JP4258039B2 - Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof - Google Patents

Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof Download PDF

Info

Publication number
JP4258039B2
JP4258039B2 JP24034198A JP24034198A JP4258039B2 JP 4258039 B2 JP4258039 B2 JP 4258039B2 JP 24034198 A JP24034198 A JP 24034198A JP 24034198 A JP24034198 A JP 24034198A JP 4258039 B2 JP4258039 B2 JP 4258039B2
Authority
JP
Japan
Prior art keywords
less
rolled sheet
hot
cold
rolled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24034198A
Other languages
Japanese (ja)
Other versions
JP2000073144A (en
Inventor
正之 笠井
工 宇城
康 加藤
佐藤  進
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24034198A priority Critical patent/JP4258039B2/en
Publication of JP2000073144A publication Critical patent/JP2000073144A/en
Application granted granted Critical
Publication of JP4258039B2 publication Critical patent/JP4258039B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、フェライト系ステンレス鋼熱延板、および冷延板に係り、とくに、フェライト系ステンレス鋼冷延板の耐リジング性の改善と、製造における生産性向上に関する。なお、本発明における鋼板は、鋼板および鋼帯を含むものとする。
【0002】
【従来の技術】
SUS 430 に代表されるフェライト系ステンレス鋼板は、家電機器、厨房機器や建築内装品など広汎な用途に使用されている。しかし、フェライト系ステンレス鋼板では、プレス加工や引張加工において、リジングと呼ばれる圧延方向に平行な凸凹が生じ、美観を大きく損なうという問題がある。このようなフェライト系ステンレス鋼板におけるリジングの発生を防止するためにいくつかの検討がなされてきた。
【0003】
例えば、特開昭49−41227 号公報には、鋳造温度を液相線温度+0℃ないし+20℃の温度で鋳造し、微細な等軸晶を晶出させた連続鋳造スラブを用い、リジングを低減させるフェライト系クロム含有鋼の製造方法が提案されている。また、特開平2-250925号公報には、板厚の70%以上を等軸晶部分とし、等軸晶部分の平均等軸晶粒径が1.0mm 以下であるスラブを用いて鋼板を製造するフェライト系ステンレス鋼板の製造方法が開示されている。
【0004】
また、特開昭54−125132号公報には、溶鋼の温度を凝固点+25℃以上とし、電磁撹拌条件を適切にして連続鋳造したスラブを用いることによりリジングの発生を防止するフェライト系ステンレス鋼板の製造方法が開示されている。
【0005】
【発明が解決しようとする課題】
しかし、特開昭54−125132号公報に記載された技術では、スラブの外皮が凝固した後、撹拌を行うので等軸晶率の増加に限界があり、耐リジング性の改善が不十分であることに加え、設備の増設を必要とするという問題があった。また、特開昭49−41227 号公報、特開平2−250925号公報に記載された技術では、鋳造温度に厳しい制限があり、実操業時の溶鋼温度管理が難しいという問題があった。
【0006】
さらに、従来から、フェライト系ステンレス鋼板の製造においては、熱延板の焼鈍にはバッチ焼鈍が適用されているが、生産性に劣るという問題があった。また、生産性向上のため、バッチ焼鈍に代えて連続焼鈍を行うと、焼鈍後の冷却に際し、粒界にクロム炭窒化物が析出し、鋭敏化を招く等問題があった。
生産性の向上のため、例えば、特開平8-311557号公報には、スラブ加熱温度、粗圧延圧下率、シートバー保定時間、仕上げ圧延終了温度を規定したうえ、熱延板焼鈍の昇温速度を所定の範囲に限定する熱延板のバッチ焼鈍の短縮化の試みが提案されているが、熱間圧延での規制が多く、さらに熱延板焼鈍に時間がかかり、まだ十分とは言えない。
【0007】
本発明は、上記した従来技術の問題を解決し、耐リジング性に優れたフェライト系ステンレス鋼熱延板、冷延板および生産性に優れる、フェライト系ステンレス鋼熱延板、冷延板の製造方法を提供することを目的とする。
【0008】
【課題を解決するための手段】
リジングの発生は、連続鋳造時に生成した粗大な柱状組織が圧延過程でも十分に分断されないうえ、その後の焼鈍によっても微細結晶の生成が十分ではないことに起因する。そこで、本発明者らは、耐リジング性の向上には、熱間圧延時にフェライト(α)+オーステナイト(γ)組織((α+γ)組織)となるように成分組成を調整し、さらに熱間圧延によりγ結晶粒を分断し、焼鈍時に粒界からの再結晶を促進させるのが有効であること、さらに、生産性向上のために熱延板焼鈍に連続焼鈍法を適用することに想到した。
【0009】
まず、本発明の基礎となった実験結果について説明する。
重量%で、C:0.06%、Cr:16.4%を含有し、さらに、Al: 0.0003〜0.4 %、N:0.001 〜0.030 %、Nb: 0.001 〜0.2 %の範囲で変化させた組成の鋼を真空溶解炉で溶製し、小型鋼塊(50kg)とした。これら小型鋼塊から180 mm厚の試験片を切り出し、1150℃に加熱後熱間圧延し、3.5 mm厚の熱延板とした。ついで、これら熱延板に連続焼純条件に相当する930 ℃×60s の焼純を施したのち、冷間圧延により0.5 mm厚の冷延板とした。さらに、これら冷延板に仕上焼純(850 ℃×20s )を施し、冷延焼純板とした。なお、連続焼鈍前の熱延板について、熱延板中のN as AlN を測定した。N as AlN の測定は、電解抽出による残渣を元素分析しAlN 量を測定し、N量に換算した。
【0010】
これら冷延焼純板について、圧延方向と平行にJIS 5号試験片を採取し、表面を#600 研磨し、25%引張後に、リジング高さを粗度計にて測定し、耐リジング性を評価した。
耐リジング性は、優れる(A)から劣る(E)までの5段階に分類した。なお、リジング高さは、Aでは5μm 未満、Bでは5〜10μm 未満、Cでは、10〜15μm 未満、Dでは、15〜20μm 未満、Eでは、20μm 以上である。本発明では、リジング高さ15μm 未満、すなわち評価C以上が耐リジング性に優れた鋼板とみなした。
【0011】
耐リジング性とNb含有量との関係を図1に示す。
耐リジング性は、Nb含有量が0.005 〜0.06%のときに評価A〜Cとなり、改善されている。Nbは基本的に炭窒化物を生成するためα相安定化元素であり、γループを縮小しγ相の析出には不利となるが、結晶粒の成長を抑制する作用も有している。Nb含有量が0.06%超の場合には、γ相の析出量が減少したことに起因して、耐リジング性が低下したと推測される。一方、Nb含有量が0.005 %未満の場合には、Nbの結晶粒の成長を抑制する効果が減少し、リジングの発生量が増加したと考えられる。
【0012】
また、耐リジング性とAl含有量との関係を図2に示す。
耐リジング性は、Al含有量が0.008 %以下のときに評価A〜Cとなり著しく改善されている。Al含有量が0.008 %以下では、熱延中に析出するAlN 量が減少し、マトリックス中の固溶N量が増加するためγループが拡大し、熱延中に析出するγ量が増加する。その結果、熱延時にγ粒を分断でき、組織が微細化でき、さらに連続焼純における短時間処理でも微細結晶の柝出が促進され、リジング発生量が減少したと推測される。このことは、熱延板のN as AlN 量と耐リジング性との関係から明瞭となる。耐リジング性とN as AlN との関係を図3に示す。図3からN as AlN が0.003 %以下とした場合に、耐リジング性の改善が顕著であることがわかる。
【0013】
このように、本発明者らは、耐リジング性の改善のためには、熱延時に(α+γ)組織となるように成分調整することが重要であり、Al含有量の低減、Nbの微量添加、あるいはさらにγ量を高めるために熱延板におけるN as AlN の低減と、さらに熱延ならびに焼純条件の最適化が好ましいという知見を得た。
また、本発明者らは、鋭敏化防止の観点からもNはAlN ではなく、Nb窒化物として析出するほうが好ましいという知見を得た。理由の詳細は現在のところ不明であるが、Nb窒化物はAlN と比較してCr炭窒化物の析出核として有効に作用するためではないかと考えられる。
【0014】
本発明は、上記知見に基づいて、さらに検討を加えて完成させたものである。
すなわち、本発明は、重量%で、Cr: 16〜20%、C:0.04〜0.08%、N:0.005 〜0.04%、Si: 0.7 %以下、Mn: 1.0 %以下、P:0.040 %以下、S:0.030 %以下、Al:0.008%以下、Nb: 0.005 〜0.06%を含有し、残部はFeおよび不可避的不純物からなる組成を有し、かつ、N as AlN が0.003 %以下であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼熱延板である。
【0015】
また、本発明は、重量%で、Cr: 16〜20%、C:0.04〜0.08%、N:0.005 〜0.04%、Si: 0.7 %以下、Mn: 1.0 %以下、P:0.040 %以下、S:0.030 %以下、Al:0.008%以下、Nb: 0.005 〜0.06%を含有し、残部はFeおよび不可避的不純物からなる組成を有し、かつ、N as AlN が0.003 %以下であるフェライト系ステンレス鋼熱延板を素材としてなる冷延板であって、重量%で、 Cr 16 20 %、C: 0.04 0.08 %、N: 0.005 0.04 %、 Si 0.7 %以下、 Mn 1.0 %以下、P: 0.040 %以下、S: 0.030 %以下、 Al 0.008 %以下、 Nb 0.005 0.06 %を含有し、残部は Fe および不可避的不純物からなる組 成を有することを特徴とする耐リジング性に優れるフェライト系ステンレス鋼冷延板である。
【0016】
また、本発明は、重量%で、Cr: 16〜20%、C:0.04〜0.08%、N:0.005 〜0.04%、Al:0.008%以下、Nb: 0.005 〜0.06%を含有し、さらに Si 0.7 %以下、 Mn 1.0 %以下、P: 0.040 %以下、S: 0.030 %以下を含み、残部 Fe および不可避的不純物からなる組成を有し、かつ850 ℃以上で(α+γ)組織をなす鋼素材を1100〜1250℃で加熱し、熱間圧延してN as AlN の含有量が0.003 %以下である熱延板とする、フェライト系ステンレス鋼熱延板の製造方法である。
【0017】
また、本発明は、重量%で、Cr:16 〜20%、C:0.04〜0.08%、N:0.005〜0.04%、Al:0.008%以下、Nb:0.005〜0.06%、を含有し、さらに Si 0.7 %以下、 Mn 1.0 %以下、P: 0.040 %以下、S: 0.030 %以下を含み、残部 Fe および不可避的不純物からなる組成を有し、かつ850 ℃以上で(α+γ)組織をなす鋼素材を、1100℃〜1250℃で加熱し、熱間圧延して熱延板とした後、該熱延板を850 ℃〜1000℃で連続焼純し、その後冷間圧延と仕上焼純を行うことを特徴とする耐リジング性に優れたフェライト系ステンレス鋼冷延板の製造方法である。
【0018】
【発明の実施の形態】
まず、鋼板組成の限定理由について説明する。
Cr:16〜20%
Crは、耐食性を確保するためには不可欠な元素であるが、含有量が16%未満では所望のステンレス鋼としての耐食性が不足し、一方20%を越えての含有は冷間加工性の低下を招く。このため、Crは16〜20%の範囲に限定した。なお、好ましくは16〜18%である。
C:0.04〜0.08%
Cは、γ相安定化元素であるが、成形加工性の指標であるr値および伸び特性を低下させる元素である。とくに、0.08%を超える含有では、成形加工性、伸び特性の低下が顕著になる。また、0.04%未満の含有では、結晶粒の粗大化を招くうえ、高温におけるγ量が少なくなり、耐リジング性が劣化する。このため、Cは、0.04〜0.08%の範囲に限定した。なお、好ましくは0.05〜0.07%の範囲である。
【0019】
N:0.005 〜0.04%
Nは、多量に含有するとr値および伸び特性を低下させるうえ、連続焼純−酸洗後に熱延板を鋭敏化させるとともに、「きらきら」と呼ばれる光沢不良を引き起こしやすい。とくに、0.04%を超える含有で、「きらきら」と呼ばれる光沢不良の発生が顕著となる。一方、0.005 %未満の含有では、結晶粒の粗大化を招き、肌荒れを起こしやすい。このため、Nは0.005 〜0.04%の範囲に限定した。なお、好ましくは0.008 〜0.025 %である。
Al:0.008 %以下
Alは、脱酸剤として作用する有効な元素であるが、Nと結合しAlN を形成し、マトリックス中の固溶Nを減少させて熱延中のγ量を減少させ、耐リジング性を低下させる。そのため、本発明では、Alの意図的な添加を避け、さらに不可避的に混入する範囲も0.008 %以下に限定する。また、Al含有量が0.008 %を超えると、酸化物系介在物がAl2O3 系主体となり、耐銹性が著しく劣化するうえ、さらに面疵発生の原因となり、ステンレス鋼の美麗な外観を損なうこととなる。なお、耐リジング性の観点から、好ましくは0.005 %以下である。
【0020】
Nb:0.005 〜0.06%
Nbは、α相安定化元素であり、結晶粒成長を抑制する作用を有する。0.06%を超える含有では、熱間圧延温度域でのγ量を減少させ、耐リジング性を劣化させる。一方、0.005 %未満の含有では、Nbの結晶粒成長抑制効果が減少し、そのため耐リジング性を劣化させる。このようなことから、Nbは0.005 〜0.06%の範囲に限定する。なお、好ましくは0.01〜0.05%である。
【0021】
Si:0.7 %以下
Siは、脱酸剤として作用するとともに、鋼を硬質化させる元素である。Si含有量が0.7 %を超えると、伸び特性の劣化が著しく加工性が劣化する。このため、Siは0.7 %以下に限定する。なお、好ましくは0.5 %以下である。
Mn:1.0 %以下
Mnは、脱酸剤として作用するとともに、鋼を硬質化させる元素であるが、1.0 %を超える含有は、MnS の生成量が増加し、耐食性を劣化させる。このため、Mnは1.0 %以下に限定した。なお、好ましくは0.7 %以下である。
【0022】
P:0.040 以下
Pは、加工性、耐食性を劣化させるため、できるだけ低減するのが望ましい。しかし、0.040 %までは許容できる。なお、好ましくは0.030 %以下である。
S:0.030 %以下
Sは、加工性、耐食性を劣化させるため、できるだけ低減するのが望ましい。しかし、0.030 %までは許容できる。なお、好ましくは0.010 %以下である。
【0023】
その他、残部はFeおよび不可避的不純物である。
なお、不可避的不純物としては、Ni:0.50%以下が許容される。Niは耐食性を増加させる元素であり、伸び特性を阻害しない0.50%まで許容される。その他、不可避的不純物として、B,Ca,Mgがある。
N as AlN :0.003 %以下
γ相の比率を高める固溶N量を増加させ、熱間圧延時の組織を(α+γ)組織とする。このため、熱延板中のAlと結合したN量、N as AlN を熱延板焼鈍前で0.003 %以下とする。なお好ましくは、0.002 %以下である。
【0024】
次に、スラブの加熱、熱間圧延および焼純条件について説明する。
上記した組成の溶鋼を通常の溶製炉で溶製し、連続鋳造法で所定の寸法の鋼素材(スラブ)に凝固させるのが望ましい。
得られた鋼素材(スラブ)は1100〜1250℃に加熱され、通常の熱間圧延方法により熱延板とされる。スラブ加熱温度が1250℃を超えると、表層部の結晶組織が粗大化し、へげ疵の原因となる。また、1100℃に満たない加熱温度では、熱間加工性の不足による肌荒れが起こりやすい。このため、鋼素材(スラブ)の加熱温度を1100〜1250℃の範囲に限定するのが好ましい。なお、好ましくは、1130〜1200℃である。
【0025】
加熱された鋼素材(スラブ)は、熱間圧延の温度範囲で、γ相が析出し、(α+γ)組織となり、通常の熱延を施されても、γ粒の分断・微細化が行われる。
上記した組織と熱間圧延により、熱延板中のN as AlN の含有量を0.003 %以下とする。得られた熱延板は、そのまま製品としても、熱延板焼鈍、酸洗を施して使用してもよい。
【0026】
ついで、熱延板は、連続焼鈍炉で、熱延板焼純を施される。熱延板焼純は、熱延により分断・微細化されたγ粒界から再結晶によりα相の微細結晶粒を得るのが目的である。連続焼鈍では、熱延板は850 〜1000℃の温度範囲に加熱され、通常、60s程度の短時間保持が施される。連続焼鈍による熱延板焼鈍を行うことにより従来のバッチ焼鈍より生産性が著しく向上する。
【0027】
連続焼鈍温度が850 ℃未満では、再結晶が不足し加工性が劣化する。また、焼鈍温度が1000℃を超えると、冷却中にマルテンサイトが析出し、硬質化し冷間圧延性が著しく劣化する。さらに、鋭敏化による「きらきら」が発生する。このようなことから、熱延板焼純の加熱温度は850 〜1000℃に限定するのが好ましい。なお、より好ましくは880 〜950 ℃である。
【0028】
熱延板は、熱延板焼純を施されたのち、好ましくは酸洗処理を施され、ついで冷間圧延により冷延板とされる。冷間圧延は、累積圧下率50%以上の加工を施すのが好ましい。このような冷間圧延により焼純後の組織を加工性の高い組織とすることができる。
次いで、仕上焼純を施す。仕上焼純温度は750 〜1000℃の温度範囲とするのが好ましい。焼純温度が750 ℃未満では、再結晶が起こらず加工性の改善が望めない。また、1000℃を超えると組織が粗大化し靱性の劣化や肌荒れの危険性があるばかりでなく、粒界腐食等の原因ともなる。
【0029】
【実施例】
表1に示す組成の溶鋼を転炉−VODで溶製し、200 mm厚の連続鋳造スラブとした。このスラブを表2に示す加熱温度に加熱し、熱間圧延により3.6 mm厚の熱延板とした。この熱延板に、表2に示す条件の連続焼鈍を施し熱延焼純板とし、ついで酸洗したのち、冷間圧延により0.5 mm厚の冷延板とした。これら冷延板に、830 ℃の仕上焼鈍を施し、冷延焼鈍板とした。
【0030】
これら冷延焼純板について、圧延方向と平行にJIS 5号試験片を採取し、表面を#600 研磨し、25%引張を施した後に、リジング高さを測定し耐リジング性を評価した。ここで、リジング高さは粗度計を用いて測定した。耐リジング性は、リジング高さによりA〜Eの5段階で評価した。評価Aは、リジング高さが5μm 未満、評価Bはリジング高さが5〜10μm 未満、評価Cはリジング高さが10〜15μm 未満、評価Dはリジング高さが15〜20μm 未満、評価Eはリジング高さが20μm 以上である。なお、熱延板焼鈍前の熱延板について、N as AlN 量を測定した。また、冷延焼鈍板について、表面性状を調査した。
これらの結果を表2に示す。
【0031】
【表1】

Figure 0004258039
【0032】
【表2】
Figure 0004258039
【0033】
本発明例は、いずれも耐リジング性に優れ、表面性状も良好であった。また、スラブ加熱温度、熱延板焼鈍条件が好適範囲を外れる本発明例(鋼板No.5、No.8、No.12 )は、耐リジング性が若干低下する傾向を示している。これに対し、本発明の範囲を外れる比較例(鋼板No.13 〜No.16 )は、耐リジング性が著しく低下し、ヘゲ疵が発生し表面性状も劣化している。
【0034】
【発明の効果】
本発明によれば、耐リジング性に優れ、ヘゲ疵の発生の少ない表面性状の優れたフェライト系ステンレス冷延鋼板を、連続焼純という経済的な方法で製造することができ、産業上格別の効果を奏する。
【図面の簡単な説明】
【図1】耐リジング性におよぼすNb含有量の影響を示すグラフである。
【図2】耐リジング性におよぼすAl含有量の影響を示すグラフである。
【図3】耐リジング性におよぼすN as AlN の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a ferritic stainless steel hot-rolled sheet and a cold-rolled sheet, and more particularly to improvement of ridging resistance of a ferritic stainless steel cold-rolled sheet and an improvement in productivity in production. In addition, the steel plate in this invention shall contain a steel plate and a steel strip.
[0002]
[Prior art]
Ferritic stainless steel sheets represented by SUS 430 are used in a wide range of applications such as home appliances, kitchen equipment and architectural interiors. However, in a ferritic stainless steel sheet, there is a problem that unevenness parallel to the rolling direction, called ridging, is generated in pressing and tensioning, and the appearance is greatly impaired. In order to prevent the occurrence of ridging in such a ferritic stainless steel sheet, several studies have been made.
[0003]
For example, in Japanese Patent Laid-Open No. 49-41227, ridging is reduced by using a continuous casting slab in which the casting temperature is cast at a liquidus temperature of + 0 ° C. to + 20 ° C. and fine equiaxed crystals are crystallized. A method for producing ferritic chromium-containing steel is proposed. Japanese Patent Laid-Open No. 250925/1990 discloses that a steel plate is manufactured using a slab in which 70% or more of the plate thickness is an equiaxed crystal portion and the average equiaxed crystal grain size of the equiaxed crystal portion is 1.0 mm or less. A method for producing a ferritic stainless steel sheet is disclosed.
[0004]
JP-A-54-125132 discloses the production of a ferritic stainless steel sheet that prevents ridging by using a continuously cast slab with a molten steel temperature of at least a freezing point of + 25 ° C. and appropriate magnetic stirring conditions. A method is disclosed.
[0005]
[Problems to be solved by the invention]
However, in the technique described in Japanese Patent Application Laid-Open No. 54-125132, the stirring of the slab is solidified and solidified, so there is a limit to the increase in equiaxed crystal ratio, and the improvement in ridging resistance is insufficient. In addition, there was a problem of requiring additional equipment. In addition, the techniques described in JP-A-49-41227 and JP-A-2-250925 have a problem that the casting temperature is severely limited and it is difficult to control the molten steel temperature during actual operation.
[0006]
Furthermore, conventionally, in the manufacture of ferritic stainless steel sheets, batch annealing has been applied to the annealing of hot-rolled sheets, but there has been a problem that productivity is inferior. In addition, when continuous annealing is performed instead of batch annealing to improve productivity, there is a problem that chromium carbonitride precipitates at grain boundaries during cooling after annealing, leading to sensitization.
In order to improve productivity, for example, in JP-A-8-311557, a slab heating temperature, a rough rolling reduction ratio, a sheet bar holding time, a finish rolling finishing temperature are specified, and a temperature rising rate of hot-rolled sheet annealing Although attempts have been made to shorten batch annealing of hot-rolled sheets to limit the range to a predetermined range, there are many restrictions on hot rolling, and it takes time for hot-rolled sheet annealing, which is not sufficient. .
[0007]
The present invention solves the above-mentioned problems of the prior art, and manufactures ferritic stainless steel hot-rolled sheets excellent in ridging resistance, cold-rolled sheets and productivity, ferritic stainless steel hot-rolled sheets and cold-rolled sheets It aims to provide a method.
[0008]
[Means for Solving the Problems]
The generation of ridging is caused by the fact that the coarse columnar structure produced during continuous casting is not sufficiently divided even during the rolling process, and fine crystals are not produced sufficiently by subsequent annealing. Therefore, the present inventors have adjusted the component composition so as to obtain a ferrite (α) + austenite (γ) structure ((α + γ) structure) during hot rolling, and further hot rolling to improve ridging resistance. It was effective to divide the γ crystal grains by accelerating recrystallization from the grain boundary during annealing, and to apply a continuous annealing method to hot-rolled sheet annealing in order to improve productivity.
[0009]
First, the experimental results on which the present invention is based will be described.
Steel with a composition containing C: 0.06%, Cr: 16.4% by weight, Al: 0.0003-0.4%, N: 0.001-0.030%, Nb: 0.001-0.2% It was melted in a melting furnace to make a small steel ingot (50 kg). A 180 mm thick test piece was cut out from these small steel ingots, heated to 1150 ° C. and hot-rolled to obtain a 3.5 mm thick hot-rolled sheet. Next, these hot-rolled sheets were subjected to 930 ° C. × 60 s tempering corresponding to continuous tempering conditions, and then cold-rolled to obtain 0.5 mm-thick cold-rolled sheets. Further, these cold-rolled sheets were subjected to finish calcination (850 ° C. × 20 s) to obtain cold-rolled refractory sheets. In addition, about the hot rolled sheet before continuous annealing, N as AlN in the hot rolled sheet was measured. For the measurement of N as AlN, the residue from electrolytic extraction was subjected to elemental analysis to measure the amount of AlN and converted to the amount of N.
[0010]
About these cold-rolled pure plates, JIS No. 5 test pieces were collected parallel to the rolling direction, the surface was polished by # 600, and after 25% tension, the ridging height was measured with a roughness meter, and ridging resistance was evaluated. did.
The ridging resistance was classified into five stages from excellent (A) to inferior (E). The ridging height is less than 5 μm for A, less than 5 to 10 μm for B, less than 10 to 15 μm for C, less than 15 to 20 μm for D, and 20 μm or more for E. In the present invention, the ridging height is less than 15 μm, that is, the evaluation C or more is regarded as a steel plate having excellent ridging resistance.
[0011]
The relationship between ridging resistance and Nb content is shown in FIG.
The ridging resistance is improved by evaluations A to C when the Nb content is 0.005 to 0.06%. Nb is basically an α-phase stabilizing element because it produces carbonitride, and it is disadvantageous for precipitation of the γ phase by reducing the γ loop, but also has an effect of suppressing the growth of crystal grains. When the Nb content is more than 0.06%, it is presumed that the ridging resistance is lowered due to the decrease in the precipitation amount of the γ phase. On the other hand, when the Nb content is less than 0.005%, the effect of suppressing the growth of Nb crystal grains is decreased, and the amount of ridging generated is considered to be increased.
[0012]
Moreover, the relationship between ridging resistance and Al content is shown in FIG.
The ridging resistance is markedly improved by evaluations A to C when the Al content is 0.008% or less. If the Al content is 0.008% or less, the amount of AlN precipitated during hot rolling decreases, the amount of solid solution N in the matrix increases, the γ loop expands, and the amount of γ precipitated during hot rolling increases. As a result, it is presumed that γ grains can be divided during hot rolling, the structure can be refined, and the crystallization of fine crystals is promoted by a short time treatment in continuous sinter and the amount of ridging is reduced. This becomes clear from the relationship between the amount of N as AlN of the hot-rolled sheet and ridging resistance. The relationship between ridging resistance and N as AlN is shown in FIG. FIG. 3 shows that the improvement in ridging resistance is significant when N as AlN is 0.003% or less.
[0013]
As described above, the inventors of the present invention are required to adjust the components so as to have a (α + γ) structure during hot rolling in order to improve ridging resistance, and to reduce the Al content and add a small amount of Nb. In addition, in order to further increase the amount of γ, it was found that reduction of N as AlN in the hot-rolled sheet and further optimization of hot-rolling and tempering conditions are preferable.
In addition, the present inventors have also found that it is preferable that N is precipitated as Nb nitride rather than AlN from the viewpoint of preventing sensitization. Although the details of the reason are currently unknown, it is thought that Nb nitride acts effectively as a precipitation nucleus of Cr carbonitride compared with AlN.
[0014]
The present invention has been completed with further studies based on the above findings.
That is, the present invention is, by weight, Cr: 16-20%, C: 0.04-0.08%, N: 0.005-0.04%, Si: 0.7% or less, Mn: 1.0% or less, P: 0.040% or less, S : 0.030% or less, Al: 0.008% or less, Nb: 0.005 to 0.06%, the balance is composed of Fe and inevitable impurities, and N as AlN is 0.003% or less It is a ferritic stainless steel hot-rolled sheet with excellent ridging resistance.
[0015]
Further, the present invention is by weight%, Cr: 16-20%, C: 0.04-0.08%, N: 0.005-0.04%, Si: 0.7% or less, Mn: 1.0% or less, P: 0.040% or less, S : Ferritic stainless steel containing 0.030% or less, Al: 0.008% or less, Nb: 0.005 to 0.06%, the balance being composed of Fe and inevitable impurities, and N as AlN being 0.003% or less hot-rolled sheet a cold-rolled sheet made of a material of, in weight%, Cr: 16 ~ 20% , C: 0.04 ~ 0.08%, N: 0.005 ~ 0.04%, Si: 0.7% or less, Mn: 1.0% or less , P: 0.040% or less, S: 0.030% or less, Al: 0.008% or less, Nb: contains from 0.005 to 0.06%, balance ridging resistance characterized by having a set formed of Fe and unavoidable impurities It is a ferritic stainless steel cold-rolled plate with excellent resistance.
[0016]
Further, the present invention contains, by weight, Cr: 16 to 20%, C: 0.04 to 0.08%, N: 0.005 to 0.04%, Al: 0.008% or less, Nb: 0.005 to 0.06% , and Si : A steel material that contains 0.7 % or less, Mn : 1.0 % or less, P: 0.040 % or less, S: 0.030 % or less, the balance consisting of Fe and inevitable impurities , and having a structure of (α + γ) at 850 ° C or higher Is a hot rolled sheet having a N as AlN content of 0.003% or less by heating at 1100 to 1250 ° C. and hot rolling to produce a ferritic stainless steel hot rolled sheet.
[0017]
Further, the present invention contains, by weight, Cr: 16 to 20%, C: 0.04 to 0.08%, N: 0.005 to 0.04%, Al: 0.008% or less, Nb: 0.005 to 0.06% , and Si : 0.7 % or less, Mn : 1.0 % or less, P: 0.040 % or less, S: 0.030 % or less, the composition consisting of the balance Fe and inevitable impurities , and having a (α + γ) structure at 850 ° C or higher The material is heated at 1100 ° C. to 1250 ° C. and hot-rolled into a hot-rolled sheet, and then the hot-rolled sheet is continuously sintered at 850 ° C. to 1000 ° C., and then cold-rolled and finish-sintered. This is a method for producing a ferritic stainless steel cold-rolled sheet having excellent ridging resistance.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the steel sheet composition will be described.
Cr: 16-20%
Cr is an indispensable element for ensuring corrosion resistance. However, if the content is less than 16%, the corrosion resistance as a desired stainless steel is insufficient, while if it exceeds 20%, the cold workability decreases. Invite. For this reason, Cr was limited to the range of 16 to 20%. In addition, Preferably it is 16 to 18%.
C: 0.04-0.08%
C is a γ-phase stabilizing element, but is an element that lowers the r value and the elongation characteristic, which are indicators of moldability. In particular, when the content exceeds 0.08%, the molding processability and elongation characteristics are significantly deteriorated. On the other hand, if the content is less than 0.04%, the crystal grains are coarsened, and the amount of γ at high temperature decreases, resulting in deterioration of ridging resistance. For this reason, C was limited to 0.04 to 0.08% of range. In addition, Preferably it is 0.05 to 0.07% of range.
[0019]
N: 0.005 to 0.04%
When N is contained in a large amount, the r value and elongation characteristics are lowered, and the hot-rolled sheet is sensitized after continuous tempering and pickling, and it is liable to cause a gloss failure called “kirakira”. In particular, when the content exceeds 0.04%, the occurrence of poor gloss called “kirakira” becomes prominent. On the other hand, if the content is less than 0.005%, the crystal grains are coarsened and the skin is likely to be rough. For this reason, N was limited to the range of 0.005 to 0.04%. In addition, Preferably it is 0.008 to 0.025%.
Al: 0.008% or less
Al is an effective element that acts as a deoxidizer, but combines with N to form AlN, reducing the solid solution N in the matrix, reducing the amount of γ during hot rolling, and reducing ridging resistance Let Therefore, in the present invention, intentional addition of Al is avoided, and the range of unavoidable mixing is limited to 0.008% or less. If the Al content exceeds 0.008%, the oxide inclusions are mainly Al 2 O 3 and the weather resistance is remarkably deteriorated, and further, the appearance of comedones and the beautiful appearance of stainless steel. You will lose. From the viewpoint of ridging resistance, it is preferably 0.005% or less.
[0020]
Nb: 0.005 to 0.06%
Nb is an α-phase stabilizing element and has a function of suppressing crystal grain growth. If the content exceeds 0.06%, the amount of γ in the hot rolling temperature range is decreased, and the ridging resistance is deteriorated. On the other hand, if the content is less than 0.005%, the effect of suppressing the crystal grain growth of Nb is reduced, and therefore the ridging resistance is deteriorated. For this reason, Nb is limited to a range of 0.005 to 0.06%. In addition, Preferably it is 0.01 to 0.05%.
[0021]
Si: 0.7% or less
Si is an element that acts as a deoxidizer and hardens the steel. When the Si content exceeds 0.7%, the elongation characteristics are remarkably deteriorated and the workability is deteriorated. For this reason, Si is limited to 0.7% or less. In addition, Preferably it is 0.5% or less.
Mn: 1.0% or less
Mn is an element that acts as a deoxidizer and hardens the steel, but if it exceeds 1.0%, the amount of MnS produced increases and the corrosion resistance deteriorates. For this reason, Mn was limited to 1.0% or less. In addition, Preferably it is 0.7% or less.
[0022]
P: 0.040 or less P is desirably reduced as much as possible in order to deteriorate workability and corrosion resistance. However, 0.040% is acceptable. In addition, Preferably it is 0.030% or less.
S: 0.030% or less S is desirably reduced as much as possible because it deteriorates workability and corrosion resistance. However, up to 0.030% is acceptable. In addition, Preferably it is 0.010% or less.
[0023]
In addition, the balance is Fe and inevitable impurities.
As an inevitable impurity, Ni: 0.50% or less is allowed. Ni is an element that increases corrosion resistance, and is allowed to 0.50%, which does not impair the elongation characteristics. In addition, B, Ca, and Mg are inevitable impurities.
N as AlN: 0.003% or less The amount of solute N that increases the ratio of the γ phase is increased, and the structure during hot rolling is defined as an (α + γ) structure. For this reason, N amount combined with Al in the hot-rolled sheet, N as AlN, is made 0.003% or less before the hot-rolled sheet annealing. Preferably, it is 0.002% or less.
[0024]
Next, slab heating, hot rolling, and smelting conditions will be described.
It is desirable to melt the molten steel having the above composition in a normal melting furnace and solidify it into a steel material (slab) having a predetermined size by a continuous casting method.
The obtained steel material (slab) is heated to 1100-1250 ° C. and is made into a hot rolled sheet by a normal hot rolling method. When the slab heating temperature exceeds 1250 ° C., the crystal structure of the surface layer portion becomes coarse, which causes a haze. Also, at heating temperatures below 1100 ° C, rough skin is likely to occur due to insufficient hot workability. For this reason, it is preferable to limit the heating temperature of a steel raw material (slab) to the range of 1100-1250 degreeC. In addition, Preferably, it is 1130-1200 degreeC.
[0025]
In the heated steel material (slab), the γ phase is precipitated in the temperature range of hot rolling to form an (α + γ) structure, and even if subjected to normal hot rolling, the γ grains are divided and refined. .
The content of N as AlN in the hot-rolled sheet is set to 0.003% or less by the above-described structure and hot rolling. The obtained hot-rolled sheet may be used as a product as it is, after being subjected to hot-rolled sheet annealing and pickling.
[0026]
Next, the hot-rolled sheet is subjected to hot-rolled sheet pure in a continuous annealing furnace. The purpose of hot-rolled sheet sinter is to obtain α-phase fine crystal grains by recrystallization from γ grain boundaries that are divided and refined by hot rolling. In continuous annealing, the hot-rolled sheet is heated to a temperature range of 850 to 1000 ° C. and is usually held for a short time of about 60 seconds. By performing hot-rolled sheet annealing by continuous annealing, productivity is significantly improved over conventional batch annealing.
[0027]
If the continuous annealing temperature is less than 850 ° C, recrystallization is insufficient and workability deteriorates. On the other hand, when the annealing temperature exceeds 1000 ° C., martensite precipitates during cooling and becomes hard and cold rollability deteriorates remarkably. Furthermore, “shining” occurs due to sensitization. For these reasons, it is preferable to limit the heating temperature of the hot-rolled sheet pure metal to 850 to 1000 ° C. In addition, More preferably, it is 880-950 degreeC.
[0028]
The hot-rolled sheet is subjected to hot-rolled sheet sinter, preferably subjected to pickling treatment, and then cold-rolled into a cold-rolled sheet. The cold rolling is preferably performed with a cumulative reduction ratio of 50% or more. By such cold rolling, the structure after tempering can be made into a highly workable structure.
Next, finish sinter is applied. The finish baking temperature is preferably in the temperature range of 750 to 1000 ° C. When the tempering temperature is less than 750 ° C., recrystallization does not occur and improvement in workability cannot be expected. Further, when the temperature exceeds 1000 ° C., the structure becomes coarse and there is a risk of deterioration of toughness and rough skin as well as causing intergranular corrosion.
[0029]
【Example】
Molten steel having the composition shown in Table 1 was melted in a converter-VOD to form a continuous cast slab having a thickness of 200 mm. This slab was heated to the heating temperature shown in Table 2, and a hot-rolled sheet having a thickness of 3.6 mm was formed by hot rolling. The hot-rolled sheet was subjected to continuous annealing under the conditions shown in Table 2 to obtain a hot-rolled pure sheet, then pickled, and then cold-rolled to obtain a cold-rolled sheet having a thickness of 0.5 mm. These cold-rolled sheets were subjected to finish annealing at 830 ° C. to obtain cold-rolled annealed sheets.
[0030]
With respect to these cold-rolled pure plates, JIS No. 5 test pieces were collected in parallel with the rolling direction, the surface was polished by # 600, and after 25% tension, ridging height was measured to evaluate ridging resistance. Here, the ridging height was measured using a roughness meter. The ridging resistance was evaluated in five stages of A to E according to the ridging height. Evaluation A has a ridging height of less than 5 μm, Evaluation B has a ridging height of less than 5-10 μm, Evaluation C has a ridging height of less than 10-15 μm, Evaluation D has a ridging height of less than 15-20 μm, and Evaluation E has The ridging height is 20 μm or more. In addition, N as AlN amount was measured about the hot-rolled sheet before hot-rolled sheet annealing. Moreover, the surface property was investigated about the cold-rolled annealing board.
These results are shown in Table 2.
[0031]
[Table 1]
Figure 0004258039
[0032]
[Table 2]
Figure 0004258039
[0033]
All of the inventive examples were excellent in ridging resistance and surface properties. In addition, the inventive examples (steel plates No. 5, No. 8, No. 12) in which the slab heating temperature and the hot-rolled sheet annealing conditions are out of the preferred ranges show a tendency for the ridging resistance to be slightly lowered. On the other hand, the comparative examples (steel plates No. 13 to No. 16) that are out of the scope of the present invention have significantly reduced ridging resistance, galling, and deteriorated surface properties.
[0034]
【The invention's effect】
According to the present invention, a ferritic stainless cold-rolled steel sheet having excellent surface properties with excellent ridging resistance and less lashing can be produced by an economical method of continuous sinter, which is exceptional in industry. The effect of.
[Brief description of the drawings]
FIG. 1 is a graph showing the influence of Nb content on ridging resistance.
FIG. 2 is a graph showing the influence of Al content on ridging resistance.
FIG. 3 is a graph showing the influence of N as AlN on ridging resistance.

Claims (4)

重量%で、
Cr: 16〜20%、 C:0.04〜0.08%、
N:0.005 〜0.04%、 Si: 0.7 %以下、
Mn: 1.0 %以下、 P:0.040 %以下、
S:0.030 %以下、 Al:0.008 %以下、
Nb:0.005 〜0.06%
を含有し、残部はFeおよび不可避的不純物からなる組成を有し、かつ、N as AlN が0.003 %以下であることを特徴とする耐リジング性に優れたフェライト系ステンレス鋼熱延板。
% By weight
Cr: 16-20%, C: 0.04-0.08%,
N: 0.005 to 0.04%, Si: 0.7% or less,
Mn: 1.0% or less, P: 0.040% or less,
S: 0.030% or less, Al: 0.008% or less,
Nb: 0.005 to 0.06%
A ferritic stainless steel hot-rolled sheet excellent in ridging resistance, characterized in that the balance is composed of Fe and inevitable impurities, and N as AlN is 0.003% or less.
請求項1に記載のフェライト系ステンレス鋼熱延板を素材としてなる冷延板であって、
重量%で、
Cr: 16 20 %、 C: 0.04 0.08 %、
N: 0.005 0.04 %、 Si: 0.7 %以下、
Mn 1.0 %以下、 P: 0.040 %以下、
S: 0.030 %以下、 Al 0.008 %以下、
Nb 0.005 0.06
を含有し、残部は Fe および不可避的不純物からなる組成を有することを特徴とする耐リジング性に優れるフェライト系ステンレス鋼冷延板。
A cold-rolled sheet made of the ferritic stainless steel hot-rolled sheet according to claim 1 ,
% By weight
Cr: 16 to 20 %, C: 0.04 to 0.08 %,
N: 0.005 to 0.04 %, Si: 0.7 % or less,
Mn : 1.0 % or less, P: 0.040 % or less,
S: 0.030 % or less, Al : 0.008 % or less,
Nb : 0.005 to 0.06 %
A ferritic stainless steel cold-rolled sheet excellent in ridging resistance , characterized in that it has a composition comprising Fe and inevitable impurities .
重量%で、
Cr: 16〜20%、 C:0.04〜0.08%、
N:0.005 〜0.04%、 Al:0.008%以下、
Nb: 0.005 〜0.06%
を含有し、さらに
Si 0.7 %以下、 Mn 1.0 %以下、
P: 0.040 %以下、 S: 0.030 %以下
を含み、残部 Fe および不可避的不純物からなる組成を有し、かつ850 ℃以上で(α+γ)組織をなす鋼素材を1100〜1250℃で加熱し、熱間圧延してN as AlN の含有量が0.003 %以下である熱延板とする、フェライト系ステンレス鋼熱延板の製造方法。
% By weight
Cr: 16-20%, C: 0.04-0.08%,
N: 0.005 to 0.04%, Al: 0.008% or less,
Nb: 0.005 to 0.06%
Containing, further
Si : 0.7 % or less, Mn : 1.0 % or less,
P: 0.040 % or less, S: 0.030 % or less
A steel material having a composition consisting of the balance Fe and inevitable impurities and having a structure of (α + γ) at 850 ° C. or higher is heated at 1100 to 1250 ° C. and hot-rolled so that the content of N as AlN is A method for producing a ferritic stainless steel hot-rolled sheet, wherein the hot-rolled sheet is 0.003% or less.
重量%で、
Cr:16 〜20%、 C:0.04〜0.08%、
N:0.005〜0.04%、 Al:0.008%以下、
Nb:0.005〜0.06%、を含有し、さらに
Si 0.7 %以下、 Mn 1.0 %以下、
P: 0.040 %以下、 S: 0.030 %以下
を含み、残部 Fe および不可避的不純物からなる組成を有し、かつ850 ℃以上で(α+γ)組織をなす鋼素材を、1100℃〜1250℃で加熱し、熱間圧延して熱延板とした後、該熱延板を850 ℃〜1000℃で連続焼純し、その後冷間圧延と仕上焼純を行うことを特徴とする耐リジング性に優れたフェライト系ステンレス鋼冷延板の製造方法。
% By weight
Cr: 16-20%, C: 0.04-0.08%,
N: 0.005 to 0.04%, Al: 0.008% or less,
Nb: 0.005 to 0.06%, and further
Si : 0.7 % or less, Mn : 1.0 % or less,
P: 0.040 % or less, S: 0.030 % or less
A steel material having a composition consisting of the balance Fe and unavoidable impurities and having an (α + γ) structure at 850 ° C. or higher is heated at 1100 ° C. to 1250 ° C. and hot-rolled to obtain a hot-rolled sheet Thereafter, the method of producing a ferritic stainless steel cold-rolled sheet having excellent ridging resistance, wherein the hot-rolled sheet is continuously sintered at 850 ° C. to 1000 ° C., followed by cold rolling and finishing.
JP24034198A 1998-08-26 1998-08-26 Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof Expired - Fee Related JP4258039B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24034198A JP4258039B2 (en) 1998-08-26 1998-08-26 Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24034198A JP4258039B2 (en) 1998-08-26 1998-08-26 Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000073144A JP2000073144A (en) 2000-03-07
JP4258039B2 true JP4258039B2 (en) 2009-04-30

Family

ID=17058054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24034198A Expired - Fee Related JP4258039B2 (en) 1998-08-26 1998-08-26 Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4258039B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241564A (en) * 2005-03-07 2006-09-14 Nisshin Steel Co Ltd Ferritic stainless steel for welded structure

Also Published As

Publication number Publication date
JP2000073144A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP5687624B2 (en) Stainless steel, cold-rolled strip made from this steel, and method for producing steel plate products from this steel
TWI404808B (en) Boron steel sheet with high quenching property and manufacturing method thereof
US20090000703A1 (en) Ferritic stainless steel sheet superior in shapeability and method of production of the same
US6413332B1 (en) Method of producing ferritic Cr-containing steel sheet having excellent ductility, formability, and anti-ridging properties
JP5362582B2 (en) Ferritic stainless steel with excellent corrosion resistance and stretch formability and method for producing the same
CN104726768A (en) High strength hot rolled steel sheet having excellent surface property and method for manufacturing the same
TW202223116A (en) Method for manufacturing austenitic stainless steel strip
JP4626484B2 (en) Ferritic stainless steel cold-rolled steel sheet excellent in press formability and manufacturing method thereof
CN107964632B (en) Ferritic stainless steel sheet having excellent formability
JP5407591B2 (en) Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis
JP4214671B2 (en) Ferritic Cr-containing cold-rolled steel sheet excellent in ductility, workability and ridging resistance and method for producing the same
US20060225820A1 (en) Ferritic stainless steel sheet excellent in formability and method for production thereof
JP3806186B2 (en) Method for producing ferritic stainless steel with excellent anti-roping properties
JP2005029889A (en) High strength low specific gravity steel sheet excellent in ductility, and its production method
JP3941363B2 (en) Ferritic stainless cold-rolled steel sheet excellent in ductility, workability and ridging resistance, and method for producing the same
JP4830239B2 (en) Manufacturing method of low carbon martensitic stainless hot rolled steel sheet with excellent punchability
JP2012172211A (en) METHOD OF MANUFACTURING LOW Ni AUSTENITIC STAINLESS STEEL SHEET
JP4258039B2 (en) Ferritic stainless steel hot-rolled sheet, cold-rolled sheet excellent in ridging resistance, and manufacturing method thereof
JP2005139533A (en) Method for forming ferritic stainless steel sheet having little surface roughness
JP3779784B2 (en) Method for producing ferritic stainless steel with excellent surface properties
KR101035767B1 (en) Hot-rolled steel sheet with good formability, and method for producing the same
JP3477098B2 (en) Ferritic stainless steel sheet excellent in surface properties and ridging properties and method for producing the same
JP2020143309A (en) Ferritic stainless steel sheet
JP2001107149A (en) Method for producing ferritic stainless steel sheet excellent in ductility, workability and ridging resistance
JP3737055B2 (en) Manufacturing method of Al alloy plate for automobile body and Al alloy having excellent strength and ductility

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050707

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees