JP4256378B2 - Control method and control apparatus for gasifier - Google Patents

Control method and control apparatus for gasifier Download PDF

Info

Publication number
JP4256378B2
JP4256378B2 JP2005308195A JP2005308195A JP4256378B2 JP 4256378 B2 JP4256378 B2 JP 4256378B2 JP 2005308195 A JP2005308195 A JP 2005308195A JP 2005308195 A JP2005308195 A JP 2005308195A JP 4256378 B2 JP4256378 B2 JP 4256378B2
Authority
JP
Japan
Prior art keywords
amount
temperature difference
temperature
absolute value
fluidized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005308195A
Other languages
Japanese (ja)
Other versions
JP2007113880A (en
Inventor
信行 友近
宏央 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Kobelco Eco Solutions Co Ltd filed Critical Kobe Steel Ltd
Priority to JP2005308195A priority Critical patent/JP4256378B2/en
Publication of JP2007113880A publication Critical patent/JP2007113880A/en
Application granted granted Critical
Publication of JP4256378B2 publication Critical patent/JP4256378B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)
  • Gasification And Melting Of Waste (AREA)

Description

本発明は、流動床を有するガス化炉における操作量を制御するための制御方法及び制御装置に関するものである。   The present invention relates to a control method and a control apparatus for controlling an operation amount in a gasification furnace having a fluidized bed.

近年、都市ごみの発熱量は増加の一途をたどり、最終処分地容量の逼迫や地下水汚染等の二次公害の問題、法規制の強化等の関係から、廃棄物の溶融による減容化、固定化が進められている。更に、ダイオキシンなどの微粒汚染物質の抑制など、廃棄物処理に要求される課題は多い。   In recent years, the amount of heat generated from municipal waste has been increasing, and due to the problem of secondary pollution such as tightness of final disposal site capacity and groundwater contamination, and strengthening of laws and regulations, volume reduction and fixation by melting waste Is being promoted. Furthermore, there are many problems required for waste disposal such as suppression of fine pollutants such as dioxins.

このような状況において、廃棄物を還元雰囲気で熱分解ガス化し、発生した可燃ガスを高温で燃焼し、焼却残渣を溶融するガス化溶融プロセスが注目されている。このプロセスには以下のような特徴がある。
1.廃棄物の持つエネルギーを利用して灰の溶融を可能にし、焼却残渣の減容化、再資源化ができる。
2.低温熱分解により有価金属を回収することができる。
3.低空気比が可能なことから、装置をコンパクトにすることが可能になる。
4.溶融炉の高温焼却により、ダイオキシン類等の微粒有害物質の抑制が可能である。
Under such circumstances, a gasification and melting process in which waste is pyrolyzed and gasified in a reducing atmosphere, the generated combustible gas is burned at a high temperature, and the incineration residue is melted is attracting attention. This process has the following characteristics.
1. Using the energy of waste, ash can be melted, and the volume of incineration residue can be reduced and recycled.
2. Valuable metals can be recovered by low-temperature pyrolysis.
3. Since a low air ratio is possible, the device can be made compact.
4). High-temperature incineration of the melting furnace can control fine harmful substances such as dioxins.

このガス化溶融処理プロセスにおけるガス化処理において、主な制御量としてはガス化炉の流動床温度が上げられ、主な操作量としては廃棄物投入量(又は廃棄物供給機の速度)や流動化空気量が挙げられる。そして、従来技術においては、オペレータの手動操作又は単独の制御ループの組合せによる操作量の操作により、制御量を制御するようになっている。   In the gasification process in the gasification and melting process, the main control amount is the fluidized bed temperature of the gasification furnace, and the main operation amount is the amount of waste input (or the speed of the waste feeder) and the flow rate. For example, the amount of chemical air. In the prior art, the control amount is controlled by an operator's manual operation or an operation amount operation by a combination of a single control loop.

例えば、特許文献1には、流動床温度を流動化空気量にて制御し、溶融炉温度または蒸気流量を給塵量にて制御する制御系において、給塵量の操作による流動床温度への干渉を非干渉器で保障する制御技術が開示されている。また、特許文献2には、プラントの挙動を予測する予測モデルを用いて、1つ以上の制御量の未来挙動を予測し、その予測系列が望ましい系列(目標軌道)に近づくように、プラントの制約条件を考慮しながら操作入力を最適化することによって、流動床温度をはじめとする複数の制御量を、流動化空気量をはじめとする複数の操作量で安定化する技術が開示されている。   For example, in Patent Document 1, in a control system in which the fluidized bed temperature is controlled by the amount of fluidized air, and the melting furnace temperature or the steam flow rate is controlled by the amount of dust supplied, A control technique for ensuring interference with a non-interferor is disclosed. Further, Patent Document 2 predicts the future behavior of one or more controlled variables using a prediction model that predicts the behavior of the plant, so that the predicted sequence approaches a desirable sequence (target trajectory). A technique is disclosed in which a plurality of control amounts including a fluidized bed temperature are stabilized by a plurality of operation amounts including a fluidized air amount by optimizing an operation input in consideration of constraint conditions. .

特開2001−182925号公報JP 2001-182925 A 特開2004−20049号公報JP 2004-20049 A

ここで、流動床における流動化空気の役割は、砂等の流動媒体を流動化し、流動層を形成して炉内に投入される廃棄物を攪拌することと、炉内に投入される廃棄物に対して、燃焼・ガス化に必要な空気を供給することの2つである。さて、ガス化炉においては、炉内に投入された廃棄物を燃焼させず、還元雰囲気でガス化することが重要である。従って、安定してガス化を促進するためには、流動化空気量を絞り、酸素を不足させる(空気比を低下させる)ことが必要である。特に、流動化空気量を絞るほど、ガス化効率が良くなるとともに、流動床温度も低めに保たれるため、緩慢なガス化が実現でき、廃棄物投入外乱の影響が出にくくなる。   Here, the role of fluidized air in the fluidized bed is to fluidize a fluid medium such as sand, to form a fluidized bed, to stir the waste that is put into the furnace, and to be thrown into the furnace On the other hand, the air necessary for combustion and gasification is supplied. Now, in a gasification furnace, it is important to gasify in a reducing atmosphere without burning the waste thrown into the furnace. Therefore, in order to stably promote gasification, it is necessary to reduce the amount of fluidized air and to make oxygen insufficient (lower the air ratio). In particular, as the amount of fluidized air is reduced, gasification efficiency is improved and the fluidized bed temperature is kept low, so that slow gasification can be realized and the influence of waste input disturbance is less likely to occur.

しかしながら、流動化空気量を絞ると、流動状態は緩慢となるため、廃棄物の攪拌が不十分となる傾向にある。廃棄物の攪拌が不十分なまま廃棄物の投入を続けると、流動床に廃棄物が滞留し続け、ますます流動状態が悪化してしまう。   However, when the amount of fluidized air is reduced, the flow state becomes slow, and thus the waste tends to be insufficiently stirred. If the introduction of waste is continued while the agitation of the waste is insufficient, the waste will continue to stay in the fluidized bed, and the fluidized state will become worse.

特許文献1または2に示すような従来技術では、流動床温度を目標値に制御することはできるが、流動化空気量を絞ったときに発生しうる廃棄物の滞留による問題を解決することができない。また、流動床温度を制御するために流動化空気量を操作するあまり、流動状態を悪化させて流動床に廃棄物を滞留させてしまう問題もあった。   In the prior art as shown in Patent Document 1 or 2, the fluidized bed temperature can be controlled to the target value, but the problem due to the retention of waste that may occur when the amount of fluidized air is reduced can be solved. Can not. Further, since the amount of fluidized air is manipulated to control the fluidized bed temperature, there is also a problem that the fluidized state is deteriorated and the waste is retained in the fluidized bed.

本発明の目的は、流動状態悪化による廃棄物の滞留を解決して安定したガス化を実現するガス化炉の制御方法及び制御装置を提供することである。   The objective of this invention is providing the control method and control apparatus of a gasification furnace which implement | achieves the stable gasification by solving the stay of the waste by a fluid state deterioration.

課題を解決するための手段及び効果Means and effects for solving the problems

本発明に係るガス化炉の制御方法は、流動床の複数箇所における温度を計測する温度計測ステップと、計測した温度に基づいて算出される温度差に応じて、流動化空気量を補正して操作する補正操作ステップと、を備えることを特徴とする。   The gasification furnace control method according to the present invention corrects the amount of fluidized air in accordance with a temperature measurement step for measuring temperatures at a plurality of locations in a fluidized bed and a temperature difference calculated based on the measured temperature. And a correction operation step to be operated.

本発明に係るガス化炉の制御装置は、流動床の複数箇所における温度を計測する温度計測手段と、計測した温度に基づいて算出される温度差に応じて、流動化空気量を補正して操作する補正操作手段と、を備えることを特徴とする。   The control apparatus for a gasification furnace according to the present invention corrects the amount of fluidized air in accordance with temperature measuring means for measuring temperatures at a plurality of locations in the fluidized bed and a temperature difference calculated based on the measured temperature. Correction operation means for operating.

これによると、流動状態が良好であれば、流動媒体及び炉内に投入された廃棄物は攪拌される。従って、流動床内の一部に温度差が生じたとしても、攪拌によって速やかに温度が均一化される。例えば、投入された廃棄物の水分蒸発による吸熱反応で廃棄物周辺の温度が一時的に低下したとしても、流動状態が良好であれば温度差は顕在化しない。ところが、流動状態が悪化している場合には、投入された廃棄物が攪拌されることなく一部分に蓄積され、滞留してしまう。その結果、廃棄物が滞留している部分とそうでない部分とで温度差が生じることになる。そこで、一定周期ごとに流動床の複数箇所における温度を計測し、それらの温度差を計算することで、流動状態の良否を判断し、流動状態が悪化している場合(即ち、温度差が大きい場合)には、温度差に応じて流動化空気量を補正して操作することにより、廃棄物を攪拌して流動状態を改善して、安定したガス化を実現することができる。   According to this, if the fluid state is good, the fluid medium and the waste put into the furnace are agitated. Therefore, even if a temperature difference occurs in a part of the fluidized bed, the temperature is quickly made uniform by stirring. For example, even if the temperature around the waste temporarily decreases due to an endothermic reaction caused by the evaporation of moisture in the waste that has been thrown in, the temperature difference does not become apparent if the flow state is good. However, when the flow state is deteriorated, the thrown-in waste is accumulated in a part without being stirred and stays. As a result, a temperature difference occurs between the portion where the waste is retained and the portion where the waste is not. Therefore, by measuring the temperature at a plurality of locations in the fluidized bed at regular intervals and calculating the temperature difference between them, the quality of the fluidized state is judged and the fluidized state is deteriorated (that is, the temperature difference is large). In the case), by operating by correcting the amount of fluidized air according to the temperature difference, the waste can be stirred to improve the fluidized state, and stable gasification can be realized.

ここで、前記補正操作ステップが、前記温度差の絶対値が第一の閾値以上の場合に、前記流動化空気量を増加させて操作して良い。   Here, the correction operation step may be performed by increasing the fluidized air amount when the absolute value of the temperature difference is greater than or equal to a first threshold value.

同様に、前記操作手段が、前記温度差の絶対値が第一の閾値以上の場合に、前記流動化空気量を増加させて操作して良い。   Similarly, when the absolute value of the temperature difference is greater than or equal to a first threshold, the operation means may be operated by increasing the fluidized air amount.

これによると、温度差の絶対値が第一の閾値以上であるかどうかで流動状態の良否を判断している。そして、温度差の絶対値が第一の閾値以上であれば、流動状態が悪化しているものと判断して、流動化空気量を増加させて操作する。従って、流動化空気量を増加させて操作することにより、流動状態が改善され、ガス化を促進することができる。   According to this, the quality of the fluid state is judged by whether or not the absolute value of the temperature difference is equal to or greater than the first threshold value. And if the absolute value of a temperature difference is more than a 1st threshold value, it will judge that the fluid state has deteriorated and will operate by increasing the fluidization air amount. Therefore, by operating by increasing the amount of fluidized air, the fluidized state is improved and gasification can be promoted.

更に、前記操作ステップが、前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させて操作して良い。   Furthermore, when the operation step is operated by increasing the fluidized air amount when the absolute value of the temperature difference is equal to or greater than the first threshold, and then the absolute value of the temperature difference is equal to or less than the second threshold. In addition, the fluidized air amount may be reduced for operation.

同様に、前記操作手段が、前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させて操作して良い。   Similarly, when the operating means is operated with the absolute value of the temperature difference being equal to or greater than the first threshold value and increasing the amount of fluidized air, the absolute value of the temperature difference subsequently becomes equal to or less than the second threshold value. In some cases, the amount of fluidized air may be reduced for operation.

これによると、温度差の絶対値が第一の閾値以上であるかどうか及び第二の閾値以下であるかどうかで流動状態の良否を判断している。そして、温度差の絶対値が第一の閾値以上であれば、流動状態が悪化しているものと判断して、流動化空気量を増加させて操作することにより、流動状態が改善され、ガス化を促進することができる。次に、温度差の絶対値が第二の閾値以下であれば、流動化空気量を増加して操作したことによって、流動状態が正常になったと判断できるため、流動化空気量を減少させて元に戻して操作する。従って、流動状態が悪化したときのみ流動化空気量を増やして操作し、必要なときのみ流動化を促進して流動化とガス化のバランスをとることができる。   According to this, the quality of the flow state is determined by whether or not the absolute value of the temperature difference is equal to or greater than the first threshold and whether or not it is equal to or less than the second threshold. If the absolute value of the temperature difference is equal to or greater than the first threshold value, it is determined that the flow state has deteriorated, and the flow state is improved by operating by increasing the amount of fluidized air. Can be promoted. Next, if the absolute value of the temperature difference is less than or equal to the second threshold value, it can be determined that the fluidized state has become normal by increasing the fluidized air amount, and thus reducing the fluidized air amount. Undo and operate. Therefore, it is possible to operate by increasing the amount of fluidized air only when the fluid state deteriorates, and promote fluidization only when necessary to balance fluidization and gasification.

また、本発明に係るガス化炉の制御方法は、前記操作ステップが、計測した温度に基づいて算出される温度差に応じて、更に、廃棄物投入量を補正して操作して良い。   The gasification furnace control method according to the present invention may be operated by further correcting the waste input amount according to the temperature difference calculated based on the measured temperature in the operation step.

同様に、本発明に係るガス化炉の制御装置は、前記操作手段が、計測した温度に基づいて算出される温度差に応じて、更に、廃棄物投入量を補正して操作して良い。   Similarly, the gasification furnace control apparatus according to the present invention may be operated by further correcting the waste input amount according to the temperature difference calculated based on the measured temperature by the operating means.

これによると、流動状態が悪化している場合(即ち、温度差が大きい場合)には、温度差に応じた流動化空気量及び廃棄物投入量を補正して操作している。従って、温度差に応じて流動化空気量を補正して操作することにより廃棄物を攪拌して流動床に滞留していた廃棄物のガス化が促進されるため、その分、廃棄物の投入量を減らして操作すれば単位時間当たりのガス化量を一定に保つことができ、より安定したガス化を実現することができる。   According to this, when the flow state is deteriorated (that is, when the temperature difference is large), the operation is performed by correcting the fluidized air amount and the waste input amount according to the temperature difference. Therefore, the gasification of the waste that stirs the waste and stays in the fluidized bed is promoted by operating with the fluidized air amount corrected according to the temperature difference. By operating with a reduced amount, the gasification amount per unit time can be kept constant, and more stable gasification can be realized.

ここで、前記操作ステップが、前記温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作して良い。   Here, in the operation step, when the absolute value of the temperature difference is not less than the first threshold value, the operation may be performed by increasing the fluidized air amount and decreasing the waste input amount.

同様に、前記操作手段が、前記温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作して良い。   Similarly, when the absolute value of the temperature difference is equal to or greater than the first threshold, the operation means may be operated by increasing the fluidized air amount and decreasing the waste input amount.

これによると、温度差の絶対値が第一の閾値以上であるかどうかで流動状態の良否を判断している。そして、温度差の絶対値が第一の閾値以上であれば、流動状態が悪化しているものと判断して、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作する。従って、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作することにより、流動状態が改善され、ガス化を促進することができる。   According to this, the quality of the fluid state is judged by whether or not the absolute value of the temperature difference is equal to or greater than the first threshold value. If the absolute value of the temperature difference is equal to or greater than the first threshold value, it is determined that the flow state has deteriorated, and the fluidized air amount is increased and the waste input amount is decreased. Therefore, by increasing the amount of fluidized air and operating with a reduced amount of waste input, the fluidized state can be improved and gasification can be promoted.

更に、前記操作ステップが、前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させるとともに廃棄物投入量を減少させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させるとともに廃棄物投入量を増加させて操作して良い。   Furthermore, when the operation step is operated with the absolute value of the temperature difference being equal to or greater than the first threshold value and increasing the amount of fluidized air and decreasing the amount of waste input, the absolute value of the temperature difference is subsequently increased to the first value. When the value is equal to or less than the second threshold value, the fluidized air amount may be decreased and the waste input amount may be increased.

同様に、前記操作手段が、前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させるとともに廃棄物投入量を減少させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させるとともに廃棄物投入量を増加させて操作して良い。   Similarly, when the operating means is operated with the absolute value of the temperature difference being equal to or greater than the first threshold value and increasing the amount of fluidized air and decreasing the amount of waste input, the absolute value of the temperature difference is thereafter increased. When the pressure falls below the second threshold value, the fluidized air amount may be decreased and the waste input amount may be increased.

これによると、温度差の絶対値が第一の閾値以上であるかどうか及び第二の閾値以上であるかどうかで流動状態の良否を判断している。そして、温度差の絶対値が第一の閾値以上であれば、流動状態が悪化しているものと判断して、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作することにより、流動状態が改善され、ガス化を促進することができる。次に、温度差の絶対値が第二の閾値以下であれば、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作したことによって、流動状態が正常になったと判断できるため、流動化空気量を減少させるとともに廃棄物投入量を増加させて元に戻して操作する。従って、流動状態が悪化したときのみ流動化空気量を増やすとともに廃棄物投入量を減らして操作し、必要なときのみ流動化を促進して流動化とガス化のバランスをとることができる。   According to this, the quality of the flow state is determined by whether or not the absolute value of the temperature difference is greater than or equal to the first threshold and whether or not it is greater than or equal to the second threshold. If the absolute value of the temperature difference is equal to or greater than the first threshold value, it is determined that the flow state has deteriorated, and the operation is performed by increasing the fluidized air amount and decreasing the waste input amount. The flow state is improved and gasification can be promoted. Next, if the absolute value of the temperature difference is less than or equal to the second threshold value, it can be determined that the fluidized state has become normal by increasing the amount of fluidized air and decreasing the amount of waste input. Reduce the amount of fluidized air and increase the amount of waste input to return to the original operation. Therefore, it is possible to operate by increasing the amount of fluidized air and reducing the amount of waste input only when the fluid state deteriorates, and promote fluidization only when necessary to balance fluidization and gasification.

また、本発明に係るガス化炉の制御方法は、前記温度差の絶対値が次式に基づいて算出されて良い。   In the gasifier control method according to the present invention, the absolute value of the temperature difference may be calculated based on the following equation.

同様に、本発明に係るガス化炉の制御装置は、前記温度差の絶対値が次式に基づいて算出されて良い。   Similarly, in the control apparatus for a gasifier according to the present invention, the absolute value of the temperature difference may be calculated based on the following equation.

Figure 0004256378
Figure 0004256378

これによると、n個の温度計測値のうち、2つの温度差の絶対値を全ての組合せで求めて、その中で一番大きな値を温度差の絶対値Dとして採用して、本発明を実現することができる。   According to this, among the n temperature measurement values, the absolute value of the two temperature differences is obtained in all combinations, and the largest value among them is adopted as the absolute value D of the temperature difference. Can be realized.

以下、図面を参照しつつ、本発明の好適な実施形態について説明する。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.

まず、本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を適用するガス化溶融炉について図1に基づいて説明する。図1は、本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を適用するガス化溶融炉の概略構成図である。   First, a gasification melting furnace to which a gasification furnace control apparatus for implementing a gasification furnace control method according to the present embodiment is applied will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a gasification melting furnace to which a gasification furnace control apparatus that performs a gasification furnace control method according to the present embodiment is applied.

ガス化溶融炉100では、まず、都市ごみ等の廃棄物を廃棄物供給機101から流動床103を備えたガス化炉102に投入する。尚、廃棄物供給機101によって投入される廃棄物の量(廃棄物投入量)は、廃棄物供給機101に備えられるモータ101Aの回転数を調整することにより増減できるようになっている。また、流動床103は、流動粒子(例えば、砂)からなり、ガス化炉102の底部に設けられている。流動床103の下部からは、送風機104により流動化空気が吹き込まれ、流動床103の流動粒子及び廃棄物供給機101から投入された廃棄物が流動攪拌される。尚、送風機104から吹き込まれる流動化空気の流量(流動化空気量)は、ダンパ105により調整される。そして、ガス化炉102では、鉄やアルミニウム等の金属を未酸化状態で回収するため、アルミニウムの融点(600℃)以下で、流動床103の砂層温度がおよそ500℃〜600℃となるように運転される。廃棄物は、流動床103で空気比0.2〜0.3程度の還元雰囲気の中で熱分解され、可燃ガス及びチャー・灰分と、不燃物とに分離される。ここで、不燃物は流動床103から排出される。そして、可燃ガス及び可燃ガスに同伴されるチャーと灰分とを溶融炉110に送り込む。   In the gasification melting furnace 100, first, waste such as municipal waste is introduced from a waste supply machine 101 into a gasification furnace 102 provided with a fluidized bed 103. Note that the amount of waste (waste input amount) input by the waste supply device 101 can be increased or decreased by adjusting the rotation speed of the motor 101A provided in the waste supply device 101. The fluidized bed 103 is made of fluidized particles (for example, sand) and is provided at the bottom of the gasification furnace 102. From the lower part of the fluidized bed 103, fluidized air is blown by the blower 104, and the fluidized particles in the fluidized bed 103 and the waste charged from the waste supply machine 101 are fluidly stirred. The flow rate of fluidized air (fluidized air amount) blown from the blower 104 is adjusted by the damper 105. In the gasification furnace 102, metals such as iron and aluminum are recovered in an unoxidized state, so that the temperature of the sand layer of the fluidized bed 103 is approximately 500 ° C. to 600 ° C. below the melting point of aluminum (600 ° C.). Driven. The waste is thermally decomposed in the fluidized bed 103 in a reducing atmosphere having an air ratio of about 0.2 to 0.3, and separated into combustible gas, char / ash, and incombustible material. Here, the incombustible material is discharged from the fluidized bed 103. Then, the combustible gas and the char and ash accompanying the combustible gas are fed into the melting furnace 110.

溶融炉110では、燃焼用の空気(燃焼空気)によって、可燃ガス及びチャーを一気に燃焼させて1300℃以上に高温化させ、その熱で灰分を溶融する。ここで、溶融炉110で発生した燃焼性排ガスはボイラ130で熱交換した後、冷却・除塵工程を経て無害化された後、煙突から排出される。尚、ボイラ130からの蒸気流量は、蒸気弁131で調整される。また、溶融炉110の底部には、スラグ排出口111が設けられ、溶融されたスラグがスラグ排出口111から排出される。   In the melting furnace 110, combustible gas and char are combusted at a time by combustion air (combustion air) to increase the temperature to 1300 ° C. or higher, and the ash is melted by the heat. Here, the combustible exhaust gas generated in the melting furnace 110 is subjected to heat exchange in the boiler 130, detoxified through a cooling / dust removal process, and then discharged from the chimney. The steam flow rate from the boiler 130 is adjusted by the steam valve 131. A slag discharge port 111 is provided at the bottom of the melting furnace 110, and the molten slag is discharged from the slag discharge port 111.

次に、本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を備えるガス化炉について図2に基づいて説明する。図2は、本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を備えるガス化炉の概略構成図である。   Next, a gasification furnace equipped with a gasification furnace control apparatus that implements the gasification furnace control method according to the present embodiment will be described with reference to FIG. FIG. 2 is a schematic configuration diagram of a gasification furnace including a gasification furnace control apparatus that performs the gasification furnace control method according to the present embodiment.

図2に示すように、本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置1は、温度計測装置(温度計測手段)2と、制御演算器(補正操作手段)3とから構成される。   As shown in FIG. 2, a gasification furnace control device 1 that implements the gasification furnace control method according to the present embodiment includes a temperature measurement device (temperature measurement means) 2 and a control calculator (correction operation means) 3. It consists of.

温度計測装置2は、流動床103の複数箇所に複数設置され(図示では2つの温度計測装置2A,2B)、一定周期毎に流動床103の設置箇所の砂層温度を計測する。尚、温度計測装置2で砂層温度を計測する周期は、ガス化炉溶融炉100に本実施形態に係るガス化炉の制御装置1以外に他の制御系が構築されている場合、その制御系の周期と同じでも良いし、異なっていても良い。ここで、温度計測装置2は、流動化空気を少なくしたときにごみが滞留しやすい場所に1つ設置するとともに、その場所から最も温度が伝わりにくい場所に1つ以上設置するのが好ましい。例えば、廃棄物が投入される位置(廃棄物投入口の下付近の砂層内)に1つ設置し、そこから距離の遠い位置にもう1つ設置する。これらの場所は、炉の形状、流動化空気の吹き込み場所、廃棄物の投入口、流動媒体の量などに応じて変化させると良い。
また、温度計測装置2は、熱電対を利用した温度計測装置を用いる。そして、複数の温度計測装置2から出力された複数の信号は、制御演算器3に入力され、複数の信号処理をした流動床103の温度の温度計測値として用いられる。
A plurality of temperature measuring devices 2 are installed at a plurality of locations on the fluidized bed 103 (two temperature measuring devices 2A and 2B in the figure), and measure the sand layer temperature at the locations where the fluidized bed 103 is installed at regular intervals. In addition, the period which measures the sand layer temperature with the temperature measuring device 2 is the control system when other control systems are constructed in the gasifier melting furnace 100 besides the control device 1 of the gasifier according to the present embodiment. The period may be the same or different. Here, it is preferable that one temperature measuring device 2 is installed in a place where dust is likely to stay when fluidized air is reduced, and one or more temperature measuring devices 2 are installed in a place where the temperature is hardly transmitted from the place. For example, one is installed at a position where the waste is introduced (in the sand layer near the bottom of the waste input), and another is installed at a position far from the position. These locations may be changed according to the shape of the furnace, the location where the fluidized air is blown, the waste inlet, the amount of the fluid medium, and the like.
The temperature measuring device 2 uses a temperature measuring device using a thermocouple. The plurality of signals output from the plurality of temperature measuring devices 2 are input to the control calculator 3 and used as temperature measurement values of the temperature of the fluidized bed 103 subjected to the plurality of signal processing.

制御演算器3は、温度計測装置2から入力された複数の温度計測値から温度差を算出し、算出した温度差に応じて、流動床103に供給する流動化空気量及びガス化炉102に投入する廃棄物投入量を補正して操作する。これにより、廃棄物を攪拌して流動床103に滞留していた廃棄物のガス化が促進されるため、その分、廃棄物の投入量を減らして操作すれば単位時間当たりのガス化量を一定に保つことができ、より安定したガス化を実現することができる。尚、本実施形態に係る制御演算器3は、算出した温度差に応じて、流動化空気量及び廃棄物投入量を補正して操作しているが、流動化空気量のみを補正して操作しても良い。流動化空気量のみを補正して操作しても、廃棄物を攪拌して流動床103に滞留していた廃棄物の流動化を促進することができるからである。
ここで、温度差は、n(n=2,3,4、・・・)箇所に温度計測装置2を設置した場合に、それぞれの温度計測値をT1,T2,・・・,Tnとすると、以下の式で求める温度差の絶対値Dを用いる。つまり、n個の温度計測値のうち、2つの温度差の絶対値を全ての組合せで求め、その中で一番大きな値を、温度差の絶対値Dとして求める。尚、温度差は、温度差の絶対値の他に、温度差の2乗を用いても良い。
The control arithmetic unit 3 calculates a temperature difference from a plurality of temperature measurement values input from the temperature measurement device 2, and supplies the fluidized air amount supplied to the fluidized bed 103 and the gasification furnace 102 according to the calculated temperature difference. Operate by correcting the amount of waste input. This promotes the gasification of the waste that stirs the waste and stays in the fluidized bed 103. Therefore, if the operation is performed by reducing the input amount of waste, the amount of gasification per unit time can be reduced. It can be kept constant, and more stable gasification can be realized. Note that the control arithmetic unit 3 according to the present embodiment is operated by correcting the fluidized air amount and the waste input amount according to the calculated temperature difference, but only the fluidized air amount is corrected and operated. You may do it. This is because even if the operation is performed by correcting only the amount of fluidized air, it is possible to promote the fluidization of the waste that has remained in the fluidized bed 103 by stirring the waste.
Here, when the temperature measuring device 2 is installed at n (n = 2, 3, 4,...) Locations, the temperature difference is expressed as T 1 , T 2 ,. If n , the absolute value D of the temperature difference obtained by the following equation is used. That is, out of n temperature measurement values, the absolute value of two temperature differences is obtained in all combinations, and the largest value among them is obtained as the absolute value D of the temperature difference. The temperature difference may be the square of the temperature difference in addition to the absolute value of the temperature difference.

Figure 0004256378
Figure 0004256378

尚、図2の例では、2つの温度計測装置2A、2Bからの温度計測値A、Bに基づいて、以下の式で温度差の絶対値Dを求める。
D=|温度計測値A−温度計測値B|・・・(式2)
In the example of FIG. 2, the absolute value D of the temperature difference is obtained by the following formula based on the temperature measurement values A and B from the two temperature measurement devices 2A and 2B.
D = | temperature measurement value A−temperature measurement value B |

そして、制御演算器3では、算出した温度差の絶対値Dが一定値(例えば、閾値H)以上であるかどうか判断し、温度差の絶対値Dが一定値以上であれば、送風機104から吹き込まれる流動化空気の流量(流動化空気量)を一定量増加させるとともに、廃棄物投入機101から投入する廃棄物の量(廃棄物投入量)を一定量減少させるように操作する。即ち、温度差の絶対値Dが一定値以上であれば、送風機104から吹き込まれる流動化空気の流量(流動化空気量)を一定量増加させるようにダンパ105を調整するとともに、廃棄物投入機101から投入する廃棄物の量(廃棄物投入量)を一定量減少させるように廃棄物投入機101のモータ101Aの速度を調整する。
ここで、一定値(例えば、閾値H)は、およその目安として、通常操業における最大温度差(許容温度差)の1.5倍程度の値を想定しているが限定されるものではない。また、一定値(例えば、閾値H)は、ゴミ質(ゴミの組成、水分量)によって変更させることが好ましい。例えば、水分量が多いゴミの場合は砂層内の滞留量が少なくても温度差が大きくなることが予想され、水分量が少ないゴミの場合は砂層内の滞留量が多くても温度差が小さくなることが予想されるからである。
尚、制御演算器3では、算出した温度差の絶対値Dが一定値以上であるかどうかにかかわらず、算出した温度差の絶対値Dに比例して流動化空気量を増加させるとともに廃棄物投入量を減少させるように操作しても良い。また、制御演算器3では、温度差の絶対値Dと流動化空気量の補正量(増加させる量)及び廃棄物投入量の補正量(減少させる量)との関係を示すテーブルを予め用意しておき、温度差の絶対値Dに対する流動化空気量と廃棄物投入量の補正量を、当該テーブルを参照して決定するようにしても良い。
Then, the control calculator 3 determines whether or not the calculated absolute value D of the temperature difference is equal to or greater than a certain value (for example, the threshold value H). The flow rate of fluidized air to be blown (fluidized air amount) is increased by a certain amount, and the amount of waste to be introduced from the waste thrower 101 (waste input amount) is decreased by a certain amount. That is, if the absolute value D of the temperature difference is equal to or greater than a certain value, the damper 105 is adjusted to increase the flow rate of fluidized air blown from the blower 104 (fluidized air amount) by a certain amount, and the waste thrower The speed of the motor 101A of the waste input device 101 is adjusted so that the amount of waste input from 101 (the amount of waste input) is reduced by a certain amount.
Here, the constant value (for example, the threshold value H) is assumed to be a value about 1.5 times the maximum temperature difference (allowable temperature difference) in normal operation as an approximate guide, but is not limited. Moreover, it is preferable to change a fixed value (for example, threshold value H) according to garbage quality (garbage composition, moisture content). For example, in the case of garbage with a large amount of water, the temperature difference is expected to be large even if the amount of residence in the sand layer is small. In the case of dust with a small amount of water, the temperature difference is small even if the amount of residence in the sand layer is large. Because it is expected to be.
The control calculator 3 increases the amount of fluidized air in proportion to the calculated absolute value D of the temperature difference regardless of whether or not the calculated absolute value D of the temperature difference is equal to or greater than a certain value. You may operate so that input amount may be decreased. Further, the control calculator 3 prepares in advance a table indicating the relationship between the absolute value D of the temperature difference, the correction amount (increase amount) of the fluidized air amount, and the correction amount (decrease amount) of the waste input amount. In addition, the correction amount of the fluidized air amount and the waste input amount with respect to the absolute value D of the temperature difference may be determined with reference to the table.

更に、制御演算器3では、算出した温度差の絶対値Dが一定値(例えば、閾値H)以上であると判断し、送風機104から吹き込まれる流動化空気の流量(流動化空気量)を一定量増加させるようにダンパ105を調整するとともに、廃棄物投入機101から投入する廃棄物の量(廃棄物投入量)を一定量減少させるように廃棄物投入機101のモータ101Aの速度を調整した場合、その後に、算出した温度差の絶対値Dが一定値(例えば、閾値L)以下であるかどうか判断し、温度差の絶対値Dが一定値以下であれば、送風機104から吹き込まれる流動化空気の流量(流動化空気量)を一定量減少させて流動化空気量を元に戻すとともに、廃棄物投入機101から投入する廃棄物の量(廃棄物投入量)を一定量増加させて廃棄物投入量を元に戻すようにして操作しても良い。即ち、温度差の絶対値Dが一定値以下であれば、送風機104から吹き込まれる流動化空気の流量(流動化空気量)を一定量減少させて流動化空気量を元に戻すようにダンパ105を調整するとともに、廃棄物投入機101から投入する廃棄物の量(廃棄物投入量)を一定量増加させて廃棄物投入量を元に戻すように廃棄物投入機101のモータ101Aの速度を調整しても良い。
ここで、一定値(例えば、閾値L)は、およその目安として、通常操業における最大温度差(許容温度差)の0.5倍程度の値を想定しているが限定されるものではない。また、一定値(例えば、閾値L)は、ゴミ質(ゴミの組成、水分量)によって変更させることが好ましい。例えば、水分量が多いゴミの場合は砂層内の滞留量が少なくても温度差が大きくなることが予想され、水分量が少ないゴミの場合は砂層内の滞留量が多くても温度差が小さくなることが予想されるからである。
尚、かかる場合、制御演算器3は、下記の図3に示す手順に従って処理を行う。図3は、本実施形態に係るガス化炉の制御装置における制御演算器の処理の手順を示すフローチャートである。
Further, the control calculator 3 determines that the absolute value D of the calculated temperature difference is equal to or greater than a certain value (for example, the threshold value H), and the flow rate of fluidized air blown from the blower 104 (fluidized air amount) is constant. The damper 105 is adjusted to increase the amount, and the speed of the motor 101A of the waste input device 101 is adjusted so that the amount of waste input from the waste input device 101 (waste input amount) is decreased by a certain amount. In this case, after that, it is determined whether the calculated absolute value D of the temperature difference is equal to or less than a certain value (for example, the threshold value L), and if the absolute value D of the temperature difference is equal to or less than the certain value, the flow blown from the blower 104 Decrease the flow rate of fluidized air (fluidized air amount) by a certain amount to restore the fluidized air amount, and increase the amount of waste (waste waste amount) thrown from the waste thrower 101 by a certain amount Waste input It may be operated so as to return to the original. That is, if the absolute value D of the temperature difference is equal to or less than a certain value, the damper 105 is configured so that the flow rate of fluidized air (fluidized air amount) blown from the blower 104 is decreased by a certain amount and the fluidized air amount is restored. In addition, the speed of the motor 101A of the waste input device 101 is increased so that the amount of waste input from the waste input device 101 (waste input amount) is increased by a certain amount to restore the waste input amount. You may adjust it.
Here, the constant value (for example, the threshold value L) is assumed to be about 0.5 times the maximum temperature difference (allowable temperature difference) in normal operation as an approximate guide, but is not limited. Moreover, it is preferable to change the fixed value (for example, the threshold value L) according to the quality of dust (the composition of dust, the amount of moisture). For example, in the case of garbage with a large amount of water, the temperature difference is expected to be large even if the amount of residence in the sand layer is small. In the case of dust with a small amount of water, the temperature difference is small even if the amount of residence in the sand layer is large. Because it is expected to be.
In such a case, the control arithmetic unit 3 performs processing according to the procedure shown in FIG. FIG. 3 is a flowchart showing a processing procedure of the control arithmetic unit in the control apparatus for the gasifier according to the present embodiment.

まず、制御開始の時点で初期化を行い、フラグを0(flag=0)にしておく(ステップS1)。   First, initialization is performed at the start of control, and the flag is set to 0 (flag = 0) (step S1).

そして、一定周期毎に温度計測装置2から入力される温度に基づいて、上述の式2により温度差の絶対値Dを求める(ステップS2:温度計測ステップ)。   Then, based on the temperature input from the temperature measurement device 2 at regular intervals, the absolute value D of the temperature difference is obtained by the above-described equation 2 (step S2: temperature measurement step).

次に、フラグが0であり、且つ、温度差の絶対値Dが閾値H以上であるか判断する(ステップS3)。   Next, it is determined whether the flag is 0 and the absolute value D of the temperature difference is greater than or equal to the threshold value H (step S3).

もし、フラグが0であり、且つ、温度差の絶対値Dが閾値H以上であれば(ステップS3:Yes)、流動化空気量を一定量増やす(流動化空気量=流動化空気量+ΔA)とともに、廃棄物投入量を一定量減らして(廃棄物投入量=廃棄物投入量−ΔW)、フラグを1(flag=1)にして、制御対象を操作する(ステップS4,S7:補正操作ステップ)。制御対象の操作では、具体的には、流動床103に吹き込む流動化空気量が新たに設定した流動化空気量となるようにダンパ105を調整するとともに、ガス化炉102に投入する廃棄物投入量が新たに設定した廃棄物投入量となるように廃棄物投入機101のモータ101Aの速度を調整する。制御対象を操作すると(ステップS7)、ステップS2に戻る。   If the flag is 0 and the absolute value D of the temperature difference is equal to or greater than the threshold value H (step S3: Yes), the fluidizing air amount is increased by a certain amount (fluidizing air amount = fluidizing air amount + ΔA). At the same time, the waste input amount is reduced by a certain amount (waste input amount = waste input amount-ΔW), the flag is set to 1 (flag = 1), and the control target is operated (steps S4 and S7: correction operation step). ). Specifically, in the operation to be controlled, the damper 105 is adjusted so that the amount of fluidized air blown into the fluidized bed 103 becomes a newly set fluidized air amount, and the waste input to be input to the gasification furnace 102 is input. The speed of the motor 101A of the waste input device 101 is adjusted so that the amount becomes the newly set waste input amount. When the control target is operated (step S7), the process returns to step S2.

一方、フラグが0でなく、又は/且つ、温度差の絶対値Dが閾値H以上でなければ(ステップS3:No)、フラグが1であり、且つ、温度差の絶対値Dが閾値L以下であるか判断する(ステップS5)。   On the other hand, if the flag is not 0 and / or the absolute value D of the temperature difference is not equal to or greater than the threshold value H (step S3: No), the flag is 1 and the absolute value D of the temperature difference is equal to or less than the threshold value L. (Step S5).

もし、フラグが1であり、且つ、温度差の絶対値Dが閾値L以下であれば(ステップS5:Yes)、流動化空気量を一定量減らす(流動化空気量=流動化空気量−ΔA)とともに、廃棄物投入量を一定量増やして(廃棄物投入量=廃棄物投入量+ΔW)、フラグを0(flag=0)にして制御対象を操作し(ステップS6,S7:補正操作ステップ)、ステップS2に戻る。   If the flag is 1 and the absolute value D of the temperature difference is equal to or less than the threshold value L (step S5: Yes), the fluidizing air amount is reduced by a certain amount (fluidizing air amount = fluidizing air amount−ΔA). ), The waste input amount is increased by a certain amount (waste input amount = waste input amount + ΔW), the flag is set to 0 (flag = 0), and the control target is operated (steps S6 and S7: correction operation step). Return to step S2.

一方、フラグが1でなく、又は/且つ、温度差の絶対値Dが閾値L以下でなければ(ステップS5:No)、ステップS2に戻る。   On the other hand, if the flag is not 1 and / or the absolute value D of the temperature difference is not less than or equal to the threshold L (step S5: No), the process returns to step S2.

以上に説明したように、本実施形態に係る溶融炉の制御方法及び制御装置によると、流動床に設置した複数の温度計測装置の温度差により、流動床の流動状態の悪化を検出し、流動化空気量、又は、流動化空気量及び廃棄物投入量を補正することによって、流動状態を改善させ、ガス化を安定して促進することができ、ひいてはガス化溶融炉の安定操業を実現することができる。   As described above, according to the melting furnace control method and control apparatus according to this embodiment, the deterioration of the fluidized state of the fluidized bed is detected by the temperature difference between the plurality of temperature measuring devices installed in the fluidized bed, and the flow By correcting the amount of gasified air, or the amount of fluidized air and the amount of waste input, the flow state can be improved, gasification can be promoted stably, and consequently stable operation of the gasification melting furnace is realized. be able to.

以上、本発明は、上記の好ましい実施形態に記載されているが、本発明はそれだけに制限されない。本発明の精神と範囲から逸脱することのない様々な実施形態が他になされる。さらに、本実施形態において、本発明の構成による作用および効果を述べているが、これら作用および効果は、一例であり、本発明を限定するものではない。また、具体例は、本発明の構成を例示したものであり、本発明を限定するものではない。   As mentioned above, although this invention is described in said preferable embodiment, this invention is not restrict | limited only to it. Various other embodiments may be made without departing from the spirit and scope of the invention. Furthermore, in this embodiment, although the effect | action and effect by the structure of this invention are described, these effect | actions and effects are examples and do not limit this invention. In addition, the specific examples illustrate the configuration of the present invention and do not limit the present invention.

本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を適用するガス化溶融炉の概略構成図である。It is a schematic block diagram of the gasification melting furnace which applies the control apparatus of the gasification furnace which implements the control method of the gasification furnace which concerns on this embodiment. 本実施形態に係るガス化炉の制御方法を実施するガス化炉の制御装置を備えるガス化炉の概略構成図である。It is a schematic block diagram of a gasification furnace provided with the control apparatus of the gasification furnace which implements the control method of the gasification furnace which concerns on this embodiment. 本実施形態に係るガス化炉の制御装置における制御演算器の処理の手順を示すフローチャートである。It is a flowchart which shows the procedure of the process of the control arithmetic unit in the control apparatus of the gasification furnace which concerns on this embodiment.

符号の説明Explanation of symbols

1 ガス化炉の制御装置
2 温度計測装置(温度計測手段)
2A 温度計測装置(温度計測手段)
2B 温度計測装置(温度計測手段)
3 制御演算器(補正操作手段)
100 ガス化溶融炉
101 廃棄物投入機
102 ガス化炉
103 流動床
S2 温度計測ステップ
S4 補正操作ステップ
S6 補正操作ステップ
S7 補正操作ステップ

1 Gasification furnace control device 2 Temperature measuring device (temperature measuring means)
2A Temperature measurement device (temperature measurement means)
2B Temperature measurement device (temperature measurement means)
3 Control calculator (correction operation means)
DESCRIPTION OF SYMBOLS 100 Gasification melting furnace 101 Waste input machine 102 Gasification furnace 103 Fluidized bed S2 Temperature measurement step S4 Correction operation step S6 Correction operation step S7 Correction operation step

Claims (12)

流動床の複数箇所における温度を計測する温度計測ステップと、
計測した温度に基づいて算出される温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させて操作する補正操作ステップと、
を備えることを特徴とする流動床を有するガス化炉の制御方法。
A temperature measurement step for measuring temperatures at a plurality of locations in the fluidized bed;
When the absolute value of the temperature difference calculated based on the measured temperature is greater than or equal to the first threshold, a correction operation step for operating by increasing the fluidized air amount;
A control method for a gasifier having a fluidized bed comprising:
流動床の複数箇所における温度を計測する温度計測ステップと、
計測した温度に基づいて算出される温度差に応じて、流動化空気量および廃棄物投入量を補正して操作する補正操作ステップと、
を備えることを特徴とする流動床を有するガス化炉の制御方法。
A temperature measurement step for measuring temperatures at a plurality of locations in the fluidized bed;
A correction operation step for correcting and operating the fluidized air amount and the waste input amount according to the temperature difference calculated based on the measured temperature;
A control method for a gasifier having a fluidized bed comprising:
前記補正操作ステップは、
前記温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作することを特徴とする請求項2に記載のガス化炉の制御方法。
The correction operation step includes:
The control of the gasifier according to claim 2, wherein when the absolute value of the temperature difference is equal to or more than a first threshold value, the fluidized air amount is increased and the waste input amount is decreased. Method.
前記補正操作ステップは、
前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させて操作することを特徴とする請求項に記載のガス化炉の制御方法。
The correction operation step includes:
When the absolute value of the temperature difference is equal to or greater than the first threshold value and the fluidized air amount is increased and operated, and then the absolute value of the temperature difference is equal to or less than the second threshold value, the fluidized air amount is The method for controlling a gasifier according to claim 1 , wherein the gasifier is operated while being reduced.
前記補正操作ステップは、
前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させるとともに廃棄物投入量を減少させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させるとともに廃棄物投入量を増加させて操作することを特徴とする請求項に記載のガス化炉の制御方法。
The correction operation step includes:
When the absolute value of the temperature difference is equal to or greater than the first threshold value and the fluidized air amount is increased and the waste input amount is decreased, the absolute value of the temperature difference is subsequently equal to or less than the second threshold value. In this case, the gasification furnace control method according to claim 3 , wherein the operation is performed by reducing the fluidized air amount and increasing the waste input amount.
前記温度差の絶対値は次式に基づいて算出されることを特徴とする請求項1〜のいずれか一項に記載のガス化炉の制御方法。
Figure 0004256378
The method for controlling a gasifier according to any one of claims 1 to 5 , wherein the absolute value of the temperature difference is calculated based on the following equation.
Figure 0004256378
流動床の複数箇所における温度を計測する温度計測手段と、
計測した温度に基づいて算出される温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させて操作する補正操作手段と、
を備えることを特徴とする流動床を有するガス化炉の制御装置。
Temperature measuring means for measuring the temperature at a plurality of locations in the fluidized bed;
When the absolute value of the temperature difference calculated based on the measured temperature is greater than or equal to the first threshold value, the correction operation means that operates by increasing the fluidized air amount;
A control apparatus for a gasifier having a fluidized bed.
流動床の複数箇所における温度を計測する温度計測手段と、
計測した温度に基づいて算出される温度差に応じて、流動化空気量および廃棄物投入量を補正して操作する補正操作手段と、
を備えることを特徴とする流動床を有するガス化炉の制御装置。
Temperature measuring means for measuring the temperature at a plurality of locations in the fluidized bed;
Correction operation means for correcting and operating the fluidized air amount and the waste input amount according to the temperature difference calculated based on the measured temperature;
A control apparatus for a gasifier having a fluidized bed.
前記補正操作手段は、
前記温度差の絶対値が第一の閾値以上の場合に、流動化空気量を増加させるとともに廃棄物投入量を減少させて操作することを特徴とする請求項に記載のガス化炉の制御装置。
The correction operation means includes
The control of a gasifier according to claim 8 , wherein when the absolute value of the temperature difference is equal to or greater than a first threshold value, the fluidized air amount is increased and the waste input amount is decreased. apparatus.
前記補正操作手段は、
前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させて操作することを特徴とする請求項に記載のガス化炉の制御装置。
The correction operation means includes
When the absolute value of the temperature difference is equal to or greater than the first threshold value and the fluidized air amount is increased and operated, and then the absolute value of the temperature difference is equal to or less than the second threshold value, the fluidized air amount is 8. The control apparatus for a gasifier according to claim 7 , wherein the control apparatus is operated while being decreased.
前記補正操作手段は、
前記温度差の絶対値が第一の閾値以上となり流動化空気量を増加させるとともに廃棄物投入量を減少させて操作した場合に、その後前記温度差の絶対値が第二の閾値以下になった場合に、流動化空気量を減少させるとともに廃棄物投入量を増加させて操作することを特徴とする請求項に記載のガス化炉の制御装置。
The correction operation means includes
When the absolute value of the temperature difference is equal to or greater than the first threshold value and the fluidized air amount is increased and the waste input amount is decreased, the absolute value of the temperature difference is subsequently equal to or less than the second threshold value. In this case, the control apparatus for a gasifier according to claim 9 , wherein the control apparatus is operated by reducing the amount of fluidized air and increasing the amount of waste input.
前記温度差の絶対値は次式に基づいて算出されることを特徴とする請求項11のいずれか一項に記載のガス化炉の制御装置。
Figure 0004256378
Absolute values gasifier control device according to any one of claims 7 to 11, characterized in that it is calculated on the basis of the following equation of the temperature difference.
Figure 0004256378
JP2005308195A 2005-10-24 2005-10-24 Control method and control apparatus for gasifier Expired - Fee Related JP4256378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005308195A JP4256378B2 (en) 2005-10-24 2005-10-24 Control method and control apparatus for gasifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005308195A JP4256378B2 (en) 2005-10-24 2005-10-24 Control method and control apparatus for gasifier

Publications (2)

Publication Number Publication Date
JP2007113880A JP2007113880A (en) 2007-05-10
JP4256378B2 true JP4256378B2 (en) 2009-04-22

Family

ID=38096231

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005308195A Expired - Fee Related JP4256378B2 (en) 2005-10-24 2005-10-24 Control method and control apparatus for gasifier

Country Status (1)

Country Link
JP (1) JP4256378B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009275975A (en) * 2008-05-14 2009-11-26 Kobelco Eco-Solutions Co Ltd Operating method of fluidized bed pyrolytic furnace
WO2012066802A1 (en) * 2010-11-19 2012-05-24 荏原環境プラント株式会社 Fluidized bed furnace and method for processing waste
JP5462214B2 (en) * 2011-03-31 2014-04-02 株式会社神鋼環境ソリューション Fluidized bed furnace
JP6338430B2 (en) 2014-04-16 2018-06-06 荏原環境プラント株式会社 Swirling fluidized bed furnace

Also Published As

Publication number Publication date
JP2007113880A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
EP1816396B1 (en) Treatment method for combustible gas in waste melting furnace
EP1726876A1 (en) Improved method of combusting solid waste
JP4256378B2 (en) Control method and control apparatus for gasifier
JP4188859B2 (en) Operation control method and operation control apparatus for waste treatment plant equipment
JP7126215B2 (en) System controller and control method
KR100910427B1 (en) Method and system for controlling combustion of gasfication melting system
JP2008275176A (en) Fluid bed-type combustion device using organic substance including chrome as fuel and detoxifying method of fly ash from fluid bed-type combustion device
JP2005242524A (en) Operation control method and operation controller for treatment plant facility
JP2003254523A (en) In-furnace garbage stay distribution estimating method in incinerator, and combustion control method and device using method
JP2011149658A (en) Operation control method for circulating fluidized bed boiler
JP4126317B2 (en) Operation control method of gasification and melting system and system
JP4918834B2 (en) Waste melting furnace and waste melting furnace operating method
EP0846919B1 (en) Burning/melting method of waste melting furnace
JP3027694B2 (en) Combustion control method for waste melting furnace
JP4276146B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP4097999B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP4156575B2 (en) Control method and apparatus for pyrolysis gasification melting treatment plant, and program
JP2021156492A (en) Vertical waste incinerator and waste incineration amount adjustment method for the same
JP5605576B2 (en) Waste gasification and melting equipment
JP7103021B2 (en) Waste incinerator and waste incinerator method
JP6965842B2 (en) Waste incinerator and waste incinerator method
JP3621792B2 (en) Combustion control method for waste melting furnace generated gas combustion furnace
JP3556078B2 (en) Dust supply speed control method for refuse incinerator and refuse incinerator
JP2011021834A (en) Method of controlling vapor content in waste melting furnace and vapor content control device for waste melting furnace facility
JP2007284478A (en) Method for converting bio-mass into resource and apparatus for conversion into resource

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070907

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090129

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4256378

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees