JP4257699B2 - Distribution measuring device and biological measuring device - Google Patents

Distribution measuring device and biological measuring device Download PDF

Info

Publication number
JP4257699B2
JP4257699B2 JP2003113811A JP2003113811A JP4257699B2 JP 4257699 B2 JP4257699 B2 JP 4257699B2 JP 2003113811 A JP2003113811 A JP 2003113811A JP 2003113811 A JP2003113811 A JP 2003113811A JP 4257699 B2 JP4257699 B2 JP 4257699B2
Authority
JP
Japan
Prior art keywords
transmission
terminal
reception
terminals
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003113811A
Other languages
Japanese (ja)
Other versions
JP2004317396A (en
Inventor
浩一 森
郁夫 小西
一郎 小田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2003113811A priority Critical patent/JP4257699B2/en
Publication of JP2004317396A publication Critical patent/JP2004317396A/en
Application granted granted Critical
Publication of JP4257699B2 publication Critical patent/JP4257699B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、測定対象に送信し測定対象内を通った信号を受信することにより、測定対象領域内の信号伝搬にかかる分布を測定する分布測定装置に関する。測定対象が生体である場合には、生体内部の特定色素の分布を測定する生体計測装置に関し、生体診断に適用することができる。
【0002】
【従来の技術】
測定対象領域内の信号伝搬にかかる分布を測定する分布測定方法として、測定対象に送信し、測定対象内を通過した信号を受信し、その受信信号から測定対象における分布を測定する方法が知られている。このような分布測定方法において、生体に光を送受信して生体内部の情報を取得する生体光計測方法が知られている。この生体光計測方法では、例えば、可視光から赤外の波長の光を生体に照射し、生体を通過した散乱光あるいは透過光を、照射位置から所定距離(例えば、10〜50mm程度)離れた位置で受光し、この受光から生体内部の測定を行う。
【0003】
生体光計測による臨床応用としては、例えば頭部を測定対象とする場合には、脳の酸素代謝の活性化状態の測定や局所的な酸素代謝の変化の測定がある。このような測定では、脳機能などの計測において、2次元的に表示することにより、より大きな効果を得ることができる。このような生体光計測に用いる光イメージング装置では、送信端子と受信端子とを例えば3cm程度離して交互に等間隔でチェッカーボードのように配置し、最も隣接している送信端子と受信端子の組み合わせの間で測定を行っている。
【0004】
同一距離離れた送信端子と受信端子の組み合わせにおいては、上記配置のように、送信端子と受信端子を正方格子状に交互に等間隔配置とすることにより、送信端子と受信端子の組み合わせ数最も多く得ることができる。
【0005】
このように、送信端子と受信端子を交互に等間隔に配置する構成を備えた生体光計装置は、例えば、特許文献1に示されている。
【0006】
【特許文献1】
特開平9−19408号公報(段落番号0013)
【0007】
【発明が解決しようとする課題】
分布測定では、送信端子と受信端子の距離に応じた情報を取得することができる。例えば、生体光計測では、送光端子と受光端子との間の距離と、生体から得られる深さ方向の情報との間には関連性があり、送受光間の距離が長いほど生体の深い位置の情報を取得することができる。したがって、分布測定では、送信端子と受信端子は距離が異なる組み合わせを用いることにより、より多くの情報を取得することができる。
【0008】
一方、測定対象が生体のように強い散乱性と減衰性を備える場合には、測定対象内を通過する信号の強度は距離に対して指数的に減少する。そのため、送信端子と受信端子との距離が長くなると、受信信号の信号強度が低下して検出が困難となる。従来のように、送信端子と受信端子を交互に等間隔に配置する構成では、最も隣接している送信端子と受信端子の距離をPとしたとき、次に近接した送・受信端子間の距離は、√5・Pとなる。
【0009】
図7は、送信端子と受信端子の等距離配置を説明するための図である。図7(a)は、8個の送信端子A(図中の黒丸で示す)と8個の受信端子B(図中の白丸で示す)とを交互に等距離で配置した送・受信端子の配置を示している。この配置では、通常最も近接した送信端子と受信端子の組み合わせの間で送受信を行う。このとき、測定点を送信端子と受信端子の中間位置に定義すると、図中の送信端子Aと最近接の位置関係にある3個の受信端子との組み合わせよれば、測定点は図中のa,b,cで示される位置となる。
【0010】
図7(b),(c)は、この等距離配置における送信端子と受信端子の距離を示している。配置ピッチをPとしたとき、送信端子Aから最も近い位置にある受信端子B11までの距離はPとなり、次に近い位置にある受信端子B12までの距離は√5・Pとなり、さらに、次に近い位置にある受信端子B13までの距離は√13・Pとなる。したがって、最近接距離Pに対する次近接距離の比率は√5倍となり、次に近い距離の比率は√13倍となる。
【0011】
例えば、近赤外光を用いた生体測定では、最近接距離を3cmとしたときの検出信号強度に対して、送・受信端子間の距離が3√5cmの検出信号強度は数百分の1となる。最近接による検出信号強度と次近接による検出信号強度との間の信号強度に差が甚だしく信号増幅器のダイナミックレンジを越えてしまうため、実質的に測定が不可能である。
【0012】
そのため、従来の分布測定では、送信端子と受信端子の距離を最近接となるように等距離とし、異なる距離の送信端子と受信端子の組み合わせを用いていない。その結果、測定点の空間分解能は、送信端子と受信端子の最近接距離に依存し、高めることができない。図7(d)は、測定点の配置状態を示している。図示するような、送信端子及び受信端子がそれぞれ8個ずつの送・受信配置では、24点となる。
【0013】
なお、近赤外光を用いた測定において最近接距離を3cmとしたのは、表面から脳の血液量を測定するには、約1cmから2cm程度の深さの信号を検出する必要があり、成人の測定においてこの深さの信号をある程度確実に検出するには、送光端と受光端との距離を2.5cm以上とする必要があるためである。通常の脳計測では、3cm程度の距離が最も多く採用されている。
【0014】
上記したように、従来の分布測定では、異なる送・受信端子間距離で測定することができないという問題がある。また、ほぼ均等で高密度の測定点配置を得ることができないという問題がある。
【0015】
そこで、本発明は前記した従来の問題点を解決し、分布測定において、異なる送・受信端子間距離による測定を可能とすることを目的とし、また、測定点を均等で高密度とすることを目的とする。
【0016】
【課題を解決するための手段】
本発明は、複数の送信端子及び受信端子を面状に配置し、送信端子と受信端子間において測定対象領域を伝搬する信号を測定することにより、測定対象領域内の信号伝搬にかかる分布測定装置において、送・受信端距離を異にする送信端子と受信端子の組み合わせを用いて送・受信を行い、この受信端子から伝搬距離を異にする信号を検出する。これにより、測定対象において異なる送・受信端子間距離の測定値を取得する。また、送・受信端子間距離を複数に異ならせることにより、測定対象領域での測定点の配置を高密度化し均質化する。
【0017】
送信端子と受信端子の組み合わせにおいて、異なる送・受信端距離は計測に使用する最近接の送・受信端距離に対して2倍以内とする配置とし、これにより、異なる送・受信端距離で受信される受信信号の強度比の違いを小さくすることができる。これにより、信号増幅が容易となりS/N比を向上させることができる。
【0018】
受信端子で受信した検出信号の信号増幅において、対数増幅を利用することができる。検出信号を対数増幅することにより、A/D変換に伴って検出信号のダイナミックレンジが狭まった場合にも、分解能及びS/N比の低下を防ぐことができる。
【0019】
また、受信端子で受信した検出信号の信号増幅において、検出信号を増幅する増幅率を送・受信端距離に基づいて設定する。距離が異なる測定では、予め予測した比率で検出器あるいは増幅器の増幅率を変える。これにより、送・受信端距離による受信信号の強度の相違を補償し、実質的にダイナミックレンジを拡大する。
【0020】
送信端子及び受信端子の配置の一形態は、連続する2個の送信端子と連続する2個の受信端子を配置する組み合わせを所定角度で格子状に配列し、格子方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらし、格子方向において間に1端子を挟む送・受信端子の組み合わせと、格子方向に対して斜め方向の送・受信端子の組み合わせを用いて送・受信を行う。
【0021】
また、この格子として正方格子とした形態では、送信端子及び受信端子は、連続する2個の送信端子と連続する2個の送信端子を配置する組み合わせを行方向及び列方向に格子状に配列し、行方向及び列方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらして配置する。この送信端子及び受信端子の配置において、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせと、行方向及び列方向に対して斜め方向の送・受信端子の組み合わせを用いて送・受信を行う。
【0022】
この2つの送・受信端子の組み合わせにより、送・受信端距離を異ならせることができ、また、計測に使用する最近接の送・受信端距離に対して2倍以内の配置を可能とする。行方向及び列方向に対して斜め方向の送・受信端子の組み合わせは、傾斜角度を変えることにより複数の組み合わせを設定することができる。
【0023】
本発明の分布測定装置では、測定に用いる信号は、光信号に限らず、電波や音波など波動性を有した信号など、測定領域内で散乱性を持つ信号であれば使用できる。また、送信源と受信源を設置した平面が他の領域に比べて特に信号伝達が悪い場合は、この限りでなく信号伝達が悪い面を避けた部位の分布を測定することができる。測定信号として光信号を用いる場合には、送信端子を送光端子として光源あるいは光源に接続される光ファイバを用いることができ、また、受信端子を受光端子として光検出器あるいは光検出器に接続される光ファイバを用いることができる。
【0024】
したがって、この場合の送信端子及び受信端子の配置は、光源又は光源に接続される光ファイバ端と、光検出器又は光検出器に接続される光ファイバ端の配置となる。
【0025】
また、上記した分布測定装置は測定対象を生体とする生体計測に適用することができ、送信端子を送光端子とし受信端子を受光端子とすることにより、生体を光を用いて計測することができる。
【0026】
本発明による生体計測装置は、複数の送光端子及び受光端子を面状に配置し、送光端子と受光端子間において生体を伝搬する光信号を測定することにより生体を計測する生体計測装置であって、送光端子及び受光端子は、連続する2個の送光端子と連続する2個の送光端子からなる組み合わせを行方向及び列方向に格子状に配列し、行方向及び列方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらして配置する。送光端子及び受光端子の面状配置の行端及び列端部においては、送光端子あるいは受光端子の配置数が1個となる場合がある。なお、送信端子(送光端子)及び受信端子(受光端子)の配置に用いる格子は正方格子に限らない。
【0027】
本発明によれば、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせと、行方向及び列方向に対して斜め方向の送・受信端子の組み合わせを用いることにより、この2つの送・受信端子の組み合わせにより、送・受信端距離を異ならせることができる。また、送・受信端子の中点の測定点は、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせの場合には送・受信端子が配置される格子点上の位置となり、行方向及び列方向に対して斜め方向の送・受信端子の組み合わせの場合には格子点上からずれた位置となるため、測定点の配置密度を高めると共に、もれなく配置することができる。
【0028】
【発明の実施の形態】
以下、本発明の実施の形態について、図を参照しながら詳細に説明する。
【0029】
図1は本発明の分布測定装置、及び生体計測装置を説明するための例示図である。
【0030】
図1は、送信端子と受信端子の配置例を示している。なお、ここでは、17個の送信端子と19個の受信端子を配置した例を示し、また、各端子の配置位置はピッチPの間隔の格子点としている。
【0031】
送信端子A(図中では黒丸で示している)と受信端子B(図中では白丸で示している)は、連続する2個の送信端子Aと連続する2個の送信端子Bを配置する組み合わせを行方向及び列方向に格子状に配列し、行方向及び列方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらして配置する。
【0032】
例えば、図中配置において上から下に向かって第1行から第6行とすると、第1行目では、左端から2個の受信端子、2個の送信端子、2個の受信端子が行方向(横方向)に配置される。第2行目では、左端から1個の送信端子、2個の受信端子、2個の送信端子、1個の受信端子が行方向(横方向)に配置される。この第2行目の端子配置は、第1行目の端子配置を行の右方向に1格子分ずらした配置(あるいは、行の左方向に3格子分ずらした配置)に対応している。
【0033】
なお、行をずらしたことにより、端部が空白となった場合(第2行目では、左端部分)には、第2列目と第3列目の配置に基づいて送信端子あるいは受信端子を配置する。例えば、第2列目と第3列目の配置が共に送信端子であれば受信端子を配置し、共に受信端子であれば送信端子を配置し、第2列目と第3列目の配置が異なる場合には、第2列目と同種の端子を配置する。この第2行目の例では、第2列目と第3列目が共に受信端子であるので送信端子を配置する。
【0034】
さらに、第3行目では、左端から2個の送信端子、2個の受信端子、2個の送信端子が行方向(横方向)に配置される。この第3行目の端子配置は、第2行目の端子配置を行の右方向に1格子分ずらした配置(あるいは、行の左方向に3格子分ずらした配置)に対応している。同様に、以下の他の行についても、上側で隣接する行の端子配置を行の右方向に1格子分ずらして(あるいは、行の左方向に3格子分ずらして)配置される。
【0035】
この端子配置は、列方向に対しても同様の配置となる。例えば、図中配置において左から右に向かって第1列から第6列とすると、第1列目では、上端から1個の受信端子、2個の送信端子、2個の受信端子、1個の送信端子が列方向(縦方向)に配置される。第2列目では、上端から2個の受信端子、2個の送信端子、2個の受信端子が行方向(縦方向)に配置される。この第2列目の端子配置は、第1列目の端子配置を列の下方向に1格子分ずらした配置(あるいは、列の上方向に3格子分ずらした配置)に対応している。
【0036】
また、列をずらしたことにより、端部が空白となった場合(第2目では、上端部分)には、第2行目と第3行目の配置に基づいて送信端子あるいは受信端子を配置する。例えば、第2行目と第3行目の配置が共に送信端子であれば受信端子を配置し、共に受信端子であれば送信端子を配置し、第2行目と第3行目の配置が異なる場合には、第2行目と同種の端子を配置する。この第2列目の例では、第2行目と第3行目の配置が異なるので、第2行目と同種の受信端子を配置する。
【0037】
さらに、第3列目では、上端から1個の送信端子、2個の受信端子、2個の送信端子、1の受信端子が列方向(縦方向)に配置される。この第3列目の端子配置は、第2列目の端子配置を列の下方向に1格子分ずらした配置(あるいは、行の上方向に3格子分ずらした配置)に対応している。同様に、以下の他の列についても、左側で隣接する列の端子配置を列の下方向に1格子分ずらして(あるいは、列の上方向に3格子分ずらして)配置される。
【0038】
図1(b)は、この送・受信端配置において、送信端子と受信端子間の送・受信間距離を説明するための図である。図1(b)において、送信端子Aと組み合わせる受信端子として受信端子B1,受信端子B2,及び受信端子B3がある。なお、受信端子B2は行方向及び列方向に配置される受信端子であり、受信端子B1及び受信端子B3は行方向及び列方向に対して斜め方向に配置される受信端子である。もちろん、最初の端子が連続しておらず、単体で配置された場合も、同様に操作を行うことで、同じ効果を持つ配列を設けることができる。
【0039】
各端子間のピッチをpとすると、送信端子Aと受信端子B2との間の送・受信間距離は2・pとなる。また、送信端子Aと受信端子B1との間の送・受信間距離は√2・pとなり、送信端子Aと受信端子B3との間の送・受信間距離は√5・pとなる。送信端子Aと受信端子B1との間の送・受信間距離√2・pを最近接計測距離として使用する。
【0040】
図1(c)は、この送信端子と受信端子間の送・受信間距離を比較して示している。ここで、送信端子Aと受信端子B1との間の距離√2・pを基準(比率1とする)として他の送信端子と受信端子間の送・受信間距離を表すと、送信端子Aと受信端子B2との間の送・受信間距離は√2の比率で表され、送信端子Aと受信端子B3との間の送・受信間距離は√5/√2の比率で表され、各比率は1:√2:(√5/√2)となる。したがって、この送・受信端子配置によれば、各送・受信間距離の比率を均一配置が可能な最短距離の組み合わせの2倍以内とすることができる。
【0041】
図1(d)は、従来の送・受信端子配置における送・受信間距離の比率を比較のために示している。従来の送・受信端子配置によれば、各送・受信間距離の比率は、短い方から1:√5:√13となり、最短距離以外の各送・受信間距離の比率は最短距離の2倍を越えることになる。
【0042】
受信端子で受信される受信信号の信号強度は送・受信間距離に依存している。例えば、生体のような強散乱体の場合には、信号強度は送・受光間距離に対して指数的に減少する。従来の等距離配置において近赤外光で測定した場合には、次近接の受光端子(送・受光間距離の比率が√5)で受光した受光信号の信号強度は、最近接距離(約3cmとした場合)の受光信号の信号強度に対して数百分の1に減少する。
【0043】
図2は送・受光間距離と受光信号の信号強度との関係を模式的に表している。図2(a)は本発明による送・受光間距離と受光信号の信号強度との関係を示し、図2(b)は従来の等距離配置による送・受光間距離と受光信号の信号強度との関係を示している。なお、図2において、斜線部分は送・受光間距離の比率が2を越えた領域を示している。
【0044】
本発明の送・受信端子の配置によれば、各送・受信間距離の比率が2倍の領域内に、3種類の送・受光間距離をとることができる。送・受信間距離の比率が2倍の領域内であれば、最も受信信号の信号強度が小さいものであっても増幅器で十分増幅することが可能となる。
【0045】
一方、図2(b)従来の等距離配置によれば、各送・受信間距離の比率が2倍の領域内には1種類の送・受光間距離しかとることができない。各送・受信間距離の比率が2倍を越える領域の場合には、受信信号の信号強度が極めて小さくなり信号増幅によっても良好なS/N比を得ることは難しい。
【0046】
したがって、本発明の送・受信端子の配置によれば、複数の異なる送・受信間距離の受信信号を得ることができる。
【0047】
図3は本発明による測定点を説明するための図である。
【0048】
送信端子と受信端子の組み合わせにより得られる面上の測定代表点を、伝播の対称性から送信端子と受信端子の中間位置で示す。従来の等距離配置による場合には、測定点は送信端子及び受信端子が配置された格子辺中点に限られ、配置密度を高めることはできない。これに対して、本発明によれば送受信端を配置した格子点にも配置でき、測定点の配置密度を高めもれなく測定を行うことができる。
【0049】
本発明の送・受信端子の配置によれば、3種類の送・受信端子の組み合わせを用いることができる。第1の送・受信端子の組み合わせは、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせであり、第2の送・受信端子の組み合わせは、行方向及び列方向に対して斜め45度方向の送・受信端子の組み合わせである。第3の組み合わせは、斜め約63度(約27度)の方向の組み合わせである。したがって、本発明の送・受信端子の配置によれば、3種類の送・受信端子の組み合わせにより測定点の配置を増加させることができる。
【0050】
図3(a)は、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせにより得られる測定点を示している。例えば、送信端子A1に対する行方向及び列方向の受信端子は、隣接する送信端子あるいは受信端子を1個とばした次の位置にある受信端子B21,B22,B23,B24である。これらの受信端子と送信端子A1との組み合わせで得られる測定点(図中の十字印で示している)は、C21,C22,C23,C24となる。これらの測定点は、送信端子あるいは受信端子が配置される格子上の位置となる。送信端子A2についても、受信端子との組み合わせにより同様に測定点が得られる。
【0051】
図3(b)は、行方向及び列方向に対して斜め45度方向の送・受信端子の組み合わせにより得られる測定点を示している。例えば、送信端子A1に対する行方向及び列方向に対して斜め方向の受信端子は、受信端子B11,B12である。これらの受信端子と送信端子A1との組み合わせで得られる測定点(図中の×印で示している)は、C11,C12となる。これらの測定点は、送信端子あるいは受信端子が配置される格子上からずれた位置となる。送信端子A2についても、受信端子との組み合わせにより同様に測定点が得られる。
【0052】
なお、図3(b)に示す斜め方向の受信端子は、送・受信間距離が√2・pの例を示しているが、送・受信間距離が√5・pとなる受信端子との組み合わせについても同様に、格子点からずれた位置に測定点を得ることができ、これら点は図3(b)に示した測定点とも異なっている。
【0053】
図4は、図3で示した2種類の送・受信端子の組み合わせによる測定点を示している。図4(a)は、図3(a)及び図3(b)において送信端子A1により得られる測定点C21,C22,C23,C24,及びC11,C12を示している。
【0054】
図4(b)は、17個の送信端子及び19個の受信端子による構成の場合における測定点を示している。この構成によれば、全部で57の測定点を得ることができる(第3の組み合わせを含めば77個)。なお、1〜32の番号が振られた測定点(図中の十字印で示す)は、前記した格子点上に配置される第1の種類の測定点であり、33〜57の番号が振られた測定点(図中の×印で示す)は、前記した格子点以外に配置される第2の種類の測定点である。さらに、送・受信間距離が√5・pとなる受信端子との組み合わせによる測定点を加えることにより、測定点の個数を増加させ、分布密度を高めることができる。
【0055】
図5は、送信端子と受信端子の他の配置例を示している。なお、ここでは、16個の送信端子と17個の受信端子を配置した例を示し、また、各端子の配置位置はピッチPの間隔の格子点としている。
【0056】
送信端子A(図中では黒丸で示している)と受信端子B(図中では白丸で示している)は、連続する2個の送信端子Aと連続する2個の送信端子Bを配置する組み合わせを、それぞれ正三角形の組み合わせからなる格子の各頂点に配列し、格子方向で隣接する配列を互いに一格子点分(距離としては1/2格子分、以下同様)だけ同方向に順次ずらして配置する。
【0057】
例えば、図中配置において上から下に向かって第1行から第6行とすると、第1行目では、左端から2個の送信端子、2個の受信端子、2個の送信端子が格子方向(ここでは横方向)に配置される。第2行目では、左端から2個の送信端子、2個の受信端子、1個の送信端子が格子方向(ここでは横方向)に配置される。この第2行目の端子配置は、第1行目の端子配置が1格子点分(あるいは3格子点分)ずれた配置に対応している。
【0058】
なお、配置をずらしたことにより、端部が空白となった場合(例えば、第3行目では、左端部分)には、第2列目と第3列目の配置に基づいて送信端子あるいは受信端子を配置する。例えば、第2列目と第3列目の配置が共に送信端子であれば受信端子を配置し、共に受信端子であれば送信端子を配置し、第2列目と第3列目の配置が異なる場合には、第2列目と同種の端子を配置する。この第3行目の例では、第2列目と第3列目が共に送信端子であるので受信端子を配置する。
【0059】
同様に、以下の他の行についても、上側で隣接する行の端子配置を行の右方向に1格子点分ずらして(あるいは、行の左方向に3格子点分ずらして)配置する。この端子配置は、列方向に対しても同様の配置となる。もちろん、最初の端子は、連続して配列せず単体で設けることもできる。
【0060】
図5(b)は、この送・受信端配置において、送信端子と受信端子間の送・受信間距離を説明するための図である。図5(b)において、送信端子Aと組み合わせる受信端子として受信端子B1,受信端子B2,及び受信端子B3がある。なお、受信端子B2は格子方向に配置される受信端子であり、受信端子B1及び受信端子B3は格子方向に対して斜め方向に配置される受信端子である。もちろん、最初の端子が連続しておらず、単体で配列するを設けることもできる。
【0061】
各端子間のピッチをpとすると、送信端子Aと受信端子B2との間の送・受信間距離は2・pとなる。また、送信端子Aと受信端子B1との間の送・受信間距離は√3・pとなり、送信端子Aと受信端子B3との間の送・受信間距離は√7・pとなる。送信端子Aと受信端子B1との間が計測に使用する最近接距離となる。
【0062】
図5(c)は、この送信端子と受信端子間の送・受信間距離を比較して示している。ここで、送信端子Aと受信端子B1との間の最近接距離を基準(比率1とする)として他の送信端子と受信端子間の送・受信間距離を表すと、送信端子Aと受信端子B2との間の送・受信間距離は2/√3の比率で表され、送信端子Aと受信端子B2との間及び送信端子Aと受信端子B3との間の送・受信間距離は約1.15及び1.53の比率で表される。したがって、この送・受信端子配置によれば、各送・受信間距離の比率を均一配置が可能な最短距離の組み合わせの2倍以内とすることができる。
【0063】
したがって、図3,図4、図5に示すように、本発明の送・受信端子の組み合わせによれば、複数の異なる送・受信間距離を得ることができ、また、格子点と格子点以外の位置に測定点を得ることができ、測定点密度を高めることができる。
【0064】
なお、図1で示した送信端子及び受信端子の配置の一例によれば、17個の送信端子及び19個の受信端子を格子のピッチ幅を、従来配置の3cmのピッチ幅に対して約1.8cmとし、各辺が9cmの領域内とする構成とする。
【0065】
この1.8cmのピッチ幅は、異なる送・受信間距離の比率を1:√2としたとき、この二つの送・受信間距離の平均値が従来配置のピッチ幅3cmとなるように設定することで得られる。このピッチ幅(1.8cm)によれば、最近接の送・受信間距離は約2.5cm(1.8cm×√2)となり、次近接の送・受信間距離は約3.6cm(1.8cm×2)となる。9cm×9cmの同一領域内に3cmピッチの従来の方法と1.8cmピッチの本発明で配置した場合とを比較すると、送受信端は、従来型が8個の送信端子及び8個の受信端子であるのに対して、本発明では17個の送信端子及び19個の受信端子となり高密度に配置することができる。また、測定点は、本発明によれば、最近接測定点および次近接測定点を用いることによって、従来の24点に対して57点となり倍以上の測定点を得ることができる。
【0066】
次に、本発明の分布測定を生体計測に適用した生体計測装置の一構成例について図6を用いて説明する。
【0067】
図6において、生体計測装置10は、複数の送信端子Aと複数の受信端子Bを備える送受信端子配置1と、複数の送信端子Aの送信信号を送る送信部2と、複数の受信端子Bで検出された受信信号を受信する受信部3と、受信信号を増幅する増幅器5と、信号増幅した受信信号をデジタル信号に変換するA/D変換器6と、得られた信号に基づいて所定の信号処理を行う演算手段7と、表示手段8を備える。また、送信部2、受信部3、増幅器5を制御する制御手段4を備える。
【0068】
送受信端子配置1は、複数の送信端子Aと複数の受信端子Bを備え、前記したように配置され、生体等の測定対象に取り付けられる。光信号を用いて生体計測を行う場合には、送信端子Aは例えば光源あるいは光源に接続された光ファイバとし、受信端子Bは例えば光検出器あるいは光検出器に接続された光ファイバとする。
【0069】
送信部2は、送信端子Aに送信信号を送る部分であり、送信手段2a〜2hを備える。なお、送信手段2a〜2hは、必ずしも各送信端子Aに一対一で対応する必要はなく、複数の送信端子に対して一つの送信手段を対応させることもできる。光信号を用いる場合には、送信手段2a〜2hは光源とすることができ、所定波長の光を発光し、光ファイバ等の導光体を介して送信端子Aに送光される。なお、送信端子Aを光源とする場合には、送信部2は光源を駆動する駆動手段あるいは発光を制御する制御手段とすることができる。
【0070】
受信部3は、受信端子Bからの受信信号を受信する部分であり、受信手段3a〜3hを備える。なお、受信手段3a〜3hは、必ずしも各受信端子Bに一対一で対応する必要はなく、複数の受信端子に対して一つの受信手段を対応させることもできる。光信号を用いる場合には、受信手段3a〜3hは受光器とすることができ、受信端子Bで検出された光信号を光ファイバ等の導光体を介して受光する。なお、受信端子Bを光検出器とする場合には、受信部3は受信信号を受信するターミナルとすることができる。
【0071】
送信部2の送信制御及び受信部3の受信制御は、制御手段4からの制御信号に基づいて行うことができる。例えば、送信と受信とを同期させて、送信端子と受信端子の組み合わせを定めることができる。この送信端子と受信端子の組み合わせは、あらかじめ記憶手段(図示していない)等に設定しておくことができる。また、制御手段は、送信と受信のタイミングを制御し、同一の受信端子により、複数の送信端子から送られる信号を区別して受信することができる。
【0072】
増幅器5は、受信部で受信した検出信号を信号増幅する。この信号増幅では、対数増幅や、測定距離に基づく増幅率の変更によりダイナミックレンジを拡大することができる。
【0073】
本発明の送・受信端配置において、各測定点での測定信号の信号強度のばらつきがなければ信号強度の変化は10倍程度である。信号強度の変化がこの程度であれば、増幅器のゲインを変更する必要はないが、光源強度や検出器感度、生体の吸収の度合いが異なると、全体としての信号強度変化は100程度まで広がる。この程度の信号強度の差は、光電子倍増管の検出範囲内であるが、A/D変換において信号強度の最も弱いものは、分解能が不足してS/N比が劣化し、実質的に測定することができない。そこで、本発明では、対数増幅や、測定距離に基づく増幅率の変更によりダイナミックレンジを拡大することにより、強度の低い信号についても測定可能とすることができる。
【0074】
生体計測において、生体内で散乱して得られる透過光の光量変化は、生体による吸収量に対して対数的に変化するため、対数処理を行うことで光学吸収率(アブソーバンス)により算出され表示される。しかし、通常は、A/D変換を行った後にデジタル処理されるため、光検出器で得られる信号の信号増幅に余裕があったとしても、最大光量はリニアアンプで制限されダイナミックレンジは狭くなる。このリニアアンプを対数アンプ等の信号が大きくなれば圧縮されるような非線形増幅に置き換えることにより、ダイナミックレンジを拡大することができる(対数増幅以外の非線形増幅の場合には、光学吸収率との演算とは異なるため、別途演算が必要となる)。
【0075】
また、送・受信端子距離を異にする測定において、その送・受信端子距離を異にする送・受信端子の組み合わせについて、あらかじめ測定して受信信号の信号強度を測定して信号強度の比率を求めておき、その比率に基づいて検出器あるいは増幅器の増幅率を変化させて各送・受信端子の組み合わせの受信信号の信号強度が同程度となるようにし、実質的にダイナミックレンジを拡大する。この検出器や増幅器の増幅率変化は、制御手段4からの制御により行うことができる。
【0076】
本発明の実施態様によれば、測定点数を増加させることができる他、送・受信端子距離によって測定深さを変更することができるため、位置情報の他に深さ方向の情報を得ることができる。
【0077】
従来の分布測定では、送受信端が置かれている位置を測定点とすることはできない。これに対して、本発明によれば、送受信端が置かれている位置についても測定点とすることができる。
【0078】
光での生体計測の場合、測定点を送受の中間に置いているが、実際には送受を含む楕円領域を代表して測定点とし、送受信端が置かれている位置も測定領域内となっている。しかし、この送受信端の真下は中央部に対して感度が低く、ほとんど情報を得ることができない。そのため、従来の分布測定では、送受信端の真下の情報が得られない。本発明によれば、送受信端が置かれている位置が測定点となるような送受信端の距離を選択することにより、送受信端が置かれている位置を測定点とすることができる。
【0079】
また、上記説明では、生体計測を例として説明しているが、鉱物探査など地下探査や水面下探査などに適用することもできる。
【0080】
【発明の効果】
以上説明したように、本発明によれば、分布測定において、異なる送・受信端子間距離による測定を可能とすることができ、また、測定点を高密度化し、より均質なデータを得ることができる。
【図面の簡単な説明】
【図1】本発明の分布測定、及び生体計測説明するための例示図である。
【図2】送・受光間距離と受光信号の信号強度との関係を模式的に表した図である。
【図3】本発明による測定点を説明するための図である。
【図4】本発明による測定点を説明するための図である。
【図5】本発明の送信端子と受信端子の他の配置例を示す図である。
【図6】本発明の生体計測装置の一構成例を説明するための概略図である。
【図7】従来の送信端子と受信端子の等距離配置を説明するための図である。
【符号の説明】
1…送受信端子配置、2…送信部、2a〜2h…送信手段、3…受信部、3a〜3h…受信手段、4…制御手段、5…増幅器、6…A/D変換器、7…演算手段、8…表示手段、10…生体計測装置、A…送信端子、B…受信端子、C…測定点。
[0001]
BACKGROUND OF THE INVENTION
The present invention is a distribution measurement that measures a distribution of signal propagation in a measurement target region by receiving a signal transmitted to the measurement target and passing through the measurement target. apparatus About. When the measurement target is a living body, living body measurement that measures the distribution of specific pigments inside the living body apparatus Can be applied to biodiagnosis.
[0002]
[Prior art]
As a distribution measurement method for measuring the distribution of signal propagation in the measurement target area, a method is known in which a signal transmitted to the measurement target, a signal passing through the measurement target is received, and the distribution in the measurement target is measured from the received signal. ing. In such a distribution measurement method, a biological light measurement method is known in which light is transmitted to and received from a living body to acquire information inside the living body. In this living body light measurement method, for example, the living body is irradiated with light of infrared wavelengths from visible light, and scattered light or transmitted light that has passed through the living body is separated from the irradiation position by a predetermined distance (for example, about 10 to 50 mm). Light is received at the position, and the inside of the living body is measured from the received light.
[0003]
Examples of clinical applications based on biological light measurement include measurement of the activation state of cerebral oxygen metabolism and measurement of changes in local oxygen metabolism when the head is a measurement target. In such a measurement, a greater effect can be obtained by two-dimensionally displaying the brain function or the like. In such an optical imaging apparatus used for biological light measurement, a transmission terminal and a reception terminal are arranged, for example, at a distance of about 3 cm alternately at regular intervals like a checkerboard, and a combination of the most adjacent transmission terminal and reception terminal. Together The measurement is performed between.
[0004]
In the combination of the transmission terminal and the reception terminal that are separated by the same distance, the number of combinations of the transmission terminal and the reception terminal can be obtained by alternately arranging the transmission terminal and the reception terminal in a square lattice pattern as in the above arrangement. The You can get the most.
[0005]
A biophotometer device having a configuration in which transmission terminals and reception terminals are alternately arranged at equal intervals in this way is disclosed in Patent Document 1, for example.
[0006]
[Patent Document 1]
JP-A-9-19408 (paragraph number 0013)
[0007]
[Problems to be solved by the invention]
In the distribution measurement, information corresponding to the distance between the transmission terminal and the reception terminal can be acquired. For example, in biological light measurement, there is a relationship between the distance between a light transmitting terminal and a light receiving terminal and information in the depth direction obtained from the living body, and the longer the distance between light transmitting and receiving, the deeper the living body is. Position information can be acquired. Therefore, in the distribution measurement, more information can be acquired by using a combination in which the transmission terminal and the reception terminal have different distances.
[0008]
On the other hand, when the measurement target has strong scattering and attenuation properties like a living body, the intensity of the signal passing through the measurement target decreases exponentially with distance. For this reason, when the distance between the transmission terminal and the reception terminal is increased, the signal strength of the reception signal is reduced and detection is difficult. In the conventional arrangement in which transmission terminals and reception terminals are alternately arranged at regular intervals, when the distance between the most adjacent transmission terminal and reception terminal is P, the distance between the next adjacent transmission / reception terminals Is √5 · P.
[0009]
FIG. 7 is a diagram for explaining equidistant arrangement of the transmission terminal and the reception terminal. FIG. 7A shows a transmission / reception terminal in which eight transmission terminals A (indicated by black circles in the figure) and eight reception terminals B (indicated by white circles in the figure) are alternately arranged at equal distances. The arrangement is shown. In this arrangement, transmission / reception is usually performed between the combination of the closest transmitting terminal and receiving terminal. At this time, if the measurement point is defined as an intermediate position between the transmission terminal and the reception terminal, the combination of the three reception terminals in the closest positional relationship with the transmission terminal A in the figure. In Accordingly, the measurement points are positions indicated by a, b, and c in the figure.
[0010]
FIGS. 7B and 7C show the distance between the transmission terminal and the reception terminal in this equidistant arrangement. When the arrangement pitch is P, the distance from the transmitting terminal A to the nearest receiving terminal B11 is P, the distance to the next receiving terminal B12 is √5 · P, and then The distance to the receiving terminal B13 at a close position is √13 · P. Therefore, the ratio of the next closest distance to the closest distance P is √5 times, and the ratio of the next closest distance is √13 times.
[0011]
For example, in living body measurement using near-infrared light, the detection signal intensity when the distance between the transmission and reception terminals is 3√5 cm is 1 / 100th of the detection signal intensity when the closest distance is 3 cm. It becomes. Since the difference in signal strength between the detection signal strength due to the nearest neighbor and the detection signal strength due to the next proximity is so great that it exceeds the dynamic range of the signal amplifier, the measurement is practically impossible.
[0012]
For this reason, in the conventional distribution measurement, the distance between the transmission terminal and the reception terminal is set to be equidistant so as to be closest to each other, and the combination of the transmission terminal and the reception terminal with different distances is not used. As a result, the spatial resolution of the measurement point depends on the closest distance between the transmission terminal and the reception terminal and cannot be increased. FIG. 7D shows the arrangement state of the measurement points. In the transmission / reception arrangement having eight transmission terminals and eight reception terminals as shown in the figure, there are 24 points.
[0013]
In the measurement using near infrared light, the closest distance was set to 3 cm. In order to measure the blood volume of the brain from the surface, it is necessary to detect a signal having a depth of about 1 cm to 2 cm. This is because it is necessary to set the distance between the light transmitting end and the light receiving end to 2.5 cm or more in order to detect a signal of this depth to some degree in adult measurement. In normal brain measurement, a distance of about 3 cm is most often used.
[0014]
As described above, the conventional distribution measurement has a problem that it cannot be measured at different distances between the transmission and reception terminals. Further, there is a problem that it is impossible to obtain a substantially uniform and high-density measurement point arrangement.
[0015]
Therefore, the present invention aims to solve the above-described conventional problems and to enable measurement with different distances between transmission and reception terminals in distribution measurement, and to make the measurement points uniform and high density. Objective.
[0016]
[Means for Solving the Problems]
The present invention arranges a plurality of transmission terminals and reception terminals in a planar shape, and measures a signal propagating in the measurement target area between the transmission terminal and the reception terminal, thereby measuring distribution relating to signal propagation in the measurement target area. apparatus , Transmission / reception is performed using a combination of a transmission terminal and a reception terminal having different transmission / reception end distances, and signals having different propagation distances are detected from the reception terminals. Thereby, the measured value of the distance between transmission / reception terminals different in the measurement object is acquired. Also, by making the distance between the transmission and reception terminals different, the arrangement of the measurement points in the measurement target area is increased in density and homogenized.
[0017]
In the combination of the transmission terminal and the reception terminal, the different transmission / reception end distance is set to be less than twice the nearest transmission / reception end distance used for measurement. The difference in the intensity ratio of received signals can be reduced. Thereby, signal amplification becomes easy and the S / N ratio can be improved.
[0018]
Logarithmic amplification can be used for signal amplification of the detection signal received at the receiving terminal. By logarithmically amplifying the detection signal, it is possible to prevent the resolution and the S / N ratio from being lowered even when the dynamic range of the detection signal is narrowed due to A / D conversion.
[0019]
Further, in the signal amplification of the detection signal received at the receiving terminal, an amplification factor for amplifying the detection signal is set based on the transmission / reception end distance. In measurements with different distances, the amplification factor of the detector or amplifier is changed at a ratio predicted in advance. This compensates for the difference in received signal strength due to the transmission / reception end distance and substantially expands the dynamic range.
[0020]
In one form of arrangement of the transmission terminal and the reception terminal, a combination of two continuous transmission terminals and two continuous reception terminals are arranged in a grid at a predetermined angle, and adjacent arrangements in the grid direction are aligned with each other. Transmission / reception is performed using a combination of transmission / reception terminals that are sequentially shifted in the same direction by the grid points and sandwiching one terminal in the grid direction and a combination of transmission / reception terminals oblique to the grid direction.
[0021]
In the form of a square lattice as this lattice, the transmission terminal and the reception terminal are arranged in a lattice form in the row direction and the column direction in which two continuous transmission terminals and two continuous transmission terminals are arranged. The adjacent arrays in the row direction and the column direction are sequentially shifted in the same direction by one lattice point. In the arrangement of the transmission terminal and the reception terminal, a combination of a transmission / reception terminal sandwiching one terminal in the row direction and the column direction and a combination of a transmission / reception terminal oblique to the row direction and the column direction are used. Send and receive.
[0022]
By combining these two transmission / reception terminals, the transmission / reception end distance can be made different, and the arrangement within twice the nearest transmission / reception end distance used for measurement is possible. A plurality of combinations of transmission / reception terminal combinations oblique to the row direction and the column direction can be set by changing the inclination angle.
[0023]
Distribution measurement of the present invention apparatus Then, the signal used for measurement is not limited to an optical signal, and any signal having scattering properties in a measurement region, such as a signal having wave properties such as radio waves and sound waves, can be used. In addition, when the plane on which the transmission source and the reception source are installed is particularly poor in signal transmission as compared with other regions, the distribution of the parts avoiding the above-described aspects and the poor signal transmission can be measured. When an optical signal is used as a measurement signal, a light source or an optical fiber connected to the light source can be used with the transmission terminal as the light transmission terminal, and connected to the photodetector or the light detector with the reception terminal as the light reception terminal. An optical fiber can be used.
[0024]
Accordingly, the arrangement of the transmission terminal and the reception terminal in this case is an arrangement of a light source or an optical fiber end connected to the light source and an optical fiber end connected to the photodetector or the photodetector.
[0025]
Also, the above distribution measurement apparatus Can be applied to living body measurement using a measurement object as a living body, and a living body can be measured using light by using a transmission terminal as a light transmission terminal and a reception terminal as a light reception terminal.
[0026]
A living body measuring apparatus according to the present invention is a living body measuring apparatus that measures a living body by measuring a light signal propagating through a living body between a light transmitting terminal and a light receiving terminal by arranging a plurality of light transmitting terminals and light receiving terminals in a planar shape. The light transmitting terminal and the light receiving terminal are arranged in a grid pattern in the row direction and the column direction in a combination of two continuous light transmission terminals and two continuous light transmission terminals, and in the row direction and the column direction. Adjacent arrays are sequentially shifted in the same direction by one grid point. In the row end and the column end of the planar arrangement of the light transmitting terminal and the light receiving terminal, the number of light transmitting terminals or light receiving terminals arranged may be one. In addition, the grating | lattice used for arrangement | positioning of a transmission terminal (light transmitting terminal) and a receiving terminal (light receiving terminal) is not restricted to a square lattice.
[0027]
According to the present invention, by using a combination of transmission / reception terminals sandwiching one terminal in the row direction and the column direction and a combination of transmission / reception terminals oblique to the row direction and the column direction, this 2 The transmission / reception end distance can be varied by combining two transmission / reception terminals. In addition, the measurement point at the midpoint of the transmission / reception terminal is the position on the grid point where the transmission / reception terminal is arranged in the case of a combination of transmission / reception terminals with one terminal in between in the row and column directions. In the case of the combination of the transmission / reception terminals oblique to the row direction and the column direction, the positions are shifted from the lattice points, so that the arrangement density of measurement points can be increased and the arrangement can be made without omission.
[0028]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0029]
FIG. 1 shows the distribution measurement of the present invention. apparatus And biometrics apparatus It is an illustration figure for demonstrating.
[0030]
FIG. 1 shows an arrangement example of transmission terminals and reception terminals. Here, an example in which 17 transmission terminals and 19 reception terminals are arranged is shown, and the arrangement position of each terminal is a grid point with an interval of pitch P.
[0031]
Transmission terminal A (indicated by black circles in the figure) and reception terminal B (indicated by white circles in the figure) are combinations in which two continuous transmission terminals A and two continuous transmission terminals B are arranged. Are arranged in a grid pattern in the row direction and the column direction, and adjacent arrays in the row direction and the column direction are sequentially shifted in the same direction by one grid point.
[0032]
For example, if the first row to the sixth row are arranged from top to bottom in the arrangement in the figure, in the first row, two reception terminals, two transmission terminals, and two reception terminals are arranged in the row direction from the left end. It is arranged in the (lateral direction). In the second row, one transmission terminal, two reception terminals, two transmission terminals, and one reception terminal from the left end are arranged in the row direction (lateral direction). The terminal arrangement of the second row corresponds to an arrangement in which the terminal arrangement of the first row is shifted by one grid in the right direction of the row (or an arrangement shifted by three grids in the left direction of the row).
[0033]
In addition, when the end becomes blank due to the shift of the row (the left end portion in the second row), the transmission terminal or the reception terminal is set based on the arrangement of the second column and the third column. Deploy. For example, if both the second and third columns are transmission terminals, a reception terminal is arranged, and if both are reception terminals, a transmission terminal is arranged, and the arrangement of the second and third columns is If they are different, the same type of terminals as in the second row are arranged. In the example of the second row, since both the second column and the third column are reception terminals, transmission terminals are arranged.
[0034]
Furthermore, in the third row, two transmission terminals, two reception terminals, and two transmission terminals from the left end are arranged in the row direction (lateral direction). This terminal arrangement in the third row corresponds to an arrangement in which the terminal arrangement in the second row is shifted by one grid in the right direction of the row (or an arrangement shifted by three grids in the left direction of the row). Similarly, in the other rows below, the terminal arrangement of the adjacent row on the upper side is arranged by shifting by one grid in the right direction of the row (or by shifting by 3 grids in the left direction of the row).
[0035]
This terminal arrangement is the same in the column direction. For example, in the arrangement in the figure, from the first column to the sixth column from the left to the right, in the first column, one receiving terminal, two transmitting terminals, two receiving terminals, one from the upper end The transmission terminals are arranged in the column direction (vertical direction). In the second column, two reception terminals, two transmission terminals, and two reception terminals from the upper end are arranged in the row direction (vertical direction). The terminal arrangement in the second column corresponds to an arrangement in which the terminal arrangement in the first column is shifted by one grid in the lower direction of the column (or an arrangement shifted by three grids in the upper direction of the column).
[0036]
In addition, when the column is shifted and the end becomes blank (second Column In the eye, a transmission terminal or a reception terminal is arranged on the upper end portion) based on the arrangement of the second row and the third row. For example, if both the second and third rows are transmission terminals, a reception terminal is arranged. If both are reception terminals, a transmission terminal is arranged, and the second and third rows are arranged. If they are different, terminals of the same type as those in the second row are arranged. In the example of the second column, since the arrangement of the second row and the third row is different, the same type of receiving terminal as that of the second row is arranged.
[0037]
Further, in the third column, one transmission terminal, two reception terminals, two transmission terminals, Pieces Receiving terminals are arranged in the column direction (vertical direction). This terminal arrangement in the third column corresponds to an arrangement in which the terminal arrangement in the second column is shifted by one grid in the lower direction of the column (or an arrangement shifted by three grids in the upper direction of the row). Similarly, the other columns below are also arranged by shifting the terminal arrangement of adjacent columns on the left side by one grid downward in the column (or by shifting three grids upward in the column).
[0038]
FIG. 1B is a diagram for explaining the distance between transmission and reception between the transmission terminal and the reception terminal in this transmission / reception end arrangement. In FIG. 1B, there are a receiving terminal B1, a receiving terminal B2, and a receiving terminal B3 as receiving terminals to be combined with the transmitting terminal A. The receiving terminal B2 is a receiving terminal arranged in the row direction and the column direction, and the receiving terminal B1 and the receiving terminal B3 are receiving terminals arranged in an oblique direction with respect to the row direction and the column direction. Of course, even when the first terminals are not continuous and are arranged alone, an array having the same effect can be provided by performing the same operation.
[0039]
Assuming that the pitch between the terminals is p, the distance between transmission and reception between the transmission terminal A and the reception terminal B2 is 2 · p. Further, the transmission / reception distance between the transmission terminal A and the reception terminal B1 is √2 · p, and the transmission / reception distance between the transmission terminal A and the reception terminal B3 is √5 · p. The transmission / reception distance √2 · p between the transmission terminal A and the reception terminal B1 is used as the closest measurement distance.
[0040]
FIG. 1C shows a comparison between the transmission / reception distance between the transmission terminal and the reception terminal. Here, when the distance between the transmission terminal A and the reception terminal B1 is represented by the distance √2 · p as a reference (the ratio is 1), the transmission / reception distance between the other transmission terminals and the reception terminal is expressed as follows: The distance between transmission and reception with the receiving terminal B2 is represented by a ratio of √2, and the distance between transmission and reception between the transmitting terminal A and the receiving terminal B3 is represented by a ratio of √5 / √2, The ratio is 1: √2: (√5 / √2). Therefore, according to this transmission / reception terminal arrangement, the ratio of the distances between transmissions / receptions can be made within twice the combination of the shortest distances where uniform arrangement is possible.
[0041]
FIG. 1D shows the ratio of the distance between transmission and reception in a conventional transmission / reception terminal arrangement for comparison. According to the conventional transmission / reception terminal arrangement, the ratio of each transmission / reception distance is 1: √5: √13 from the shortest, and the ratio of each transmission / reception distance other than the shortest distance is 2 of the shortest distance. It will exceed twice.
[0042]
The signal strength of the received signal received at the receiving terminal depends on the distance between transmission and reception. For example, in the case of a strong scatterer such as a living body, the signal intensity decreases exponentially with respect to the distance between light transmission and light reception. When measured with near-infrared light in the conventional equidistant arrangement, the signal intensity of the received light signal at the next closest light receiving terminal (the ratio of the distance between the transmitting and receiving light is √5) is the closest distance (about 3 cm). The signal intensity of the received light signal is reduced to one hundredth.
[0043]
FIG. 2 schematically shows the relationship between the distance between light transmission and reception and the signal intensity of the light reception signal. FIG. 2 (a) shows the relationship between the distance between the light transmission and reception and the signal intensity of the light reception signal according to the present invention, and FIG. Shows the relationship. In FIG. 2, the hatched portion indicates a region where the ratio of the distance between the light transmission and light reception exceeds 2.
[0044]
According to the arrangement of the transmission / reception terminals of the present invention, three types of transmission / reception distances can be taken in a region where the ratio of the distances between transmissions / receptions is twice. If the ratio of the distance between the transmission and reception is within the doubled range, even if the signal strength of the received signal is the smallest, it can be sufficiently amplified by the amplifier.
[0045]
On the other hand, FIG. of According to the conventional equidistant arrangement, only one type of distance between transmission and reception can be taken in an area where the ratio of the distance between transmission and reception is double. In a region where the ratio of the distance between each transmission and reception exceeds twice, the signal strength of the received signal becomes extremely small, and it is difficult to obtain a good S / N ratio even by signal amplification.
[0046]
Therefore, according to the arrangement of the transmission / reception terminals of the present invention, a plurality of reception signals having different transmission / reception distances can be obtained.
[0047]
FIG. 3 is a diagram for explaining measurement points according to the present invention.
[0048]
The measurement representative point on the surface obtained by the combination of the transmission terminal and the reception terminal is indicated by an intermediate position between the transmission terminal and the reception terminal from the symmetry of propagation. In the case of the conventional equidistant arrangement, the measurement point is limited to the midpoint of the lattice side where the transmission terminal and the reception terminal are arranged, and the arrangement density cannot be increased. On the other hand, according to the present invention, it is possible to arrange at the lattice points where the transmitting and receiving ends are arranged, and the measurement density can be increased without fail.
[0049]
According to the arrangement of the transmission / reception terminals of the present invention, a combination of three types of transmission / reception terminals can be used. The first transmission / reception terminal combination is a combination of transmission / reception terminals with one terminal in between in the row direction and the column direction, and the second transmission / reception terminal combination is in the row direction and the column direction. This is a combination of transmission / reception terminals in an oblique 45 degree direction. The third combination is a combination in a direction of about 63 degrees (about 27 degrees) obliquely. Therefore, according to the arrangement of the transmission / reception terminals of the present invention, the arrangement of measurement points can be increased by a combination of three types of transmission / reception terminals.
[0050]
FIG. 3A shows measurement points obtained by a combination of transmission / reception terminals with one terminal interposed between the row direction and the column direction. For example, the receiving terminals in the row direction and the column direction with respect to the transmitting terminal A1 are the receiving terminals B21, B22, B23, and B24 at the next position where one adjacent transmitting terminal or receiving terminal is skipped. Measurement points (indicated by crosses in the figure) obtained by the combination of these reception terminals and transmission terminal A1 are C21, C22, C23, and C24. These measurement points are positions on the grid where the transmission terminals or the reception terminals are arranged. For the transmission terminal A2, a measurement point can be obtained in the same manner by combination with the reception terminal.
[0051]
FIG. 3B shows measurement points obtained by a combination of transmission / reception terminals in a 45-degree direction with respect to the row direction and the column direction. For example, the receiving terminals oblique to the row direction and the column direction with respect to the transmitting terminal A1 are the receiving terminals B11 and B12. Measurement points (indicated by crosses in the figure) obtained by the combination of these reception terminals and transmission terminal A1 are C11 and C12. These measurement points are shifted from the lattice on which the transmission terminal or the reception terminal is arranged. For the transmission terminal A2, a measurement point can be obtained in the same manner by combination with the reception terminal.
[0052]
Note that the diagonal receiving terminal shown in FIG. 3B shows an example in which the distance between transmission and reception is √2 · p, but it is different from the receiving terminal having a transmission / reception distance of √5 · p. Similarly, for the combination, measurement points can be obtained at positions shifted from the lattice points, and these points are different from the measurement points shown in FIG.
[0053]
FIG. 4 shows measurement points obtained by combining the two types of transmission / reception terminals shown in FIG. FIG. 4A shows measurement points C21, C22, C23, C24, and C11, C12 obtained by the transmission terminal A1 in FIGS. 3A and 3B.
[0054]
FIG. 4B shows measurement points in the case of a configuration with 17 transmission terminals and 19 reception terminals. According to this configuration, 57 measurement points can be obtained in total (including the third combination). This 77). Note that the measurement points numbered 1 to 32 (indicated by crosses in the figure) are the first type of measurement points arranged on the lattice points described above, and the numbers 33 to 57 are assigned numbers. The measured measurement points (indicated by crosses in the figure) are the second type of measurement points arranged in addition to the lattice points described above. Furthermore, the number of measurement points can be increased and the distribution density can be increased by adding measurement points in combination with a reception terminal having a transmission / reception distance of √5 · p.
[0055]
FIG. 5 shows another arrangement example of the transmission terminal and the reception terminal. Here, an example in which 16 transmission terminals and 17 reception terminals are arranged is shown, and the arrangement position of each terminal is a grid point with an interval of pitch P.
[0056]
Transmission terminal A (indicated by black circles in the figure) and reception terminal B (indicated by white circles in the figure) are combinations in which two continuous transmission terminals A and two continuous transmission terminals B are arranged. Are arranged at each vertex of a lattice made up of a combination of equilateral triangles, and the adjacent arrays in the lattice direction are sequentially shifted in the same direction by one lattice point (distance is 1/2 lattice, the same applies hereinafter). To do.
[0057]
For example, if the first row to the sixth row are arranged from top to bottom in the arrangement in the figure, in the first row, there are two transmission terminals, two reception terminals, and two transmission terminals from the left end in the grid direction. (In this case, the horizontal direction). In the second row, two transmission terminals, two reception terminals, and one transmission terminal from the left end are arranged in the lattice direction (here, the horizontal direction). This terminal arrangement in the second row corresponds to an arrangement in which the terminal arrangement in the first row is shifted by one grid point (or three grid points).
[0058]
In addition, when the end portion becomes blank due to the shift of the arrangement (for example, the left end portion in the third row), the transmission terminal or the reception is performed based on the arrangement of the second column and the third column. Arrange the terminals. For example, if both the second and third columns are transmission terminals, a reception terminal is arranged, and if both are reception terminals, a transmission terminal is arranged, and the arrangement of the second and third columns is If they are different, the same type of terminals as in the second row are arranged. In the example of the third row, since the second column and the third column are both transmission terminals, a reception terminal is arranged.
[0059]
Similarly, in the other rows below, the terminal arrangement of the adjacent row on the upper side is arranged by shifting by one grid point in the right direction of the row (or by shifting by 3 grid points in the left direction of the row). This terminal arrangement is the same in the column direction. Of course, the first terminals can be provided alone without being continuously arranged.
[0060]
FIG. 5B is a diagram for explaining the distance between the transmission and reception between the transmission terminal and the reception terminal in this transmission / reception end arrangement. In FIG. 5B, there are a receiving terminal B1, a receiving terminal B2, and a receiving terminal B3 as receiving terminals combined with the transmitting terminal A. The receiving terminal B2 is a receiving terminal arranged in the lattice direction, and the receiving terminal B1 and the receiving terminal B3 are receiving terminals arranged in an oblique direction with respect to the lattice direction. Of course, the first terminals are not continuous and can be arranged as a single unit.
[0061]
Assuming that the pitch between the terminals is p, the distance between transmission and reception between the transmission terminal A and the reception terminal B2 is 2 · p. Further, the distance between transmission and reception between the transmission terminal A and the reception terminal B1 is √3 · p, and the distance between transmission and reception between the transmission terminal A and the reception terminal B3 is √7 · p. The closest distance used for measurement is between the transmission terminal A and the reception terminal B1.
[0062]
FIG. 5C shows a comparison between the transmission / reception distance between the transmission terminal and the reception terminal. Here, when the closest distance between the transmission terminal A and the reception terminal B1 is used as a reference (ratio 1), the transmission / reception distance between the other transmission terminals and the reception terminal is expressed as the transmission terminal A and the reception terminal. The distance between B2 and the transmission / reception is expressed by a ratio of 2 / √3, and the transmission / reception distance between the transmission terminal A and the reception terminal B2 and between the transmission terminal A and the reception terminal B3 is about 1.15 as well as 1.53 It is represented by the ratio of Therefore, according to this transmission / reception terminal arrangement, the ratio of the distances between transmissions / receptions can be made within twice the combination of the shortest distances where uniform arrangement is possible.
[0063]
Therefore, as shown in FIG. 3, FIG. 4, and FIG. 5, according to the transmission / reception terminal combination of the present invention, a plurality of different transmission / reception distances can be obtained. The measurement point can be obtained at the position, and the measurement point density can be increased.
[0064]
In addition, according to the example of the arrangement of the transmission terminal and the reception terminal shown in FIG. 1, the pitch width of the grid of 17 transmission terminals and 19 reception terminals is about 1 with respect to the pitch width of 3 cm of the conventional arrangement. .8 cm, and each side is within a 9 cm region.
[0065]
The pitch width of 1.8 cm is set so that the average value of the two transmission / reception distances is 3 cm in the conventional arrangement when the ratio of different transmission / reception distances is 1: √2. Can be obtained. According to this pitch width (1.8 cm), the nearest transmission / reception distance is about 2.5 cm (1.8 cm × √2), and the next nearest transmission / reception distance is about 3.6 cm (1 cm). .8 cm × 2). Comparing the conventional method of 3 cm pitch and the case of the present invention of 1.8 cm pitch in the same area of 9 cm × 9 cm, the transmission / reception end is composed of 8 transmission terminals and 8 reception terminals in the conventional type. On the other hand, in the present invention, 17 transmission terminals and 19 reception terminals can be arranged at high density. Also, the measurement point is the present invention. According to the conventional measurement point by using the closest measurement point and the next proximity measurement point, It is 57 points with respect to 24 points, and more than double measurement points can be obtained.
[0066]
Next, a configuration example of a biological measurement apparatus in which the distribution measurement of the present invention is applied to biological measurement will be described with reference to FIG.
[0067]
In FIG. 6, the biological measurement apparatus 10 includes a transmission / reception terminal arrangement 1 including a plurality of transmission terminals A and a plurality of reception terminals B, a transmission unit 2 that transmits transmission signals of the plurality of transmission terminals A, and a plurality of reception terminals B. A receiving unit 3 that receives the detected received signal, an amplifier 5 that amplifies the received signal, an A / D converter 6 that converts the amplified received signal into a digital signal, and a predetermined signal based on the obtained signal An arithmetic means 7 for performing signal processing and a display means 8 are provided. Further, a control unit 4 for controlling the transmission unit 2, the reception unit 3, and the amplifier 5 is provided.
[0068]
The transmission / reception terminal arrangement 1 includes a plurality of transmission terminals A and a plurality of reception terminals B, is arranged as described above, and is attached to a measurement target such as a living body. When performing biological measurement using an optical signal, the transmission terminal A is, for example, a light source or an optical fiber connected to the light source, and the reception terminal B is, for example, a photodetector or an optical fiber connected to the photodetector.
[0069]
The transmission unit 2 is a part that transmits a transmission signal to the transmission terminal A, and includes transmission units 2a to 2h. Note that the transmission units 2a to 2h do not necessarily correspond to each transmission terminal A on a one-to-one basis, and one transmission unit can correspond to a plurality of transmission terminals. When using an optical signal, the transmission means 2a to 2h can be light sources, emit light of a predetermined wavelength, and are transmitted to the transmission terminal A via a light guide such as an optical fiber. When the transmission terminal A is a light source, the transmission unit 2 can be a drive unit that drives the light source or a control unit that controls light emission.
[0070]
The reception unit 3 is a part that receives a reception signal from the reception terminal B, and includes reception units 3a to 3h. The receiving units 3a to 3h do not necessarily correspond to each receiving terminal B on a one-to-one basis, and one receiving unit can be made to correspond to a plurality of receiving terminals. In the case of using an optical signal, the receiving means 3a to 3h can be light receivers and receive the optical signal detected at the receiving terminal B through a light guide such as an optical fiber. When receiving terminal B is a photodetector, receiving unit 3 can be a terminal that receives a received signal.
[0071]
The transmission control of the transmission unit 2 and the reception control of the reception unit 3 can be performed based on a control signal from the control unit 4. For example, a combination of a transmission terminal and a reception terminal can be determined by synchronizing transmission and reception. The combination of the transmission terminal and the reception terminal can be set in advance in storage means (not shown). Further, the control means controls the timing of transmission and reception, and can distinguish and receive signals sent from a plurality of transmission terminals by the same reception terminal.
[0072]
The amplifier 5 amplifies the detection signal received by the receiving unit. In this signal amplification, the dynamic range can be expanded by logarithmic amplification or changing the amplification factor based on the measurement distance.
[0073]
In the transmission / reception end arrangement of the present invention, if there is no variation in the signal strength of the measurement signal at each measurement point, the change in signal strength is about 10 times. If the change in the signal intensity is about this level, it is not necessary to change the gain of the amplifier. However, if the light source intensity, the detector sensitivity, and the degree of absorption of the living body are different, the overall signal intensity change spreads to about 100. This difference in signal intensity is within the detection range of the photomultiplier tube, but the signal with the weakest signal intensity in A / D conversion is insufficient in resolution and the S / N ratio deteriorates, so that it is practically measured. Can not do it. Therefore, in the present invention, it is possible to measure even a low-intensity signal by expanding the dynamic range by logarithmic amplification or changing the amplification factor based on the measurement distance.
[0074]
In living body measurement, the change in the amount of transmitted light obtained by scattering in the living body changes logarithmically with respect to the amount absorbed by the living body. Therefore, logarithmic processing is performed to calculate and display the optical absorption rate (absorbance). Is done. However, since digital processing is usually performed after A / D conversion, even if there is a margin in signal amplification of the signal obtained by the photodetector, the maximum light amount is limited by the linear amplifier and the dynamic range becomes narrow. . The dynamic range can be expanded by replacing this linear amplifier with non-linear amplification that is compressed when the signal of the logarithmic amplifier becomes large (in the case of non-linear amplification other than logarithmic amplification, Since it is different from the calculation, a separate calculation is required).
[0075]
Also, in the measurement with different transmission / reception terminal distances, measure the signal strength of the received signal and measure the signal strength ratio for the combination of transmission / reception terminals with different transmission / reception terminal distances. Based on the ratio, the amplification factor of the detector or the amplifier is changed so that the signal strength of the reception signal of the combination of each transmission / reception terminal becomes substantially the same, and the dynamic range is substantially expanded. The gain change of the detector and the amplifier can be controlled by the control from the control means 4.
[0076]
According to the embodiment of the present invention, since the number of measurement points can be increased and the measurement depth can be changed according to the transmission / reception terminal distance, information in the depth direction can be obtained in addition to the position information. it can.
[0077]
In the conventional distribution measurement, the position where the transmission / reception end is placed cannot be a measurement point. On the other hand, according to the present invention, the position where the transmission / reception end is placed can also be set as a measurement point.
[0078]
In the case of biological measurement with light, the measurement point is placed in the middle of transmission / reception, but actually the measurement point is represented by an elliptical area including transmission / reception, and the position where the transmission / reception end is located is also within the measurement area. ing. However, just below this transmission / reception end, the sensitivity is low with respect to the central portion, and information can hardly be obtained. Therefore, in the conventional distribution measurement, information directly below the transmission / reception end cannot be obtained. According to the present invention, by selecting the distance between the transmission / reception end such that the position where the transmission / reception end is placed becomes the measurement point, the position where the transmission / reception end is placed can be set as the measurement point.
[0079]
In the above description, biological measurement is described as an example. However, the present invention can also be applied to underground exploration such as mineral exploration and subsurface exploration.
[0080]
【The invention's effect】
As described above, according to the present invention, in the distribution measurement, it is possible to measure with different distances between transmission and reception terminals, and it is possible to obtain more uniform data by increasing the density of measurement points. it can.
[Brief description of the drawings]
FIG. 1 is an exemplary diagram for explaining distribution measurement and living body measurement according to the present invention.
FIG. 2 is a diagram schematically showing a relationship between a distance between light transmission and reception and a signal intensity of a light reception signal.
FIG. 3 is a diagram for explaining measurement points according to the present invention.
FIG. 4 is a diagram for explaining measurement points according to the present invention.
FIG. 5 is a diagram showing another example of arrangement of transmission terminals and reception terminals according to the present invention.
FIG. 6 is a schematic diagram for explaining a configuration example of a living body measurement apparatus of the present invention.
FIG. 7 is a diagram for explaining a conventional equidistant arrangement of a transmission terminal and a reception terminal.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Transmission / reception terminal arrangement, 2 ... Transmission part, 2a-2h ... Transmission means, 3 ... Reception part, 3a-3h ... Reception means, 4 ... Control means, 5 ... Amplifier, 6 ... A / D converter, 7 ... Calculation Means 8 ... Display means 10 ... Biometric measuring device A ... Transmission terminal B ... Reception terminal C ... Measurement point

Claims (4)

複数の送信端子及び受信端子を面状に配置し、送信端子と受信端子間において測定対象を伝搬する信号を測定することにより、測定対象領域内の信号伝搬にかかる分布を測定する分布測定装置であって、
前記送信端子及び受信端子の配置は、連続する2個の送信端子と連続する2個の受信端子を配置する組み合わせを所定角度で格子状に配列し、格子方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらし、格子方向において間に1端子を挟む送・受信端子の組み合わせと、格子方向に対して斜め方向の送・受信端子の組み合わせを用いて送・受信を行うことを特徴とする、分布測定装置。
A distribution measuring device that measures the distribution of signal propagation in the measurement target region by arranging a plurality of transmission terminals and reception terminals in a plane and measuring a signal propagating through the measurement target between the transmission terminal and the reception terminal. There,
The transmission terminal and the reception terminal are arranged in such a manner that a combination of two continuous transmission terminals and two continuous reception terminals are arranged in a grid at a predetermined angle, and adjacent arrangements in the grid direction are arranged at one grid point. The transmission / reception is performed using a combination of a transmission / reception terminal that is sequentially shifted in the same direction and sandwiching one terminal in the lattice direction and a combination of a transmission / reception terminal that is oblique to the lattice direction. A distribution measuring device.
複数の送信端子及び受信端子を面状に配置し、送信端子と受信端子間において測定対象を伝搬する信号を測定することにより、測定対象領域内の信号伝搬にかかる分布を測定する分布測定装置であって、
前記送信端子及び受信端子の配置は、連続する2個の送信端子と連続する2個の受信端子を配置する組み合わせを行方向及び列方向に格子状に配列し、行方向及び列方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらし、行方向及び列方向において間に1端子を挟む送・受信端子の組み合わせと、行方向及び列方向に対して斜め方向の送・受信端子の組み合わせを用いて送・受信を行うことを特徴とする、分布測定装置。
A distribution measuring device that measures the distribution of signal propagation in the measurement target region by arranging a plurality of transmission terminals and reception terminals in a plane and measuring a signal propagating through the measurement target between the transmission terminal and the reception terminal. There,
As for the arrangement of the transmission terminal and the reception terminal, a combination of two continuous transmission terminals and two continuous reception terminals is arranged in a grid in the row direction and the column direction, and is adjacent in the row direction and the column direction. The arrangement of the transmission / reception terminals that are sequentially shifted in the same direction by one grid point and sandwiching one terminal between the row direction and the column direction, and the transmission / reception terminals that are oblique to the row direction and the column direction A distribution measuring apparatus that performs transmission / reception using a combination.
前記測定対象を生体とし、前記送信端子を送光端子とし、前記受信端子を受光端子とすることを特徴とする、請求項1又は2に記載の分布測定装置。The distribution measuring apparatus according to claim 1 , wherein the measurement target is a living body, the transmission terminal is a light transmission terminal, and the reception terminal is a light reception terminal. 複数の送光端子及び受光端子を面状に配置し、送光端子と受光端子間において生体を伝搬する光信号を測定することにより生体を計測する生体計測装置であって、
前記送光端子及び受光端子は、連続する2個の送光端子と連続する2個の受信端子からなる組み合わせを行方向及び列方向に格子状に配列し、行方向及び列方向で隣接する配列を互いに一格子点分だけ同方向に順次ずらして配置することを特徴とする、生体計測装置。
A biological measuring device that measures a living body by arranging a plurality of light transmitting terminals and a light receiving terminal in a planar shape and measuring an optical signal propagating through the living body between the light transmitting terminal and the light receiving terminal,
The light transmitting terminal and the light receiving terminal are arranged in a grid pattern in the row direction and the column direction in a combination of two continuous light transmitting terminals and two continuous receiving terminals, and are adjacent in the row direction and the column direction. The living body measuring apparatus is characterized in that they are sequentially shifted in the same direction by one grid point.
JP2003113811A 2003-04-18 2003-04-18 Distribution measuring device and biological measuring device Expired - Lifetime JP4257699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003113811A JP4257699B2 (en) 2003-04-18 2003-04-18 Distribution measuring device and biological measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003113811A JP4257699B2 (en) 2003-04-18 2003-04-18 Distribution measuring device and biological measuring device

Publications (2)

Publication Number Publication Date
JP2004317396A JP2004317396A (en) 2004-11-11
JP4257699B2 true JP4257699B2 (en) 2009-04-22

Family

ID=33473595

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003113811A Expired - Lifetime JP4257699B2 (en) 2003-04-18 2003-04-18 Distribution measuring device and biological measuring device

Country Status (1)

Country Link
JP (1) JP4257699B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7355688B2 (en) * 2005-09-08 2008-04-08 Vioptix, Inc. Optical probe for optical imaging system
JP4817808B2 (en) * 2005-11-08 2011-11-16 株式会社日立メディコ Biological light measurement device

Also Published As

Publication number Publication date
JP2004317396A (en) 2004-11-11

Similar Documents

Publication Publication Date Title
EP1245192B1 (en) Biological photometric device
JP5944511B2 (en) Biological light measurement device and biological light measurement method using the same
CN102858243A (en) Device and method for determining a biological, chemical and/or physical parameter in a living biological tissue
US20130102907A1 (en) Biological photometric device and biological photometry method using same
WO2014016963A1 (en) Optical device for living body measurement and method of analysis using same
CN103735273A (en) Device and method for detecting absolute amount of blood oxygen saturation of local brain tissue
CN103169480B (en) Near-infrared three-dimensional dynamic imager system based on single photon counter
CN103735274A (en) Device and method for detecting absolute amount of blood oxygen and blood volume of local brain tissue
JP2007020735A (en) Biological light measuring device
JP4257699B2 (en) Distribution measuring device and biological measuring device
JPH08322821A (en) Optical measurement instrument for light absorber
US20150238083A1 (en) Method and system for optically investigating a tissue of a subject
WO2014061370A1 (en) Ultrasonic diagnosis device and image display method
JP5248758B2 (en) Optical measuring device
JP4136704B2 (en) Probe for optical measurement device and multichannel optical measurement device using the same
US20050288592A1 (en) Light measurement system for living body
JP5790877B2 (en) Photobiological measurement system and method of using the same
JP6228928B2 (en) Ultrasonic diagnostic apparatus and elasticity analysis method
JP4151162B2 (en) Optical measuring device
JP3239553B2 (en) Brain function analyzer
KR101949346B1 (en) Method, system and non-transitory computer-readable recording medium for controlling a monitoring device including a plurality of sources and detectors
JP4817808B2 (en) Biological light measurement device
JP5565774B2 (en) Biological light measurement device
JP6897775B2 (en) Radiation detector and nuclear medicine diagnostic equipment
US20230366669A1 (en) Measurement Sensitivity Calculation Method, Measurement Sensitivity Calculation Device, Measurement Sensitivity Calculation Program, and Optical Measurement Device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081022

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

R150 Certificate of patent or registration of utility model

Ref document number: 4257699

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120213

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130213

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140213

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term