JP4256570B2 - Contaminated gas removal filter - Google Patents

Contaminated gas removal filter Download PDF

Info

Publication number
JP4256570B2
JP4256570B2 JP2000172539A JP2000172539A JP4256570B2 JP 4256570 B2 JP4256570 B2 JP 4256570B2 JP 2000172539 A JP2000172539 A JP 2000172539A JP 2000172539 A JP2000172539 A JP 2000172539A JP 4256570 B2 JP4256570 B2 JP 4256570B2
Authority
JP
Japan
Prior art keywords
adsorbent
gas
cover material
removal filter
gas removal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000172539A
Other languages
Japanese (ja)
Other versions
JP2001347124A (en
Inventor
泰子 関
達郎 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Vilene Co Ltd
Original Assignee
Japan Vilene Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Vilene Co Ltd filed Critical Japan Vilene Co Ltd
Priority to JP2000172539A priority Critical patent/JP4256570B2/en
Publication of JP2001347124A publication Critical patent/JP2001347124A/en
Application granted granted Critical
Publication of JP4256570B2 publication Critical patent/JP4256570B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体や液晶生産施設またはその周辺技術関連のクリーンルームなどにおいて空気や雰囲気中に含まれる有機系及び無機系ガス状汚染物質を除去する汚染ガス除去フィルタに関する。
【0002】
【従来の技術】
半導体や液晶生産施設またはその周辺技術関連のクリーンルーム等においては高い清浄度が要求され、空気や雰囲気中に含まれるまたはクリーンルーム構成部材及び作業員等から発生する有機系及び無機系ガス状汚染物質を除去するために汚染ガス除去フィルタが使用されている。
【0003】
汚染物質のうち極性の低い有機物質は少量であればシリコンウェハやガラス基板表面上に物理吸着しても表面洗浄や加熱により除去可能であるが、多量に存在すると除去は困難になる。また、汚染物質のうち添加剤のような極性の高い有機物質は、シリコンウェハやガラス基板表面上に強固に吸着し簡単には除去出来ず、特に高分子材料に対する可塑剤であるフタル酸ジオクチルエステルはウェハ上への付着力が強く、既にウェハ上に付着している付着力の弱い汚染物質を追い出して置き換わると考えられている。
【0004】
添加剤とは、高分子材料等の機能性を向上させる為に添加される物で、たとえば可塑剤,酸化防止剤,紫外線吸収剤,光安定剤,難燃剤,滑剤, 帯電防止剤,造核剤,発泡剤等がある。特に、フタル酸エステル系可塑剤,トリメリット酸エステル系可塑剤,脂肪族二塩基酸エステル系可塑剤,脂肪化エステル系可塑剤,エポキシ系可塑剤,リン酸エステル系可塑剤,ポリエステル系可塑剤,フェノール系酸化防止剤,チオ系酸化防止剤,リン系酸化防止剤,ベンゾトリアゾール系紫外線吸収剤,ベンゾフェノン系紫外線吸収剤,UVA紫外線吸収剤,ヒンダードアミン系光安定剤,リン系難燃剤等が問題となっている。
【0005】
これら有機物質のウェハ表面への吸着を防止するには、クリーンルーム雰囲気中の該有機物質の濃度をできるだけ低いレベルで管理しなければならない。1999年版SIA(Semiconductor Industry Association)ロードマップによれば、西暦2000年のウェハ表面上有機物質管理レベルは6.6×1013炭素原子個数/cm2以下が必要とされている。これをトルエン換算すると14.4μg/m2となる。しかし、一般に、ウェハ上への付着力の強いフタル酸ジオクチルエステルは、ウェハ上に2μg/m2付着するとゲート酸化膜の絶縁破壊が起こるといわれている。
これらの値と、一般に知られている付着確率から、クリーンルーム空気中の管理濃度を下式に従って求めた。総有機物質は41.7μg/m3,フタル酸ジオクチルエステル等の付着力の強い物質は0.007μg/m3の管理レベルを要することを導き出した。
[空気中の汚染物質濃度(μg/m3)]=As/(v・t・γ)
As;トルエン換算したウェハ表面の汚染物質濃度(μg/m2
v;クリーンルーム空気の流速(0.4m/秒)
t;ウェハの空気中暴露時間(秒)
γ;付着確率
総有機物質の付着確率:10-5(芳香族炭化水素類の値を適用)
フタル酸ジオクチルエステル等の付着確率:1/120
【0006】
このような汚染物質を吸着する汚染ガス除去フィルタには吸着剤として、活性炭,活性炭繊維,ゼオライト,イオン交換樹脂,イオン交換繊維,その他化学吸着剤が利用され、これら吸着剤は、特開平11−221414号公報に掲載されているように、通気性を有する2層以上の濾材の間に保持され使用されている。
【0007】
しかし、前述のような通気性を有する2層以上の濾材等の間に吸着剤を保持する構成の汚染ガス除去フィルタは、被処理気体中の上記汚染物質を除去する際、被処理気体に対し吸着剤より下流側にも濾材等が設けられる為、吸着剤で被処理気体中の汚染物質がいったん除去された後、被処理気体は該下流側濾材等を通過することとなり、この際該下流側濾材等との接触により該下流側濾材等から発生する汚染物質により再び汚染された被処理気体が、クリーンルーム内に流入し、雰囲気を汚染する。
【0008】
【発明が解決しようとする課題】
本発明は、クリーンルームで使用される汚染ガス除去フィルタにおいて、濾材との接触を原因とする被処理気体汚染によるクリーンルーム内の製品などへの悪影響を防止する事を目的とする。
【0010】
【課題を解決するための手段】
上記課題を解決するために、請求項1の発明は、気体中の汚染物質を除去する汚染ガス除去フィルタにおいて、支持体に吸着剤が担持された汚染ガス除去フィルタで、被処理気体の通過方向に対し少なくとも該支持体の下流側表面に該吸着剤が担持され、更に該吸着剤の下流側に合成高分子材料からなる不織布製のカバー材を設けた汚染ガス除去フィルタであって、前記カバー材はあらかじめ熱処理されることで揮発性物質が除去されているか、または極性物質の発生を抑える添加剤が使用されており、ユニットに成型した場合にユニット単位間口面積(1m2)当りに設けられる該カバー材から単位時間当りに発生する総有機物質量(トルエン換算重量)を、発生ガス推測法により算出した場合、23℃において1.0pg/m2・hr以上10μg/m2・hr以下の範囲とすることで、クリーンルーム内の製品への影響を低減した汚染ガス除去フィルタである。請求項2の発明では、請求項1に記載の気体中の汚染物質を除去する汚染ガス除去フィルタにおいて、支持体に吸着剤が担持された汚染ガス除去フィルタで、被処理気体の通過方向に対し少なくとも該支持体の下流側表面に該吸着剤が担持され、更に該吸着剤の下流側に合成高分子材料からなる不織布製のカバー材を設けた汚染ガス除去フィルタであって、前記カバー材はあらかじめ熱処理されることで揮発性物質が除去されているか、または極性物質の発生を抑える添加剤が使用されており、ユニットに成型した場合にユニット単位間口面積(1m2)当りに設けられる該カバー材から単位時間当りに発生する添加剤量(トルエン換算重量)を、発生ガス推測法により算出した場合、23℃において1.0pg/m2・hr以上0.15μg/m2・hr以下の範囲とすることで、クリーンルーム内の製品への影響を低減した汚染ガス除去フィルタである。
【0011】
これら本願の発明において、吸着剤については特に限定されるものではないが、請求項4に示したようなホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に、前記樹脂凝集部を介して固着され、前記吸着剤が表面に露出した状態である積層単位を少なくとも1層有する構成のものが特に適している。この構成によれば、吸着剤の飛散が少なく、圧損が低いうえに、該積層単位を繰り返し重ねることで吸着性能を任意に高められるので、本発明の汚染ガス除去フィルタへの使用に特に適している。
【0012】
【発明の実施の形態】
以下、本発明にかかる汚染ガス除去フィルタの好ましい実施の形態について詳細に説明する。
【0013】
本発明に用いる吸着剤は、脱臭用途に使用できるものならばいずれも使用可能で、活性炭、活性炭繊維、ゼオライト、その他化学吸着剤を選択して使用できる。
【0014】
吸着剤は、被処理気体の通過方向に対し下流側に吸着剤を設けるため、飛散しにくい状態にあることが好ましく、例えば、図3に示すように、ホットメルト樹脂からなる連結部5と樹脂凝集部6とで構成されたウェッブの表面に、前記樹脂凝集部6を介して固着され、吸着剤7が表面に露出した状態である積層単位8を少なくとも1層有する構成のものは、吸着剤7の飛散が少なく、圧損が低く、高い吸着性能を有するので特に適している。吸着剤の飛散を防止するカバー材を使用するには、吸着剤の形態は繊維状、粒子状、シート状など、どのようなものでも良い。例えば図4に示すように、ホットメルト樹脂からなる連結部5と樹脂凝集部6とで構成されたウェッブの一方の表面に、前記樹脂凝集部6を介して吸着剤7を固着してなる積層単位8を有し、該積層単位を少なくとも1単位以上重ねて固着したものを用い、被処理気体の通過方向4に対して吸着剤の下流側にカバー材3を設けた構成のものは圧損が低く、高い吸着性能を有するので、本発明の汚染ガス除去フィルタへの使用に特に適している。吸着剤の飛散防止効果を高めるために、カバー材はホットメルト樹脂からなる連結部5aと樹脂凝集部6aとで構成されたウェッブを介して接着してもよい。
【0015】
支持体に吸着剤を担持する場合は、該支持体は不織布,織物,膜,ろ紙など通気性を有するシート状の物ならばいずれも使用可能で、なかでも高分子材料由来の繊維を用いた不織布は、通気性が高く、耐久性に優れているので特に好ましい。一般に、フィルタを使用する際は、図2のようにフィルタを枠体に装着したパネル型ユニットや、図1のようにフィルタをプリーツ状に折り曲げて枠体に装着したプリーツ型ユニットと称する形態に加工するため、加工性と耐久性が優れている点でも高分子材料が好ましく、特に通気性が良好な不織布が好ましい。
【0016】
本願請求項4に係るような状態の吸着剤を得る具体的な方法について図3を用いて説明する。まず、前述したシート状の支持体2の片面に、接着層として、ホットメルト不織布を積層する。該ホットメルト不織布は、1種類以上の熱可塑性樹脂からなり、190℃におけるメルトインデックスが50以上500以下のものが好適である。この好適範囲よりも低いメルトインデックスの樹脂は、水蒸気加熱時に流動性が低く、樹脂凝集部が形成されにくいため、吸着剤の固着が不完全になることがある。さらに上記範囲よりも高いメルトインデックスの樹脂では、水蒸気加熱時の流動性が高く、積層単位の形態保持が難しくなる。次に、該接着層の上に吸着剤7を散布し、支持体2側から接着層が可塑化溶融するまで水蒸気加熱を行った後放冷し、吸着剤7を固着する。この水蒸気加熱によりホットメルト不織布を構成する繊維の一部が溶融切断されて吸着剤7との接点に集まり樹脂凝集部6を形成する。固着されていない吸着剤を除去すると、ホットメルト樹脂からなる連結部5と樹脂凝集部6とで構成されたウェブの表面に、前記樹脂凝集部6を介して固着された吸着剤7が表面に露出した状態である積層単位8が得られる。さらに、多層にする場合はこの積層単位8に上記ホットメルト不織布を積層し、吸着剤7の散布、水蒸気加熱、並びに固着されていない吸着剤の除去を経て、2層目の積層単位8を得る。これら一連の操作を任意の回数繰り返すことにより積層単位8を複数積層し、所望の吸着性能を得ることができる。
吸着剤の脱落を防止するカバー材3を固定させる場合は、図4に示すように、最下流の積層単位8の次に前述のホットメルト不織布の接着層を積層し、その上にカバー材3を重ねたあとで、支持体2側から水蒸気処理を行い接着層を可塑化溶融せしめ、連結部5aと樹脂凝集部6aとで構成されたウエブの該樹脂凝集部6aを介して吸着剤7とカバー材3を固着する。
【0017】
カバー材3は、通気性があり、かつ被処理気体を汚染してクリーンルーム内の製品に悪影響を及ぼす有機物質等が発生しにくいものを使用する。例えば、合成高分子材料からなる繊維を用いた不織布等が使用できるが、ユニットの形態に加工するときの加工性と耐久性に優れ、かつ軽量である合成高分子材料が好ましく、特に通気性が良好な不織布の形態が好ましい。カバー材の耐性が低いと、カバー材自体が脱落する可能性があるため、その製造過程で、酸化、機械的応力、薬品、水などの劣化要因に耐性をもたせる添加剤を任意に添加し、機能性を付与する。しかしながら、このような添加剤を添加することは、有機物質が発生する原因となるため、カバー材としての機能と汚染ガス除去フィルタとしての機能を両立させるため、カバー材をあらかじめ熱処理して揮発性物質を除去したり、極性物質の発生を抑える添加剤を使用する方法で有機物質などの上限を管理レベルよりも十分低く、ユニットに成型した場合のカバー材からの総有機物質(トルエン換算重量)を、クリーンルームの標準条件温度23℃においてユニットの単位間口面積1m2あたり1.0pg/m2・hr以上10μg/m2・hr以下に、添加剤量に関しては1.0pg/m2・hr以上0.15μg/m2・hr以下にコントロールすることでクリーンルーム内でおこる汚染ガスの問題は回避しつつ、合成高分子の利用と両立出来る。本発明の請求項1,2に係るカバー材を設けた汚染ガス除去フィルタにおいては、カバー材のすぐ上流側にある吸着剤によって上流側の濾材や支持体等で発生する汚染物質は吸着されているため、カバー材から発生する汚染物質、特に有機物質について配慮すれば良い。
【0018】
以下、カバー材からの発生ガスを測定するダイナミックヘッドスペース法について図5を用いて説明する。図5はこの方法に用いる発生ガス捕集装置(ジーエルサイエンス(株)製 MSTD−258M)の説明図である。
実際のクリーンルームの室温23℃での発生ガスは極微量なので実測では分析感度の点で長時間の測定が必要になるなど、現実的には測定困難なため、ダイナミックヘッドスペース法は60℃、80℃の高温下で行い、後述する推測法を用いて室温での発生量を推測する。
まず、カバー材を直径7cmの円形に切り、試料9を2枚作成する。試料9の1枚をチャンバー10内の中央のガス吹き出し口13の上に設置する。次に、清浄なヘリウムガス11をチャンバー10内に流速120ml/minで連続的に流通させながらチャンバー10内が60℃になるように加熱する。ヘリウムガス11は試料9と接触する際、試料9から発生する物質がヘリウムガス中に混入するので、気体濃度が平衡になった後、捕集速度100ml/minで固体吸着剤12(成分;2,6-diphenylene oxide)に捕集する。次いで、固体吸着剤12に捕集した物質をガスクロマトグラフ質量分析計((株)島津製作所製 QP−5050)で分析し、トルエン換算により発生ガス量を半定量する。試料9のもう1枚を、チャンバー10の加熱温度を80℃に代える以外は全く同様の手順で捕集した物質を分析し、トルエン換算により発生ガス量を半定量する。
【0019】
以下、発生ガス推測法について説明する。(株)住化分析センターの竹田らによれば、試験温度と発生ガスの関係については、経験則として下記の式が成り立つことがわかっている。(平成11年第17回コンタミネーションコントロール研究大会予稿集などに記載)
ln(M/A・h)=−C1/T+C2
M;トルエン換算により半定量した発生ガス量(μg)
A;測定試料面積(m2
h:捕集に要した時間(h)
T;試験温度(絶対温度K)
C1、C2:定数
ダイナミックヘッドスペース法を60℃、80℃の高温下で行った結果を上記の数字に当てはめて、定数C1及びC2を算出し、クリーンルームの室温23℃での発生ガスを推測する。
【0020】
以下、本発明の実施例につき説明するが、これは発明の理解を容易とするための好適例に過ぎず、本願発明はこれら実施例の内容に限定されるものではない。
【0021】
【実施例】
(実施例1)
支持体としてポリエステルのスパンボンド不織布(面密度30g/m2)を準備し、その片面に、熱可塑性ポリアミド系樹脂(190℃におけるメルトインデックス:80)からなる面密度20g/m2のホットメルト不織布を接着層として積層した。次に、該接着層の上に吸着剤として粒径0.25〜0.5mmに分級した市販の活性炭を、1m2当たり180gの量になるように散布した。続いて、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行ない、該接着層を可塑化溶融せしめた後、固着されていない活性炭を除去した。以上の手順により、被処理気体の通過方向に対し最下流側に吸着剤(活性炭)を設け、該吸着剤がホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に前記樹脂凝集部を介して固着され、表面に露出した状態の汚染ガス除去フィルタを得た。
【0022】
(実施例2)
実施例1で得られた汚染ガス除去フィルタの吸着剤側にさらに熱可塑性ポリアミド系樹脂(190℃におけるメルトインデックス:80)からなる面密度20g/m2のホットメルト不織布を接着層として積層し、その上にカバー材として面密度30g/m2のポリエステルスパンボンド不織布を積層した後、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行なった。以上の手順により、被処理気体の通過方向に対し支持体の下流側に吸着剤(活性炭)を設け、該吸着剤がホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に前記樹脂凝集部を介して固着された状態であり、更に該吸着剤の下流側にホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウエブの樹脂凝集部を介してポリエステルスパンボンド不織布製のカバー材を固着した汚染ガス除去フィルタを得た。
【0023】
(比較例1)
実施例1で得られた汚染ガス除去フィルタの吸着剤側にさらに熱可塑性ポリアミド系樹脂(190℃におけるメルトインデックス:80)からなる面密度20g/m2のホットメルト不織布を接着層として積層し、その上にカバー材として面密度30g/m2のポリプロピレンスパンボンド不織布を積層した後、約5Kg/cm2の水蒸気処理を支持体側から約7秒間行なった。以上の手順により、被処理気体の通過方向に対し支持体の下流側に吸着剤(活性炭)を設け、該吸着剤がホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に前記樹脂凝集部を介して固着された状態であり、更に該吸着剤の下流側にホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウエブの樹脂凝集部を介してポリプロピレンスパンボンド不織布製のカバー材を固着した汚染ガス除去フィルタを得た。
【0024】
(比較例2)
比較例2として、市販の汚染ガス除去フィルタ(ニッタ株式会社製 ギガソーブ)を用いた。この汚染ガス除去フィルタは、活性炭を混合したウレタンフォームを不織布で包んだ構造のものである。該不織布はスチレン系バインダーで結合したレーヨン繊維の不織布である。
【0025】
(カバー材の評価方法)
カバー材の評価方法について発生ガス捕集装置の説明図である図5を用いて説明する。カバー材を使用した実施例2,比較例1,比較例2に用いたカバー材を直径7cmの円形に切り、試料9として各々2枚ずつ用意した。試料9の1枚をチャンバー10内の中央のガス吹き出し口13の上に設置し、次いで、清浄なヘリウムガス11をチャンバー10内に流速120ml/minで連続的に流通させながらチャンバー10を60℃に加熱した。30分後に捕集速度100ml/minで固体吸着剤13(成分;2,6-diphenylene oxide)に1時間捕集した。試料9のもう1枚は、チャンバー10の加熱温度を80℃にして同様の手順で発生ガスを捕集した。前述した発生ガス推測法により、23℃での発生ガスを推測し、汚染ガス除去フィルタをプリーツ型ユニット(山高さ3.3cm、山間5mm)に成型したときの、単位間口面積当たりのカバー材からの発生ガス量に換算して表1にまとめた。
【0026】
(汚染ガス除去フィルタの評価方法)
汚染ガス除去フィルタの評価方法について、発生ガス捕集装置の説明図である図5を用いて説明する。まず、各実施例および比較例の汚染ガス除去フィルタを直径3cmの円形に切って、試料9としてそれぞれ2枚ずつ用意した。試料9は、その周縁を覆うことができる内径2.5cmの円筒形のガラスセル(図示無し)2枚の間に挟み込んで周囲をテフロンテープで封じ、被処理気体であるヘリウムガス11が試料9を通過後に再度回り込んで吸着剤に接することのないようにした。次に、試料9がはめ込まれたセルを、発生ガス捕集装置(ジーエルサイエンス(株)製 MSTD−258M)のチャンバー中央のガス吹き出し口13の上に試料9の支持体側が下側(ガス吹き出し口13に面した状態)になるよう置いた。次いで、清浄なヘリウムガス11を流速240ml/minで連続的に流通させながらチャンバー10内を60℃にて加熱し、30分後に捕集速度100ml/minで固体吸着剤13(成分;2,6-diphenylene oxide)に1時間捕集した。試料9のもう1枚は、チャンバー10の加熱温度を80℃にして同様の手順で発生ガスを捕集した。発生ガス推測法により、23℃での発生ガスを推測し、汚染ガス除去フィルタをプリーツ型ユニット(山高さ3.3cm、山間5mm)に成型したときの、単位間口面積当たりの発生ガス量に換算して表1にまとめた。
【表1】

Figure 0004256570
カバー材を用いず、被処理気体の通過方向に対して最下流側に吸着剤を設けた実施例1のフィルタは、発生する有機物質量が最も少なく、添加剤量は測定限界以下であった。カバー材を用いた実施例2はカバー材の総有機物発生量が少なく、汚染ガス除去フィルタとしても発生する総有機物質量と添加剤量が少ないものであった。
【0027】
【発明の効果】
本発明の汚染ガス除去フィルタは、汚染ガス除去フィルタ自体のカバー材等の被処理気体との接触を原因とする有機系及び無機系ガス状汚染物質を低減し、クリーンルーム内の製品などへの悪影響の少ない物である。
【図面の簡単な説明】
【図1】本発明の汚染ガス除去フィルタをプリーツ型ユニットに成型した状態の見取り図である。
【図2】本発明の汚染ガス除去フィルタを平面型ユニットに成型した状態の見取り図である。
【図3】本発明の汚染ガス除去フィルタの吸着剤の模式的断面図である。
【図4】本発明の汚染ガス除去フィルタの吸着剤でカバー材を有する場合の模式的断面図である。
【図5】ダイナミックヘッドスペース法に用いる発生ガス捕集装置の説明図である。
【符号の説明】
1:ユニット枠体
2:支持体
3:カバー材
4:被処理気体の通過方向
5:連結部
6:樹脂凝集部
7:吸着剤
8:積層単位
9:試料
10:チャンバー
11:ヘリウムガス
12:固体吸着剤
13:ガス吹き出し口[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pollutant gas removing filter that removes organic and inorganic gaseous pollutants contained in air or atmosphere in a semiconductor or liquid crystal production facility or a clean room related to its peripheral technology.
[0002]
[Prior art]
High cleanliness is required in semiconductor and liquid crystal production facilities or related technology related clean rooms, etc., and organic and inorganic gaseous pollutants contained in the air or atmosphere or generated from clean room components and workers etc. A pollutant gas removal filter is used for removal.
[0003]
Of the pollutants, organic substances with low polarity can be removed by surface cleaning or heating even if they are physically adsorbed on the surface of a silicon wafer or glass substrate. However, if they are present in large quantities, they are difficult to remove. In addition, organic substances with high polarity such as additives, among contaminants, are strongly adsorbed on the surface of silicon wafers and glass substrates and cannot be removed easily. In particular, dioctyl phthalate is a plasticizer for polymer materials. Is considered to have a strong adhesive force on the wafer and drive out and replace the pollutants that are already weakly attached to the wafer.
[0004]
Additives are those added to improve the functionality of polymer materials, such as plasticizers, antioxidants, UV absorbers, light stabilizers, flame retardants, lubricants, antistatic agents, nucleating agents Agents and foaming agents. In particular, phthalate plasticizer, trimellitic ester plasticizer, aliphatic dibasic ester plasticizer, fatty ester plasticizer, epoxy plasticizer, phosphate plasticizer, polyester plasticizer , Phenolic antioxidants, thio antioxidants, phosphorus antioxidants, benzotriazole UV absorbers, benzophenone UV absorbers, UVA UV absorbers, hindered amine light stabilizers, phosphorus flame retardants, etc. It has become.
[0005]
In order to prevent the adsorption of these organic substances on the wafer surface, the concentration of the organic substances in the clean room atmosphere must be controlled at the lowest possible level. According to the 1999 edition of SIA (Semiconductor Industry Association) roadmap, the organic substance management level on the wafer surface in the year 2000 is required to be 6.6 × 10 13 carbon atoms / cm 2 or less. This is 14.4 μg / m 2 in terms of toluene. However, it is generally said that dioctyl phthalate having strong adhesion to the wafer causes dielectric breakdown of the gate oxide film when 2 μg / m 2 is deposited on the wafer.
From these values and the generally known adhesion probability, the control concentration in clean room air was determined according to the following equation. The total organic material is 41.7μg / m 3, strong material adherent such as phthalic acid dioctyl ester derived that takes the management level of 0.007 / m 3.
[Contaminant concentration in air (μg / m 3 )] = As / (v · t · γ)
As: Contaminant concentration on the wafer surface in terms of toluene (μg / m 2 )
v: Clean room air flow rate (0.4 m / sec)
t: Exposure time of wafer in air (second)
γ: Adhesion probability Total organic substance adhesion probability: 10 -5 (value of aromatic hydrocarbons applied)
Adhesion probability of dioctyl phthalate, etc .: 1/120
[0006]
Such pollutant gas removal filters that adsorb pollutants use activated carbon, activated carbon fiber, zeolite, ion exchange resin, ion exchange fiber, and other chemical adsorbents as adsorbents. As described in Japanese Patent No. 221414, it is held and used between two or more layers of air-permeable filter media.
[0007]
However, the pollutant gas removal filter configured to hold the adsorbent between two or more layers of air-permeable filter media as described above is free from the gas to be treated when removing the pollutants in the gas to be treated. Since the filter medium and the like are also provided on the downstream side of the adsorbent, the pollutant in the gas to be treated is once removed by the adsorbent, and then the gas to be treated passes through the downstream filter medium and the like. The gas to be treated that is contaminated again by the contaminant generated from the downstream filter medium or the like due to contact with the side filter medium or the like flows into the clean room and pollutes the atmosphere.
[0008]
[Problems to be solved by the invention]
An object of the present invention is to prevent adverse effects on products in a clean room due to contamination of a gas to be processed caused by contact with a filter medium in a pollutant gas removal filter used in a clean room.
[0010]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, the invention of claim 1 is a pollutant gas removal filter for removing pollutants in a gas, wherein the adsorbent is carried on the support, and the direction of passage of the gas to be treated at least the adsorbent on the downstream surface of the support is carried, a further contaminant gas removal filter having a nonwoven cover material to the downstream side of a synthetic polymeric material adsorbent to the cover The material is heat-treated in advance to remove volatile substances, or additives that suppress the generation of polar substances are used, and it is provided per unit unit frontage area (1 m 2 ) when molded into a unit. If the total organic mass (toluene-reduced weight) generated per unit time from said cover member, was calculated by the generated gas guess method, 1.0pg / m 2 · hr or more at 23 ° C. With 10μg / m 2 · hr or less in the range, is contamination gas removal filter with reduced influence on the product in a clean room. According to a second aspect of the present invention, in the pollutant gas removing filter for removing the pollutant in the gas according to the first aspect, the pollutant gas removing filter in which the adsorbent is supported on the support, the passing direction of the gas to be processed. The adsorbent is supported on at least the downstream surface of the support, and further includes a non-woven fabric cover material made of a synthetic polymer material on the downstream side of the adsorbent , wherein the cover material comprises: Volatile substances are removed by heat treatment in advance, or additives that suppress the generation of polar substances are used, and the cover provided per unit unit frontage area (1 m 2 ) when molded into a unit When the amount of additive generated per unit time from the material (weight in terms of toluene) is calculated by the generated gas estimation method, it is 1.0 pg / m 2 · hr or more and 0.15 μg at 23 ° C. It is a pollutant gas removal filter that reduces the influence on the product in the clean room by setting it to the range of / m 2 · hr or less.
[0011]
In these inventions of the present application, the adsorbent is not particularly limited. However, the resin is formed on the surface of the web composed of a connecting portion made of a hot melt resin and a resin aggregating portion as shown in claim 4. A structure having at least one layered unit that is fixed via an agglomerated portion and in which the adsorbent is exposed on the surface is particularly suitable. According to this configuration, the adsorbent is less scattered, the pressure loss is low, and the adsorption performance can be arbitrarily enhanced by repeatedly stacking the laminated units, so that it is particularly suitable for use in the pollutant gas removal filter of the present invention. Yes.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of a pollutant gas removal filter according to the present invention will be described in detail.
[0013]
As the adsorbent used in the present invention, any adsorbent that can be used for deodorization can be used, and activated carbon, activated carbon fiber, zeolite, and other chemical adsorbents can be selected and used.
[0014]
Since the adsorbent is provided on the downstream side with respect to the passing direction of the gas to be treated, it is preferable that the adsorbent is not easily scattered. For example, as shown in FIG. An adsorbent having at least one layer unit 8 that is fixed to the surface of the web constituted by the agglomerated part 6 via the resin agglomerated part 6 and in which the adsorbent 7 is exposed on the surface. 7 is particularly suitable because it has less scattering, pressure loss, and high adsorption performance. To use the cover material to prevent the scattering of the adsorbent in the form of adsorbent fibrous, particulate, a sheet-like, it may be of any type. For example, as shown in FIG. 4, a laminate in which an adsorbent 7 is fixed to one surface of a web composed of a connecting portion 5 made of hot melt resin and a resin agglomerating portion 6 via the resin agglomerating portion 6. A structure having a unit 8 and a structure in which at least one unit is stacked and fixed and the cover material 3 is provided on the downstream side of the adsorbent with respect to the passage direction 4 of the gas to be processed has a pressure loss. The low and high adsorption performance makes it particularly suitable for use in the pollutant gas removal filter of the present invention. In order to enhance the effect of preventing the adsorbent from scattering, the cover material may be bonded via a web composed of a connecting portion 5a made of hot melt resin and a resin agglomerating portion 6a.
[0015]
When supporting the adsorbent on the support, any support can be used as long as the support is a sheet-like material having air permeability such as a nonwoven fabric, a woven fabric, a membrane, a filter paper, etc. Among them, fibers derived from a polymer material are used. Nonwoven fabrics are particularly preferred because of their high breathability and excellent durability. In general, when a filter is used, it is referred to as a panel type unit in which the filter is attached to the frame as shown in FIG. 2 or a pleated type unit in which the filter is bent into a pleat shape and attached to the frame as shown in FIG. In order to process, a polymeric material is preferable also in terms of excellent processability and durability, and a nonwoven fabric having particularly good air permeability is preferable.
[0016]
A specific method for obtaining the adsorbent in the state according to claim 4 of the present application will be described with reference to FIG. First, a hot melt nonwoven fabric is laminated as an adhesive layer on one surface of the sheet-like support 2 described above. The hot melt nonwoven fabric is preferably made of one or more thermoplastic resins and having a melt index of 50 to 500 at 190 ° C. A resin having a melt index lower than this preferred range has low fluidity when heated with water vapor, and resin agglomeration is difficult to form, so that the adsorbent may not be firmly fixed. Furthermore, a resin having a melt index higher than the above range has high fluidity when heated with steam, making it difficult to maintain the shape of the laminated unit. Next, the adsorbent 7 is sprayed on the adhesive layer, and after heating with steam until the adhesive layer is plasticized and melted from the support 2 side, the adsorbent 7 is fixed. A part of the fibers constituting the hot melt nonwoven fabric is melted and cut by this steam heating and gathers at the contact point with the adsorbent 7 to form the resin agglomerated portion 6. When the adsorbent that is not fixed is removed, the adsorbent 7 fixed on the surface of the web composed of the connecting portion 5 made of hot melt resin and the resin agglomerated portion 6 is attached to the surface. The laminated unit 8 in an exposed state is obtained. Further, in the case of forming a multilayer, the above hot melt nonwoven fabric is laminated on this lamination unit 8, and the second layer lamination unit 8 is obtained through the dispersion of the adsorbent 7, the steam heating, and the removal of the adsorbent which is not fixed. . By repeating these series of operations an arbitrary number of times, a plurality of lamination units 8 can be laminated, and a desired adsorption performance can be obtained.
When fixing the cover material 3 that prevents the adsorbent from falling off, as shown in FIG. 4, the adhesive layer of the hot melt nonwoven fabric described above is laminated next to the most downstream lamination unit 8, and the cover material 3 is formed thereon. After stacking, the water vapor treatment is carried out from the support 2 side to plasticize and melt the adhesive layer, and the adsorbent 7 and The cover material 3 is fixed.
[0017]
As the cover material 3, a material that is air permeable and hardly generates organic substances that contaminate the gas to be treated and adversely affect products in the clean room is used. For example, a non-woven fabric using fibers made of a synthetic polymer material can be used, but a synthetic polymer material that is excellent in processability and durability when processed into a unit form and that is lightweight is preferable, and has particularly good air permeability. A good non-woven form is preferred. If the resistance of the cover material is low, the cover material itself may fall off, so in the manufacturing process, additives that can withstand deterioration factors such as oxidation, mechanical stress, chemicals, water, etc. are optionally added, Add functionality. However, the addition of such additives causes the generation of organic substances. Therefore, in order to achieve both a function as a cover material and a function as a pollutant gas removal filter, the cover material is preheated to be volatile. Total organic substances from the cover material (toluene equivalent weight) when the upper limit of organic substances, etc. is sufficiently lower than the control level by removing additives or using additives that suppress the generation of polar substances. and the following unit frontage area 1 m 2 per 1.0pg / m 2 · hr or more 10μg / m 2 · hr unit at standard conditions temperature 23 ° C. in a clean room, with respect to the additive amount 1.0pg / m 2 · hr or more 0.15 [mu] g / m problem pollutant gases occurring in a clean room at 2 · hr be controlled below while avoiding, compatible with the use of synthetic polymer Come. In the pollutant gas removal filter provided with the cover material according to claims 1 and 2 of the present invention, the pollutant generated in the upstream filter medium or the support is adsorbed by the adsorbent immediately upstream of the cover material. Therefore, it is only necessary to consider pollutants generated from the cover material, especially organic substances.
[0018]
Hereinafter, the dynamic headspace method for measuring the gas generated from the cover material will be described with reference to FIG. FIG. 5 is an explanatory diagram of a generated gas collection device (MSTD-258M manufactured by GL Sciences) used in this method.
Since the amount of gas generated at room temperature of 23 ° C in an actual clean room is extremely small, the actual measurement is difficult, such as requiring long-time measurement in terms of analytical sensitivity, so the dynamic headspace method is 60 ° C, 80 ° C. It is performed at a high temperature of ° C., and the generation amount at room temperature is estimated using the estimation method described later.
First, the cover material is cut into a circle having a diameter of 7 cm, and two samples 9 are prepared. One of the samples 9 is placed on the central gas outlet 13 in the chamber 10. Next, while the clean helium gas 11 is continuously passed through the chamber 10 at a flow rate of 120 ml / min, the inside of the chamber 10 is heated to 60 ° C. When the helium gas 11 comes into contact with the sample 9, since the substance generated from the sample 9 is mixed in the helium gas, the solid adsorbent 12 (component; 2) is collected at a collection rate of 100 ml / min after the gas concentration is balanced. , 6-diphenylene oxide). Next, the substance collected in the solid adsorbent 12 is analyzed by a gas chromatograph mass spectrometer (QP-5050, manufactured by Shimadzu Corporation), and the amount of generated gas is semi-quantified by toluene conversion. The other sample 9 is analyzed for substances collected in exactly the same manner except that the heating temperature of the chamber 10 is changed to 80 ° C., and the amount of generated gas is semi-quantified in terms of toluene.
[0019]
Hereinafter, the generated gas estimation method will be described. According to Takeda et al. Of Sumika Chemical Analysis Co., Ltd., as a rule of thumb, the following equation holds for the relationship between the test temperature and the generated gas. (Described in the 1999 Proceedings of the 17th Contamination Control Conference)
ln (M / A · h) = − C1 / T + C2
M: Generated gas volume (μg) semi-quantified by toluene conversion
A: Measurement sample area (m 2 )
h: Time required for collection (h)
T: Test temperature (absolute temperature K)
C1, C2: Constant constant headspace method performed at a high temperature of 60 ° C. and 80 ° C. is applied to the above numbers to calculate the constants C1 and C2 to estimate the generated gas at a clean room temperature of 23 ° C. .
[0020]
Examples of the present invention will be described below, but these are only suitable examples for facilitating understanding of the invention, and the present invention is not limited to the contents of these examples.
[0021]
【Example】
Example 1
A polyester spunbonded non-woven fabric (surface density 30 g / m 2 ) was prepared as a support, and a hot-melt non-woven fabric having a surface density of 20 g / m 2 made of a thermoplastic polyamide resin (melt index at 190 ° C .: 80) on one side. Were laminated as an adhesive layer. Next, commercially available activated carbon classified to a particle size of 0.25 to 0.5 mm as an adsorbent was sprayed on the adhesive layer so as to have an amount of 180 g per 1 m 2 . Subsequently, steam treatment at about 5 Kg / cm 2 was performed from the support side for about 7 seconds to plasticize and melt the adhesive layer, and then unfixed activated carbon was removed. By the above procedure, an adsorbent (activated carbon) is provided on the most downstream side with respect to the passing direction of the gas to be treated, and the adsorbent is formed on the surface of the web composed of a connecting portion made of hot melt resin and a resin agglomerating portion. A contaminated gas removal filter fixed through the resin agglomeration part and exposed on the surface was obtained.
[0022]
(Example 2)
A hot melt nonwoven fabric having a surface density of 20 g / m 2 made of a thermoplastic polyamide resin (melt index at 190 ° C .: 80) was further laminated as an adhesive layer on the adsorbent side of the pollutant gas removal filter obtained in Example 1. A polyester spunbonded nonwoven fabric having a surface density of 30 g / m 2 was laminated thereon as a cover material, and then a water vapor treatment of about 5 Kg / cm 2 was performed from the support side for about 7 seconds. By the above procedure, an adsorbent (activated carbon) is provided on the downstream side of the support with respect to the direction of the gas to be treated, and the adsorbent is a surface of a web composed of a connecting portion made of a hot melt resin and a resin agglomeration portion. Polyester spunbond via a resin agglomerated part of a web composed of a connecting part made of hot melt resin and a resin agglomerated part on the downstream side of the adsorbent. A contaminated gas removal filter having a non-woven fabric cover material adhered thereto was obtained.
[0023]
(Comparative Example 1)
A hot melt nonwoven fabric having a surface density of 20 g / m 2 made of a thermoplastic polyamide resin (melt index at 190 ° C .: 80) was further laminated as an adhesive layer on the adsorbent side of the pollutant gas removal filter obtained in Example 1. A polypropylene spunbonded nonwoven fabric with a surface density of 30 g / m 2 was laminated thereon as a cover material, and then a steam treatment of about 5 Kg / cm 2 was performed from the support side for about 7 seconds. By the above procedure, an adsorbent (activated carbon) is provided on the downstream side of the support with respect to the direction of the gas to be treated, and the adsorbent is a surface of a web composed of a connecting portion made of a hot melt resin and a resin agglomeration portion. The polypropylene spunbond is fixed to the adsorbent via the resin agglomerated part of the web which is composed of a connecting part made of hot melt resin and a resin agglomerated part on the downstream side of the adsorbent. A contaminated gas removal filter having a non-woven fabric cover material adhered thereto was obtained.
[0024]
(Comparative Example 2)
As Comparative Example 2, a commercially available pollutant gas removal filter (Gigasorb manufactured by Nitta Corporation) was used. This pollutant gas removal filter has a structure in which urethane foam mixed with activated carbon is wrapped with a nonwoven fabric. The nonwoven fabric is a nonwoven fabric of rayon fibers bonded with a styrene-based binder.
[0025]
(Cover material evaluation method)
The cover material evaluation method will be described with reference to FIG. 5, which is an explanatory view of the generated gas collection device. The cover material used in Example 2, Comparative Example 1 and Comparative Example 2 using the cover material was cut into a circular shape having a diameter of 7 cm, and two samples 9 were prepared. One sample 9 was placed on the central gas outlet 13 in the chamber 10, and then the chamber 10 was kept at 60 ° C. while clean helium gas 11 was continuously passed through the chamber 10 at a flow rate of 120 ml / min. Heated. After 30 minutes, the solid adsorbent 13 (component: 2,6-diphenylene oxide) was collected for 1 hour at a collection rate of 100 ml / min. In the other sample 9, the generated gas was collected in the same procedure with the heating temperature of the chamber 10 being 80 ° C. From the cover material per unit opening area when the generated gas at 23 ° C. is estimated by the above-mentioned generated gas estimation method, and the pollutant gas removal filter is molded into a pleated unit (peak height 3.3 cm, mountain height 5 mm). Table 1 shows the amount of gas generated.
[0026]
(Contamination gas removal filter evaluation method)
The evaluation method of the pollutant gas removal filter will be described with reference to FIG. 5 which is an explanatory diagram of the generated gas collecting device. First, the pollutant gas removal filters of each Example and Comparative Example were cut into a circle having a diameter of 3 cm, and two samples 9 were prepared. The sample 9 is sandwiched between two cylindrical glass cells (not shown) having an inner diameter of 2.5 cm that can cover the periphery of the sample 9, and the periphery is sealed with Teflon tape. So that it does not come into contact with the adsorbent again after passing through. Next, the cell into which the sample 9 was fitted was placed on the gas outlet 13 at the center of the chamber of the generated gas collector (GSTD-258M manufactured by GL Sciences) with the support side of the sample 9 on the lower side (gas outlet). It was placed so as to face the mouth 13). Next, the inside of the chamber 10 is heated at 60 ° C. while continuously flowing clean helium gas 11 at a flow rate of 240 ml / min. After 30 minutes, the solid adsorbent 13 (components; 2, 6) is collected at a collection rate of 100 ml / min. -Diphenylene oxide) for 1 hour. In the other sample 9, the generated gas was collected in the same procedure with the heating temperature of the chamber 10 being 80 ° C. Estimate the generated gas at 23 ° C by the generated gas estimation method, and convert it to the amount of generated gas per unit opening area when the pollutant gas removal filter is molded into a pleated unit (mountain height 3.3cm, mountain 5mm) And summarized in Table 1.
[Table 1]
Figure 0004256570
The filter of Example 1 in which the adsorbent was provided on the most downstream side with respect to the passing direction of the gas to be processed without using the cover material generated the smallest amount of organic substance, and the amount of additive was below the measurement limit. In Example 2 using the cover material, the total organic matter generation amount of the cover material was small, and the total organic material amount and additive amount generated as a pollutant gas removal filter were also small.
[0027]
【The invention's effect】
The pollutant gas removal filter of the present invention reduces organic and inorganic gaseous pollutants caused by contact with the gas to be treated such as the cover material of the pollutant gas removal filter itself, and adversely affects products in clean rooms. There are few things.
[Brief description of the drawings]
FIG. 1 is a sketch of a state in which a pollutant gas removal filter of the present invention is molded into a pleated unit.
FIG. 2 is a sketch of a state in which the pollutant gas removal filter of the present invention is molded into a flat unit.
FIG. 3 is a schematic cross-sectional view of an adsorbent of the pollutant gas removal filter of the present invention.
FIG. 4 is a schematic cross-sectional view when the adsorbent of the pollutant gas removal filter of the present invention has a cover material.
FIG. 5 is an explanatory diagram of a generated gas collection device used in the dynamic headspace method.
[Explanation of symbols]
1: Unit frame 2: Support body 3: Cover material 4: Direction of gas to be processed 5: Connection portion 6: Resin agglomeration portion 7: Adsorbent 8: Stack unit 9: Sample 10: Chamber 11: Helium gas 12: Solid adsorbent 13: Gas outlet

Claims (5)

気体中の汚染物質を除去する汚染ガス除去フィルタにおいて、支持体に吸着剤が担持された汚染ガス除去フィルタで、被処理気体の通過方向に対し少なくとも該支持体の下流側表面に該吸着剤が担持され、更に該吸着剤の下流側に合成高分子材料からなる不織布製のカバー材を設けた汚染ガス除去フィルタであって、前記カバー材はあらかじめ熱処理されることで揮発性物質が除去されているか、または極性物質の発生を抑える添加剤が使用されており、ユニットに成型した場合にユニット単位間口面積(1m)当りに設けられる該カバー材から単位時間当りに発生する総有機物質量(トルエン換算重量)を、発生ガス推測法により算出した場合、23℃において1.0pg/m・hr以上10μg/m・hr以下の汚染ガス除去フィルタ。In a pollutant gas removal filter for removing pollutants in a gas, a pollutant gas removal filter in which an adsorbent is supported on a support, and the adsorbent is at least on a downstream surface of the support with respect to a passing direction of a gas to be processed. A polluted gas removing filter that is supported and further provided with a nonwoven fabric cover material made of a synthetic polymer material on the downstream side of the adsorbent , wherein the cover material is preheated to remove volatile substances. Or additives that suppress the generation of polar substances, and when molded into a unit, the total amount of organic substances (toluene) generated per unit time from the cover material provided per unit unit frontage area (1 m 2 ) the reduced weight), occurs when calculated by the gas guess method, contaminant gas removal off following 1.0pg / m 2 · hr or more 10μg / m 2 · hr at 23 ° C. Filter. 気体中の汚染物質を除去する汚染ガス除去フィルタにおいて、支持体に吸着剤が担持された汚染ガス除去フィルタで、被処理気体の通過方向に対し少なくとも該支持体の下流側表面に該吸着剤が担持され、更に該吸着剤の下流側に合成高分子材料からなる不織布製のカバー材を設けた汚染ガス除去フィルタであって、前記カバー材はあらかじめ熱処理されることで揮発性物質が除去されているか、または極性物質の発生を抑える添加剤が使用されており、ユニットに成型した場合にユニット単位間口面積(1m)当りに設けられる該カバー材から単位時間当りに発生する添加剤量(トルエン換算重量)を、発生ガス推測法により算出した場合、23℃において1.0pg/m・hr以上0.15μg/m・hr以下の請求項1記載の汚染ガス除去フィルタ。In a pollutant gas removal filter for removing pollutants in a gas, a pollutant gas removal filter in which an adsorbent is supported on a support, and the adsorbent is at least on a downstream surface of the support with respect to a passing direction of a gas to be processed. A polluted gas removing filter that is supported and further provided with a nonwoven fabric cover material made of a synthetic polymer material on the downstream side of the adsorbent , wherein the cover material is preheated to remove volatile substances. Or additives that suppress the generation of polar substances, and the amount of additive generated per unit time (toluene) from the cover material provided per unit unit frontage area (1 m 2 ) when molded into a unit the reduced weight), if calculated by the generated gas guess method of claim 1, wherein 1.0pg / m 2 · hr or more 0.15μg / m 2 · hr or less of at 23 ° C. Decontamination gas removal filter. 前記カバー材がスパンボンド不織布である請求項1または2のいずれかに記載の汚染ガス除去フィルタ。  The pollutant gas removal filter according to claim 1, wherein the cover material is a spunbonded nonwoven fabric. 前記吸着剤が、ホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブの表面に、前記樹脂凝集部を介して固着され、前記吸着剤が表面に露出した状態である積層単位を少なくとも1層有する請求項1,2,3のいずれかに記載の汚染ガス除去フィルタ。  A laminated unit in which the adsorbent is fixed to the surface of a web composed of a connecting portion made of hot melt resin and a resin agglomerated portion via the resin agglomerated portion, and the adsorbent is exposed on the surface. The pollutant gas removal filter according to claim 1, which has at least one layer. 前記カバー材が、ホットメルト樹脂からなる連結部と樹脂凝集部とで構成されたウェブを介して接着されている請求項1,2,3,4のいずれかに記載の汚染ガス除去フィルタ。  The pollutant gas removal filter according to any one of claims 1, 2, 3, and 4, wherein the cover material is bonded via a web composed of a connecting portion made of hot-melt resin and a resin agglomerated portion.
JP2000172539A 2000-06-08 2000-06-08 Contaminated gas removal filter Expired - Lifetime JP4256570B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000172539A JP4256570B2 (en) 2000-06-08 2000-06-08 Contaminated gas removal filter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000172539A JP4256570B2 (en) 2000-06-08 2000-06-08 Contaminated gas removal filter

Publications (2)

Publication Number Publication Date
JP2001347124A JP2001347124A (en) 2001-12-18
JP4256570B2 true JP4256570B2 (en) 2009-04-22

Family

ID=18674921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000172539A Expired - Lifetime JP4256570B2 (en) 2000-06-08 2000-06-08 Contaminated gas removal filter

Country Status (1)

Country Link
JP (1) JP4256570B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003236938A (en) * 2002-02-13 2003-08-26 Ueda Shikimono Kojo:Kk Method for manufacturing functional molded product and functional molded product manufactured by using the same
JP4932564B2 (en) * 2007-03-29 2012-05-16 日本バイリーン株式会社 Gas removal filter medium, method for producing the same, and gas removal element using the gas removal filter medium
PL2477802T3 (en) * 2009-09-16 2018-05-30 Autoneum Management Ag Moulded product for automotive panels
ES2467933T3 (en) * 2011-03-23 2014-06-13 Autoneum Management Ag Production process of a multilayer molded coating

Also Published As

Publication number Publication date
JP2001347124A (en) 2001-12-18

Similar Documents

Publication Publication Date Title
KR0169209B1 (en) Ulpa filter
TWI515035B (en) Regenerable pleated filter medium
US6077335A (en) Filter and method for making a filter
JPH10286415A (en) Air filter unit and its production
KR100439412B1 (en) filter medium and air filter unit
JP3693315B2 (en) Gas cleaning method and apparatus in clean room
US20030217640A1 (en) Method for filtering pernicious non-gaseous contaminants from air and benign gases
JP4256570B2 (en) Contaminated gas removal filter
EP3487605B1 (en) Adsorbent breather for enclosure protection and method thereof
JP4369629B2 (en) Chemical filter media and chemical filter unit
JP2009543678A (en) Filtering system for semiconductor processing tools
KR100394786B1 (en) Air filter part, package thereof and method of packaging the part
JP2003275523A (en) Automatic winding type filter device
JP4454886B2 (en) Chemical filter
JP4454952B2 (en) Air filter medium, air filter unit, manufacturing method thereof, and package thereof
JP2001338853A (en) Semiconductor manufacturing method
CN108770347B (en) Layered filter assembly for closure protection
US11878266B2 (en) Regenerable air filter
JP2003079715A (en) Filter for gas removal and production method therefor
JP3552140B2 (en) Gas cleaning method and apparatus
JPH06285318A (en) Filter paper and air filter utilizing the filter paper
JP4944304B2 (en) Air filter medium, air filter unit, manufacturing method thereof, and package thereof
JP2003275513A (en) Filter material for air filter and method for manufacturing air filter unit
JP2003093820A (en) Air filter material and method for manufacturing the same
JP2001259338A (en) Filter medium for air filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051116

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070801

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080924

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081119

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20081201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256570

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

EXPY Cancellation because of completion of term