JP4256803B2 - Temperature control method for vapor phase cryopreservation container - Google Patents

Temperature control method for vapor phase cryopreservation container Download PDF

Info

Publication number
JP4256803B2
JP4256803B2 JP2004061272A JP2004061272A JP4256803B2 JP 4256803 B2 JP4256803 B2 JP 4256803B2 JP 2004061272 A JP2004061272 A JP 2004061272A JP 2004061272 A JP2004061272 A JP 2004061272A JP 4256803 B2 JP4256803 B2 JP 4256803B2
Authority
JP
Japan
Prior art keywords
liquid
temperature
liquid level
phase region
gas phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004061272A
Other languages
Japanese (ja)
Other versions
JP2005249309A (en
Inventor
滋弘 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Nippon Sanso Corp
Original Assignee
Taiyo Nippon Sanso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Nippon Sanso Corp filed Critical Taiyo Nippon Sanso Corp
Priority to JP2004061272A priority Critical patent/JP4256803B2/en
Publication of JP2005249309A publication Critical patent/JP2005249309A/en
Application granted granted Critical
Publication of JP4256803B2 publication Critical patent/JP4256803B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

本発明は、医療,培養,食品分野等で使用される気相式凍結保存容器の温度管理方法に関するものである。   The present invention relates to a temperature management method for a gas phase type cryopreservation container used in medical, culture, food field and the like.

凍結保存容器は、一般に、被凍結保存物を液体窒素に浸漬させることにより凍結保存する液相式のものと、容器底部の液相領域に貯留した液体窒素により極低温(一般に、約−150℃以下)に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された気相式のもの(例えば、非特許文献1参照)とに大別される。。   A cryopreservation container generally has a cryogenic temperature (generally about −150 ° C.) due to a liquid phase type in which a cryopreserved material is cryopreserved by immersing it in liquid nitrogen and liquid nitrogen stored in a liquid phase region at the bottom of the container. In the gas phase region on the liquid phase region held in the following), the material to be frozen is roughly classified into a gas phase type configured to cryopreserve (for example, refer to Non-Patent Document 1). .

而して、気相式凍結保存容器は、液相式のものに比して、液体窒素を媒体とした微生物等のコンタミネーションを回避できること及び液体窒素の使用量が少ないこと等の利点を有することから、近時、医療,培養,食品分野等のあらゆる分野における凍結保存容器としての主流をなしている。
カタログ「LN2凍結保存容器 大形DR SERIES」、大陽東洋酸素株式会社、2002年11月
Thus, the gas phase type cryopreservation container has advantages such as avoidance of contamination of microorganisms and the like using liquid nitrogen as a medium and a small amount of liquid nitrogen used, as compared with a liquid phase type container. Therefore, recently, it has become mainstream as a cryopreservation container in all fields such as medical treatment, culture, and food.
Catalog “LN2 Cryopreservation Container Large DR SERIES”, Taiyo Toyo Oxygen Co., Ltd., November 2002

ところで、気相式凍結保存容器では、液相領域における下限液位を適正な凍結保存を行ないうる気相温度(以下「適正凍結保存温度」という)が確保されることを条件として設定されており、液体窒素の貯留量が下限液位にまで減少した場合、液相領域に液体窒素を供給(補充)して、液位が下限液位を下回らないように図っている。すなわち、液相領域の液位を常に下限液位以上に保持しておくことにより、気相領域を適正凍結保存温度に保持するように図っている。   By the way, in the gas phase type cryopreservation container, the lower limit liquid level in the liquid phase region is set on condition that a gas phase temperature (hereinafter referred to as “appropriate cryopreservation temperature”) capable of performing appropriate cryopreservation is secured. When the storage amount of liquid nitrogen decreases to the lower limit liquid level, liquid nitrogen is supplied (supplemented) to the liquid phase region so that the liquid level does not fall below the lower limit liquid level. That is, the liquid phase region is always maintained at the lower limit liquid level or higher so that the gas phase region is maintained at an appropriate cryopreservation temperature.

しかし、気相領域の温度は、液相領域の液位が下限液位以上である場合にも、
被凍結保存物の出し入れ時における容器蓋の開閉や新たな被凍結保存物(未凍結状態にある被凍結保存物)の気相領域への格納等により、気相温度が上昇して適正凍結保存温度を超える虞れがあり、適正な凍結保存を行ない得ない事態が発生することがある。
However, the temperature in the gas phase region is also the case where the liquid level is at or above the lower limit level.
Proper cryopreservation by increasing the gas phase temperature by opening / closing the container lid when storing / removing the cryopreservation material and storing the new cryopreservation material (freezing material in an unfrozen state) in the gas phase region. There is a possibility that the temperature may be exceeded, and there may be a situation where proper cryopreservation cannot be performed.

したがって、被凍結保存物の凍結保存に関する限り、気相式凍結保存容器は液相式凍結保存容器に比して信頼性が低く、その対策が強く望まれているのが実情である。   Therefore, as far as the cryopreservation of the cryopreserved material is concerned, the gas phase cryopreservation container is less reliable than the liquid phase cryopreservation container, and the countermeasure is strongly desired.

本発明は、このような実情に鑑みてなされたもので、気相式凍結保存容器における気相温度を適正に管理して、被凍結保存物の凍結保存を良好に行ないうる気相式凍結保存容器の温度管理方法を提供することを目的とするものである。   The present invention has been made in view of such a situation, and appropriately manages the gas phase temperature in the gas phase type cryopreservation container, and can perform the cryopreservation of the cryopreserved material well. An object of the present invention is to provide a container temperature management method.

本発明は、上記の目的を達成すべく、次のような気相式凍結保存容器の温度管理方法を提案するものである。   In order to achieve the above object, the present invention proposes the following temperature management method for a vapor-phase cryopreservation container.

すなわち、第1に、本発明は、容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーと液相領域の液位を検出する液面センサーとを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、温度センサーによる検出気相温度及び液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出気相温度が設定気相温度を超え且つ検出液位が設定上限液位に達していない場合に、給液弁を開制御して液体窒素の供給により液相領域をバブリングし、もって気相領域の温度低下を図り、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法(以下「第1発明方法」という)を提案する。   That is, first, the present invention is configured to cryopreserve the material to be frozen in the gas phase region on the liquid phase region held at a cryogenic temperature by the liquid nitrogen stored in the liquid phase region at the bottom of the container. In the cryopreservation container, a temperature sensor for detecting the temperature in the gas phase region and a liquid level sensor for detecting the liquid level in the liquid phase region are provided, and a liquid supply line led from the liquid nitrogen supply line to the liquid phase region is provided. A supply valve that is controlled to open and close based on the gas phase temperature detected by the temperature sensor and the liquid level detected by the liquid level sensor is provided. The detected gas temperature exceeds the set gas phase temperature and the detected liquid level is the set upper limit liquid level. If not, the liquid supply valve is controlled to open and the liquid phase region is bubbled by supplying liquid nitrogen, thereby lowering the temperature of the gas phase region, and then the detected liquid level reaches the set upper limit liquid level. That the liquid supply valve was closed at that time Suggest temperature control method of gas phase cryopreservation container (hereinafter referred to as "first invention method") to symptoms.

第2に、本発明は、容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーを設けると共に、液相領域に導いた窒素ガス注入管路に、温度センサーによる検出気相温度に基づいて開閉制御されるバブリング弁を設けて、検出気相温度が設定気相温度を超えた場合に、バブリング弁を開制御して窒素ガスの注入により液相領域をバブリングし、もって気相領域の温度低下を図り、その後、所定時間経過後にバブリング弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法(以下「第2発明方法」という)を提案する。   Secondly, the present invention is a cryopreservation configured to cryopreserve a frozen object in a gas phase region on a liquid phase region held at a cryogenic temperature by liquid nitrogen stored in a liquid phase region at the bottom of the container. The container is provided with a temperature sensor for detecting the temperature of the gas phase region, and a nitrogen gas injection pipe led to the liquid phase region is provided with a bubbling valve that is controlled to open and close based on the gas phase temperature detected by the temperature sensor, When the detected gas phase temperature exceeds the set gas phase temperature, the bubbling valve is controlled to open and the liquid phase region is bubbled by injecting nitrogen gas to lower the temperature of the gas phase region. A temperature management method (hereinafter referred to as “second invention method”) of a gas phase type cryopreservation container characterized in that the bubbling valve is controlled to be closed is proposed.

第3に、本発明は、容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーと液相領域の液位を検出する液面センサーとを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、温度センサーによる検出気相温度及び液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出気相温度が設定気相温度を超え且つ検出液位が設定上限液位に達していない場合に、給液弁を開制御して液体窒素の供給を開始し、その供給開始直後から所定時間経過するまでの間においては、液体窒素が管路との熱交換によりガス化されつつ液相領域に供給されて、ガス化された液体窒素の注入による液相領域をバブリングし、もって気相領域の温度低下を図り、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法(以下「第3発明方法」という)を提案する。   Thirdly, the present invention is a cryopreservation configured to cryopreserve the preservation object in a gas phase region on the liquid phase region held at a cryogenic temperature by liquid nitrogen stored in the liquid phase region at the bottom of the container. The container is provided with a temperature sensor for detecting the temperature in the gas phase region and a liquid level sensor for detecting the liquid level in the liquid phase region, and at the temperature of the liquid supply line led from the liquid nitrogen supply line to the liquid phase region. A supply valve that is controlled to open and close based on the gas phase temperature detected by the sensor and the liquid level detected by the liquid level sensor is provided. The detected gas temperature exceeds the set gas phase temperature and the detected liquid level reaches the set upper limit liquid level. In the case where the liquid nitrogen is not supplied, the supply of the liquid nitrogen valve is controlled to start the supply of liquid nitrogen, and the liquid nitrogen is gasified by heat exchange with the pipe line immediately after the start of the supply until a predetermined time elapses. Gas nitrogen is supplied to the liquid phase area and gasified. The liquid phase region by bubbling of the liquid was bubbled to lower the temperature of the gas phase region, and then the supply valve was closed when the detected liquid level reached the set upper limit liquid level. A temperature management method for a gas phase cryopreservation container (hereinafter referred to as “third invention method”) is proposed.

好ましい実施の形態にあって、第2発明方法では、凍結保存容器に液相領域の液位を検出する液面センサーを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出液位が設定下限液位に達した場合に給液弁を開制御して液体窒素を供給し、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしておくことが好ましい。この場合、窒素ガス注入管路の下流端部分は給液管路の下流端部分で兼用することができる。   In a preferred embodiment, in the second invention method, a liquid level sensor for detecting the liquid level in the liquid phase region is provided in the cryopreservation container, and the liquid supply line led from the liquid nitrogen supply line to the liquid phase region In addition, a liquid supply valve that is controlled to open and close based on the liquid level detected by the liquid level sensor is provided, and when the detected liquid level reaches the set lower limit liquid level, the liquid supply valve is opened to supply liquid nitrogen, After that, it is preferable to close the liquid supply valve when the detected liquid level reaches the set upper limit liquid level. In this case, the downstream end portion of the nitrogen gas injection pipe can be used as the downstream end of the liquid supply pipe.

また、第1発明方法及び上記のように液体窒素供給を行なうようにした第2発明方法にあっては、液体窒素供給管路における液体窒素のガス化を防止するために、凍結保存容器への液体窒素供給に先駆けて、液体窒素供給管路を次のように予冷しておくことができる。すなわち、液体窒素供給管路の下流端に予冷管路を接続すると共に、この予冷管路に、その内部温度を検出する予冷用温度センサーと前記給液弁が開制御されるときにおいてこれに先駆けて開制御され且つ予冷用温度センサーにより検出予冷温度に基づいて閉制御される予冷弁とを設けて、給液管路から液相領域への液体窒素供給が行なわれる場合において、給液弁の開制御に先駆けて予冷弁を開制御して、液体窒素を液体窒素供給管路から予冷管路へと流動させることにより当該供給管路を予冷するようにし、その後、検出予冷温度が設定予冷温度以下となった時点で、予冷弁を閉制御した上で、給液弁を開制御して給液管路から液相領域への液体窒素供給を開始するようにする。この場合、給液弁の開制御に先駆けて行なう予冷弁の開閉制御を、検出予冷温度が設定予冷温度以下となるまで、所定のタイムサイクルで複数回行なうようにしてもよい。   Further, in the first invention method and the second invention method in which liquid nitrogen is supplied as described above, in order to prevent gasification of liquid nitrogen in the liquid nitrogen supply pipe, Prior to the supply of liquid nitrogen, the liquid nitrogen supply line can be pre-cooled as follows. That is, a precooling line is connected to the downstream end of the liquid nitrogen supply line, and when the precooling temperature sensor for detecting the internal temperature of the liquid cooling line and the liquid supply valve are controlled to be opened, this is preceded. A precooling valve that is controlled to be opened and closed based on the precooling temperature detected by the precooling temperature sensor, and liquid nitrogen is supplied from the liquid supply line to the liquid phase region. Prior to opening control, the pre-cooling valve is opened and liquid nitrogen flows from the liquid nitrogen supply line to the pre-cooling line to pre-cool the supply line, and then the detected pre-cooling temperature is the set pre-cooling temperature. At a point of time below, the precooling valve is controlled to be closed, and then the liquid supply valve is controlled to open, so that liquid nitrogen supply from the liquid supply line to the liquid phase region is started. In this case, the opening / closing control of the precooling valve performed prior to the opening control of the liquid supply valve may be performed a plurality of times in a predetermined time cycle until the detected precooling temperature becomes equal to or lower than the set precooling temperature.

また、第1、第2及び第3発明方法は、何れも、複数台の凍結保存容器が設けられる場合にも適用されるが、複数台の凍結保存容器が設けられる場合には、各凍結保存容器毎に検出気相温度及び/又は検出液位に基づいて給液弁が開閉制御される。但し、液体窒素供給管路(及び予冷管路)は全凍結保存容器について共通のものである。また、第2発明方法が複数台の凍結保存容器について実施される場合にあって、一台の凍結保存容器について検出液位に基づいて給液弁が開制御されるときにおいては、当該給液弁の開制御に先駆けて予冷弁を開制御して、液体窒素を液体窒素供給管路から予冷管路へと流動させるようにし、その後、予冷用温度センサーによる検出予冷温度が設定予冷温度以下となった時点で、予冷弁を閉制御した上、当該凍結保存容器を含む全凍結保存容器のうち、検出液位が設定上限液位に達していない全ての凍結保存容器について、液相領域の液位が設定上限液位に達するように給液弁を開閉制御するようにすることができる。   The first, second, and third invention methods are also applied when a plurality of cryopreservation containers are provided. However, when a plurality of cryopreservation containers are provided, each cryopreservation is performed. The liquid supply valve is controlled to open and close based on the detected gas phase temperature and / or the detected liquid level for each container. However, the liquid nitrogen supply line (and the precooling line) is common to all cryopreservation containers. Further, when the second invention method is carried out for a plurality of cryopreservation containers and the liquid supply valve is controlled to open based on the detected liquid level for one cryopreservation container, the liquid supply Prior to the opening control of the valve, the precooling valve is controlled to open to allow liquid nitrogen to flow from the liquid nitrogen supply line to the precooling line, and then the precooling temperature detected by the precooling temperature sensor is equal to or lower than the set precooling temperature. At that time, the precooling valve is closed and controlled, and among all the cryopreservation containers including the cryopreservation container, all the cryopreservation containers whose detection liquid level has not reached the set upper limit liquid level are liquid in the liquid phase region. The liquid supply valve can be controlled to open and close so that the liquid level reaches the set upper limit liquid level.

本発明の気相式凍結保存容器の温度管理方法によれば、凍結保存容器の気相領域が被凍結保存物を適正に凍結保存し難い温度に上昇した場合、液相領域を液体窒素又は窒素ガスの供給,注入によりバブリングさせることにより、液相領域の液体窒素からの冷気発生(蒸発)を促進させて、気相領域の温度低下を図ることができる。したがって、被凍結保存物の出し入れ等によって気相領域の温度が上昇した場合にも、その気相温度を直ちに低下させ得て、適正凍結保存温度を超える状態が長期に亘って継続することがなく、被凍結保存物を常に良好且つ適正に凍結保存することができる。   According to the gas phase cryopreservation container temperature management method of the present invention, when the gas phase region of the cryopreservation vessel rises to a temperature at which it is difficult to properly cryopreserve the cryopreserved material, the liquid phase region is liquid nitrogen or nitrogen. By bubbling by supplying and injecting gas, generation of cold air (evaporation) from liquid nitrogen in the liquid phase region can be promoted to lower the temperature in the gas phase region. Therefore, even when the temperature of the gas phase region rises due to taking in and out of the object to be frozen, the gas phase temperature can be immediately decreased, and the state exceeding the appropriate cryopreservation temperature does not continue for a long time. In addition, it is possible to always freeze and preserve the material to be frozen.

図1は複数台の気相式凍結保存容器1…について第1発明方法を実施するための温度管理システムの一例を示す系統図である。   FIG. 1 is a system diagram showing an example of a temperature management system for carrying out the first invention method for a plurality of gas phase type cryopreservation containers 1.

すなわち、図1に示す温度管理システム(以下「第1温度管理システム」という)S1は、複数台の気相式凍結保存容器1…と、液体窒素供給源2から導かれた液体窒素供給管路3と、液体窒素供給管路3から各凍結保存容器1内へと導かれた複数の給液管路4…と、液体窒素供給管路3の下流端に接続された予冷管路5と、各給液管路4に設けられた給液弁6と、予冷管路5に設けられた予冷弁7と、各凍結保存容器1に設けられた温度センサー8及び液面センサー9と、予冷管路5に設けられた予冷用温度センサー10と、各センサー8,9,10から入力される検出データに基づいて各弁6,7の開閉を自動制御する第1制御器11とを具備する。   That is, the temperature management system S1 shown in FIG. 1 (hereinafter referred to as “first temperature management system”) S1 includes a plurality of gas phase type cryopreservation containers 1 and a liquid nitrogen supply line led from a liquid nitrogen supply source 2. 3, a plurality of liquid supply pipes 4 led from the liquid nitrogen supply pipe 3 into each cryopreservation container 1, a precooling pipe 5 connected to the downstream end of the liquid nitrogen supply pipe 3, A liquid supply valve 6 provided in each liquid supply line 4, a precooling valve 7 provided in the precooling line 5, a temperature sensor 8 and a liquid level sensor 9 provided in each cryopreservation container 1, and a precooling pipe A pre-cooling temperature sensor 10 provided in the passage 5 and a first controller 11 for automatically controlling the opening and closing of the valves 6 and 7 based on detection data input from the sensors 8, 9 and 10 are provided.

各凍結保存容器1は、容器底部の液相領域13に貯留した液体窒素(以下「貯留液体窒素」という)12aにより、液相領域13の上部領域たる気相領域14を極低温(例えば、−150℃以下)に保持しうるように構成されたものであり、気相領域14において被凍結保存物15を凍結保存させるものである。気相領域14には、被凍結保存物15を収納したケースを保持するトレイが設けられている(例えば、非特許文献1参照)。被凍結保存物15の出し入れは、凍結保存容器1の上部に設けた蓋16を開閉することにより行なわれる。液相領域13における上下限液位H,Lは、凍結保存容器1の容積等に応じて設定されている。なお、上限液位Hは、貯留液体窒素12aが前記トレイ(及び被凍結保存物15)に接触しないこと等を条件として設定され、下限液位Lは、気相領域14を凍結保存に適する温度に保持しうるに必要最小限の液体窒素貯留量に応じて設定されている。   Each cryopreservation container 1 uses a liquid nitrogen (hereinafter referred to as “stored liquid nitrogen”) 12 a stored in a liquid phase region 13 at the bottom of the container to cause a gas phase region 14, which is an upper region of the liquid phase region 13, to be cryogenic (for example, − 150 ° C. or lower), and the cryopreserved material 15 is stored frozen in the gas phase region 14. The gas phase region 14 is provided with a tray for holding a case storing the material to be frozen 15 (see, for example, Non-Patent Document 1). The cryopreservation object 15 is taken in and out by opening and closing the lid 16 provided on the upper part of the cryopreservation container 1. The upper and lower limit liquid levels H and L in the liquid phase region 13 are set according to the volume of the cryopreservation container 1 and the like. The upper limit liquid level H is set on condition that the stored liquid nitrogen 12a does not contact the tray (and the object to be frozen 15), and the lower limit liquid level L is a temperature suitable for cryopreserving the gas phase region 14. It is set according to the minimum liquid nitrogen storage amount necessary to be able to be maintained.

各給液管路4は、液体窒素供給管路3に分岐接続されていて、その下流端は各凍結保存容器1の液相領域13に導かれている。液体窒素12は、液体窒素供給源2から液体窒素供給管路3を経て各給液管路4から各凍結保存容器1の液相領域13に供給される。なお、各給液管路4の下流端は、設定下限液位Lより下位に位置される。   Each liquid supply line 4 is branched and connected to the liquid nitrogen supply line 3, and the downstream end thereof is led to the liquid phase region 13 of each cryopreservation container 1. The liquid nitrogen 12 is supplied from the liquid nitrogen supply source 2 through the liquid nitrogen supply line 3 to the liquid phase region 13 of each cryopreservation container 1 from each liquid supply line 4. Note that the downstream end of each liquid supply conduit 4 is positioned lower than the set lower limit liquid level L.

各給液弁6は、第1制御器11により、温度センサー8による検出気相温度及び液面センサー9による検出液位に基づいて開閉制御される電磁弁である。   Each liquid supply valve 6 is an electromagnetic valve that is controlled to open and close by the first controller 11 based on the detected gas phase temperature detected by the temperature sensor 8 and the detected liquid level detected by the liquid level sensor 9.

予冷弁7は、第1制御器11により、給液弁8が開制御される場合においてこれに先駆けて開制御されると共に予冷温度センサー10による検出予冷温度に基づいて開制御される電磁弁である。   The precooling valve 7 is an electromagnetic valve that is controlled to be opened prior to the liquid supply valve 8 being opened by the first controller 11 and controlled to open based on the precooling temperature detected by the precooling temperature sensor 10. is there.

各温度センサー8は、気相領域14の温度を検出して、その検出データ(検出気相温度)を第1制御器11に入力するものである。第1制御器11においては、検出気相温度と予め設定された適正凍結保存温度(設定気相温度)との比較演算が行なわれ、検出気相温度が設定気相温度を超えているときは、後述する如く、検出液位が設定上限液位Hに達していないことを条件として、給液弁2に開制御信号が入力される。なお、設定気相温度は、被凍結保存物15を適正に凍結保存しうるに必要且つ充分な気相領域14の温度範囲とされている。したがって、気相領域14の温度が蓋16の開閉等により上昇して、設定気相温度を超える場合には、被凍結保存物15を適正に凍結保存できない。   Each temperature sensor 8 detects the temperature of the gas phase region 14 and inputs the detected data (detected gas phase temperature) to the first controller 11. The first controller 11 performs a comparison operation between the detected gas phase temperature and a preset appropriate frozen storage temperature (set gas phase temperature), and when the detected gas phase temperature exceeds the set gas phase temperature. As will be described later, an opening control signal is input to the liquid supply valve 2 on the condition that the detected liquid level has not reached the set upper limit liquid level H. The set gas phase temperature is a temperature range of the gas phase region 14 that is necessary and sufficient for properly storing the object to be frozen 15 in a frozen state. Therefore, when the temperature of the gas phase region 14 rises due to opening / closing of the lid 16 or the like and exceeds the set gas phase temperature, the material to be frozen 15 cannot be cryopreserved properly.

各液面センサー9は、貯留液体窒素12aの液位を検出して、その検出データ(検出液位)を第1制御器11に入力するものである。第1制御器11においては、検出液位と設定上限液位H及び設定下限液位Lとの比較演算が行なわれ、検出液位が設定上限液位Hに達していない場合において検出気相温度が設定気相温度を超えているときは、給液弁2に開信号が送信される。   Each liquid level sensor 9 detects the liquid level of the stored liquid nitrogen 12 a and inputs the detection data (detected liquid level) to the first controller 11. In the first controller 11, a comparison operation is performed between the detected liquid level, the set upper limit liquid level H, and the set lower limit liquid level L. When the detected liquid level does not reach the set upper limit liquid level H, the detected gas phase temperature is detected. When the temperature exceeds the set gas phase temperature, an open signal is transmitted to the liquid supply valve 2.

予冷用温度センサー10は、液体窒素12を液体窒素供給管路3から予冷管路5へと流動させた場合において、予冷管路8の内部温度を検出して、その検出データ(検出予冷温度)を第1制御器11に入力するものである。第1制御器11においては、予冷用温度センサー10による検出予冷温度と予め設定された温度(設定予冷温度)との比較演算が行なわれ、検出予冷温度が設定予冷温度以下となった場合において、予冷弁7に閉信号が送信される。ところで、液体窒素12を液体窒素供給管路3から供給させると、供給開始直後においては、液体窒素12が液体窒素供給管路3との熱交換によりガス化することになる。一方、液体窒素供給管路3は液体窒素12との熱交換により冷却(予冷)されることになる。したがって、供給開始後、或る程度の時間が経過すると、液体窒素供給管路3が液体窒素12をガス化しない温度(以下「液状維持温度」という)にまで冷却されて、その後は、液体窒素供給管路3からはガス化されない液状の液体窒素12が供給されることになる。設定予冷温度は、液体窒素供給管路3がこのような液状維持温度となったときの予冷管路5の内部温度に設定されており、検出予冷温度が設定予冷温度以下になった状態では、液体窒素12が液体窒素供給管路3からガス化されることなく供給されることになる。   The pre-cooling temperature sensor 10 detects the internal temperature of the pre-cooling line 8 when the liquid nitrogen 12 flows from the liquid nitrogen supply line 3 to the pre-cooling line 5, and the detection data (detected pre-cooling temperature). Is input to the first controller 11. In the first controller 11, a comparison operation is performed between the precooling temperature detected by the precooling temperature sensor 10 and a preset temperature (set precooling temperature), and when the detected precooling temperature is equal to or lower than the preset precooling temperature, A close signal is transmitted to the precooling valve 7. By the way, when the liquid nitrogen 12 is supplied from the liquid nitrogen supply line 3, the liquid nitrogen 12 is gasified by heat exchange with the liquid nitrogen supply line 3 immediately after the start of supply. On the other hand, the liquid nitrogen supply line 3 is cooled (precooled) by heat exchange with the liquid nitrogen 12. Therefore, after a certain amount of time has elapsed after the start of supply, the liquid nitrogen supply line 3 is cooled to a temperature at which the liquid nitrogen 12 is not gasified (hereinafter referred to as “liquid maintenance temperature”). Liquid nitrogen 12 that is not gasified is supplied from the supply line 3. The set precooling temperature is set to the internal temperature of the precooling line 5 when the liquid nitrogen supply line 3 reaches such a liquid maintenance temperature, and when the detected precooling temperature is equal to or lower than the set precooling temperature, The liquid nitrogen 12 is supplied from the liquid nitrogen supply pipe 3 without being gasified.

第1制御器11は、検出気相温度、検出液位及び検出予冷温度に基づいて各給液弁6及び予冷弁7を次のように開閉制御するものである。   The first controller 11 controls the opening and closing of each liquid supply valve 6 and the precooling valve 7 as follows based on the detected gas phase temperature, the detected liquid level, and the detected precooling temperature.

すなわち、或る凍結保存容器1について、温度センサー8及び液面センサー9により、気相温度が設定気相温度を超えており且つ液位が設定上限液位Hに達していないことが検出されると、又は気相温度と関係なく液位が設定下限液位Lに達していることが検出されると、まず、予冷弁7が開制御される。そして、予冷弁7は、予冷用温度センサー10により予冷管路5の内部温度(検出予冷温度)が設定予冷温度以下になったことが検出された時点で、閉制御される。予冷弁7が閉制御されると、これに引き続いて、当該凍結保存容器1についての給液弁6が開制御される。その後、貯留液体窒素12aの液位が設定上限液位Hに達したことが液面センサー9によって検出されると、当該給液弁6が閉制御される。   That is, for a certain cryopreservation container 1, the temperature sensor 8 and the liquid level sensor 9 detect that the gas phase temperature exceeds the set gas phase temperature and the liquid level has not reached the set upper limit liquid level H. Or when it is detected that the liquid level has reached the set lower limit liquid level L irrespective of the gas phase temperature, first, the precooling valve 7 is controlled to open. The precooling valve 7 is closed and controlled when the precooling temperature sensor 10 detects that the internal temperature of the precooling line 5 (detected precooling temperature) is equal to or lower than the preset precooling temperature. When the pre-cooling valve 7 is controlled to be closed, subsequently, the liquid supply valve 6 for the cryopreservation container 1 is controlled to be opened. Thereafter, when the liquid level sensor 9 detects that the liquid level of the stored liquid nitrogen 12a has reached the set upper limit liquid level H, the liquid supply valve 6 is closed.

而して、第1発明方法は、上記した第1温度管理システムS1を使用して、次のように実施される。   Thus, the first invention method is implemented as follows using the first temperature management system S1.

すなわち、或る一台の凍結保存容器(以下、便宜上「特定容器」という)1について、温度センサー8及び液面センサー9により気相領域14の温度が設定気相温度を超えており且つ液相領域13の液位が設定上限液位Hに達していないことが検出されると、予冷弁7が開制御されて、液体窒素12が液体窒素供給管路3から予冷管路5へと流動される。そして、液体窒素供給管路3が、これを通過する液体窒素12との熱交換により、液体窒素12がガス化されない状態にまで冷却(予冷)され、予冷用温度センサー10による検出予冷温度が設定予冷温度以下となると、予冷弁7が閉制御される。予冷弁7が閉制御されると、これに引き続いて、特定容器1についての給液弁6が開制御されて、液体窒素12が給液管路4から特定容器1の液相領域13に供給される。   That is, for a certain cryopreservation container (hereinafter referred to as “specific container” for convenience) 1, the temperature of the gas phase region 14 exceeds the set gas phase temperature by the temperature sensor 8 and the liquid level sensor 9, and the liquid phase When it is detected that the liquid level in the region 13 has not reached the set upper limit liquid level H, the precooling valve 7 is controlled to open and the liquid nitrogen 12 flows from the liquid nitrogen supply line 3 to the precooling line 5. The The liquid nitrogen supply line 3 is cooled (precooled) to a state in which the liquid nitrogen 12 is not gasified by heat exchange with the liquid nitrogen 12 passing through the liquid nitrogen supply line 3, and the precooling temperature detected by the precooling temperature sensor 10 is set. When the temperature is lower than the precooling temperature, the precooling valve 7 is closed. When the precooling valve 7 is controlled to be closed, subsequently, the liquid supply valve 6 for the specific container 1 is opened and liquid nitrogen 12 is supplied from the liquid supply line 4 to the liquid phase region 13 of the specific container 1. Is done.

液体窒素12の特定容器1への供給が開始されると、液体窒素供給により特定容器1の貯留液体窒素12aがバブリング(攪拌)されることになり、貯留液体窒素12aからの冷気発生が促進され、これによって気相領域14の温度は急速に低下せしめられることになる。そして、液体窒素供給により特定容器1における貯留液体窒素12aの液位が設定上限液位Hに達すると、これを液面センサー9が検出して当該給液弁6が閉制御される。   When the supply of the liquid nitrogen 12 to the specific container 1 is started, the stored liquid nitrogen 12a of the specific container 1 is bubbled (stirred) by the supply of liquid nitrogen, and the generation of cold air from the stored liquid nitrogen 12a is promoted. As a result, the temperature of the gas phase region 14 is rapidly lowered. When the liquid level of the stored liquid nitrogen 12a in the specific container 1 reaches the set upper limit liquid level H by the supply of liquid nitrogen, the liquid level sensor 9 detects this and the liquid supply valve 6 is controlled to be closed.

したがって、特定容器1の気相温度が蓋16の開閉等によって上昇して、適正凍結保存温度(設定気相温度)を超えた場合にも、これを温度センサー8が検出することにより、直ちに当該容器1の気相温度が設定気相温度以下に低下せしめられ、当該容器1における被凍結保存物15の凍結保存が適正且つ良好に行なわれる。   Therefore, even when the gas phase temperature of the specific container 1 rises due to opening / closing of the lid 16 or the like and exceeds the appropriate cryopreservation temperature (the set gas phase temperature), the temperature sensor 8 detects this and immediately The gas phase temperature of the container 1 is lowered below the set gas phase temperature, and the cryopreservation of the material to be frozen 15 in the container 1 is appropriately and satisfactorily performed.

なお、検出気相温度が設定気相温度を超えていると否とに拘らず、貯留液体窒素12aの液位が設定下限液位Lにまで低下しているときは、これを液面センサー9が検出して、上記したと同様の予冷工程及び液体窒素供給工程が自動的に行なわれる。   When the liquid level of the stored liquid nitrogen 12a is lowered to the set lower limit liquid level L regardless of whether or not the detected gas phase temperature exceeds the set gas phase temperature, this is indicated by the liquid level sensor 9. Is detected, and the same pre-cooling process and liquid nitrogen supply process as described above are automatically performed.

また、図2は複数台の気相式凍結保存容器1…について第2発明方法を実施するための温度管理システムの一例を示す系統図である。   FIG. 2 is a system diagram showing an example of a temperature management system for carrying out the second invention method for a plurality of vapor phase cryopreservation containers 1.

すなわち、図2に示す温度管理システム(以下「第2温度管理システム」という)S2は、複数台の気相式凍結保存容器1…と、液体窒素供給源2から導かれた液体窒素供給管路3と、液体窒素供給管路3から各凍結保存容器1内へと導かれた複数の給液管路4…と、液体窒素供給管路3の下流端に接続された予冷管路5と、各給液管路4に設けられた給液弁6と、予冷管路5に設けられた予冷弁7と、各凍結保存容器1に設けられた温度センサー8及び液面センサー9と、予冷管路5に設けられた予冷用温度センサー10と、窒素ガス供給源17から導かれた窒素ガス供給管路18と、窒素ガス供給管路18から各凍結保存容器1内へと導かれた複数の窒素ガス注入管路19…と、各窒素ガス注入管路19に設けられたバブリング弁20と、各センサー8,9,10から入力される検出データに基づいて各弁6,7,20の開閉を自動制御する第2制御器21とを具備する。なお、第2温度管理システムS2の構成は、以下に述べる点を除いて、第1温度管理システムS1と同一である。   That is, the temperature management system (hereinafter referred to as “second temperature management system”) S2 shown in FIG. 2 includes a plurality of gas phase type cryopreservation containers 1... And a liquid nitrogen supply conduit led from the liquid nitrogen supply source 2. 3, a plurality of liquid supply pipes 4 led from the liquid nitrogen supply pipe 3 into each cryopreservation container 1, a precooling pipe 5 connected to the downstream end of the liquid nitrogen supply pipe 3, A liquid supply valve 6 provided in each liquid supply line 4, a precooling valve 7 provided in the precooling line 5, a temperature sensor 8 and a liquid level sensor 9 provided in each cryopreservation container 1, and a precooling pipe A pre-cooling temperature sensor 10 provided in the passage 5, a nitrogen gas supply pipe 18 led from the nitrogen gas supply source 17, and a plurality of leads led from the nitrogen gas supply pipe 18 into the cryopreservation containers 1. A nitrogen gas injection pipe 19, and a bubbling valve 20 provided in each nitrogen gas injection pipe 19. ; And a second controller 21 for automatically controlling the opening and closing of the valves 6,7,20 based on the detection data input from each sensor 8, 9 and 10. The configuration of the second temperature management system S2 is the same as that of the first temperature management system S1 except for the points described below.

各窒素ガス注入管路19は、窒素ガス供給管路18に分岐接続されていて、その下流端は各凍結保存容器1の液相領域13に導かれている。窒素ガス12bは、窒素ガス供給源17から窒素ガス供給管路18を経て各窒素ガス注入管路19から各凍結保存容器1の液相領域13に注入される。なお、各窒素ガス注入管路19の下流端は設定下限液位Lより下位に位置されるが、この例では、各窒素ガス注入管路19を給液管路4における給液弁6の下流側部位に接続してある。すなわち、各窒素ガス注入管路19の下流端部分を、各給液管路4の下流端部分で兼用している。   Each nitrogen gas injection line 19 is branched and connected to the nitrogen gas supply line 18, and the downstream end thereof is led to the liquid phase region 13 of each cryopreservation container 1. The nitrogen gas 12b is injected from the nitrogen gas supply source 17 through the nitrogen gas supply line 18 into the liquid phase region 13 of each cryopreservation container 1 from each nitrogen gas injection line 19. In addition, although the downstream end of each nitrogen gas injection line 19 is positioned lower than the set lower limit liquid level L, in this example, each nitrogen gas injection line 19 is downstream of the liquid supply valve 6 in the liquid supply line 4. It is connected to the side part. That is, the downstream end portion of each nitrogen gas injection pipe 19 is also used as the downstream end portion of each liquid supply pipe 4.

各バブリング弁20は、第2制御器21により、温度センサー8による検出気相温度に基づいて開制御されるものであって、図示しないタイマによって、開制御後一定時間経過することによって自動的に閉動作されるタイマ付の自動開閉弁である。   Each bubbling valve 20 is controlled to open based on the gas phase temperature detected by the temperature sensor 8 by the second controller 21 and automatically when a certain time has elapsed after the opening control by a timer (not shown). This is an automatic open / close valve with a timer that is closed.

第2制御器21は、温度センサー8による検出気相温度、液面センサー9による検出液位及び予冷用温度センサー7による検出予冷温度に基づいて各給液弁6、予冷弁7及び各バブリング弁20を次のように開閉制御するものである。   The second controller 21 is based on the gas phase temperature detected by the temperature sensor 8, the liquid level detected by the liquid level sensor 9, and the precooling temperature detected by the precooling temperature sensor 7, and each liquid supply valve 6, precooling valve 7 and each bubbling valve. 20 is controlled to open and close as follows.

すなわち、或る凍結保存容器1について、温度センサー8により気相温度が設定気相温度を超えていることが検出されると、当該凍結保存容器1に導かれた窒素ガス注入管路9のバブリング弁20が開制御される。また、液面センサー9により液相領域13の液位が設定上限液位Hに達していることが検出されると、第1制御器11と同様に、予冷弁7が開閉制御された上で給液弁6が開閉制御される。すなわち、予冷弁7が開制御された上、検出予冷温度が設定予冷温度以下になった時点で閉制御される。これに引き続いて、給液弁6が開制御され、検出液位が設定上限液位Hに達した時点で閉制御される。   That is, for a certain cryopreservation container 1, when the temperature sensor 8 detects that the gas phase temperature exceeds the set gas phase temperature, bubbling of the nitrogen gas injection line 9 led to the cryopreservation container 1 is performed. The valve 20 is controlled to open. When the liquid level sensor 9 detects that the liquid level in the liquid phase region 13 has reached the set upper limit liquid level H, the precooling valve 7 is controlled to be opened and closed in the same manner as the first controller 11. The liquid supply valve 6 is controlled to open and close. That is, the precooling valve 7 is controlled to open, and the control is closed when the detected precooling temperature is equal to or lower than the set precooling temperature. Subsequently, the liquid supply valve 6 is controlled to be opened and closed when the detected liquid level reaches the set upper limit liquid level H.

而して、第2発明方法は、上記した第2温度管理システムS2を使用して、次のように実施される。   Thus, the second invention method is implemented as follows using the above-described second temperature management system S2.

すなわち、或る一台の凍結保存容器(特定容器)1について、温度センサー8により気相領域14の温度が設定気相温度を超えていることが検出されると、バブリング弁20が開制御されて、窒素ガス12bが窒素ガス注入管路19から特定容器1の液相領域13に注入される。この窒素ガス12bの注入により特定容器1の貯留液体窒素12aがバブリング(攪拌)されることになり、貯留液体窒素12aからの冷気発生が促進され、これによって気相領域14の温度は急速に低下せしめられ、適正温度に復帰されることになる。なお、バブリング弁20は、一定時間経過後、タイマにより自動的に閉制御されるが、このタイマ設定時間は容器1の容量や液体窒素貯留量に応じて適宜に設定される。一般には、貯留液体窒素12aが下限液位L又はこれに近い液位である場合においても気相温度を設定気相温度まで低下復帰させるに必要且つ充分なバブリング量が確保されることを条件として、タイマ時間を設定しておくことが好ましい。   That is, for a certain cryopreservation container (specific container) 1, when the temperature sensor 8 detects that the temperature of the gas phase region 14 exceeds the set gas phase temperature, the bubbling valve 20 is controlled to open. Then, nitrogen gas 12 b is injected into the liquid phase region 13 of the specific container 1 from the nitrogen gas injection line 19. By injecting the nitrogen gas 12b, the stored liquid nitrogen 12a in the specific container 1 is bubbled (stirred), and the generation of cold air from the stored liquid nitrogen 12a is promoted, whereby the temperature of the gas phase region 14 rapidly decreases. Will be restored to the proper temperature. The bubbling valve 20 is automatically controlled to be closed by a timer after a lapse of a certain time. The timer setting time is appropriately set according to the capacity of the container 1 and the amount of liquid nitrogen stored. In general, even when the stored liquid nitrogen 12a is at or near the lower limit liquid level L, the bubbling amount necessary and sufficient for returning the gas phase temperature to the set gas phase temperature is ensured. It is preferable to set a timer time.

したがって、特定容器1の気相温度が蓋16の開閉等によって上昇して、適正凍結保存温度である設定気相温度を超えた場合にも、これを温度センサー8が検出することにより、直ちに当該容器1の気相温度が設定気相温度以下に低下せしめられ、当該容器1における被凍結保存物15の凍結保存が適正且つ良好に行なわれる。   Therefore, even when the gas phase temperature of the specific container 1 rises due to opening / closing of the lid 16 or the like and exceeds the set gas phase temperature which is an appropriate cryopreservation temperature, the temperature sensor 8 detects this and immediately The gas phase temperature of the container 1 is lowered below the set gas phase temperature, and the cryopreservation of the material to be frozen 15 in the container 1 is appropriately and satisfactorily performed.

ところで、バブリングに使用される窒素ガス12bとしては、一般に、常温ガスを使用することができるが、例えば、窒素ガス供給源17を液体窒素ガス供給源2と兼用することにより、バブリング用窒素ガス12bとして液体窒素12の蒸発低温ガスを使用することも可能である。すなわち、窒素ガス供給管路18を液体窒素供給源2に接続し、液体窒素12を、この供給管路18から各窒素ガス注入管路19へと流動する間において、蒸発器等により積極的にガス化させるか、或いは供給管路18との熱交換によりガス化させるようにする。   Incidentally, as the nitrogen gas 12b used for bubbling, a room temperature gas can be generally used. For example, when the nitrogen gas supply source 17 is also used as the liquid nitrogen gas supply source 2, the nitrogen gas 12b for bubbling can be used. It is also possible to use a vaporized low temperature gas of liquid nitrogen 12. That is, the nitrogen gas supply line 18 is connected to the liquid nitrogen supply source 2 and the liquid nitrogen 12 is actively added by an evaporator or the like while flowing from the supply line 18 to each nitrogen gas injection line 19. Gasification is performed, or gasification is performed by heat exchange with the supply pipe 18.

また、特定容器1について、液面センサー9により液相領域13の液位が設定下限液位Lに達していることが検出されると、第1温度管理システムS1における場合と同様に、まず、予冷弁7が開制御されて、液体窒素供給管路3の予冷が行なわれる。そして、予冷用温度センサー10による検出予冷温度が設定予冷温度以下となると、予冷弁7が閉制御された上、給液弁6が開制御されて、特定容器1への液体窒素供給が開始される。液体窒素供給により特定容器1における貯留液体窒素12aの液位が設定上限液位Hに達すると、これを液面センサー9が検出して当該給液弁6が閉制御される。   Further, for the specific container 1, when the liquid level sensor 9 detects that the liquid level in the liquid phase region 13 has reached the set lower limit liquid level L, first, as in the case of the first temperature management system S1, The precooling valve 7 is controlled to open, and the liquid nitrogen supply pipe 3 is precooled. When the precooling temperature detected by the precooling temperature sensor 10 is equal to or lower than the preset precooling temperature, the precooling valve 7 is controlled to be closed and the liquid supply valve 6 is controlled to be opened, so that supply of liquid nitrogen to the specific container 1 is started. The When the liquid level of the stored liquid nitrogen 12a in the specific container 1 reaches the set upper limit liquid level H due to the supply of liquid nitrogen, the liquid level sensor 9 detects this and the liquid supply valve 6 is closed.

なお、第2発明を実施する場合において、上記の如く、液体窒素供給管路3の予冷を行なうときは、予冷に要する液体窒素消費量を低減しつつ当該予冷を効率的に行なうために、予冷完了後、液面センサー9によって設定下限液位Lに達していることが検出された特定容器1のみならず、液相領域13が設定上限液位Hに達していない全ての凍結保存容器1に液体窒素12を供給させるようにしておくようにしてもよい。すなわち、特定容器1について検出液位に基づいて給液弁6が開制御されるときにおいては、当該給液弁6の開制御に先駆けて予冷弁7を開制御して、液体窒素12を液体窒素供給管路3から予冷管路5へと流動させるようにし、その後、予冷用温度センサー10による検出予冷温度が設定予冷温度以下となった時点で、予冷弁7を閉制御した上、特定容器1を含む全凍結保存容器1…のうち、検出液位が設定上限液位に達していない全ての凍結保存容器1…について、液相領域13の液位が設定上限液位に達するように給液弁6を開閉制御するようにする。   In carrying out the second invention, as described above, when the liquid nitrogen supply line 3 is precooled, in order to efficiently perform the precooling while reducing the liquid nitrogen consumption required for the precooling, the precooling is performed. After completion, not only the specific container 1 that has been detected by the liquid level sensor 9 to reach the set lower limit liquid level L, but also all the cryopreservation containers 1 in which the liquid phase region 13 has not reached the set upper limit liquid level H. Liquid nitrogen 12 may be supplied. That is, when the liquid supply valve 6 is controlled to open based on the detected liquid level for the specific container 1, the precooling valve 7 is controlled to open before the liquid supply valve 6 is opened, and the liquid nitrogen 12 is liquidized. The pre-cooling valve 7 is closed and controlled when the pre-cooling temperature detected by the pre-cooling temperature sensor 10 is equal to or lower than the preset pre-cooling temperature. Among all the cryopreservation containers 1 including 1, all the cryopreservation containers 1 whose detection liquid level has not reached the set upper limit liquid level are supplied so that the liquid level in the liquid phase region 13 reaches the set upper limit liquid level. The liquid valve 6 is controlled to open and close.

また、図3は複数台の気相式凍結保存容器1…について第3発明方法を実施するための温度管理システムの一例を示す系統図である。   3 is a system diagram showing an example of a temperature management system for carrying out the third invention method for a plurality of vapor phase cryopreservation containers 1.

すなわち、図3に示す温度管理システム(以下「第3温度管理システム」という)S3は、複数台の気相式凍結保存容器1…と、液体窒素供給源2から導かれた液体窒素供給管路3と、液体窒素供給管路3から各凍結保存容器1内へと導かれた複数の給液管路4…と、液体窒素供給管路3の下流端に接続された予冷管路5と、各給液管路4に設けられた給液弁6と、各凍結保存容器1に設けられた温度センサー8及び液面センサー9とを具備し、第3制御器31により、各給液弁6を検出気相温度及び検出液位に基づいて次のように開閉制御するものである。なお、第3温度管理システムS3の構成は、予冷管路5等の予冷手段を設けない点を除いて、第1温度管理システムS1と同一である。   That is, the temperature management system (hereinafter referred to as “third temperature management system”) S3 shown in FIG. 3 includes a plurality of gas phase type cryopreservation containers 1... And a liquid nitrogen supply pipe led from the liquid nitrogen supply source 2. 3, a plurality of liquid supply pipes 4 led from the liquid nitrogen supply pipe 3 into each cryopreservation container 1, a precooling pipe 5 connected to the downstream end of the liquid nitrogen supply pipe 3, A liquid supply valve 6 provided in each liquid supply pipe line 4 and a temperature sensor 8 and a liquid level sensor 9 provided in each cryopreservation container 1 are provided, and each liquid supply valve 6 is provided by a third controller 31. Is controlled based on the detected gas phase temperature and the detected liquid level as follows. The configuration of the third temperature management system S3 is the same as that of the first temperature management system S1 except that precooling means such as the precooling pipeline 5 is not provided.

すなわち、第3温度管理システムS3にあっては、第3制御器31により、或る凍結保存容器1について、温度センサー8及び液面センサー9により、気相温度が設定気相温度を超えており且つ液位が設定上限液位Hに達していないことが検出されると、又は気相温度と関係なく液位が設定下限液位Lに達していることが検出されると、当該凍結保存容器1についての給液弁6が開制御される。その後、貯留液体窒素12aの液位が設定上限液位Hに達したことが液面センサー9によって検出されると、当該給液弁6が閉制御される。   That is, in the third temperature management system S3, the gas phase temperature of the certain cryopreservation container 1 exceeds the set gas phase temperature by the temperature sensor 8 and the liquid level sensor 9 by the third controller 31. When it is detected that the liquid level has not reached the set upper limit liquid level H, or when it is detected that the liquid level has reached the set lower limit liquid level L irrespective of the gas phase temperature, the cryopreservation container 1 is controlled to open. Thereafter, when the liquid level sensor 9 detects that the liquid level of the stored liquid nitrogen 12a has reached the set upper limit liquid level H, the liquid supply valve 6 is closed.

而して、第3発明方法は、上記した第3温度管理システムS3を使用して、次のように実施される。   Thus, the third invention method is implemented as follows using the above-described third temperature management system S3.

すなわち、或る凍結保存容器(特定容器)1について、温度センサー8及び液面センサー9により気相領域14の温度が設定気相温度を超えており且つ液相領域13の液位が設定上限液位Hに達していないことが検出されると、給液弁6が開制御されて、液体窒素12が給液管路4から特定容器1の液相領域13に供給される。   That is, for a certain cryopreservation container (specific container) 1, the temperature sensor 8 and the liquid level sensor 9 cause the temperature of the gas phase region 14 to exceed the set gas phase temperature, and the liquid level in the liquid phase region 13 is the set upper limit liquid. When it is detected that the position H has not been reached, the liquid supply valve 6 is controlled to open, and the liquid nitrogen 12 is supplied from the liquid supply line 4 to the liquid phase region 13 of the specific container 1.

このような液体窒素12の供給開始直後、所定時間が経過するまでは、第1及び第2温度管理システムS1,S2のような予冷が行なわれていないために、液体窒素12は液体窒素供給管路3との熱交換によりガス化されて、ガス状の液体窒素(窒素ガス)が液相領域13に注入されることになる。したがって、第2発明方法と同様に、特定容器1の貯留液体窒素12aが窒素ガス注入によりバブリングされることになり、気相領域14の温度が急速に低下せしめられることになる。そして、液体窒素供給管路3がこれを流動する液体窒素12との熱交換により冷却されて、液体窒素12がガス化しないようになると、液体窒素12がガス化されることなく特定容器1に供給されることになり、液相領域13の液位が上昇していく。しかる後、特定容器1における貯留液体窒素12aの液位が設定上限液位Hに達すると、これを液面センサー9が検出して当該給液弁6が閉制御される。   Immediately after the supply of liquid nitrogen 12 is started, until the predetermined time elapses, pre-cooling is not performed as in the first and second temperature management systems S1 and S2. Gasified by heat exchange with the passage 3, gaseous liquid nitrogen (nitrogen gas) is injected into the liquid phase region 13. Therefore, similarly to the second invention method, the stored liquid nitrogen 12a in the specific container 1 is bubbled by injecting nitrogen gas, and the temperature of the gas phase region 14 is rapidly lowered. When the liquid nitrogen supply line 3 is cooled by heat exchange with the liquid nitrogen 12 flowing through the liquid nitrogen supply line 3 and the liquid nitrogen 12 is not gasified, the liquid nitrogen 12 is not gasified and is not gasified. As a result, the liquid level in the liquid phase region 13 rises. Thereafter, when the liquid level of the stored liquid nitrogen 12a in the specific container 1 reaches the set upper limit liquid level H, the liquid level sensor 9 detects this, and the liquid supply valve 6 is controlled to be closed.

このように第3発明方法によれば、液体窒素供給路3における液体窒素12のガス化現象を利用して、第2発明方法と同様に、ガスによるバブリングを行なうことによって、気相温度の適正化と貯留液体窒素12aの補充とを同時に行なうことができるのである。なお、検出気相温度が設定気相温度を超えていると否とに拘らず、貯留液体窒素12aの液位が設定下限液位Lにまで低下しているときは、これを液面センサー9が検出して、上記したと同様の予冷工程及び液体窒素供給工程が自動的に行なわれる。   Thus, according to the third invention method, the gas phase bubbling is performed in the same manner as in the second invention method by utilizing the gasification phenomenon of the liquid nitrogen 12 in the liquid nitrogen supply path 3, so that the gas phase temperature is adjusted appropriately. And replenishment of the stored liquid nitrogen 12a can be performed simultaneously. When the liquid level of the stored liquid nitrogen 12a is lowered to the set lower limit liquid level L regardless of whether or not the detected gas phase temperature exceeds the set gas phase temperature, this is indicated by the liquid level sensor 9. Is detected, and the same pre-cooling process and liquid nitrogen supply process as described above are automatically performed.

なお、本発明は上記した各実施の形態に限定されるものではなく、本発明の基本原理を逸脱しない範囲において、適宜に改良,変更することができる。第1、第2、第3発明方法は、上記した如く、複数台の凍結保存容器1…の気相温度管理を一括して行なう場合に好適するものであるが、一台の凍結保存容器1のみの気相温度管理を行なう場合においても当然に適用することができる。   The present invention is not limited to the above-described embodiments, and can be appropriately improved and changed without departing from the basic principle of the present invention. As described above, the first, second, and third invention methods are suitable when the gas phase temperature control of a plurality of cryopreservation containers 1... Of course, the present invention can be applied to the case where only gas phase temperature control is performed.

第1発明方法を実施するための第1温度管理システムの系統図である。It is a systematic diagram of the 1st temperature management system for enforcing the 1st invention method. 第2発明方法を実施するための第2温度管理システムの系統図である。It is a systematic diagram of the 2nd temperature management system for enforcing the 2nd invention method. 第3発明方法を実施するための第3温度管理システムの系統図である。It is a systematic diagram of the 3rd temperature management system for enforcing the 3rd invention method.

符号の説明Explanation of symbols

1…凍結保存容器(気相式凍結保存容器)、2…液化窒素供給源、3…液体窒素供給管路、4…給液管路、5…予冷管路、6…給液弁、7…予冷弁、8…温度センサー、9…液面センサー、10…予冷用温度センサー、11…第1制御器、12…液体窒素、12a…貯留液体窒素、12b…窒素ガス、13…液相領域、14…気相領域、15…被凍結保存物、16…蓋、17…窒素ガス供給源、18…窒素ガス供給管路、19…窒素ガス注入管路、20…バブリング弁、21…第2制御器、31…第3制御器、H…設定上限液位、L…設定下限液位、S1…第1温度管理システム、S2…第2温度管理システム、S3…第3温度管理システム。   DESCRIPTION OF SYMBOLS 1 ... Cryopreservation container (vapor-phase type cryopreservation container), 2 ... Liquid nitrogen supply source, 3 ... Liquid nitrogen supply line, 4 ... Liquid supply line, 5 ... Pre-cooling line, 6 ... Liquid supply valve, 7 ... Precooling valve, 8 ... temperature sensor, 9 ... liquid level sensor, 10 ... precooling temperature sensor, 11 ... first controller, 12 ... liquid nitrogen, 12a ... stored liquid nitrogen, 12b ... nitrogen gas, 13 ... liquid phase region, DESCRIPTION OF SYMBOLS 14 ... Gas phase area | region, 15 ... Freezing preservation thing, 16 ... Lid, 17 ... Nitrogen gas supply source, 18 ... Nitrogen gas supply line, 19 ... Nitrogen gas injection line, 20 ... Bubbling valve, 21 ... 2nd control 31 ... third controller, H ... set upper limit liquid level, L ... set lower limit liquid level, S1 ... first temperature management system, S2 ... second temperature management system, S3 ... third temperature management system.

Claims (8)

容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーと液相領域の液位を検出する液面センサーとを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、温度センサーによる検出気相温度及び液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出気相温度が設定気相温度を超え且つ検出液位が設定上限液位に達していない場合に、給液弁を開制御して液体窒素の供給により液相領域をバブリングし、もって気相領域の温度低下を図り、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法。 The temperature of the gas phase region is stored in a cryopreservation container configured to cryopreserve the material to be frozen in the gas phase region on the liquid phase region held at a cryogenic temperature by liquid nitrogen stored in the liquid phase region at the bottom of the container. A temperature sensor for detecting the liquid level and a liquid level sensor for detecting the liquid level in the liquid phase region, and a gas phase temperature and liquid detected by the temperature sensor are provided in a liquid supply line led from the liquid nitrogen supply line to the liquid phase region. A liquid supply valve that is controlled to open and close based on the liquid level detected by the surface sensor is provided. When the detected gas phase temperature exceeds the set gas phase temperature and the detected liquid level does not reach the set upper limit liquid level, the liquid supply valve The liquid phase region is bubbled by supplying liquid nitrogen and the temperature of the gas phase region is lowered, and then the liquid supply valve is closed when the detected liquid level reaches the set upper limit liquid level. Gas phase type cryopreservation container characterized by Temperature management method. 容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーを設けると共に、液相領域に導いた窒素ガス注入管路に、温度センサーによる検出気相温度に基づいて開閉制御されるバブリング弁を設けて、検出気相温度が設定気相温度を超えた場合に、バブリング弁を開制御して窒素ガスの注入により液相領域をバブリングし、もって気相領域の温度低下を図り、その後、所定時間経過後にバブリング弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法。 The temperature of the gas phase region is stored in a cryopreservation container configured to cryopreserve the material to be frozen in the gas phase region on the liquid phase region held at a cryogenic temperature by liquid nitrogen stored in the liquid phase region at the bottom of the container. And a bubbling valve that is controlled to open and close based on the gas phase temperature detected by the temperature sensor is provided in the nitrogen gas injection line led to the liquid phase region. When the temperature is exceeded, the bubbling valve is controlled to open and the liquid phase region is bubbled by injecting nitrogen gas to lower the temperature of the gas phase region, and then the bubbling valve is controlled to close after a predetermined time has elapsed. A temperature control method for a gas phase type cryopreservation container, characterized in that: 凍結保存容器に液相領域の液位を検出する液面センサーを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出液位が設定下限液位に達した場合に給液弁を開制御して液体窒素を供給し、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしたことを特徴とする、請求項2に記載する気相式凍結保存容器の温度管理方法。 A liquid level sensor for detecting the liquid level in the liquid phase region is provided in the cryopreservation container, and opening / closing control is performed on the liquid supply line led from the liquid nitrogen supply line to the liquid phase region based on the liquid level detected by the liquid level sensor. When the detected liquid level reaches the set lower limit liquid level, when the detected liquid level reaches the set lower limit liquid level, the supply valve is opened and liquid nitrogen is supplied, and then the detected liquid level reaches the set upper limit liquid level The temperature control method for a gas phase type cryopreservation container according to claim 2, wherein the liquid supply valve is closed and controlled. 窒素ガス注入管路の下流端部分を給液管路の下流端部分で兼用するようにしたことを特徴とする、請求項3に記載する気相式凍結保存容器の温度管理方法。 4. The method for temperature management of a gas-phase cryopreservation container according to claim 3, wherein the downstream end portion of the nitrogen gas injection conduit is also used as the downstream end portion of the liquid supply conduit. 液体窒素供給管路の下流端に予冷管路を接続すると共に、この予冷管路に、その内部温度を検出する予冷用温度センサーと前記給液弁が開制御されるときにおいてこれに先駆けて開制御され且つ予冷用温度温度センサーにより検出予冷温度に基づいて閉制御される予冷弁とを設けて、給液管路から液相領域への液体窒素供給が行なわれる場合において、給液弁の開制御に先駆けて予冷弁を開制御して、液体窒素を液体窒素供給管路から予冷管路へと流動させることにより当該供給管路を予冷するようにし、その後、検出予冷温度が設定予冷温度以下となった時点で、予冷弁を閉制御した上で、給液弁を開制御して給液管路から液相領域への液体窒素供給を開始するようにしたことを特徴とする、請求項1、請求項3又は請求項4に記載する気相式凍結保存容器の温度管理方法。 A precooling line is connected to the downstream end of the liquid nitrogen supply line, and a precooling temperature sensor for detecting the internal temperature of the precooling line and the liquid supply valve are opened prior to this when the liquid supply valve is controlled to open. A precooling valve that is controlled and controlled to close based on the precooling temperature detected by the precooling temperature sensor, and the liquid supply valve is opened when liquid nitrogen is supplied from the liquid supply line to the liquid phase region. Prior to the control, the pre-cooling valve is opened and liquid nitrogen flows from the liquid nitrogen supply line to the pre-cooling line so that the supply line is pre-cooled, and then the detected pre-cooling temperature is lower than the set pre-cooling temperature. At that time, the precooling valve is closed and then the liquid supply valve is opened to supply liquid nitrogen from the liquid supply line to the liquid phase region. The mind set forth in claim 1, claim 3 or claim 4 Temperature control method of expression frozen storage container. 給液弁の開制御に先駆けて行なう予冷弁の開閉制御を、検出予冷温度が設定予冷温度以下となるまで、所定のタイムサイクルで複数回行なうようにすることを特徴とする、請求項5に記載する気相式凍結保存容器の温度管理方法。 6. The pre-cooling valve opening / closing control performed prior to the supply valve opening control is performed a plurality of times in a predetermined time cycle until the detected pre-cooling temperature is equal to or lower than the set pre-cooling temperature. The temperature control method of the vapor-phase type cryopreservation container described. 複数台の凍結保存容器が設けられる場合であって、一台の凍結保存容器について検出液位に基づいて給液弁が開制御されるときにおいては、当該給液弁の開制御に先駆けて予冷弁を開制御して、液体窒素を液体窒素供給管路から予冷管路へと流動させるようにし、その後、予冷用温度センサーによる検出予冷温度が設定予冷温度以下となった時点で、予冷弁を閉制御した上、当該凍結保存容器を含む全凍結保存容器のうち、検出液位が設定上限液位に達していない全ての凍結保存容器について、液相領域の液位が設定上限液位に達するように給液弁を開閉制御するようにしたことを特徴とする、請求項3、請求項4、請求項5又は請求項6に記載する気相式凍結保存容器の温度管理方法。 In the case where a plurality of cryopreservation containers are provided and the supply valve is controlled to open based on the detected liquid level for one cryopreservation container, pre-cooling prior to the opening control of the supply valve The valve is controlled to open so that liquid nitrogen flows from the liquid nitrogen supply line to the precooling line, and then the precooling valve is turned on when the precooling temperature detected by the precooling temperature sensor falls below the set precooling temperature. After closing control, among all the cryopreservation containers including the cryopreservation container, the liquid level in the liquid phase region reaches the set upper limit liquid level for all the cryopreservation containers whose detection liquid level has not reached the set upper limit liquid level. The method for managing the temperature of the gas phase cryopreservation container according to claim 3, 4, 5, or 6, wherein the supply valve is controlled to be opened and closed as described above. 容器底部の液相領域に貯留した液体窒素により極低温に保持された液相領域上の気相領域において被凍結保存物を凍結保存するように構成された凍結保存容器に、気相領域の温度を検出する温度センサーと液相領域の液位を検出する液面センサーとを設けると共に、液体窒素供給管路から液相領域に導いた給液管路に、温度センサーによる検出気相温度及び液面センサーによる検出液位に基づいて開閉制御される給液弁を設けて、検出気相温度が設定気相温度を超え且つ検出液位が設定上限液位に達していない場合に、給液弁を開制御して液体窒素の供給を開始し、その供給開始直後から所定時間経過するまでの間においては、液体窒素が管路との熱交換によりガス化されつつ液相領域に供給されて、ガス化された液体窒素の注入による液相領域をバブリングし、もって気相領域の温度低下を図り、その後、検出液位が設定上限液位に達した時点で給液弁を閉制御するようにしたことを特徴とする気相式凍結保存容器の温度管理方法。 The temperature of the gas phase region is stored in a cryopreservation container configured to cryopreserve the material to be frozen in the gas phase region on the liquid phase region held at a cryogenic temperature by liquid nitrogen stored in the liquid phase region at the bottom of the container. A temperature sensor for detecting the liquid level and a liquid level sensor for detecting the liquid level in the liquid phase region, and a gas phase temperature and liquid detected by the temperature sensor are provided in a liquid supply line led from the liquid nitrogen supply line to the liquid phase region. A liquid supply valve that is controlled to open and close based on the liquid level detected by the surface sensor is provided. When the detected gas phase temperature exceeds the set gas phase temperature and the detected liquid level does not reach the set upper limit liquid level, the liquid supply valve The liquid nitrogen is supplied to the liquid phase region while being gasified by heat exchange with the pipe line from the start of the supply until the predetermined time elapses until the liquid nitrogen is gasified by heat exchange with the pipe line. Liquid phase by injection of gasified liquid nitrogen Gas phase cryopreservation characterized in that the temperature of the gas phase region is lowered by bubbling the region, and then the supply valve is closed when the detected liquid level reaches the set upper limit liquid level. Container temperature control method.
JP2004061272A 2004-03-04 2004-03-04 Temperature control method for vapor phase cryopreservation container Expired - Lifetime JP4256803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061272A JP4256803B2 (en) 2004-03-04 2004-03-04 Temperature control method for vapor phase cryopreservation container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061272A JP4256803B2 (en) 2004-03-04 2004-03-04 Temperature control method for vapor phase cryopreservation container

Publications (2)

Publication Number Publication Date
JP2005249309A JP2005249309A (en) 2005-09-15
JP4256803B2 true JP4256803B2 (en) 2009-04-22

Family

ID=35029945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061272A Expired - Lifetime JP4256803B2 (en) 2004-03-04 2004-03-04 Temperature control method for vapor phase cryopreservation container

Country Status (1)

Country Link
JP (1) JP4256803B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6968525B2 (en) * 2016-09-27 2021-11-17 岩谷産業株式会社 Liquid nitrogen supply system
JP6754082B2 (en) * 2018-03-12 2020-09-09 株式会社椿本チエイン Freezing storage method
CN109090103A (en) * 2018-09-05 2018-12-28 南通普惠精准医疗科技有限公司 A kind of biological tissue's preservation equipment
CN109536687B (en) * 2018-12-20 2023-12-19 中国科学院理化技术研究所 Cryogenic treatment equipment and treatment method thereof
CN109578100B (en) * 2018-12-26 2024-05-31 天津大学 Heat exchange-power generation integrated system utilizing liquid nitrogen and control method
CN110145684B (en) * 2019-05-31 2023-08-29 中国空分工程有限公司 Precooling system and precooling method for low-temperature storage tank

Also Published As

Publication number Publication date
JP2005249309A (en) 2005-09-15

Similar Documents

Publication Publication Date Title
CA1217350A (en) Apparatus for freezing fertilized ova, spermatozoa or the like
CN102192626B (en) Freezer with liquid cryogen refrigerant and method
JP4256803B2 (en) Temperature control method for vapor phase cryopreservation container
DE102006048993A1 (en) A method for controlling the temperature of a deep freeze chamber has a pressurised refrigerant storage tank and two control valves to the evaporator to operate at different flow rates
US20170355518A1 (en) Carbon dioxide injection in a transport unit
JPH08167A (en) Internal environment-control system for refrigerating container
CN207487218U (en) Refrigerator
JP2008128606A (en) Refrigeration system, and operating method for refrigeration system
US3440831A (en) Quick freeze process
JP2006317077A (en) Freezer-refrigerator
JP4428271B2 (en) Vacuum cooler, overcooling prevention device, and vacuum cooling method
JP5847919B1 (en) Freeze-drying method for freeze-drying equipment
WO2016110117A1 (en) Control method for livewell and refrigeration apparatus
US11666047B2 (en) Container for cryopreserved samples
CN204313552U (en) A kind of refrigeration system with automatic defrosting function
KR101529626B1 (en) Employment defroster in cold storage
JP2015064352A (en) Valve cooling method
JP6968525B2 (en) Liquid nitrogen supply system
JP6754082B2 (en) Freezing storage method
KR20080112720A (en) Defrosting system and control method of refrigerator
CN114739075B (en) Method and device for cooling program cooling instrument and program cooling instrument
JP4326785B2 (en) Low temperature storage method for fresh food
JPH0160441B2 (en)
US20110056216A1 (en) Pulsed Propane Refrigeration Device and Method
KR101083434B1 (en) Method for Controlling Kimchi Refrigerator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256803

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250