JP4258862B2 - Rotation support device incorporating a rolling bearing unit with a rotation speed detection device - Google Patents

Rotation support device incorporating a rolling bearing unit with a rotation speed detection device Download PDF

Info

Publication number
JP4258862B2
JP4258862B2 JP28099798A JP28099798A JP4258862B2 JP 4258862 B2 JP4258862 B2 JP 4258862B2 JP 28099798 A JP28099798 A JP 28099798A JP 28099798 A JP28099798 A JP 28099798A JP 4258862 B2 JP4258862 B2 JP 4258862B2
Authority
JP
Japan
Prior art keywords
ring
peripheral surface
outer ring
fixed
sensor carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP28099798A
Other languages
Japanese (ja)
Other versions
JP2000111565A5 (en
JP2000111565A (en
Inventor
英男 大内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP28099798A priority Critical patent/JP4258862B2/en
Publication of JP2000111565A publication Critical patent/JP2000111565A/en
Publication of JP2000111565A5 publication Critical patent/JP2000111565A5/ja
Application granted granted Critical
Publication of JP4258862B2 publication Critical patent/JP4258862B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/007Encoders, e.g. parts with a plurality of alternating magnetic poles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Regulating Braking Force (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
この発明に係る回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置は、例えば自動車の車輪を懸架装置に対して回転自在に支持したり、或は、自動変速機を構成する回転軸をハウジングに支持する等、各種機械装置を構成する回転部分を固定部分に対して回転自在に支持すると共に、この回転部分の回転速度を検出する為に利用する。
【0002】
【従来の技術】
例えば、自動車の場合には、アンチロックブレーキシステム(ABS)やトラクションコントロールシステム(TCS)を適切に制御すべく、車輪の回転速度を検出する必要がある。又、自動変速機の場合には、切り換えのタイミングを求める為、回転軸の回転速度を検出する必要がある。この為、この様な各種機械装置を構成する主軸や車輪等の回転部分を、使用時にも回転しないハウジングや懸架装置等の固定部分に対して回転自在に支持すると共に、この回転部分の回転速度を検出する為の回転速度検出装置付転がり軸受ユニットが、従来から広く使用されている。
【0003】
この様な用途に使用可能な回転速度検出装置付転がり軸受ユニットとして従来から、例えば特開平7−311212号公報に記載されたものが知られている。この公報に記載された回転速度検出装置付転がり軸受ユニットは、固定輪である外輪の内径側に回転輪である内輪を、それぞれが転動体である複数個の玉を介して回転自在に支持している。又、この内輪の端部外周面にエンコーダを、上記外輪の端部にセンサを保持したセンサキャリアを、それぞれ支持している。そして、この状態で、上記センサの検知部を上記エンコーダの被検知部に、軸方向に亙る微小隙間を介して対向させている。尚、上記センサキャリアは、基端部に設けた円筒部を上記外輪の端部に内嵌固定すると共に、このセンサキャリアの一部を、この外輪の端面に突き当てる事により、軸方向に亙る位置決めを図った状態で上記外輪に支持固定している。
【0004】
上述の様な回転速度検出装置付転がり軸受ユニットの使用時、即ち、回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置を構成した状態では、上記外輪をハウジング等の静止部材に内嵌固定し、上記内輪を回転軸等の回転部分に外嵌固定する。この状態で上記内輪が回転すると、その検知部を上記エンコーダの被検知部と微小隙間を介して対向させた、上記センサの出力が変化する。この様にセンサの出力信号が変化する周波数は、上記内輪の回転速度に比例するので、この出力信号を上記センサから導出したハーネスを介して、回転速度検出装置を構成する制御器に送れば、上記回転部分の回転速度を知る事ができる。
【0005】
【発明が解決しようとする課題】
ところが、上記公報に記載された回転速度検出装置付転がり軸受の場合には、以下の様な改良すべき点がある。即ち、通常の転がり軸受の場合、静止輪である外輪をハウジング等の静止部材に内嵌固定する際には、先ず、この外輪をこの静止部材の内側に隙間嵌で内嵌する。次いで、この外輪の軸方向に亙る位置決めを図るべく、この外輪を、上記静止部材の内周面に形成した段差面とこの内周面に係止した欠円環状の止め輪との間で軸方向に亙り挟持する。
一方、上記公報に記載された回転速度検出装置付転がり軸受ユニットの場合、上記外輪の端面には、センサを支持したセンサキャリアの一部を突き当てている。従って、上述の様な方法でこの外輪を上記静止部材に内嵌固定する場合には、この外輪と共に上記センサキャリアの一部を、上記段差面と上記止め輪との間で挟持しなければならない。
【0006】
ところが、この様に外輪とセンサキャリアの一部とを挟持する場合には、これら外輪及びセンサキャリアの軸方向に亙る位置決めを確実に図るのが難しい。この理由は、次の通りである。即ち、上記静止部材の内周面に形成する段差面の形成位置、並びに上記止め輪の係止位置及び幅寸法(軸方向に亙る厚さ)は、この止め輪を上記静止部材の内周面に係止した状態で、これら止め輪と段差面との間で上記外輪及びセンサキャリアを、軸方向に亙りがたつきなく挟持できる様に予め規制しておく。具体的には、上記段差面の形成位置、並びに上記止め輪の係止位置及び幅寸法を、これら各部材同士の間に挟持する、上記外輪とセンサキャリアの一部との所望とする幅寸法(基準寸法)を考慮して予め決定しておく。
【0007】
ところが、軸受鋼等の金属材料に鍛造加工及び研削加工等を施して形成した、上記外輪の寸法誤差は小さい(高い寸法精度を有する)が、金属板を折り曲げ形成したり、合成樹脂を射出成形する等により形成した上記センサキャリア(の一部)の寸法誤差は、上記外輪の寸法誤差よりも遥かに大きい(寸法精度が悪い)。この結果、製造後のセンサキャリアの一部の軸方向に亙る幅寸法(実寸法)が、このセンサキャリアの一部の所望とする幅寸法(基準寸法)よりも小さくなり過ぎると、上述の様にこのセンサキャリアの一部及び外輪を、上記段差面と上記止め輪との間に挟持した場合に、これらセンサキャリア及び外輪の各端面と、これら各端面と対向する上記段差面及び止め輪の各端面との間に、軸方向に亙る大きな隙間が生じる。この様に大きな隙間が生じた場合、即ち、上記外輪及びセンサキャリアの軸方向に亙る位置決めを十分に図れない場合には、これら外輪及びセンサキャリアががたついて、耳障りな異音や不快な振動を発生する。時には、上記センサキャリアに支持したセンサもがたつく為、正確な回転速度検出が行なえなくなる。
本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置は、この様な事情に鑑みて発明したものである。
【0008】
【課題を解決するための手段】
本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置のうち、請求項1に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置は、ハウジングの内径側に回転軸を回転自在に支持すると共に、この回転軸の回転速度を検出する。この様な請求項1に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置を構成する回転速度検出装置付転がり軸受ユニットは、前述した従来の回転速度検出装置付転がり軸受ユニットと同様に、内周面に外輪軌道を有し、使用時に上記ハウジングの内径側に内嵌固定された状態で回転しない外輪と、外周面に内輪軌道を有し、使用時に上記回転軸に外嵌固定された状態で回転する内輪と、この内輪軌道と上記外輪軌道との間に転動自在に設けられた複数の転動体と、この内輪の一部にこの内輪と同心に支持固定された、特性を円周方向に亙って交互に且つ等間隔に変化させた被検知部を有するエンコーダと、上記外輪に嵌合支持されたセンサキャリアと、このセンサキャリアに支持されて、その検知部を上記エンコーダの被検知部に、微小隙間を介して対向させたセンサとを備えたものである
又、請求項4に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置は、固定軸の周囲に回転体を、回転自在に支持すると共に、この回転体の回転速度を検出する。この様な請求項4に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置を構成する回転速度検出装置付転がり軸受ユニットは、外周面に内輪軌道を有し、使用時に上記固定軸の外径側に外嵌固定された状態で回転しない内輪と、内周面に外輪軌道を有し、使用時に上記回転体に内嵌固定された状態で回転する外輪と、この外輪軌道と上記内輪軌道との間に転動自在に設けられた複数の転動体と、この外輪の一部にこの外輪と同心に支持固定された、特性を円周方向に亙って交互に且つ等間隔に変化させた被検知部を有するエンコーダと、上記内輪に嵌合支持されたセンサキャリアと、このセンサキャリアに支持されて、その検知部を上記エンコーダの被検知部に、微小隙間を介して対向させたセンサとを備えたものである。
【0009】
特に、本発明のうちの請求項1に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置に於いては、上記ハウジングの内周面に、上記外輪の軸方向端面を突き当てる為の第一の段差面を形成している。又、この外輪の内周面の端部には、この内周面から直径方向外方に凹入する段部を形成しており、上記センサキャリアは、この段部の内周面若しくは上記外輪の内周面の一部でこの段部と隣接する部分に嵌合固定自在な嵌合固定部と、これら段部と外輪の内周面との連続部に形成された第二の段差面に突き当てる事により、この外輪に対する上記センサキャリアの軸方向に亙る位置決めを図る為の突き当て部とを有する。又、上記段部の内径は、上記ハウジングの内周面のうちで上記第一の段差面の内周縁から連続する部分の内径よりも大きく、このハウジングの内周面のうちでこの第一の段差面の内周縁から連続する部分の内径は、上記センサキャリアのうち、このセンサキャリアを上記外輪に支持固定した状態で、この外輪の軸方向端面から突出する部分の外径よりも大きい。
一方、請求項4に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置に於いては、上記固定軸の外周面には、上記内輪の軸方向端面を突き当てる為の第一の段差面を形成しており、この内輪の外周面の端部には、この外周面から直径方向内方に凹入する段部を形成している。又、上記センサキャリアは、この段部の外周面に嵌合固定自在な嵌合固定部と、これら段部と上記内輪の外周面との連続部に形成された第二の段差面に突き当てる事により、この内輪に対する上記センサキャリアの軸方向に亙る位置決めを図る為の突き当て部とを有する。又、上記段部の外径は、上記固定軸の外周面のうちで上記第一の段差面の外周縁から連続する部分の外径よりも小さく、この固定軸の外周面のうちでこの第一の段差面の外周縁から連続する部分の外径は、上記センサキャリアのうち、このセンサキャリアを上記内輪に支持固定した状態で、この内輪の軸方向端面から突出する部分の内径よりも小さい。
【0010】
【作用】
上述の様に構成する本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置の場合、センサを支持したセンサキャリアの軸方向に亙る位置決めは、このセンサキャリアの一部に設けた突き当て部を、静止輪の静止側周面である、外輪の内周面又は内輪の外周面の端部寄り部分に形成した第二の段差面に突き当てる事により図っている。又、このセンサキャリアを静止輪である外輪又は内輪に支持固定した状態で、このセンサキャリアのうち、この静止輪である外輪又は内輪の段部を形成した側の端面から突出する部分が、直径方向に関して少なくともこの段部の周面よりもこの段部の凹入方向に突出しない。この為、このセンサキャリアの一部が、静止輪である外輪又は内輪の端面に突き当たったり、或はこの静止輪である外輪又は内輪の端面と軸方向に亙り重畳する事はない。従って、本発明の場合には、この静止輪である外輪又は内輪のみを、静止部材の周面であるハウジングの内周面又は固定軸の外周面に形成した第一の段差面と、同じくこの周面に係止した欠円環状の止め輪との間に挟持する事ができる。一方、これら第一の段差面と止め輪との間に挟持される静止輪である外輪又は内輪は、寸法誤差が小さいので、製造後の静止輪である外輪又は内輪の軸方向に亙る幅寸法(実寸法)が、この静止輪である外輪又は内輪の所望とする幅寸法(基準寸法)よりも大幅に小さくなる事はない。この為、この静止輪である外輪又は内輪を静止部材であるハウジング又は固定軸に組み付けた状態で、この静止輪である外輪又は内輪の両端面と、これら各端面と対向する上記第一の段差面及び止め輪の端面との間に、軸方向に亙る大きな隙間が生じる事を防止できる。従って、上記静止部材であるハウジング又は固定軸に対する上記静止輪である外輪又は内輪の軸方向に亙る位置決めを確実に図れる。
又、センサキャリアの突き当て面を上記静止輪である外輪又は内輪の第二の段差面に突き当てている為、本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置を構成する回転速度検出装置付転がり軸受ユニットを回転支持部分に組み込む以前に搬送する際、或は、この回転支持部分に組み込む際に、上記センサキャリアが他の物品等にぶつかった場合にも、このセンサキャリアが軸方向にずれ動く事を防止できる。
【0011】
【発明の実施の形態】
図1は、請求項1〜3に対応する、本発明の実施の形態の第1例を示している。外輪1の内周面には、外輪軌道2を形成している。又、内輪3の外周面には、内輪軌道4を形成している。これら外輪軌道2と内輪軌道4との間には、それぞれが転動体である複数個の玉5を転動自在に設け、上記外輪1の内径側に上記内輪3を、回転自在に支持している。又、上記内輪3の一端部(図1の右端部)外周面にはエンコーダ6を、締り嵌めで外嵌固定している。このエンコーダ6は、軟鋼板等の磁性金属板等により、断面L字形で全体を円環状に形成したもので、円筒部7と、この円筒部7の一端縁(図1の右端縁)から直径方向外方に折れ曲がった円輪部8とを有する。この円輪部8には、それぞれがスリット状である多数の透孔9を放射状に、円周方向に亙り互いに等間隔で形成して、上記円輪部8の磁気特性を円周方向に亙り交互に且つ等間隔に変化させている。尚、図示の例では、上記円筒部7を、上記内輪3の一端部に設けた小径段部10に外嵌固定すると共に、上記円輪部の一端面(図1の右端面)をこの内輪3の一端面とほぼ同一平面上に配置している。
【0012】
一方、上記外輪1の一端部(図1の右端部)内周面には、この内周面から直径方向外方に凹入する段部17を、全周に亙り形成している。そして、この段部17に、センサキャリア11の基端部を内嵌固定している。このセンサキャリア11は、SPCCの如き軟鋼板等の金属板製のカバー12と、このカバー12の内側に保持された合成樹脂製の保持環13とから成る。このうちのカバー12は、全体を円環状に形成したもので、外径寄り部分に形成した円輪状の突き当て部14の外周縁部に円筒状の嵌合固定部15を、同じく内周縁部に保持部16を、それぞれ形成している。そして、このうちの嵌合固定部15を上記段部17に、締り嵌めで内嵌固定している。これと共に、上記突き当て部14を、上記段部17と上記外輪1の内周面との連続部に形成された、請求項1に記載した第二の段差面である段差面18に突き当てて、上記カバー12の軸方向に亙る位置決めを図っている。尚、この状態で、上記嵌合固定部15の先端縁は、上記外輪1の一端面から軸方向に突出しない。
【0013】
又、上記保持部16は、断面L字形で全体を円環状に形成している。そして、この保持部16の円周方向の一部を軸方向に膨出させて、抱持部19としている。この抱持部19を含む、上記保持部16内には、合成樹脂製の保持環13を保持固定している。そして、この保持環13のうち、上記抱持部19内に位置する部分内に、ホール素子、磁気検出素子等、磁束の量に応じて出力を変化させる磁気検出素子及びこの磁気検出素子の出力波形を整える為の波形整形回路を組み込んだICと、軸方向(図1の左右方向)に着磁した永久磁石とにより構成する、アクティブ型のセンサ20を包埋支持している。但し、本発明を実施する場合に、上記センサ20及び前記エンコーダ6の構造は、特に限定しない。パッシブ型等、他の磁気検出式のものや、光電式、渦電流式等、他の構造のものも採用できる。
【0014】
この様なセンサ20を支持したセンサキャリア11を、上記外輪1の端部に結合固定した状態で、上記センサ20の検知部は、上記エンコーダ6の被検知部である円輪部8に、軸方向に亙る微小隙間を介して対向する。又、上記センサ20の検出信号を取り出す為の図示しないハーネスは、上記保持部16の一部で上記抱持部19から円周方向に外れた位置に設けた、やはり図示しない導出部から、円周方向に導出している。又、本例の場合、上記センサキャリア11を上記外輪1の一端部に結合固定した状態で、上記保持部16の一部は、この外輪1の一端面から軸方向に突出するが、この突出した部分の外周縁が、前記段部17の内周面よりも直径方向外方に突出する事はない。即ち、本例の場合、上記保持部16の外径寸法d16は、上記段部17の内径寸法D17よりも小さく(d16<D17)している。
【0015】
上述の様な回転速度検出装置付転がり軸受ユニットを回転支持部分に組み込む際には、外輪1を静止部材であるハウジング21に内嵌固定すると共に、内輪3を回転軸27に外嵌固定する。即ち、上記ハウジング21に上記外輪1を内嵌固定する為に、先ず、このハウジング21に形成した支持孔22内に、この外輪1を隙間嵌で内嵌する。これと共に、この外輪1の一端面を、上記支持孔22の内周面に全周に亙り形成した段部23の段差面24に突き当てる。本例の場合、この段部23の内径寸法D23は、前記カバー12を構成する保持部16の外径寸法d16よりも大きく、且つ、上記外輪1の一端部内周面に形成した段部17の内径寸法D17よりも小さく(d16<D23<D17)している。尚、上記段差面24が、請求項1に記載した第一の段差面である。
【0016】
この様に外輪1の一端面を上記段差面24に突き当てたならば、次いで、上記支持孔22の内周面で上記外輪1の他端縁(図1の左端縁)と整合する部分に全周に亙り形成した係止溝25に、Cリングと称される欠円環状の止め輪26を係止して、上記外輪1の他端面を抑え付ける。これにより、この外輪1を上記ハウジング21内の所定位置に、このハウジング21に対する軸方向の位置決めを図った状態で支持固定する。尚、上記係止溝25の形成位置、並びに上記止め輪26の軸方向に亙る幅寸法は、この止め輪26をこの係止溝25に係止した状態で、上記外輪1の他端面を軸方向に亙り弾性的に押圧、或はこの止め輪26の端面(図1の右端面)とこの外輪1の他端面との間に大きな隙間が生じる事を防止できる様にすべく、この外輪1の所望とする幅寸法(基準寸法)を考慮して予め決定しておく。一方、上記内輪3は、上記回転軸27に締り嵌めで外嵌固定すると共に、他端面(図1の左端面)をこの回転軸27の外周面に形成した段差面28に突き当てている。
【0017】
上述の様に構成する本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置の場合、回転軸27と共に内輪3が回転すると、その検知部をエンコーダ6の被検知部である円輪部8と微小隙間を介して対向させた、前記センサ20の出力が変化する。この様にセンサ20の出力信号が変化する周波数は、上記内輪3の回転速度に比例するので、この出力信号を前記ハーネスを介して図示しない制御器に送れば、上記回転軸27の回転速度を知る事ができる。
【0018】
特に、本発明の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置の場合、上記センサ20を支持したセンサキャリア11の軸方向に亙る位置決めは、このセンサキャリア11のカバー12を構成する突き当て部14を、上記外輪1の一端寄り部内周面に形成した段部17の段差面18に突き当てる事により図っている。又、このセンサキャリア11を上記外輪1に支持固定した状態で、このセンサキャリア11のうち、この外輪1の一端面から突出する部分を、少なくとも上記段部17の内周面よりも、直径方向外方に突出させない様にしている。この為、上記センサキャリア11の一部が、上記外輪1の一端面に突き当たったり、或はこの一端面と軸方向に亙り重畳する事はない。従って、本例の場合には、この外輪1を直接、上記支持孔22の内周面に形成した段差面24と、この内周面に係止した止め輪26との間で挟持する事ができる。一方、これら段差面24と止め輪26との間に挟持される外輪1は、前述した通り寸法誤差が小さいので、製造後の外輪1の軸方向に亙る幅寸法(実寸法)が、前述したこの外輪1の所望とする幅寸法(基準寸法)よりも極端に小さくなる事はない。この為、上記外輪1を前記ハウジング21に組み付けた状態で、この外輪1の両端面と、これら各端面と対向する上記段差面24及び上記止め輪26の端面との間に、軸方向に亙る大きな隙間が生じる事を防止できる。従って、上記ハウジング21に対する上記外輪1の軸方向に亙る位置決めを確実に図れる。
【0019】
尚、本実施例では、前記エンコーダ6を構成する円輪部8を、同じく円筒部7の両端縁のうち、前記センサ20に近い側の端縁である、一端縁から折れ曲がった状態で形成したが、上記円輪部8は、上記円筒部7の他端縁から折れ曲がった状態で形成する事もできる。この場合には、上記センサキャリア11の内径を図示の例よりも少し大きくして、このセンサキャリア11の一部を、上記円筒部7の外径側部分に配置できる。この為、上記外輪1の一端面からの上記センサキャリア11の突出量を小さくして、回転速度検出装置付転がり軸受ユニット及びこの回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置の小型化を図れる。
【0020】
次に、図2は、請求項1〜3に対応する、本発明の実施の形態の第2例を示している。本例の場合、内輪3の一端部(図2の右端部)外周面に支持固定したエンコーダ6aは、芯金29とエンコーダ本体30とから成る。このうちの芯金29は、軟鋼板等の金属板により、断面L字形で全体を円環状に形成したもので、上記内輪3の小径段部10に外嵌固定する為の円筒部31と、この円筒部31の軸方向一端縁(図2の右端縁)から直径方向外方に折れ曲がった円輪部32とを備える。そして、このうちの円輪部32の一側面(図2の右側面)に、上記エンコーダ本体30を添着している。このエンコーダ本体30は、フェライトの粉末を混入したゴム磁石等の永久磁石により全体を円輪状に形成したもので、軸方向(図2の左右方向)に亙って着磁している。着磁方向は、円周方向に亙り交互に、且つ等間隔で変化させている。従って、上記エンコーダ本体30の被検知部である一側面(図2の右側面)には、S極とN極とが交互に、且つ等間隔で配置されている。
【0021】
又、本例の場合、センサキャリア11aを構成するカバー12aの基端部(図2の左端部で、このカバー12aを外輪1の一端部に支持固定する部分)の構造を、上述した第1例の場合と異ならせている。即ち、上記カバー12aの保持部16の外径側部分を構成する、円筒部33の基端寄り部(図2の左端寄り部)に、このカバー12aを構成する金属板を180度折り返す様に座屈変形させる事により、外向きフランジ状の突き当て部14aを形成している。又、上記円筒部33のうち、この突き当て部14aよりも基端側に存在する部分を、嵌合固定部15aとしている。上記カバー12aを上記外輪1に支持固定する際には、上記嵌合固定部15aを、上記外輪1の内周面で段部17と隣接する部分に締り嵌めにより内嵌固定する。これと共に、上記突き当て部14aを、請求項1に記載した第二の段差面である、段差面18に突き当てる。その他の構成及び作用は、上述した第1例の場合と同様であるから、同等部分には同一符号を付して、重複する説明を省略する。
【0022】
次に、図3は、請求項4〜5に対応する、本発明の実施の形態の第3例を示している。上述した各例の場合が何れも、外輪1が静止輪で、内輪3が回転輪であったのに対し、本例の場合には、外輪1が回転輪で、内輪3が静止輪である転がり軸受ユニットに、本発明を適用している。この為、本例の場合には、上記外輪1の一端部(図3の右端部)内周面に形成した大径段部34に、前述した第1例のエンコーダ6(図1)と直径方向の内外を逆に構成した、エンコーダ6bの円筒部7aを締り嵌めにより内嵌固定している。又、上記内輪3の一端部(図3の右端部)外周面には、この外周面から直径方向に凹入する段部17aを、全周に亙り形成している。そして、この段部17aに、センサ20を支持したセンサキャリア11bの基端部を外嵌固定している。
【0023】
本例の場合、このセンサキャリア11bは、合成樹脂により断面クランク形で全体を円環状に形成したもので、内径側部分に支持環部35を、外径側部分に保持部36を、それぞれ有すると共に、これら支持環部35の一端部(図3の右端部)外周縁と保持部36の他端部(図3の左端部)内周縁とを連続部37により連続させて成る。このうちの支持環部35は、断面矩形で全体を円環状に形成したもので、上記内輪3の段部17aに圧入(締り嵌めで外嵌)すると共に、この支持環部35の他端面(図3の左端面)を、上記内輪3の内周面と上記段部17aとの連続部に形成された、請求項4に記載した第二の段差面である段差面18aに突き当てて、上記センサキャリア11bの軸方向に亙る位置決めを図っている。従って、本例の場合には、上記支持環部35が、請求項4に記載した嵌合固定部と突き当て部との双方の役割を果たす。尚、本例の場合、上記支持環部35を上記段部17aに圧入する際に、この支持環部35がこの圧入に伴う荷重に耐え得る様に、この支持環部35の直径方向に亙る幅寸法を十分に大きくしている。又、この様に支持環部35を上記段部17aに外嵌固定した状態で、この支持環部35の一端面が、上記内輪3の一端面から軸方向に突出する事はない。
【0024】
尚、本例の場合、上記センサキャリア11bを構成する合成樹脂材料と上記内輪3を構成する軸受鋼等の金属材料との線膨張係数が大きく異なる場合には、温度変化時に、上記段部17aに圧入した支持環部35の嵌合締め代が過大になったり、或は過小になったりする。この嵌合締め代が過大になった場合には、上記支持環部35に割れ等の損傷が発生し、同じく過小になった場合には、上記支持環部35の嵌合部が動いて正確な回転速度検出が行なえなくなる為、好ましくない。この為、本例の場合には、上記センサキャリア11bを構成する合成樹脂材料として、ポリアミド樹脂或はPBT(ポリブチレンテレフタレート)に、多量のガラス繊維(重量比35%以上)を混入したものを使用している。これにより、この合成樹脂材料の線膨張係数を小さくして、この合成樹脂材料と上記内輪3を構成する金属材料との線膨張係数に大きな差が生じない様にしている。
【0025】
一方、上記保持部36は、断面矩形で全体を円環状に形成している。そして、この保持部36の円周方向の一部の軸方向寸法を大きくして、この軸方向寸法を大きくした部分に、前記センサ20を包埋支持している。尚、この状態で、このセンサ20の検知部は、前記エンコーダ6bの被検知部である円輪部8と、軸方向に亙り近接対向する。又、本例の場合、上記センサキャリア11bを上記内輪3の一端部に結合固定した状態で、上記保持部36は、この内輪3の一端面から軸方向に突出するが、この保持部36の内周縁が、上記段部17aの外周面よりも直径方向内方に突出する事はない。即ち、本例の場合、上記保持部36の内径寸法d36は、上記段部17aの外径寸法D17a よりも大きく(d36>D17a )している。
【0026】
上述の様な回転速度検出装置付転がり軸受ユニットを回転支持部分に組み込む際には、内輪3を静止部材である固定軸38に外嵌固定すると共に、外輪1を使用時に回転する回転体39に内嵌固定する。即ち、上記固定軸38に上記内輪3を外嵌固定する為に、先ず、この内輪3をこの固定軸38に、隙間嵌で外嵌する。これと共に、この内輪3の一端面を、上記固定軸38の外周面に全周に亙り形成した段部23aの段差面24aに突き当てる。本例の場合、この段部23aの外径寸法D23a は、上記センサキャリア11bを構成する保持部36の内径寸法d36よりも小さく、且つ、上記内輪3の一端部外周面に形成した段部17aの外径寸法D17a よりも大きく(d36>D23a >D17a )している。尚、上記段差面24aが、請求項4に記載した第一の段差面である。
【0027】
この様に内輪3の一端面を上記段差面24aに突き当てたならば、次いで、上記固定軸38の外周面で上記内輪3の他端縁(図3の左端縁)と整合する部分に全周に亙り形成した係止溝25aに、欠円環状の止め輪26を係止して、上記内輪3の他端面を抑え付ける。これにより、この内輪3を上記固定軸38内の所定位置に、この固定軸38に対する軸方向の位置決めを図った状態で支持固定する。一方、上記外輪1は、上記回転体39の内周面に締り嵌めで内嵌固定すると共に、他端面(図3の左端面)をこの回転体39の内周面に形成した段差面28aに突き当てている。
【0028】
上述の様に構成する本例の回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置の場合も、静止輪である内輪3を直接、上記固定軸38の外周面に形成した段差面24aと、この外周面に係止した止め輪26との間で挟持する事ができる。又、この様な内輪3も、前述した各例の外輪1と同様、軸方向に亙る寸法誤差が小さいので、この内輪3を上記固定軸38に組み付けた状態で、この内輪3の両端面と、これら各端面と対向する上記段差面24a及び上記止め輪26の端面との間に、軸方向に亙る大きな隙間が生じる事を防止できる。従って、上記固定軸38に対する上記内輪3の軸方向に亙る位置決めを確実に図れる。その他の構成及び作用は、前述した第1例の場合と同様である。
【0029】
【発明の効果】
本発明の回転速度検出装置付転がり軸受ユニットは、以上に述べた通り構成され作用するので、センサキャリアを支持した、静止輪である外輪又は内輪を、静止部材であるハウジング又は固定軸に嵌合支持する際に、このハウジング又は固定軸に対する外輪又は内輪の軸方向に亙る位置決めを確実に図れる。そして、回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置部分で、異音や振動が発生するのを防止すると共に、回転速度検出の信頼性向上を図れる。
【図面の簡単な説明】
【図1】 本発明の実施の形態の第1例を示す半部断面図。
【図2】 同第2例を示す半部断面図。
【図3】 同第3例を示す半部断面図。
【符号の説明】
1 外輪
2 外輪軌道
3 内輪
4 内輪軌道
5 玉
6、6a、6b エンコーダ
7、7a 円筒部
8 円輪部
9 透孔
10 小径段部
11、11a、11b センサキャリア
12、12a カバー
13 保持環
14、14a 突き当て部
15、15a 嵌合固定部
16 保持部
17、17a 段部
18、18a 段差面
19 抱持部
20 センサ
21 ハウジング
22 支持孔
23、23a 段部
24、24a 段差面
25、25a 係止溝
26 止め輪
27 回転軸
28、28a 段差面
29 芯金
30 エンコーダ本体
31 円筒部
32 円輪部
33 円筒部
34 大径段部
35 支持環部
36 保持部
37 連続部
38 固定軸
39 回転体
[0001]
BACKGROUND OF THE INVENTION
  Rolling bearing unit with rotational speed detection device according to the present inventionRotating support device incorporatingFor example, a rotating part constituting various mechanical devices such as a wheel of an automobile is supported rotatably with respect to a suspension device, or a rotating shaft constituting an automatic transmission is supported on a housing. And is used to detect the rotational speed of the rotating part.
[0002]
[Prior art]
  For example, in the case of an automobile, it is necessary to detect the rotational speed of the wheel in order to appropriately control the antilock brake system (ABS) and the traction control system (TCS). In the case of an automatic transmission, it is necessary to detect the rotational speed of the rotary shaft in order to obtain the switching timing. For this reason, the rotating parts such as main shafts and wheels constituting such various mechanical devices are rotatably supported with respect to fixed parts such as housings and suspension devices which do not rotate even in use, and the rotational speed of these rotating parts Conventionally, a rolling bearing unit with a rotational speed detection device for detecting the above has been widely used.
[0003]
  As a rolling bearing unit with a rotational speed detecting device that can be used for such a purpose, there is conventionally known one described in, for example, Japanese Patent Application Laid-Open No. 7-311212. The rolling bearing unit with a rotational speed detector described in this publication supports an inner ring, which is a rotating ring, on a radially inner side of an outer ring, which is a fixed ring, rotatably via a plurality of balls, each of which is a rolling element. ing. An encoder is supported on the outer peripheral surface of the end portion of the inner ring, and a sensor carrier holding a sensor on the end portion of the outer ring is supported. In this state, the detection unit of the sensor is opposed to the detection unit of the encoder via a minute gap extending in the axial direction. The sensor carrier is fitted in and fixed to the end portion of the outer ring with a cylindrical portion provided at the base end portion, and a part of the sensor carrier is abutted against the end surface of the outer ring so that the sensor carrier extends in the axial direction. It is supported and fixed to the outer ring in a state of positioning.
[0004]
  When using a rolling bearing unit with a rotational speed detector as described aboveIn other words, in a state where a rotation support device incorporating a rolling bearing unit with a rotation speed detection device is configuredThe outer ring is fitted and fixed to a stationary member such as a housing, and the inner ring is fitted and fixed to a rotating part such as a rotating shaft. When the inner ring rotates in this state, the output of the sensor changes with the detecting unit facing the detected unit of the encoder through a minute gap. Since the frequency at which the output signal of the sensor changes in this way is proportional to the rotational speed of the inner ring, if this output signal is sent to the controller constituting the rotational speed detection device via the harness derived from the sensor, The rotational speed of the rotating part can be known.
[0005]
[Problems to be solved by the invention]
  However, in the case of the rolling bearing with the rotational speed detection device described in the above publication, there are the following points to be improved. That is, in the case of a normal rolling bearing, when the outer ring, which is a stationary ring, is internally fitted and fixed to a stationary member such as a housing, the outer ring is first fitted inside the stationary member with a gap fit. Next, in order to position the outer ring in the axial direction, the outer ring is moved between a stepped surface formed on the inner peripheral surface of the stationary member and a ring-shaped retaining ring locked to the inner peripheral surface. Hold in the direction.
  On the other hand, in the case of the rolling bearing unit with a rotational speed detection device described in the above publication, a part of the sensor carrier that supports the sensor is abutted against the end face of the outer ring. Therefore, when the outer ring is fitted and fixed to the stationary member by the above-described method, a part of the sensor carrier must be sandwiched between the step surface and the retaining ring together with the outer ring. .
[0006]
  However, when the outer ring and a part of the sensor carrier are sandwiched in this way, it is difficult to reliably position the outer ring and the sensor carrier in the axial direction. The reason for this is as follows. That is, the formation position of the stepped surface formed on the inner peripheral surface of the stationary member, and the locking position and the width dimension (thickness extending in the axial direction) of the retaining ring are the same as the inner peripheral surface of the stationary member. In this state, the outer ring and the sensor carrier are regulated in advance so that the outer ring and the sensor carrier can be sandwiched between the retaining ring and the stepped surface with no wobbling in the axial direction. Specifically, the desired width dimension between the outer ring and a part of the sensor carrier that sandwiches the formation position of the stepped surface and the locking position and width dimension of the retaining ring between these members. It is determined in advance in consideration of (reference dimension).
[0007]
  However, the outer ring has a small dimensional error (having high dimensional accuracy), which is formed by subjecting a metal material such as bearing steel to forging and grinding, but it can be formed by bending a metal plate or injection molding a synthetic resin. The dimensional error of (a part of) the sensor carrier formed by, for example, is much larger than the dimensional error of the outer ring (the dimensional accuracy is poor). As a result, if the width dimension (actual dimension) in the axial direction of a part of the sensor carrier after manufacture becomes too small than the desired width dimension (reference dimension) of a part of the sensor carrier, as described above. When the part of the sensor carrier and the outer ring are sandwiched between the stepped surface and the retaining ring, the end surfaces of the sensor carrier and the outer ring and the stepped surface and the retaining ring facing the respective end surfaces A large gap is formed between each end face in the axial direction. When such a large gap occurs, that is, when the outer ring and the sensor carrier cannot be positioned sufficiently in the axial direction, the outer ring and the sensor carrier rattle, causing annoying abnormal noise or unpleasant vibration. Is generated. In some cases, the sensor supported by the sensor carrier also rattles, making it impossible to accurately detect the rotational speed.
  Rolling bearing unit with rotational speed detection device of the present inventionRotating support device incorporatingWas invented in view of such circumstances.
[0008]
[Means for Solving the Problems]
  Rolling bearing unit with rotational speed detection device of the present inventionThe rotation support device incorporating the rolling bearing unit with the rotational speed detection device according to claim 1 supports the rotation shaft rotatably on the inner diameter side of the housing. Detect the rotation speed. The rolling bearing unit with a rotational speed detecting device constituting the rotational support device incorporating the rolling bearing unit with the rotational speed detecting device according to claim 1Like the conventional rolling bearing unit with a rotational speed detection device described above,Outer ring raceway on inner surfaceAt the time of useIn a state of being fitted and fixed to the inner diameter side of the housingDoes not rotateOuter ringWhen,Inner ring raceway on outer peripheral surfaceAt the time of useIn a state of being fitted and fixed to the rotating shaftRotateInner ringWhen,This inner ring track and the outer ring trackA plurality of rolling elements provided so as to be freely rollable between,This inner ringPart of thisInner ringSupported and fixed concentrically,In the circumferential directionAn encoder having the detected parts alternately and at equal intervals; andOuter ringA sensor carrier fitted and supported by the sensor carrier, and a sensor which is supported by the sensor carrier and whose detection portion is opposed to the detected portion of the encoder via a minute gap.Is.
  According to a fourth aspect of the present invention, there is provided a rotation support device incorporating a rolling bearing unit with a rotation speed detection device, which rotatably supports a rotating body around a fixed shaft and detects the rotation speed of the rotating body. The rolling bearing unit with a rotational speed detecting device constituting the rotational support device incorporating the rolling bearing unit with the rotational speed detecting device as described in claim 4 has an inner ring raceway on the outer peripheral surface, and the fixed shaft An inner ring that does not rotate while being fitted and fixed to the outer diameter side of the outer ring, an outer ring that has an outer ring raceway on the inner peripheral surface, and that rotates while being fitted and fixed to the rotating body when in use, the outer ring raceway and the above-described A plurality of rolling elements provided between the inner ring raceway and a plurality of rolling elements, and a part of the outer ring supported and fixed concentrically with the outer ring. The characteristics are alternately and equally spaced in the circumferential direction. An encoder having a changed detected part, a sensor carrier fitted and supported on the inner ring, and supported by the sensor carrier, the detecting part is opposed to the detected part of the encoder via a minute gap. Equipped with a sensor That.
[0009]
  In particular, in the rotation support device incorporating the rolling bearing unit with a rotation speed detection device according to claim 1 of the present invention, the axial end surface of the outer ring is abutted against the inner peripheral surface of the housing. The first step surface is formed. In addition, a stepped portion is formed in the end portion of the inner peripheral surface of the outer ring so as to be recessed radially outward from the inner peripheral surface, and the sensor carrier is formed on the inner peripheral surface of the stepped portion or the outer ring. A fitting fixing part that can be fitted and fixed to a part of the inner peripheral surface adjacent to the step part, and the step part.Outer ringBy abutting against the second step surface formed in the continuous part with the inner peripheral surface,thisAnd an abutting portion for positioning the sensor carrier in the axial direction with respect to the outer ring. Further, the inner diameter of the step portion is larger than the inner diameter of the inner peripheral surface of the housing and the portion continuing from the inner peripheral edge of the first step surface. The inner diameter of the portion that continues from the inner periphery of the step surface is larger than the outer diameter of the portion of the sensor carrier that protrudes from the axial end surface of the outer ring in a state where the sensor carrier is supported and fixed to the outer ring.
  On the other hand, in a rotation support device incorporating a rolling bearing unit with a rotation speed detection device according to claim 4, the first end for abutting the axial end surface of the inner ring against the outer peripheral surface of the fixed shaft. A step surface is formed, and a step portion that is recessed inward in the diameter direction from the outer peripheral surface is formed at an end portion of the outer peripheral surface of the inner ring. The sensor carrier abuts against a fitting and fixing portion that can be fitted and fixed to the outer peripheral surface of the step portion, and a second step surface formed in a continuous portion of the step portion and the outer peripheral surface of the inner ring. By this, there is an abutting portion for positioning the sensor carrier in the axial direction with respect to the inner ring. In addition, the outer diameter of the stepped portion is smaller than the outer diameter of the outer peripheral surface of the fixed shaft, and the outer diameter of the portion continuing from the outer peripheral edge of the first stepped surface. The outer diameter of the portion continuing from the outer peripheral edge of the one step surface is smaller than the inner diameter of the portion of the sensor carrier protruding from the axial end surface of the inner ring in a state where the sensor carrier is supported and fixed to the inner ring. .
[0010]
[Action]
  Rolling bearing unit with a rotational speed detection device of the present invention configured as described above.Rotating support device incorporatingIn the case of the positioning of the sensor carrier supporting the sensor in the axial direction, the abutting part provided in a part of the sensor carrier is used for the stationary side peripheral surface of the stationary wheel.The inner peripheral surface of the outer ring or the outer peripheral surface of the inner ringFormed near the edge ofSecond step surfaceI try to hit it. Also, this sensor carrier,Stationary wheelOuter ring or inner ringThis stationary wheel of this sensor carrier is supported and fixed toOuter ring or inner ringThe portion protruding from the end surface on the side where the step portion is formed does not protrude in the recessed direction of the step portion at least from the peripheral surface of the step portion in the diameter direction. For this reason, a part of this sensor carrier is a stationary wheel.Outer ring or inner ringOr hit this end or the stationary wheelOuter ring or inner ringIn the axial direction with the end face ofSuperpositionThere is nothing to do. Therefore, in the case of the present invention, this stationary wheelOuter ring or inner ringOnly the peripheral surface of the stationary memberA first step surface formed on the inner peripheral surface of the housing or the outer peripheral surface of the fixed shaft;, Also locked to this peripheral surfaceNo-circle retaining ringCan be held between. Meanwhile theseFirst step surface and retaining ringSandwiched between,Stationary wheelOuter ring or inner ringSince the dimensional error is small, the stationary wheel after productionOuter ring or inner ringThe width dimension (actual dimension) extending in the axial direction of this stationary ringOuter ring or inner ringThe desired width dimension (reference dimension) is not significantly smaller. For this reason, this stationary wheelOuter ring or inner ringThe stationary memberA housing or a fixed shaftThis stationary wheel in the assembled stateOuter ring or inner ringBoth end surfaces of the above and facing each of these end surfacesFirst step surface and retaining ringIt is possible to prevent a large gap extending in the axial direction from occurring between the first end face and the end face. Therefore, the stationary memberA housing or a fixed shaftAgainst,Above stationary wheelOuter ring or inner ringPositioning in the axial direction can be ensured.
  The abutment surface of the sensor carrier isThe second step surface of the outer ring or inner ringBecause of the fact thatConstructs a rotation support device incorporating a rolling bearing unit with a rotation speed detection deviceWhen the rolling bearing unit with a rotational speed detection device is transported before being incorporated into the rotation support portion, or when the sensor carrier collides with another article or the like during incorporation into the rotation support portion, the sensor carrier Can be prevented from moving in the axial direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
  FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 to 3. An outer ring raceway 2 is formed on the inner peripheral surface of the outer ring 1. An inner ring raceway 4 is formed on the outer peripheral surface of the inner ring 3. Between the outer ring raceway 2 and the inner ring raceway 4, a plurality of balls 5, each of which is a rolling element, are provided for rolling, and the inner ring 3 is rotatably supported on the inner diameter side of the outer ring 1. Yes. An encoder 6 is fitted and fixed to the outer peripheral surface of one end portion (the right end portion in FIG. 1) of the inner ring 3 by an interference fit. The encoder 6 is made of a magnetic metal plate such as a mild steel plate and is formed in a circular shape with an L-shaped cross section. The encoder 6 has a diameter from one end edge (right end edge in FIG. 1) of the cylindrical portion 7. And an annular portion 8 bent outward in the direction. The annular portion 8 is formed with a plurality of slits 9 each having a slit shape in a radial manner at equal intervals in the circumferential direction, and the magnetic characteristics of the annular portion 8 are spread in the circumferential direction. It is changed alternately and at equal intervals. In the illustrated example, the cylindrical portion 7 is externally fitted and fixed to a small-diameter step portion 10 provided at one end portion of the inner ring 3 and the annular portion.8The one end surface (the right end surface in FIG. 1) of the inner ring 3 is arranged substantially on the same plane as the one end surface of the inner ring 3.
[0012]
  On the other hand, a stepped portion 17 that is recessed radially outward from the inner peripheral surface is formed on the inner peripheral surface of one end portion (the right end portion in FIG. 1) of the outer ring 1 over the entire periphery. The base end portion of the sensor carrier 11 is fitted and fixed to the stepped portion 17. The sensor carrier 11 includes a cover 12 made of a metal plate such as a mild steel plate such as SPCC, and a synthetic resin holding ring 13 held inside the cover 12. Of these, the cover 12 is formed in an annular shape as a whole, and a cylindrical fitting fixing portion 15 is provided on the outer peripheral edge portion of the annular abutting portion 14 formed on the outer diameter portion, and the inner peripheral edge portion. The holding portions 16 are formed respectively. Of these, the fitting fixing portion 15 is internally fitted and fixed to the stepped portion 17 by an interference fit. At the same time, the abutting portion 14 is formed at a continuous portion between the stepped portion 17 and the inner peripheral surface of the outer ring 1.The second step surface according to claim 1.Abutting against the stepped surface 18, the cover 12 is positioned in the axial direction. In this state, the front end edge of the fitting fixing portion 15 does not protrude in the axial direction from one end surface of the outer ring 1.
[0013]
  The holding portion 16 has an L-shaped cross section and is formed in an annular shape as a whole. A part of the holding portion 16 in the circumferential direction is bulged in the axial direction to form a holding portion 19. A holding ring 13 made of synthetic resin is held and fixed in the holding portion 16 including the holding portion 19. And in the part located in the holding part 19 among this holding | maintenance rings 13, the magnetic detection element which changes an output according to the quantity of magnetic flux, such as a Hall element and a magnetic detection element, and the output of this magnetic detection element The active sensor 20 is embedded and supported by an IC incorporating a waveform shaping circuit for adjusting the waveform and a permanent magnet magnetized in the axial direction (left-right direction in FIG. 1). However, when the present invention is implemented, the structures of the sensor 20 and the encoder 6 are not particularly limited. Other magnetic detection type such as passive type, and other structure such as photoelectric type and eddy current type can also be adopted.
[0014]
  In a state where the sensor carrier 11 supporting such a sensor 20 is coupled and fixed to the end portion of the outer ring 1, the detection unit of the sensor 20 is connected to the circular ring unit 8 that is the detection unit of the encoder 6. Opposite through a small gap in the direction. Further, a harness (not shown) for taking out the detection signal of the sensor 20 is a circular part from a lead-out part (not shown) provided at a part of the holding part 16 in the circumferential direction away from the holding part 19. Derived in the circumferential direction. In the case of this example, in a state where the sensor carrier 11 is coupled and fixed to one end portion of the outer ring 1, a part of the holding portion 16 protrudes from the one end surface of the outer ring 1 in the axial direction. The outer peripheral edge of the portion does not protrude outward in the diameter direction from the inner peripheral surface of the stepped portion 17. That is, in the case of this example, the outer diameter d of the holding portion 1616Is the inner diameter D of the stepped portion 1717Smaller than (d16<D17)is doing.
[0015]
  When the rolling bearing unit with a rotational speed detecting device as described above is incorporated in the rotation support portion, the outer ring 1 is fitted and fixed to the housing 21 which is a stationary member, and the inner ring 3 is fixed to the rotary shaft 27. That is, in order to fit and fix the outer ring 1 in the housing 21, first, the outer ring 1 is fitted into the support hole 22 formed in the housing 21 with a gap fit. At the same time, one end surface of the outer ring 1 is abutted against the step surface 24 of the step portion 23 formed over the entire inner peripheral surface of the support hole 22. In the case of this example, the inner diameter D of the step portion 23twenty threeIs the outer diameter d of the holding part 16 constituting the cover 1216Larger than the inner diameter D of the step portion 17 formed on the inner peripheral surface of the one end portion of the outer ring 1.17Smaller than (d16<Dtwenty three<D17)is doing.The step surface 24 is the first step surface described in claim 1.
[0016]
  If one end surface of the outer ring 1 is abutted against the step surface 24 in this way, then, the inner peripheral surface of the support hole 22 is aligned with the other end edge of the outer ring 1 (the left end edge in FIG. 1). A non-circular retaining ring 26 called a C-ring is engaged with an engaging groove 25 formed over the entire circumference, and the other end surface of the outer ring 1 is suppressed. Thus, the outer ring 1 is supported and fixed at a predetermined position in the housing 21 in a state where the outer ring 1 is positioned in the axial direction with respect to the housing 21. The position where the locking groove 25 is formed and the width dimension of the retaining ring 26 in the axial direction are such that the other end surface of the outer ring 1 is pivoted while the retaining ring 26 is locked to the locking groove 25. In order to prevent the outer ring 1 from being pressed elastically in the direction, or to prevent a large gap from being formed between the end face of the retaining ring 26 (the right end face in FIG. 1) and the other end face of the outer ring 1. The desired width dimension (reference dimension) is determined in advance. On the other hand, the inner ring 3 is fitted and fixed to the rotary shaft 27 by an interference fit, and the other end surface (the left end surface in FIG. 1) abuts against a stepped surface 28 formed on the outer peripheral surface of the rotary shaft 27.
[0017]
  Rolling bearing unit with a rotational speed detection device of the present invention configured as described above.Rotating support device incorporatingIn this case, when the inner ring 3 rotates together with the rotating shaft 27, the output of the sensor 20 is changed so that the detecting portion faces the annular portion 8 which is the detected portion of the encoder 6 through a minute gap. Since the frequency at which the output signal of the sensor 20 changes in this way is proportional to the rotational speed of the inner ring 3, if this output signal is sent to the controller (not shown) via the harness, the rotational speed of the rotary shaft 27 is increased. I can know.
[0018]
  In particular, the rolling bearing unit with a rotational speed detection device of the present inventionRotating support device incorporatingIn this case, the positioning of the sensor carrier 11 supporting the sensor 20 in the axial direction is performed by forming the abutting portion 14 constituting the cover 12 of the sensor carrier 11 on the inner peripheral surface near the one end of the outer ring 1. This is achieved by striking 17 stepped surfaces 18. Further, in a state where the sensor carrier 11 is supported and fixed to the outer ring 1, a portion of the sensor carrier 11 protruding from one end surface of the outer ring 1 is diametrically more than at least the inner peripheral surface of the stepped portion 17. It is designed not to protrude outward. For this reason, a part of the sensor carrier 11 abuts against one end surface of the outer ring 1, or the end of the sensor carrier 11 extends axially with the one end surface.SuperpositionThere is nothing to do. Therefore, in the case of this example, the outer ring 1 can be directly sandwiched between the step surface 24 formed on the inner peripheral surface of the support hole 22 and the retaining ring 26 locked to the inner peripheral surface. it can. On the other hand, the outer ring 1 sandwiched between the step surface 24 and the retaining ring 26 has a small dimensional error as described above, and therefore the width dimension (actual dimension) of the outer ring 1 after manufacture in the axial direction is the same as described above. The outer ring 1 is never extremely smaller than the desired width dimension (reference dimension). For this reason, in a state where the outer ring 1 is assembled to the housing 21, the outer ring 1 extends in the axial direction between both end surfaces of the outer ring 1 and the end surfaces of the stepped surface 24 and the retaining ring 26 facing the respective end surfaces. A large gap can be prevented from occurring. Accordingly, the axial positioning of the outer ring 1 with respect to the housing 21 can be reliably achieved.
[0019]
  In the present embodiment, the annular portion 8 constituting the encoder 6 is formed in a state of being bent from one end edge, which is an end edge on the side close to the sensor 20 among both end edges of the cylindrical portion 7. However, the circular ring portion 8 can be formed in a state of being bent from the other end edge of the cylindrical portion 7. In this case, the inner diameter of the sensor carrier 11 can be made slightly larger than the illustrated example, and a part of the sensor carrier 11 can be disposed on the outer diameter side portion of the cylindrical portion 7. For this reason, the amount of protrusion of the sensor carrier 11 from the one end surface of the outer ring 1 is reduced, and a rolling bearing unit with a rotational speed detector is provided.And a rotation support device incorporating the rolling bearing unit with the rotation speed detection deviceCan be miniaturized.
[0020]
  Next, FIG.Corresponding to claims 1 to 3,The 2nd example of embodiment of this invention is shown. In the case of this example, the encoder 6 a supported and fixed to the outer peripheral surface of one end portion (the right end portion in FIG. 2) of the inner ring 3 is composed of a core metal 29 and an encoder body 30. Of these, the metal core 29 is made of a metal plate such as a mild steel plate and is formed in an annular shape as a whole with an L-shaped cross section, and a cylindrical portion 31 for externally fixing to the small-diameter step portion 10 of the inner ring 3; An annular portion 32 that is bent outward in the diameter direction from one axial end edge (right end edge in FIG. 2) of the cylindrical portion 31 is provided. The encoder body 30 is attached to one side surface (the right side surface in FIG. 2) of the annular ring portion 32. The encoder body 30 is formed in a ring shape by a permanent magnet such as a rubber magnet mixed with ferrite powder, and is magnetized in the axial direction (left-right direction in FIG. 2). The magnetization direction is changed alternately at equal intervals over the circumferential direction. Therefore, the S pole and the N pole are alternately arranged at equal intervals on one side surface (the right side surface in FIG. 2) which is the detected portion of the encoder body 30.
[0021]
  In the case of this example, the structure of the base end portion of the cover 12a constituting the sensor carrier 11a (the portion at the left end portion of FIG. 2 that supports and fixes the cover 12a to one end portion of the outer ring 1) is the first described above. It is different from the example. That is, the metal plate constituting the cover 12a is folded back 180 degrees on the proximal end portion (the left end portion in FIG. 2) of the cylindrical portion 33 constituting the outer diameter side portion of the holding portion 16 of the cover 12a. The outward flange-shaped butting portion 14a is formed by buckling deformation. Moreover, the part which exists in the base end side rather than this abutting part 14a among the said cylindrical parts 33 is used as the fitting fixing | fixed part 15a. When the cover 12 a is supported and fixed to the outer ring 1, the fitting fixing portion 15 a is fitted and fixed to the portion adjacent to the stepped portion 17 on the inner peripheral surface of the outer ring 1 by an interference fit. At the same time, the abutting portion 14a isIt is the 2nd level | step difference surface described in Claim 1,It strikes against the step surface 18. Since other configurations and operations are the same as those in the case of the first example described above, the same parts are denoted by the same reference numerals, and redundant description is omitted.
[0022]
  Next, FIG.Corresponding to claims 4-5,The 3rd example of embodiment of this invention is shown. In each of the above examples, the outer ring 1 is a stationary wheel and the inner ring 3 is a rotating wheel, whereas in this example, the outer ring 1 is a rotating wheel and the inner ring 3 is a stationary wheel. The present invention is applied to a rolling bearing unit. For this reason, in the case of this example, the large diameter step portion 34 formed on the inner peripheral surface of one end portion (the right end portion in FIG. 3) of the outer ring 1 is connected to the diameter of the encoder 6 (FIG. 1) of the first example. The cylindrical portion 7a of the encoder 6b, which is configured so that the inside and outside of the direction are reversed, is internally fitted and fixed by an interference fit. Further, a step portion 17a that is recessed in the diameter direction from the outer peripheral surface is formed on the entire outer periphery on the outer peripheral surface of one end portion (the right end portion in FIG. 3) of the inner ring 3. And the base end part of the sensor carrier 11b which supported the sensor 20 is externally fitted and fixed to this step part 17a.
[0023]
  In the case of this example, the sensor carrier 11b is formed of a synthetic resin and is formed into a ring shape as a whole with a cross-sectional crank shape, and has a support ring portion 35 on the inner diameter side portion and a holding portion 36 on the outer diameter side portion. At the same time, the outer peripheral edge of one end portion (right end portion in FIG. 3) of the support ring portion 35 and the inner peripheral edge of the other end portion (left end portion in FIG. 3) of the holding portion 36 are made continuous by a continuous portion 37. Of these, the support ring portion 35 has a rectangular cross section and is formed into an annular shape as a whole. The left end surface in FIG. 3 is formed in a continuous portion between the inner peripheral surface of the inner ring 3 and the stepped portion 17a.The second step surface according to claim 4.The sensor carrier 11b is positioned in the axial direction by abutting against the step surface 18a. Therefore, in the case of this example, the support ring portion 35 isClaim 4It plays the role of both the fitting fixing part and the abutting part described in. In the case of this example, when the support ring portion 35 is press-fitted into the stepped portion 17a, the support ring portion 35 extends in the diameter direction of the support ring portion 35 so that the support ring portion 35 can withstand the load accompanying the press-fitting. The width dimension is sufficiently large. Further, in a state where the support ring portion 35 is fitted and fixed to the stepped portion 17 a in this way, one end surface of the support ring portion 35 does not protrude in the axial direction from one end surface of the inner ring 3.
[0024]
  In the case of this example, when the linear expansion coefficients of the synthetic resin material constituting the sensor carrier 11b and the metal material such as bearing steel constituting the inner ring 3 are greatly different, the step portion 17a is changed during temperature change. The fitting and tightening allowance of the support ring portion 35 press-fitted into is excessively increased or decreased. When this fitting tightening allowance is excessive, damage such as cracking occurs in the support ring portion 35, and when it is too small, the fitting portion of the support ring portion 35 moves to be accurate. This is not preferable because the rotation speed cannot be detected. For this reason, in the case of this example, as a synthetic resin material constituting the sensor carrier 11b, a polyamide resin or PBT (polybutylene terephthalate) mixed with a large amount of glass fiber (weight ratio of 35% or more) is used. I use it. Thereby, the linear expansion coefficient of the synthetic resin material is reduced so that a large difference does not occur in the linear expansion coefficient between the synthetic resin material and the metal material constituting the inner ring 3.
[0025]
  On the other hand, the holding portion 36 has a rectangular cross section and is formed in an annular shape as a whole. Then, the axial dimension of a part of the holding portion 36 in the circumferential direction is increased, and the sensor 20 is embedded and supported in a portion where the axial dimension is increased. In this state, the detection unit of the sensor 20 is close to and opposed to the annular portion 8 that is the detected portion of the encoder 6b in the axial direction. In the case of this example, in the state where the sensor carrier 11b is coupled and fixed to one end portion of the inner ring 3, the holding portion 36 projects in the axial direction from one end face of the inner ring 3. The inner peripheral edge does not protrude inward in the diameter direction from the outer peripheral surface of the stepped portion 17a. In other words, in the case of this example, the inner diameter dimension d of the holding portion 36.36Is the outer diameter D of the stepped portion 17a.17a Larger than (d36> D17a )is doing.
[0026]
  When the rolling bearing unit with a rotational speed detection device as described above is incorporated into the rotation support portion, the inner ring 3 is fitted and fixed to the fixed shaft 38 that is a stationary member, and the outer ring 1 is rotated to the rotating body 39 that rotates when in use. Secure with internal fit. That is, in order to externally fix the inner ring 3 to the fixed shaft 38, first, the inner ring 3 is externally fitted to the fixed shaft 38 with a gap fit. At the same time, one end surface of the inner ring 3 is abutted against a step surface 24a of a step portion 23a formed over the entire outer periphery of the fixed shaft 38. In the case of this example, the outer diameter D of the step portion 23a23a Is the inner diameter d of the holding portion 36 constituting the sensor carrier 11b.36Smaller than the outer diameter D of the step portion 17a formed on the outer peripheral surface of the one end portion of the inner ring 3.17a Larger than (d36> D23a > D17a )is doing.The step surface 24a is the first step surface described in claim 4.
[0027]
  If one end surface of the inner ring 3 is abutted against the stepped surface 24a in this manner, then the entire outer peripheral surface of the fixed shaft 38 is aligned with the other edge of the inner ring 3 (the left end edge in FIG. 3). A notch annular retaining ring 26 is engaged with an engaging groove 25a formed around the periphery, and the other end surface of the inner ring 3 is suppressed. Thus, the inner ring 3 is supported and fixed at a predetermined position in the fixed shaft 38 in a state in which the inner ring 3 is positioned in the axial direction with respect to the fixed shaft 38. On the other hand, the outer ring 1 is fitted and fixed to the inner peripheral surface of the rotating body 39 by an interference fit, and the other end surface (left end surface in FIG. 3) is formed on a step surface 28 a formed on the inner peripheral surface of the rotating body 39. I'm hitting it.
[0028]
  The rolling bearing unit with the rotational speed detection device of the present example configured as described above.Rotating support device incorporatingAlso in this case, the inner ring 3 which is a stationary ring can be directly held between the step surface 24a formed on the outer peripheral surface of the fixed shaft 38 and the retaining ring 26 locked to the outer peripheral surface. Also, such an inner ring 3 has a small dimensional error in the axial direction as in the case of the outer ring 1 in each example described above. Therefore, the inner ring 3 is attached to the both end surfaces of the inner ring 3 with the inner ring 3 assembled to the fixed shaft 38. Further, it is possible to prevent a large gap extending in the axial direction from occurring between the step surface 24a facing each of these end surfaces and the end surface of the retaining ring 26. Therefore, the axial positioning of the inner ring 3 with respect to the fixed shaft 38 can be achieved reliably. Other configurations and operations are the same as those of the first example described above.
[0029]
【The invention's effect】
  Since the rolling bearing unit with a rotational speed detection device of the present invention is configured and operates as described above, the sensor carrier is supported.A stationary ring, an outer ring or an inner ring, a stationary member, a housing or a fixed shaftWhen fitting to support thisHousing or fixed shaftAgainstOuter ring or inner ringPositioning in the axial direction can be ensured. And rolling bearing unit with rotational speed detection deviceRotating support device incorporatingIt is possible to prevent the generation of abnormal noise and vibration at the portion, and to improve the reliability of rotation speed detection.
[Brief description of the drawings]
FIG. 1 is a half sectional view showing a first example of an embodiment of the present invention.
FIG. 2 is a half sectional view showing the second example.
FIG. 3 is a half sectional view showing the third example.
[Explanation of symbols]
    1 outer ring
    2 Outer ring raceway
    3 inner ring
    4 Inner ring raceway
    5 balls
    6, 6a, 6b Encoder
    7, 7a Cylindrical part
    8 circle
    9 Through hole
  10 Small diameter step
  11, 11a, 11b Sensor carrier
  12, 12a Cover
  13 Retaining ring
  14, 14a Butting part
  15, 15a Fitting fixing part
  16 Holding part
  17, 17a Step
  18, 18aStep surface
  19 Holding part
  20 sensors
  21 Housing
  22 Support hole
  23, 23a Step
  24, 24a Step surface
  25, 25a Locking groove
  26 Retaining ring
  27 Rotating shaft
  28, 28a Step surface
  29 Core
  30 Encoder body
  31 Cylindrical part
  32 Circle part
  33 Cylindrical part
  34 Large diameter step
  35 Support ring
  36 Holding part
  37 continuous parts
  38 Fixed shaft
  39 Rotating body

Claims (5)

ハウジングの内径側に回転軸を回転自在に支持すると共に、この回転軸の回転速度を検出する、回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置であって、この回転速度検出装置付転がり軸受ユニットは、内周面に外輪軌道を有し、使用時に上記ハウジングの内径側に内嵌固定された状態で回転しない外輪と、外周面に内輪軌道を有し、使用時に上記回転軸に外嵌固定された状態で回転する内輪と、この内輪軌道と上記外輪軌道との間に転動自在に設けられた複数の転動体と、この内輪の一部にこの内輪と同心に支持固定された、特性を円周方向に亙って交互に且つ等間隔に変化させた被検知部を有するエンコーダと、上記外輪に嵌合支持されたセンサキャリアと、このセンサキャリアに支持されて、その検知部を上記エンコーダの被検知部に、微小隙間を介して対向させたセンサとを備えたものである回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置に於いて、上記ハウジングの内周面には、上記外輪の軸方向端面を突き当てる為の第一の段差面を形成しており、この外輪の内周面の端部には、この内周面から直径方向外方に凹入する段部を形成しており、上記センサキャリアは、この段部の内周面若しくは上記外輪の内周面の一部でこの段部と隣接する部分に嵌合固定自在な嵌合固定部と、これら段部と外輪の内周面との連続部に形成された第二の段差面に突き当てる事により、この外輪に対する上記センサキャリアの軸方向に亙る位置決めを図る為の突き当て部とを有し、上記段部の内径は、上記ハウジングの内周面のうちで上記第一の段差面の内周縁から連続する部分の内径よりも大きく、このハウジングの内周面のうちでこの第一の段差面の内周縁から連続する部分の内径は、上記センサキャリアのうち、このセンサキャリアを上記外輪に支持固定した状態で、この外輪の軸方向端面から突出する部分の外径よりも大きい事を特徴とする回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置。A rotation support device incorporating a rolling bearing unit with a rotation speed detection device that rotatably supports a rotation shaft on the inner diameter side of the housing and detects the rotation speed of the rotation shaft. The bearing unit has an outer ring raceway on the inner peripheral surface, and has an outer ring that does not rotate when fitted and fixed to the inner diameter side of the housing when used, and an inner ring raceway on the outer peripheral surface. The inner ring rotating in a fixed state, a plurality of rolling elements provided between the inner ring raceway and the outer ring raceway, and a part of the inner ring supported and fixed concentrically with the inner ring. , An encoder having detected portions whose characteristics are changed alternately and at equal intervals in the circumferential direction, a sensor carrier fitted and supported by the outer ring, and a detecting portion supported by the sensor carrier. The above In a rotation support device incorporating a rolling bearing unit with a rotation speed detection device, which is provided with a sensor opposed to the detected portion of the reader through a minute gap, on the inner peripheral surface of the housing, A first step surface for abutting the axial end surface of the outer ring is formed, and a stepped portion that is recessed radially outward from the inner peripheral surface is formed at the end of the inner peripheral surface of the outer ring. The sensor carrier includes a fitting fixing portion that can be fitted and fixed to a portion adjacent to the step portion on a part of the inner peripheral surface of the step portion or the inner peripheral surface of the outer ring, and the step portions. by abutting the parts and a second step surface formed in the continuous part of the inner peripheral surface of the outer ring, and a abutting portion for achieving positioning over the axial direction of the sensor carrier relative to the outer ring, The inner diameter of the step portion is the first step of the inner peripheral surface of the housing. It is larger than the inner diameter of the portion that continues from the inner peripheral edge of the surface, and the inner diameter of the portion that continues from the inner peripheral edge of the first step surface of the inner peripheral surface of the housing is the sensor carrier of the sensor carrier. A rotation support device incorporating a rolling bearing unit with a rotation speed detection device, characterized in that it is larger than the outer diameter of the portion protruding from the axial end surface of the outer ring in a state of being supported and fixed to the outer ring. 第一の段差面とハウジングの内周面に係止した止め輪との間で外輪を軸方向両側から挟持する事により、この外輪を上記ハウジングの内径側に支持固定している、請求項1に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置。The outer ring is supported and fixed to the inner diameter side of the housing by sandwiching the outer ring from both sides in the axial direction between the first step surface and a retaining ring locked to the inner peripheral surface of the housing. A rotation support device incorporating the rolling bearing unit with a rotation speed detection device described in 1. センサキャリアが、金属板製のカバーと、このカバーの内側に保持された合成樹脂製の保持環とから成る、請求項1又は請求項2に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置。3. The rolling bearing unit with a rotational speed detection device according to claim 1 or 2, wherein the sensor carrier comprises a cover made of a metal plate and a synthetic resin holding ring held inside the cover. Rotating support device. 固定軸の周囲に回転体を、回転自在に支持すると共に、この回転体の回転速度を検出する、回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置であって、この回転速度検出装置付転がり軸受ユニットは、外周面に内輪軌道を有し、使用時に上記固定軸の外径側に外嵌固定された状態で回転しない内輪と、内周面に外輪軌道を有し、使用時に上記回転体に内嵌固定された状態で回転する外輪と、この外輪軌道と上記内輪軌道との間に転動自在に設けられた複数の転動体と、この外輪の一部にこの外輪と同心に支持固定された、特性を円周方向に亙って交互に且つ等間隔に変化させた被検知部を有するエンコーダと、上記内輪に嵌合支持されたセンサキャリアと、このセンサキャリアに支持されて、その検知部を上記エンコーダの被検知部に、微小隙間を介して対向させたセンサとを備えたものである回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置に於いて、上記固定軸の外周面には、上記内輪の軸方向端面を突き当てる為の第一の段差面を形成しており、この内輪の外周面の端部には、この外周面から直径方向内方に凹入する段部を形成しており、上記センサキャリアは、この段部の外周面に嵌合固定自在な嵌合固定部と、これら段部と上記内輪の外周面との連続部に形成された第二の段差面に突き当てる事により、この内輪に対する上記センサキャリアの軸方向に亙る位置決めを図る為の突き当て部とを有し、上記段部の外径は、上記固定軸の外周面のうちで上記第一の段差面の外周縁から連続する部分の外径よりも小さく、この固定軸の外周面のうちでこの第一の段差面の外周縁から連続する部分の外径は、上記センサキャリアのうち、このセンサキャリアを上記内輪に支持固定した状態で、この内輪の軸方向端面から突出する部分の内径よりも小さい事を特徴とする回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置。A rotation support device incorporating a rolling bearing unit with a rotation speed detection device that rotatably supports a rotating body around a fixed shaft and detects the rotation speed of the rotation body. The rolling bearing unit has an inner ring raceway on the outer peripheral surface, and has an inner ring that does not rotate while being fitted and fixed on the outer diameter side of the fixed shaft when used, and an outer ring raceway on the inner peripheral surface that rotates when used. An outer ring that rotates while being fitted and fixed to the body, a plurality of rolling elements that are rotatably provided between the outer ring raceway and the inner ring raceway, and a part of the outer ring that is supported concentrically with the outer ring. A fixed encoder having a detected portion whose characteristics are changed alternately and at equal intervals in the circumferential direction, a sensor carrier fitted and supported by the inner ring, and supported by the sensor carrier, The detector is connected to the encoder In a rotation support device incorporating a rolling bearing unit with a rotation speed detection device, which is provided with a sensor opposed to the detection unit through a minute gap, the outer peripheral surface of the fixed shaft is provided on the outer peripheral surface of the fixed shaft. A first step surface for abutting the end surface in the axial direction is formed, and a step portion that is recessed inward in the diameter direction from the outer peripheral surface is formed at the end portion of the outer peripheral surface of the inner ring, The sensor carrier is abutted against a fitting and fixing portion that can be fitted and fixed to the outer peripheral surface of the step portion, and a second step surface formed on a continuous portion of the step portion and the outer peripheral surface of the inner ring. An abutting portion for positioning the sensor carrier in the axial direction with respect to the inner ring, and the outer diameter of the stepped portion is outside the first stepped surface of the outer peripheral surface of the fixed shaft. The outer peripheral surface of this fixed shaft is smaller than the outer diameter of the continuous part from the periphery The outer diameter of the portion that continues from the outer peripheral edge of the first step surface is the portion of the sensor carrier that protrudes from the axial end surface of the inner ring in a state where the sensor carrier is supported and fixed to the inner ring. A rotation support device incorporating a rolling bearing unit with a rotation speed detection device characterized by being smaller than the inner diameter. 第一の段差面と固定軸の外周面に係止した止め輪との間で内輪を軸方向両側から挟持する事により、この内輪を上記固定軸の外径側に支持固定している、請求項4に記載した回転速度検出装置付転がり軸受ユニットを組み込んだ回転支持装置。The inner ring is supported and fixed on the outer diameter side of the fixed shaft by sandwiching the inner ring from both sides in the axial direction between the first step surface and a retaining ring locked to the outer peripheral surface of the fixed shaft. A rotation support device incorporating the rolling bearing unit with a rotation speed detection device according to Item 4.
JP28099798A 1998-10-02 1998-10-02 Rotation support device incorporating a rolling bearing unit with a rotation speed detection device Expired - Lifetime JP4258862B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28099798A JP4258862B2 (en) 1998-10-02 1998-10-02 Rotation support device incorporating a rolling bearing unit with a rotation speed detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28099798A JP4258862B2 (en) 1998-10-02 1998-10-02 Rotation support device incorporating a rolling bearing unit with a rotation speed detection device

Publications (3)

Publication Number Publication Date
JP2000111565A JP2000111565A (en) 2000-04-21
JP2000111565A5 JP2000111565A5 (en) 2005-10-27
JP4258862B2 true JP4258862B2 (en) 2009-04-30

Family

ID=17632834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28099798A Expired - Lifetime JP4258862B2 (en) 1998-10-02 1998-10-02 Rotation support device incorporating a rolling bearing unit with a rotation speed detection device

Country Status (1)

Country Link
JP (1) JP4258862B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006207757A (en) * 2005-01-31 2006-08-10 Nok Corp Sealing device with magnetic encoder device
JP5193562B2 (en) * 2007-10-26 2013-05-08 Ntn株式会社 Wheel bearing device with rotation speed detector
JP4905367B2 (en) * 2008-01-16 2012-03-28 日本精工株式会社 Bearing sealing device and wheel supporting bearing unit

Also Published As

Publication number Publication date
JP2000111565A (en) 2000-04-21

Similar Documents

Publication Publication Date Title
US6231241B1 (en) Rotation support apparatus with rotational speed sensing device
US5850141A (en) Annular speed sensor with a tone ring having both axial and radial magnetic fields
JP3312531B2 (en) Hub unit with rotation speed detector
JP3189624B2 (en) Rolling bearing unit with rotation speed detector
JP3635707B2 (en) Rolling bearing unit with rotational speed detector
JP4784967B2 (en) Wheel bearing device with rotation speed detector
JP4258862B2 (en) Rotation support device incorporating a rolling bearing unit with a rotation speed detection device
JP4348756B2 (en) Rotation support device with rotation speed detection device
JP2000142341A5 (en)
JP3687160B2 (en) Rolling bearing unit with rotational speed detector
JPH1123598A (en) Bearing provided with rotating speed detector
WO2004085972A1 (en) Rolling bearing unit with encoder and method of producing the same
JPH1123597A (en) Bearing provided with rotating speed sensor
JP4622185B2 (en) Encoder and rolling bearing unit with encoder
JP3939022B2 (en) Annular speed sensor
JP3700202B2 (en) Rolling bearing unit with rotational speed detector
JP2001194376A (en) Rolling bearing unit having rotational speed detector
JP3675006B2 (en) Rolling bearing unit with rotational speed detector
JP4178978B2 (en) Rolling bearing unit with sensor
JP3704736B2 (en) Rolling bearing unit with rotational speed detector
JP2004232795A (en) Hub unit with sensor
JP2004354102A (en) Encoder, and rolling bearing unit having the same
JP5132209B2 (en) Wheel bearing device with rotation speed detector
JP4151438B2 (en) Rolling bearing unit with sensor
JP2008175286A (en) Rolling bearing unit with encoder

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050707

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090202

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term