JP4255652B2 - Solid bonding method - Google Patents

Solid bonding method Download PDF

Info

Publication number
JP4255652B2
JP4255652B2 JP2002181748A JP2002181748A JP4255652B2 JP 4255652 B2 JP4255652 B2 JP 4255652B2 JP 2002181748 A JP2002181748 A JP 2002181748A JP 2002181748 A JP2002181748 A JP 2002181748A JP 4255652 B2 JP4255652 B2 JP 4255652B2
Authority
JP
Japan
Prior art keywords
fine particles
metal fine
joined
joining
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002181748A
Other languages
Japanese (ja)
Other versions
JP2004025196A (en
Inventor
勝弥 奥村
勇蔵 桜田
一寿 高橋
裕二 川上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Octec Inc
Ulvac Inc
Original Assignee
Octec Inc
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Octec Inc, Ulvac Inc filed Critical Octec Inc
Priority to JP2002181748A priority Critical patent/JP4255652B2/en
Publication of JP2004025196A publication Critical patent/JP2004025196A/en
Application granted granted Critical
Publication of JP4255652B2 publication Critical patent/JP4255652B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29344Gold [Au] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29363Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than 1550°C
    • H01L2224/29369Platinum [Pt] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • H01L2224/8384Sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01029Copper [Cu]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/0132Binary Alloys
    • H01L2924/01327Intermediate phases, i.e. intermetallics compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/095Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00 with a principal constituent of the material being a combination of two or more materials provided in the groups H01L2924/013 - H01L2924/0715
    • H01L2924/097Glass-ceramics, e.g. devitrified glass
    • H01L2924/09701Low temperature co-fired ceramic [LTCC]

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属と金属あるいは金属とセラミックス等の固体同士を接合する固体接合方法に係り、特に被接合部材の少なくとも一方の被接合部材の接合部に金属微粒子を島状に付着させ、各被接合部材を相互に接合する固体接合方法に関する。
【0002】
【従来の技術】
従来、金属同士あるいは金属とセラミックス、金属とガラスなどの固体同士を接合する場合、低融点のはんだやインジウムなどの接合材料を溶融して接合するのが一般的である。
【0003】
この場合、特に低融点のはんだやインジウムなどが被接合部材に濡れない場合は、濡れ性を高めるため、フラックスを使用したり、あるいははんだやインジウムなどの接合部の表面にスパッタリングやメッキなどで予め被膜を形成しておく必要がある。
【0004】
【発明が解決しようとする課題】
しかし、このような被膜を形成する際には、接合に必要な部分以外にも被膜が形成され不必要な部分にもはんだや接合材が付着することがある。
【0005】
これに対し、マスクを使用することによって接合に必要な部分にだけ被膜を形成することも可能であるが、接合する領域が複雑である場合には、高価なマスクが必要となる。
【0006】
また、従来技術として、本発明と同じガス中蒸発法で生成した微粒子を接合面に膜状に吹き付ける技術が提案されているが(特開平6−169161号公報参照)、この方法では、接合面に金属間化合物を形成するという欠点がある。
【0007】
このような点に鑑み、近年、はんだやインジウム等の接合材を使用しない固体接合方法として、例えば超平滑面を形成して低温、低圧力で直接接合する技術が提案されているが、この方法では、高度な表面加工技術が要求され、高価なものとなる。
【0008】
本発明は、このような従来の技術の課題を解決するためになされたもので、はんだやインジウム等の接合材を使用することなく、比較的簡易な表面加工でも低温、低圧力で強固な接合が可能な固体接合方法を提供することを目的とする。
【0009】
【課題を解決するための手段】
上記目的を達成するためになされた請求項1記載の発明は、粒径もしくはその集合体の厚さが1nm〜10nmである金属微粒子を、表面粗さが前記金属微粒子の粒径もしくはその集合体の厚さより小さい一対の被接合部材の少なくとも一方の接合部分に島状に被着させ、所定の加圧・加熱下で前記金属微粒子を前記被接合部材に固体接合させることによって前記被接合部材同士を接合する工程を有することを特徴とする固体接合方法である。
請求項2記載の発明は、請求項1記載の発明において、前記金属微粒子を吹き付けることにより前記被接合部材の接合部分に被着させることを特徴とする。
請求項3記載の発明は、請求項1又は2のいずれか1項記載の発明において、前記金属微粒子は、原料金属を減圧下で蒸発させるガス中蒸発法にて生成し、この金属微粒子を前記被接合部材の少なくとも一方の接合部分に被着させることを特徴とする。
請求項4記載の発明は、請求項1乃至3のいずれか1項記載の発明において、前記金属微粒子が、金、銀又は白金であることを特徴とする。
請求項5記載の発明は、請求項1乃至4のいずれか1項記載の発明において、前記金属微粒子の被着後に所定のハロゲンを用いて前記接合部分のハロゲン化処理を行うことを特徴とする。
請求項6記載の発明は、請求項5記載の発明において、前記ハロゲンが、フッ素または塩素の蒸気を含むガスであることを特徴とする。
【0010】
本発明の場合、一対の被接合部材の少なくとも一方の接合部分に島状に被着させた所定の粒径の金属微粒子(例えば金などの貴金属)を、所定の加圧・加熱下で被接合部材に固体接合させることによって被接合部材同士を接合するようにしたことから、はんだやインジウム等の接合材を使用することなく、比較的簡易な表面加工でも低圧で、かつ、金属微粒子及び被接合部材の融点よりはるかに低い温度で強固な接合を行うことが可能になる。
【0011】
しかも、本発明によれば、接合の際に金属間化合物を生成することなく異種の金属を低圧かつ低温で強固に接合することが可能になる。
【0012】
この場合、金属微粒子を吹き付けることにより被接合部材の接合部分に被着させるようにすれば、被接合部材の任意の領域に金属微粒子を被着させることができ、マスクを必要とするスパッタや蒸着などによるメタライジングと比べて高い効率で資源を有効利用することができる。
【0013】
また、ガス中蒸発法で生成した金属微粒子を被接合部材の少なくとも一方の接合部分に被着させるようにすれば、きわめて活性な金属微粒子を利用できるため、より低温で接合することが可能になる。
【0014】
一方、金属微粒子を被着させた後に、所定のハロゲン(フッ素または塩素の蒸気を含むガスなど)を用いて接合部分のハロゲン化処理を行うようにすれば、より低温で接合を行うことが可能になる。
【0015】
【発明の実施の形態】
以下、本発明に係る固体接合方法の好ましい実施の形態を図面を参照して詳細に説明する。本発明の方法は、同種又は異種の金属からなる被接合部材に適用することができるものである。
【0016】
図1は、本発明を実施するための固体接合装置の概略構成図、図2(a)〜(d)は、本発明の実施の形態の工程を模式的に示す説明図である。
図1に示すように、この固体接合装置は、図示しない真空排気系に接続された処理室2を有し、この処理室2内の下部に設けられた支持台3上に第1及び第2の被接合部材4(41、42)が載置されるようになっている。
【0017】
処理室2内の上部には、被接合部材4を加圧するための加圧部5が配設されている。この加圧部5は、上下動自在に構成されている。
なお、支持台3及び加圧部5の内部には、被接合部材4を加熱するための図示しないヒータが設けられている。
【0018】
また、処理室2の外部には、後述する金属微粒子7を供給するための供給源6が設けられている。この供給源6は、例えば減圧下で所定の不活性ガスを流しながら、金、銀、白金等の貴金属を、例えばレーザー・アブレーション、高周波加熱溶解、抵抗加熱溶解、アーク溶解等の手段によって蒸発させ金属微粒子7を生成するように構成されている。
【0019】
そして、生成された金属微粒子7を、所定のガスとともに導入管8を介して処理室2内に導入し、導入管8の先端に設けられたノズル9から被接合部材4に対して吹き付けるようになっている。
【0020】
次に、本発明の固体接合方法の実施の形態を説明する。
本実施の形態においては、まず、処理室2内を所定の圧力に調整した後、供給源6において生成された金属微粒子7を、図2(a)に示すように、ノズル9の先端から第1の被接合部材41の接合部分41aに吹き付けて島状に被着させる。
【0021】
この状態では、金属微粒子7は、ファンデルワールス力によって第1の被接合部材41の接合部分41aに吸着された状態になっている。
【0022】
本発明の場合、金属微粒子7の粒径もしくはその集合体の厚さは、接合面の表面加工法や金属微粒子の特性を考慮すると、1nm〜1μmとすることが好ましく、より好ましくは、1nm〜10nmである。
【0023】
【0024】
一方、第1の被接合部材41は、確実な接合を行う観点から、その接合部分41aの表面粗さが、第1の被接合部材41上に被着される金属微粒子7の粒径もしくはその集合体の厚さより小さくなるように表面処理を施しておくことが好ましい。
【0025】
好ましい接合部分41aの表面粗さは、1000nm以下(機械研磨、上仕上げ)であり、より好ましくは、200nm以下(機械研磨、精密仕上げ)であり、特に好ましくは、1nm以下(化学研磨)である。
【0026】
次いで、図2(b)に示すように、第1の被接合部材41上に被着された金属微粒子7の上に接合すべき第2の被接合部材42を載置し、上述した加圧部5を下降させて所定の圧力で加圧を行う。
【0027】
また、確実な接合を行う観点から、第2の被接合部材42についても、その接合部分42aの表面粗さが、第1の被接合部材41上に被着される金属微粒子7の粒径もしくはその集合体の厚さより小さくなるように表面処理を施しておくことが好ましい。
【0028】
好ましい接合部分42aの表面粗さは、接合部分41aと同様に1000nm以下であり、より好ましくは、200nm以下であり、特に好ましくは、1nm以下である。
【0029】
また、加圧の際には、確実な接合を行う観点から、第1及び第2の被接合部材41、42を加熱することが好ましい。
【0030】
本発明の場合、第1及び第2の被接合部材41、42の加熱温度は特に限定されることはないが、低温接合の観点からは、第1及び第2の被接合部材41、42及び前記金属微粒子7の融点以下の所定の温度で加熱することが好ましい。
【0031】
そして、上述した条件の下で、以下に述べるように、金属微粒子7を第1及び第2の被接合部材41、42に固体接合させることによって第1及び第2の被接合部材41、42を接合させる。
【0032】
図3(a)〜(c)及び図4(d)〜(f)は、本発明の原理を示す説明図である。
上述したように、本発明にあっては、接合部分の表面粗さが1000nm以下であれば接合が可能であるが、この程度の表面粗さの被接合部材同士を直接密着させた場合には、その接触面積は非常に小さいものである。
【0033】
例えば、上記第1及び第2の被接合部材41、42を直接密着させた場合、それらの接合部分41a、42aの接触状態は、図3(a)に示すように、点状態となる(点A、点B)。
【0034】
これに対し、本発明では、図3(b)(c)に示すように、第1及び第2の被接合部材41、42間に金属微粒子7を島状に配置した状態で加圧を行うことにより、加圧に伴って接合部分41a、42aと金属微粒子7との接触面積が大きくなり、その結果、金属微粒子7の原子が第1及び第2の被接合部材41、42の金属原子と置き換わり、あるいは金属原子間に配置され(図2(c)参照)、これにより、図4(d)(e)に示すように、第1及び第2の被接合部材41、42の接合部分41a、42aが接触する領域において接合が始まる(接合領域C)。
【0035】
そして、さらに加圧を継続すると、図4(f)に示すように、これら接合部分41a、42aの接合領域Cが徐々に拡大し、最終的に第1及び第2の被接合部材41、42同士が完全に接合される(図2(d)及び図4(g)参照)。
【0036】
このように、本発明の方法によれば、はんだやインジウム等の接合材を使用することなく、比較的簡易な表面加工でも低圧で、かつ、金属微粒子7及び被接合部材4の融点よりはるかに低い温度で強固な接合を行うことができる。
【0037】
しかも、本発明によれば、使用する金属微粒子の量は僅かなので、金属間化合物を生成することなく異種の金属を低圧かつ低温で強固に接合することが可能になる。
【0038】
また、上記実施の形態の場合は、金属微粒子7を吹き付けることにより金属微粒子7の被着を行うようにしたことから、第1の被接合部材41の任意の領域に金属微粒子7を被着させることができ、マスクを必要とするスパッタや蒸着などによるメタライジングと比べて高い効率で資源を有効利用することができる。
【0039】
また、ガス中蒸発法で生成した金属微粒子7を用いることから、きわめて活性な金属微粒子を利用できるため、より低温で接合することが可能になる。
【0040】
図5(a)〜(c)は、本発明の他の実施の形態の工程の要部を模式的に示す説明図である。
図5(a)〜(c)に示すように、本実施の形態においては、例えば、上述した方法によって金属微粒子7を第1の被接合部材41の接合部分41aに吹き付けて被着させた後加圧前に、第1の被接合部材41の接合部分41a及び金属微粒子7に対して所定のハロゲン20を付着させるハロゲン化処理を行う。
【0041】
本発明の場合、処理の際のハロゲン20の状態は特に限定されることはないが、工程簡便化の観点からは、第1の被接合部材41の接合部分41a及び金属微粒子7に対してハロゲン20の蒸気を曝して付着させることが好ましい。
【0042】
この場合、例えば、金属微粒子7を島状に被着させた第1の被接合部材41を所定の処理容器10内に配置し、同様に処理容器10内に配置したハロゲン20の液体を加熱蒸発させ、ハロゲン20の気体を処理容器10内に充満させることによって容易にハロゲン20の付着を行うことができる。
【0043】
また、使用するハロゲン20の種類は特に限定されることはないが、確実な接合の観点からは、フッ素または塩素を用いることが好ましい。
【0044】
そして、このようなハロゲン化処理を行った後に、上記実施の形態と同様の工程による接合を行う。なお、本発明の場合、上記ハロゲン化処理後又はハロゲン化処理と同時に金属微粒子7の被着を行うことも可能である。
【0045】
本実施の形態の方法によれば、さらに低温での接合が可能になる。
その他の構成及び作用効果については上述の実施の形態と同一であるのでその詳細な説明を省略する。
【0046】
なお、本発明は上述の実施の形態に限られることなく、種々の変更を行うことができる。
例えば、上記実施の形態においては、第1の被接合部材に対して金属微粒子を被着させるようにしたが、本発明はこれに限られず、第2の被接合部材に対して金属微粒子を被着させることもでき、また、両方の被接合部材に対して金属微粒子を被着させることもできる。
【0047】
そして、本発明は、3つ以上の部材からなる被接合部材を接合する場合にも適用することができる。
【0048】
さらに、被接合部材に被着させた金属微粒子はファンデルワールス力によって被接合部材に吸着されるため、被接合部材の接合部分を上にして金属微粒子を被着させる必要はなく例えば下向きや傾斜させた状態で被着させることができ、また、被着後に移動させることも可能である。
【0049】
さらにまた、上記実施の形態においては、一方の被接合部材に対してハロゲン化処理を行うようにしたが、本発明はこれに限られず、他方の被接合部材に対してハロゲン化処理を行うこともでき、また、両方の被接合部材に対してハロゲン化処理を行うこともできる。
【0050】
さらにまた、本発明は、例えば溶液に分散させた金属微粒子を被接合部材の接合部分に塗布して被着させることも可能である。
【0051】
【実施例】
以下、本発明に係る固体接合方法の実施例を比較例とともに詳細に説明する。
<実施例1>
被接合部材として機械的に研磨した銅ペレットと銅シートを用い、レーザー・アブレーションによる粒径10nmの金微粒子を銅ペレットに被着させて接合を行った。その結果を表1に示す。
【0052】
この場合、接合圧力は14.8kg/mm2で接合時間は1分とした。また、接合雰囲気は大気中で行った。
【0053】
<実施例2>
金微粒子の被着後、ハロゲン化処理としてフッ素蒸気に1分間暴露させた以外は実施例1と同様の工程で接合を行った。その結果を表1に示す。
【0054】
<比較例1>
金微粒子を使用せず、また、ハロゲン化処理を行わずに実施例1と同様の工程で接合を行った。その結果を表1に示す。
【0055】
<比較例2>
ハロゲン化処理のみを行い、実施例1と同様の工程で接合を行った。その結果を表1に示す。
【0056】
【表1】

Figure 0004255652
【0057】
表1から明らかなように、金微粒子を接合材として用いた実施例1、2は、金微粒子を接合材として用いない比較例1、2では接合できない低温(320℃)で接合が可能になる。
【0058】
また、金微粒子とフッ素蒸気によるハロゲン化処理を併用した実施例2の場合は、ハロゲン化処理を行わない実施例1よりさらに低温(250℃)で接合が可能になる。
【0059】
<実施例3>
平坦度の良いSi基板に銅をスパッタリングによりコーティングした後にその面をさらにCMPを施して被接合部材とし、レーザー・アブレーションによる10nmの金微粒子を一方の被接合部材に島状に被着させて接合を行った。その結果を表2に示す。
【0060】
この場合、接合圧力は2.9kg/mm2で接合時間は1分とした。また、接合雰囲気は大気中で行った。
【0061】
<実施例4>
金微粒子の被着後、ハロゲン化処理としてフッ素蒸気に1分間暴露させた以外は実施例3と同様の工程で接合を行った。その結果を表2に示す。
【0062】
【表2】
Figure 0004255652
【0063】
表2から明らかなように、被接合部材の平坦度の良い実施例3、4は、実施例1、2に比べてさらに低温、低荷重での接合ができる。
【0064】
【発明の効果】
以上述べたように本発明によれば、はんだやインジウム等の接合材を使用することなく、また接合面に金属間化合物を形成することもないので、低圧、かつ、低い温度で強固な接合を行うことができる。
【図面の簡単な説明】
【図1】本発明を実施するための固体接合装置の概略構成図
【図2】(a)〜(d):本発明の実施の形態の工程を模式的に示す説明図
【図3】(a)〜(c):本発明の原理を示す説明図
【図4】(d)〜(g):本発明の原理を示す説明図
【図5】(a)〜(c):本発明の他の実施の形態の工程の要部を模式的に示す説明図
【符号の説明】
1…固体接合装置 2…処理室 4(41、42)…第1及び第2の被接合部材
7…金属微粒子[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a solid joining method for joining solids such as metal and metal or metal and ceramics, and in particular, metal fine particles are attached in an island shape to a joint portion of at least one member to be joined. The present invention relates to a solid bonding method for bonding bonding members to each other.
[0002]
[Prior art]
Conventionally, when joining solids such as metals or metals and ceramics, or metals and glass, it is common to melt and join a joining material such as low melting point solder or indium.
[0003]
In this case, especially when low melting point solder or indium does not wet the member to be joined, in order to improve the wettability, a flux is used or the surface of the joint part such as solder or indium is preliminarily formed by sputtering or plating. It is necessary to form a film.
[0004]
[Problems to be solved by the invention]
However, when such a film is formed, a film may be formed in addition to a portion necessary for bonding, and solder or a bonding material may adhere to an unnecessary portion.
[0005]
On the other hand, it is possible to form a coating only on a portion necessary for bonding by using a mask, but an expensive mask is required when the region to be bonded is complicated.
[0006]
Further, as a conventional technique, a technique of spraying the resulting particles in the same gas evaporation method and the present invention in a film form on the bonding surface it has been proposed (see Japanese Patent Laid-Open No. 6-169161), in this method, the bonding surface It has the disadvantage of forming an intermetallic compound.
[0007]
In view of such points, in recent years, as a solid bonding method that does not use a bonding material such as solder or indium, for example, a technique of forming an ultra-smooth surface and directly bonding at low temperature and low pressure has been proposed. Then, advanced surface processing technology is required, and it becomes expensive.
[0008]
The present invention has been made to solve the above-described problems of the prior art, and is capable of strong bonding at low temperature and low pressure even with relatively simple surface processing without using a bonding material such as solder or indium. It is an object of the present invention to provide a solid bonding method capable of satisfying the requirements.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, the invention according to claim 1 is characterized in that metal fine particles having a particle size or aggregate thickness of 1 nm to 10 nm are used, and the surface roughness is the particle size of the metal fine particles or aggregate thereof. The members to be joined are adhered to each other at least one joining portion of a pair of members to be joined having a thickness smaller than the thickness of the member, and the metal fine particles are solidly joined to the members to be joined under a predetermined pressure and heating. It is a solid joining method characterized by having the process of joining.
According to a second aspect of the present invention, in the first aspect of the present invention, the metal fine particles are sprayed to be adhered to the joint portion of the member to be joined.
According to a third aspect of the present invention, in the first or second aspect of the present invention, the metal fine particles are generated by a gas evaporation method in which a raw metal is evaporated under reduced pressure, and the metal fine particles are It is characterized by being attached to at least one joining portion of the joined members.
According to a fourth aspect of the present invention, in the invention according to any one of the first to third aspects, the metal fine particles are gold, silver, or platinum.
According to a fifth aspect of the present invention, in the invention according to any one of the first to fourth aspects, the bonding portion is halogenated using a predetermined halogen after the metal fine particles are deposited. .
A sixth aspect of the invention is characterized in that, in the fifth aspect of the invention, the halogen is a gas containing fluorine or chlorine vapor.
[0010]
In the case of the present invention, metal fine particles having a predetermined particle diameter (for example, noble metal such as gold) deposited in an island shape on at least one bonded portion of a pair of members to be bonded are bonded under predetermined pressure and heating. Since the members to be joined are joined to each other by solid joining to the member, it is possible to use a relatively simple surface treatment at a low pressure without using a joining material such as solder or indium, and metal fine particles and to be joined. It becomes possible to perform strong bonding at a temperature much lower than the melting point of the member.
[0011]
Moreover, according to the present invention, different metals can be firmly bonded at low pressure and low temperature without generating an intermetallic compound during bonding.
[0012]
In this case, if metal fine particles are sprayed to adhere to the joined portion of the member to be joined, the metal fine particles can be deposited on any region of the member to be joined, and sputtering or vapor deposition that requires a mask. Resources can be used efficiently with high efficiency compared to metallizing.
[0013]
Further, if the metal fine particles generated by the in-gas evaporation method are deposited on at least one joining portion of the member to be joined, extremely active metal fine particles can be used, so that the joining can be performed at a lower temperature. .
[0014]
On the other hand, it is possible to perform bonding at a lower temperature by depositing metal fine particles and then subjecting the bonding portion to halogenation treatment using a predetermined halogen (such as a gas containing fluorine or chlorine vapor). become.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of a solid bonding method according to the present invention will be described in detail with reference to the drawings. The method of the present invention can be applied to a member to be joined made of the same or different metals.
[0016]
FIG. 1 is a schematic configuration diagram of a solid state bonding apparatus for carrying out the present invention, and FIGS. 2A to 2D are explanatory views schematically showing steps of an embodiment of the present invention.
As shown in FIG. 1, this solid joining apparatus has a processing chamber 2 connected to an evacuation system (not shown), and a first and a second are placed on a support base 3 provided at a lower portion in the processing chamber 2. The to-be-joined member 4 (41, 42) is placed.
[0017]
A pressurizing unit 5 for pressurizing the member 4 to be joined is disposed in the upper portion of the processing chamber 2. The pressurizing unit 5 is configured to be movable up and down.
A heater (not shown) for heating the member 4 to be joined is provided inside the support base 3 and the pressure unit 5.
[0018]
In addition, a supply source 6 for supplying metal fine particles 7 described later is provided outside the processing chamber 2. The supply source 6 evaporates a noble metal such as gold, silver, platinum or the like by means of, for example, laser ablation, high frequency heating melting, resistance heating melting, arc melting or the like while flowing a predetermined inert gas under reduced pressure. It is comprised so that the metal microparticle 7 may be produced | generated.
[0019]
Then, the generated metal fine particles 7 are introduced into the processing chamber 2 together with a predetermined gas through the introduction pipe 8, and sprayed from the nozzle 9 provided at the tip of the introduction pipe 8 to the member 4 to be joined. It has become.
[0020]
Next, an embodiment of the solid bonding method of the present invention will be described.
In the present embodiment, first, after adjusting the inside of the processing chamber 2 to a predetermined pressure, the metal fine particles 7 generated in the supply source 6 are moved from the tip of the nozzle 9 to the first as shown in FIG. It sprays on the joining part 41a of 1 to-be-joined member 41, and is made to adhere to island shape .
[0021]
In this state, the metal fine particles 7 are in a state of being adsorbed to the joint portion 41a of the first member 41 by van der Waals force.
[0022]
For the present invention, the particle size or thickness of the aggregation of the fine metal particles 7, considering the characteristics of the surface processing method and the metal fine particles of the bonding surfaces, preferably to 1 nm to 1 [mu] m, more preferably, 1 nm to 10 nm.
[0023]
[0024]
On the other hand, the first to-be-joined member 41 has a surface roughness of the joining portion 41a from the viewpoint of surely joining, the particle diameter of the metal fine particles 7 deposited on the first to-be-joined member 41 or its The surface treatment is preferably performed so as to be smaller than the thickness of the aggregate.
[0025]
The surface roughness of the preferred bonding portion 41a is, 1 000Nm below (mechanical polishing, the upper finishing), more preferably, 200 nm or less (mechanical polishing, fine finishing), and particularly preferably at 1nm or less (chemical polishing) is there.
[0026]
Next, as shown in FIG. 2B, the second bonded member 42 to be bonded is placed on the metal fine particles 7 deposited on the first bonded member 41, and the above-described pressurization is performed. The part 5 is lowered and pressurized with a predetermined pressure.
[0027]
Also, from the viewpoint of performing reliable bonding, the surface roughness of the bonding portion 42a of the second member to be bonded 42 is the particle diameter of the metal fine particles 7 deposited on the first member 41 or Surface treatment is preferably performed so as to be smaller than the thickness of the aggregate.
[0028]
The surface roughness of the preferred joint portion 42a is not more than similarly 1 000Nm and junction 41a, more preferably not 200nm or less, and particularly preferably 1nm or less.
[0029]
Moreover, it is preferable to heat the 1st and 2nd to-be-joined members 41 and 42 from a viewpoint of performing reliable joining in the case of pressurization.
[0030]
In the present invention, the heating temperature of the first and second members to be joined 41 and 42 is not particularly limited, but from the viewpoint of low-temperature joining, the first and second members to be joined 41 and 42 and It is preferable to heat at a predetermined temperature not higher than the melting point of the metal fine particles 7.
[0031]
Then, under the above-described conditions, as described below, the first and second members to be bonded 41 and 42 are bonded to the first and second members to be bonded 41 and 42 by solid bonding. Join.
[0032]
FIGS. 3A to 3C and FIGS. 4D to 4F are explanatory views showing the principle of the present invention.
As described above, in the present invention, bonding is possible if the surface roughness of the bonded portion is 1000 nm or less, but when the members to be bonded having such a surface roughness are directly adhered to each other. The contact area is very small.
[0033]
For example, when the first and second members to be joined 41 and 42 are brought into direct contact, the contact state between the joint portions 41a and 42a is a point state as shown in FIG. A, point B).
[0034]
On the other hand, in the present invention, as shown in FIGS. 3B and 3C, pressurization is performed in a state where the metal fine particles 7 are arranged in an island shape between the first and second members to be joined 41 and 42. As a result, the contact area between the joining portions 41a, 42a and the metal fine particles 7 increases with the pressurization, and as a result, the atoms of the metal fine particles 7 are exchanged with the metal atoms of the first and second members to be joined 41, 42. It replaces, or is arrange | positioned between metal atoms (refer FIG.2 (c)), thereby, as shown to FIG.4 (d) (e), the junction part 41a of the 1st and 2nd to-be-joined members 41 and 42 is shown. , 42a starts to join (joining region C).
[0035]
When the pressurization is further continued, as shown in FIG. 4 (f), the joining region C of these joining portions 41a and 42a is gradually enlarged, and finally the first and second joined members 41 and 42 are obtained. They are completely joined together (see FIG. 2D and FIG. 4G).
[0036]
As described above, according to the method of the present invention, it is possible to use a relatively simple surface processing at a low pressure without using a bonding material such as solder or indium, and much more than the melting point of the metal fine particles 7 and the bonded member 4. Strong bonding can be performed at a low temperature.
[0037]
In addition, according to the present invention, since the amount of the metal fine particles to be used is small, it is possible to strongly bond different kinds of metals at low pressure and low temperature without generating an intermetallic compound.
[0038]
In the case of the above-described embodiment, since the metal fine particles 7 are deposited by spraying the metal fine particles 7, the metal fine particles 7 are deposited on an arbitrary region of the first bonded member 41. Therefore, resources can be effectively used with higher efficiency than metallizing by sputtering or vapor deposition that requires a mask.
[0039]
In addition, since the metal fine particles 7 generated by the gas evaporation method are used, extremely active metal fine particles can be used, so that bonding can be performed at a lower temperature.
[0040]
FIG. 5A to FIG. 5C are explanatory views schematically showing the main part of the process of another embodiment of the present invention.
As shown in FIGS. 5A to 5C, in the present embodiment, for example, after the metal fine particles 7 are sprayed onto the joining portion 41a of the first joined member 41 by the above-described method, the deposition is performed. Prior to the pressurization, a halogenation process is performed in which a predetermined halogen 20 is attached to the joining portion 41a of the first member 41 and the metal fine particles 7.
[0041]
In the case of the present invention, the state of the halogen 20 at the time of treatment is not particularly limited, but from the viewpoint of simplifying the process, the halogen with respect to the bonding portion 41a of the first member 41 and the metal fine particles 7 is considered. Preferably, 20 vapors are exposed and deposited.
[0042]
In this case, for example, the first bonded member 41 in which the metal fine particles 7 are deposited in an island shape is disposed in a predetermined processing container 10, and the liquid of the halogen 20 disposed in the processing container 10 is similarly heated and evaporated. Then, the halogen 20 can be easily deposited by filling the processing container 10 with the gas of the halogen 20.
[0043]
The type of halogen 20 to be used is not particularly limited, but fluorine or chlorine is preferably used from the viewpoint of reliable bonding.
[0044]
And after performing such a halogenation process, joining by the process similar to the said embodiment is performed. In the present invention, the metal fine particles 7 can be applied after the halogenation treatment or simultaneously with the halogenation treatment.
[0045]
According to the method of the present embodiment, bonding at a lower temperature is possible.
Since other configurations and operational effects are the same as those of the above-described embodiment, detailed description thereof is omitted.
[0046]
The present invention is not limited to the above-described embodiment, and various changes can be made.
For example, in the above embodiment, the metal fine particles are deposited on the first member to be joined. However, the present invention is not limited to this, and the metal fine particles are coated on the second member to be joined. It is also possible to deposit metal fine particles on both of the members to be joined.
[0047]
And this invention is applicable also when joining the to-be-joined member which consists of three or more members.
[0048]
Further, since the metal fine particles deposited on the member to be joined are adsorbed on the member to be joined by van der Waals force, there is no need to deposit the metal fine particles with the joining portion of the member to be joined up, for example, downward or inclined. It can be deposited in a state of being deposited, and can also be moved after deposition.
[0049]
Furthermore, in the above embodiment, the halogenation treatment is performed on one member to be joined, but the present invention is not limited to this, and the halogenation treatment is performed on the other member to be joined. It is also possible to perform a halogenation treatment on both of the members to be joined.
[0050]
Furthermore, according to the present invention, for example, metal fine particles dispersed in a solution can be applied to a bonded portion of a member to be bonded.
[0051]
【Example】
Hereinafter, examples of the solid bonding method according to the present invention will be described in detail together with comparative examples.
<Example 1>
Using mechanically polished copper pellets and a copper sheet as the members to be joined, gold fine particles having a particle diameter of 10 nm by laser ablation were deposited on the copper pellets for bonding. The results are shown in Table 1.
[0052]
In this case, the joining pressure was 14.8 kg / mm 2 and the joining time was 1 minute. The bonding atmosphere was performed in the air.
[0053]
<Example 2>
After the gold fine particles were deposited, bonding was performed in the same manner as in Example 1 except that the gold fine particles were exposed to fluorine vapor for 1 minute. The results are shown in Table 1.
[0054]
<Comparative Example 1>
Bonding was performed in the same process as in Example 1 without using gold fine particles and without performing a halogenation treatment. The results are shown in Table 1.
[0055]
<Comparative example 2>
Only halogenation treatment was performed, and bonding was performed in the same process as in Example 1. The results are shown in Table 1.
[0056]
[Table 1]
Figure 0004255652
[0057]
As is clear from Table 1, Examples 1 and 2 using gold fine particles as a bonding material enable bonding at a low temperature (320 ° C.) that cannot be bonded in Comparative Examples 1 and 2 that do not use gold fine particles as a bonding material. .
[0058]
Further, in the case of Example 2 in which the gold fine particles and the halogenation treatment with fluorine vapor are used together, bonding can be performed at a lower temperature (250 ° C.) than in Example 1 in which the halogenation treatment is not performed.
[0059]
<Example 3>
After coating copper on the Si substrate with good flatness by sputtering, the surface is further subjected to CMP to form a member to be bonded, and 10 nm gold fine particles by laser ablation are deposited on one member to be bonded in an island shape and bonded. Went. The results are shown in Table 2.
[0060]
In this case, the joining pressure was 2.9 kg / mm 2 and the joining time was 1 minute. The bonding atmosphere was performed in the air.
[0061]
<Example 4>
After the gold fine particles were deposited, bonding was performed in the same process as in Example 3, except that the halogenated treatment was exposed to fluorine vapor for 1 minute. The results are shown in Table 2.
[0062]
[Table 2]
Figure 0004255652
[0063]
As is clear from Table 2, Examples 3 and 4 having good flatness of the members to be joined can be joined at a lower temperature and a lower load than Examples 1 and 2.
[0064]
【The invention's effect】
As described above, according to the present invention, since a bonding material such as solder or indium is not used and an intermetallic compound is not formed on the bonding surface , a strong bonding can be achieved at a low pressure and a low temperature. It can be carried out.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a solid state bonding apparatus for carrying out the present invention. FIG. 2 (a) to (d): explanatory views schematically showing steps of an embodiment of the present invention. a) to (c): explanatory diagram showing the principle of the present invention FIG. 4 (d) to (g): explanatory diagram showing the principle of the present invention FIG. 5 (a) to (c): Explanatory drawing which shows the principal part of the process of other embodiment typically [Explanation of numerals]
DESCRIPTION OF SYMBOLS 1 ... Solid joining apparatus 2 ... Processing chamber 4 (41, 42) ... 1st and 2nd to-be-joined member 7 ... Metal fine particle

Claims (6)

粒径もしくはその集合体の厚さが1nm〜10nmである金属微粒子を、表面粗さが前記金属微粒子の粒径もしくはその集合体の厚さより小さい一対の被接合部材の少なくとも一方の接合部分に島状に被着させ、所定の加圧・加熱下で前記金属微粒子を前記被接合部材に固体接合させることによって前記被接合部材同士を接合する工程を有することを特徴とする固体接合方法。Metal fine particles having a particle diameter or an aggregate thickness of 1 nm to 10 nm are formed on at least one joining portion of a pair of members to be joined whose surface roughness is smaller than the particle diameter of the metal fine particles or the thickness of the aggregate. A solid joining method comprising: joining the members to be joined together by solidly joining the metal fine particles to the members to be joined under predetermined pressure and heating . 前記金属微粒子を吹き付けることにより前記被接合部材の接合部分に被着させることを特徴とする請求項1記載の固体接合方法。The solid joining method according to claim 1, wherein the metal fine particles are sprayed to adhere to the joining portion of the joined member. 前記金属微粒子は、原料金属を減圧下で蒸発させるガス中蒸発法にて生成し、この金属微粒子を前記被接合部材の少なくとも一方の接合部分に被着させることを特徴とする請求項1又は2のいずれか1項記載の固体接合方法。The metal fine particles are generated by a gas evaporation method in which a raw metal is evaporated under reduced pressure, and the metal fine particles are deposited on at least one joining portion of the joined members. The solid bonding method according to any one of the above. 前記金属微粒子が、金、銀又は白金であることを特徴とする請求項1乃至3のいずれか1項記載の固体接合方法。The solid bonding method according to claim 1, wherein the metal fine particles are gold, silver, or platinum. 前記金属微粒子の被着後に所定のハロゲンを用いて前記接合部分のハロゲン化処理を行うことを特徴とする請求項1乃至4のいずれか1項記載の固体接合方法。The solid bonding method according to claim 1, wherein the bonding portion is halogenated using a predetermined halogen after the metal fine particles are deposited. 前記ハロゲンが、フッ素または塩素の蒸気を含むガスであることを特徴とする請求項5記載の固体接合方法。6. The solid bonding method according to claim 5, wherein the halogen is a gas containing fluorine or chlorine vapor.
JP2002181748A 2002-06-21 2002-06-21 Solid bonding method Expired - Fee Related JP4255652B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002181748A JP4255652B2 (en) 2002-06-21 2002-06-21 Solid bonding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002181748A JP4255652B2 (en) 2002-06-21 2002-06-21 Solid bonding method

Publications (2)

Publication Number Publication Date
JP2004025196A JP2004025196A (en) 2004-01-29
JP4255652B2 true JP4255652B2 (en) 2009-04-15

Family

ID=31178508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002181748A Expired - Fee Related JP4255652B2 (en) 2002-06-21 2002-06-21 Solid bonding method

Country Status (1)

Country Link
JP (1) JP4255652B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4378239B2 (en) 2004-07-29 2009-12-02 株式会社日立製作所 A semiconductor device, a power conversion device using the semiconductor device, and a hybrid vehicle using the power conversion device.
JP4873160B2 (en) 2007-02-08 2012-02-08 トヨタ自動車株式会社 Joining method
JP5070557B2 (en) * 2007-02-27 2012-11-14 武仁 島津 Room temperature bonding method
EP2597670B1 (en) * 2010-03-31 2016-03-30 EV Group E. Thallner GmbH Method for permanently connecting two metal surfaces
JP2014210267A (en) * 2011-08-31 2014-11-13 三洋電機株式会社 Metal joining device
JP6201036B2 (en) * 2014-03-25 2017-09-20 本田技研工業株式会社 Metal bonded product and manufacturing method thereof

Also Published As

Publication number Publication date
JP2004025196A (en) 2004-01-29

Similar Documents

Publication Publication Date Title
US7254888B2 (en) Method for manufacturing graphite-base heat sinks
CA2505593C (en) Semiconductor substrate having copper/diamond composite material and method of making same
TW201101952A (en) Solder bump formation on a circuit board using a transfer sheet
TWI330876B (en) Method for forming multi-layer bumps on a substrate
JP6099453B2 (en) Electronic component mounting substrate and manufacturing method thereof
JP2008115467A (en) Method for depositing filler on jointed surface of component
JP4255652B2 (en) Solid bonding method
JP5666167B2 (en) Stage heater and shaft manufacturing method
JP2013016802A (en) Method of manufacturing device comprising braze produced from metal oxalate
JP5691901B2 (en) Power module manufacturing method
JP6546953B2 (en) Sputtering target-backing plate assembly and method for manufacturing the same
KR101088124B1 (en) Target for sputtering process and method of manufacturing the same
JP3117434B2 (en) How to attach metal
JP2004172607A (en) Island-projection-decorated component, its manufacturing method, and apparatus using it
US5750202A (en) Preparation of gold-coated molybdenum articles and articles prepared thereby
KR101898647B1 (en) Bonding material of a Cu foil coated with Ag and bonding method using the Cu foil with coated Ag
JP4165793B2 (en) Metal foil / ceramic bonding material manufacturing method
JP6032667B2 (en) Joining method
JP6808503B2 (en) Member joining method
JP2002164425A (en) Wafer support member
JP3554737B2 (en) Backing plate for sputtering target and sputtering target
JPH05319946A (en) Ceramic substrate joined to metallic plate
JP2006080099A (en) Bonding method and bonding device
JP2002050656A (en) Apparatus and method of mounting electronic component element
JPS62253778A (en) Method for cladding noble metal to copper member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060626

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20060626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071203

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071203

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081006

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090120

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090128

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4255652

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150206

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees