type self-commutated power converter, characterized in that it comprises a structure with a control device so as to apply to the PWM pulse generating circuit.
請求項3において、前記変換用変圧器のインピーダンスによる電圧降下補正を行うための有効電流及び無効電流を前記検出値によらず指令値を用いるように構成したことを特徴とする電圧形自励式電力変換装置。4. The voltage-type self-excited power according to claim 3, wherein a command value is used as an effective current and a reactive current for correcting a voltage drop due to an impedance of the conversion transformer, regardless of the detected value. Conversion device.
JP08565299A 1999-03-29 1999-03-29 Voltage-type self-excited power converter Expired - Fee Related JP4260971B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08565299A JP4260971B2 (en) 1999-03-29 1999-03-29 Voltage-type self-excited power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08565299A JP4260971B2 (en) 1999-03-29 1999-03-29 Voltage-type self-excited power converter

Publications (2)

Publication Number Publication Date
JP2000287457A JP2000287457A (en) 2000-10-13
JP4260971B2 true JP4260971B2 (en) 2009-04-30

Family

ID=13864772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08565299A Expired - Fee Related JP4260971B2 (en) 1999-03-29 1999-03-29 Voltage-type self-excited power converter

Country Status (1)

Country Link
JP (1) JP4260971B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101019683B1 (en) * 2008-12-05 2011-03-07 한국전력공사 Voltage-sourced HVDC system with modulation function
JP5643531B2 (en) * 2010-03-26 2014-12-17 株式会社日立製作所 Electric quantity detection method and control device for power converter
JP5300028B2 (en) * 2010-12-28 2013-09-25 オリジン電気株式会社 Single-phase voltage type AC / DC converter and system interconnection system
JP5497945B2 (en) * 2013-06-13 2014-05-21 オリジン電気株式会社 Single-phase voltage type AC / DC converter and control method for single-phase voltage type AC / DC converter
JP2013215093A (en) * 2013-07-22 2013-10-17 Daihen Corp Inverter control circuit, and system interconnection inverter system having inverter control circuit
EP3637573B1 (en) * 2017-06-08 2021-06-02 Mitsubishi Electric Corporation Power control system and control device

Also Published As

Publication number Publication date
JP2000287457A (en) 2000-10-13

Similar Documents

Publication Publication Date Title
US6417644B2 (en) Apparatus and method to generate braking torque in an AC drive
JP3955287B2 (en) Inverter control device for motor drive and air conditioner
JP3265398B2 (en) DC power transmission device control device
US8009450B2 (en) Method and apparatus for phase current balance in active converter with unbalanced AC line voltage source
US6690139B1 (en) Method and apparatus to limit motor current at low frequencies
CN111357186B (en) Power conversion system
US11223310B2 (en) Variable speed generator/motor device
JP6072194B2 (en) Inverter control device
US20200313566A1 (en) Reactive afe power control
JP4260971B2 (en) Voltage-type self-excited power converter
Benyoussef et al. Direct torque control based on space vector modulation with balancing strategy of dual star induction motor
JP4344523B2 (en) Distributed power supply output stabilization device and control method thereof
JP3773794B2 (en) Power converter
JP3674323B2 (en) Power converter control device
JP5904883B2 (en) Transformer multiple power converter
US11942876B2 (en) Power conversion device
KR20230108609A (en) Motor driving apparatus
KR102481563B1 (en) thyristor starting device
JPH0937559A (en) Control of power converter
JP2017153277A (en) Self-excited reactive power compensation apparatus
JP3242814B2 (en) Power system compensation controller
JPH10174291A (en) Inverter device linked to system
US20240097595A1 (en) Power conversion device and power conversion method
JP3824206B2 (en) Linear induction motor electric vehicle control device
WO2023233456A1 (en) Power conversion device and control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050728

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070411

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080826

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090205

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees