JP4255165B2 - Pneumatic tire and its vulcanization mold - Google Patents

Pneumatic tire and its vulcanization mold Download PDF

Info

Publication number
JP4255165B2
JP4255165B2 JP12661899A JP12661899A JP4255165B2 JP 4255165 B2 JP4255165 B2 JP 4255165B2 JP 12661899 A JP12661899 A JP 12661899A JP 12661899 A JP12661899 A JP 12661899A JP 4255165 B2 JP4255165 B2 JP 4255165B2
Authority
JP
Japan
Prior art keywords
pneumatic tire
main
extending
portions
sipe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12661899A
Other languages
Japanese (ja)
Other versions
JP2000318413A (en
Inventor
泰崇 須田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP12661899A priority Critical patent/JP4255165B2/en
Publication of JP2000318413A publication Critical patent/JP2000318413A/en
Application granted granted Critical
Publication of JP4255165B2 publication Critical patent/JP4255165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C11/1218Three-dimensional shape with regard to depth and extending direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0606Vulcanising moulds not integral with vulcanising presses
    • B29D2030/0607Constructional features of the moulds
    • B29D2030/0613Means, e.g. sipes or blade-like elements, for forming narrow recesses in the tyres, e.g. cuts or incisions for winter tyres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/03Tread patterns
    • B60C11/12Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes
    • B60C11/1204Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe
    • B60C2011/1213Tread patterns characterised by the use of narrow slits or incisions, e.g. sipes with special shape of the sipe sinusoidal or zigzag at the tread surface

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、トレッド部にサイプが形成された空気入りタイヤおよびその加硫用金型に関する。
【0002】
【従来の技術】
一般に、空気入りタイヤは、摩耗の進行に伴いトレッド部に形成された主溝等の広幅溝の深さが徐々に浅くなって排水性が低下すると、湿潤路操縦安定性が低下してしまうことが知られている。
【0003】
そこで、本出願人は、このような問題点を解決するために研究開発を行い、特開平10ー81113号公報に記載されているような空気入りタイヤ、即ち、トレッド部に形成されたサイプを、一対の主部と、これら主部の近接する端部同士を連結する連結部とから構成するとともに、前記一対の主部を半径方向に対して逆方向に傾斜させ、これにより、トレッド部の摩耗進行に伴って連結部の開口端の長さ、即ちサイプの開口端の合計長さを増大させるようにした空気入りタイヤを提案した。
【0004】
【発明が解決しようとする課題】
しかしながら、このような空気入りタイヤは、湿潤路操縦安定性の低下をある程度抑制することができるものの、1本のサイプに対し連結部が1箇所しか存在しないため、その抑制効果は充分なものではなかった。しかも、前述のように1本のサイプに対し連結部が1箇所しか存在しないため、サイプが形成された陸部の曲げ剛性が低下してしまうという問題点もあった。
【0005】
この発明は、陸部の曲げ剛性の低下および摩耗の進行に伴う湿潤路操縦安定性を確実に抑制することができる空気入りタイヤおよびその加硫用金型を提供することを目的とする。
【0006】
【課題を解決するための手段】
このような目的は、トレッド部に複数のサイプが形成された空気入りタイヤにおいて、空気入りタイヤの全周に亘って周方向に延びているサイプのうち少なくとも一部のサイプを、略同一方向に延びるとともに延在方向に互いにずれた3個以上の主部と、隣接する主部の近接する端部同士を連結するとともに、主部に対して略直交する方向に延びる2個以上の連結部とから構成し、かつ、隣接する主部を、深くなるに従い相互間距離Lが大となるよう半径方向に対してそれぞれ逆方向に傾斜させた空気入りタイヤにより、達成することができる。
【0007】
そして、このような空気入りタイヤは、請求項に記載された加硫用金型を加硫に用いることで容易に製造することができる。
【0008】
この発明においては、トレッド部に形成した少なくとも一部のサイプを、3個以上の主部と、隣接する主部の近接する端部同士を連結する2個以上の連結部とから構成し、かつ、隣接する主部を、深くなるに従い相互間距離Lが大となるよう逆方向に傾斜させたので、トレッド部の摩耗進行に伴うサイプ開口端の合計長の増大割合が従来の2倍以上となり、これにより、前記摩耗進行に伴う湿潤路操縦安定性の低下が確実に抑制される。しかも、主部と連結部との交差により形成される角部の数も従来の2倍以上となるため、サイプの形成に基づく陸部の曲げ剛性低下も確実に抑制することができる。
【0009】
また、直進時、特に氷雪路面での駆動、制動性能を効果的に向上させることができる
【0010】
【発明の実施の形態】
以下、この発明の第1実施形態を図面に基づいて説明する。
図1、2において、11はオールシーズン使用可能で氷雪性能に優れた空気入りタイヤであり、この空気入りタイヤ11のトレッド部12には、単層のゴムあるいは、2層のゴム、例えば外側層が内部に多数の独立気泡を有する発泡ゴムから構成され、内側層が外側層より硬度の高い通常ゴム(非発泡ゴム)から構成されたトップトレッド13が配置されている。このトレッド部12の外表面には、周方向に延びるとともに軸方向に離れた複数本、ここでは3本の幅広主溝15が形成され、これら主溝15によって前記トレッド部12には複数本、ここでは4本の周方向に連続して延びる陸部としてのリブ16が画成される。
【0011】
少なくとも一部のリブ16、ここでは幅方向最外側に位置する一対の外側リブ16a、bの外表面でその幅方向中央部には幅狭のサイプ20がそれぞれ形成され、これらサイプ20は空気入りタイヤ11の全周に亘って周方向に連続して延びている。そして、これらサイプ20の深さはいずれの位置においても同一で、前記主溝15の溝深さより若干浅い。ここで、前記サイプ20のうち少なくとも一部のサイプ20、この実施形態では全てのサイプ20は、延在方向(周方向)に自身の長さだけ互いにずれた状態で略同一方向(ここでは周方向)に延びる3個以上の主部21と、隣接する主部21の近接する端部同士を連結するとともに、主部21に対して略直交する方向、ここでは幅方向に延びる2個以上の連結部22とから構成され、全体の開口形状は方形波状を呈している。
【0012】
また、隣接する主部21同士は、深くなるに従い相互間距離Lが大となるよう半径方向に対してそれぞれ逆方向に傾斜、ここではトレッドセンターS側に位置している主部21aは半径方向内側に向かうに従いトレッドセンターSに接近するよう傾斜し、一方、トレッド端E側に位置している主部21bは半径方向内側に向かうに従いトレッド端Eに接近するよう傾斜しており、この結果、前記連結部22は深くなるに従い幅が広くなった台形を呈している。
【0013】
次に、前述のような空気入りタイヤ11を走行させると、トレッド部12の摩耗進行に伴い主溝15の溝深さが徐々に浅くなって排水性が低下し、湿潤路操縦安定性が低下すると考えられる。しかしながら、この実施形態においては、前述のようにサイプ20の隣接する主部21a、bを深さ方向に拡開するよう傾斜させるとともに、これら主部21a、bの近接する端部同士を連結部22によって連結するようにしたので、トレッド部12の摩耗進行に伴い、主部21a、bの開口端同士は図3に示す状態から図4に示す状態に向かって幅方向に徐々に離れる。
【0014】
この結果、これら主部21a、b同士を連結している連結部22の開口端の長さが徐々に長くなり、換言すれば、サイプ20の開口端の合計長さ(エッジ長さ)が徐々に長くなり、これにより、排水性(除水性)が向上して湿潤路操縦安定性の低下が効果的に抑制される。ここで、前述の各サイプ20は、3個以上の主部21a、bと2個以上の連結部22とから構成されているので、トレッド部12の摩耗進行に伴うサイプ開口端の合計長の増大割合が、連結部が1個である従来のサイプの2倍以上となり、これにより、前記摩耗進行に伴う湿潤路操縦安定性の低下が確実に抑制される。しかも、主部21a、bと連結部22とが直交することで形成された角部の数も従来の2倍以上となるため、サイプ20の形成に基づくリブ(陸部)16の曲げ剛性低下も確実に抑制することができる。
【0015】
また、前述のようにサイプ20が空気入りタイヤ11の全周に亘って周方向に連続して延びていると、摩耗進行に伴って幅方向に延びている連結部22の開口端長さ(エッジ長)が徐々に長くなるため、進行方向に対する引っ掛かりが増大し、これにより、氷雪路面での駆動、制動性能が効果的に向上する。
【0016】
図5において、31は前述の空気入りタイヤ11を製造する際に使用する加硫用金型であり、この加硫用金型31はトレッド部12を型付けするトレッド型付け面32を有する。このトレッド型付け面32にはほぼ周方向に延びるとともに軸方向に離れた複数本、ここでは3本の突出した主骨33が設けられ、これらの主骨33は未加硫タイヤのトレッド部12に主溝15を形成する。また、前記トレッド型付け面32にはこれら主骨33の両側に凹溝34が形成され、これらの凹溝34は未加硫タイヤのトレッド部12にリブ16を成形する。
【0017】
38はリブ16の外表面にサイプ20を形成するための複数のブレードであり、これらのブレード38は少なくとも一部の凹溝34、ここでは幅方向最外側の凹溝34に1個ずつ設けられている。そして、これらブレード38は、型付け面32の全周に亘って周方向に連続して延びている。各ブレード38は半径方向外端部に埋設部39を有し、この埋設部39は前記加硫用金型31に埋設されている。40は前記埋設部39からほぼ半径方向内側に向かって延びるサイプ形成部であり、このサイプ形成部40は前記型付け面32、詳しくは凹溝34の表面(底面)から突出しているが、その高さはいずれの位置においても同一で、前記主骨33の高さより若干低い。
【0018】
ここで、少なくとも一部のブレード38、この実施形態においては全部のブレード38のサイプ形成部40は、延在方向(周方向)に自身の長さだけずれた状態で略同一方向(ここでは周方向)に延びる3個以上の主部41a、bと、隣接する主部41a、bの近接する端部同士を連結するとともに、主部41a、bに対して略直交する方向(ここでは軸方向)に延びる2個以上の連結部42とから構成されている。また、前記一対の主部41a、bは、突出するに従い相互間距離Mが大となるよう半径方向に対してそれぞれ逆方向に傾斜、即ち軸方向中央側に位置する主部41aは半径方向内側に向かうに従い軸方向内側に傾斜し、一方、軸方向外端側に位置する主部41bは半径方向内側に向かうに従い軸方向外側に傾斜しており、この結果、前記連結部42は突出するに従い幅が広くなった台形を呈している。
【0019】
ここで、前述の主部41a、bの半径方向に対する傾斜角が小さ過ぎると、前述のような湿潤路操縦安定性の低下を効果的に抑制することができず、一方、大き過ぎると、加硫後に加硫済みタイヤからブレード38を抜き出すことが困難となるため、この傾斜角は 3度から15度の範囲が好ましい。
【0020】
そして、このような加硫用金型31を用いて未加硫タイヤを加硫する場合には、該未加硫タイヤを加硫用金型31に収納した後、ブラダ内に高温、高圧の加硫媒体を注入して該未加硫タイヤをトレッド型付け面32を含む型付け面に押し付ける。このとき、主骨33、ブレード38のサイプ形成部40は未加硫タイヤのトレッド部12に押し込まれ、該トレッド部12の外表面に複数の主溝15が、また、幅方向最外側のリブ16の外表面にはサイプ20が正確かつ容易に形成される。
【0021】
図6はこの発明の第2実施形態を示す図である。この実施形態においては、新品タイヤ時における主部21a、bの半径方向外端開口(リブ16の外表面における開口)を1本の同一直線上に配置、即ち、半径方向外端での主部21a、bの相互間距離Lを零としている。そして、サイプ45を前述のようなものとすれば、乾燥路面等の高μ領域でのコーナリング性能を向上させることができる。
【0022】
また、このようなサイプ45を形成するには、加硫用金型31の型付け面32にブレード46を設置するが、各ブレード46の埋設部47は図7に示すように連続リング状を呈し、一方、サイプ形成部48の互いに逆方向に傾斜した主部49a、bおよび三角形状の連結部50はこの埋設部47からほぼ半径方向内側に向かって延びている。この結果、前記ブレード46の主部49a、bの型付け面32と交差する部位、即ち埋設部47と主部49a、bとの境界は1本の同一直線上に配置されることになる。そして、このような加硫用金型31を用いれば、前述のサイプ45を容易に成形することができる。
【0023】
なお、前述の実施形態においては、トレッド部12に設けられたリブ16にサイプ20を形成するようにしたが、この発明においては、トレッド部に設けられたラグあるいはブロック等の陸部にサイプを形成するようにしてもよい。また、前述の実施形態においては、各主部21a、bは直線状に延びていたが、この発明においては、波状、ジグザグ状に屈曲していてもよい。
【0024】
【実施例】
次に、試験結果を説明する。この試験に当たっては、隣接する主部間の相互間距離Lが深さに関わりなく一定である以外は、前述の第1実施形態と同様であるサイプが形成された比較タイヤ1、2と、前述した第1実施形態と同様のサイプが形成された供試タイヤとを準備した。ここで、比較タイヤ1、2における隣接する主部間の相互間距離(連結部の長さ)Lはそれぞれ一定の 5mm、10mmであり、また、供試タイヤにおけるサイプの主部間の相互間距離(連結部の長さ)Lは、開口端および最深部でそれぞれ 5mm、10mmであった。また、これら比較タイヤ1、2、供試タイヤは、各主部の周方向長さおよび深さがそれぞれ20mm、 9mmであり、そのサイズが 195/70 R15 8PRであった。
【0025】
次に、前述した各タイヤを大型ワンボックスカーに装着し、乾燥路操縦安定性、湿潤路操縦安定性、雪上操縦安定性、氷上操縦安定性の各試験を、新品タイヤ時と主溝深さの60%だけ摩耗した摩耗時とでそれぞれ行った。その試験結果を以下の表1に示す。
【0026】
【表1】

Figure 0004255165
【0027】
ここで、前述の試験結果は、前記ワンボックスカーによって乾燥路、テストコースに水を撒いて作り出し湿潤路、積雪路、氷盤上をそれぞれ走行させたときの専門ドライバーのフィーリング評価であり、評価基準となるタイヤ(比較タイヤ1)を3で表し、プラス、マイナスを付加した5段階で評価した。ここで、前記評価は、数値が大であるほど、また、プラスが付加されている方が良好となる。そして、この表1から、いずれのタイヤも乾燥路操縦安定性が摩耗の進行に伴ってほぼ同様に向上しているが、摩耗の進行に伴う湿潤路、雪上、氷上操縦安定性の性能低下については、供試タイヤが最も強力に抑制されていることを理解することができる。
【0028】
また、前述の各タイヤに対して耐摩耗性試験も行ったが、その結果は、比較タイヤ1を指数 100で表すと、比較タイヤ2では80、供試タイヤでは98であった。ここで、耐摩耗試験は前記ワンボックスカーを4万km走行させた後、残った主溝の深さを10箇所で測定し、その平均値を指数で表したものである。
【0029】
【発明の効果】
以上説明したように、この発明によれば、陸部の曲げ剛性の低下および摩耗の進行に伴う湿潤路操縦安定性を確実に抑制することができる。
【図面の簡単な説明】
【図1】 この発明の第1実施形態を示す空気入りタイヤの平面図である。
【図2】 トレッド端部の破断斜視図である。
【図3】 トレッド部表面におけるサイプ近傍の平面図である。
【図4】 サイプの溝底近傍における平面断面図である。
【図5】 加硫用金型を示す破断斜視図である。
【図6】 この発明の第2実施形態を示す図2と同様の破断斜視図である。
【図7】 加硫用金型を示す破断斜視図である。
【符号の説明】
11…空気入りタイヤ 12…トレッド部
20…サイプ 21…主部
22…連結部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a pneumatic tire having a sipe formed in a tread portion and a vulcanization mold thereof.
[0002]
[Prior art]
In general, if the depth of the wide groove such as the main groove formed in the tread part becomes gradually shallower as the wear progresses and the drainage performance decreases, the pneumatic tire will deteriorate wet road handling stability. It has been known.
[0003]
Therefore, the present applicant conducted research and development in order to solve such problems, and applied a pneumatic tire as described in JP-A-10-81113, that is, a sipe formed in a tread portion. The pair of main portions and a connecting portion that connects the adjacent end portions of the main portions, and the pair of main portions are inclined in the opposite direction with respect to the radial direction. A pneumatic tire has been proposed in which the length of the open end of the connecting portion, that is, the total length of the open end of the sipe is increased as wear progresses.
[0004]
[Problems to be solved by the invention]
However, although such a pneumatic tire can suppress a decrease in wet road maneuvering stability to some extent, since there is only one connecting portion for one sipe, its suppression effect is not sufficient. There wasn't. In addition, as described above, since there is only one connecting portion for one sipe, there is a problem that the bending rigidity of the land portion where the sipe is formed is lowered.
[0005]
An object of the present invention is to provide a pneumatic tire and a vulcanization mold for the pneumatic tire that can reliably suppress the wet road maneuvering stability accompanying the decrease in the bending rigidity of the land portion and the progress of wear.
[0006]
[Means for Solving the Problems]
In such a pneumatic tire in which a plurality of sipes are formed in the tread portion, at least some of the sipes extending in the circumferential direction over the entire circumference of the pneumatic tire are arranged in substantially the same direction. Three or more main parts that extend and deviate from each other in the extending direction, and two or more connecting parts that connect adjacent end parts of adjacent main parts and extend in a direction substantially orthogonal to the main parts, This can be achieved by a pneumatic tire that is configured from the above and in which the adjacent main portions are inclined in opposite directions with respect to the radial direction so that the distance L between them increases as the depth increases.
[0007]
Such a pneumatic tire can be easily manufactured by using the vulcanizing mold described in claim 2 for vulcanization.
[0008]
In this invention, at least a part of the sipe formed in the tread portion is composed of three or more main portions and two or more connecting portions that connect adjacent end portions of adjacent main portions, and Since the adjacent main parts are inclined in the reverse direction so that the distance L between them becomes deeper as the depth increases, the rate of increase in the total length of the sipe opening end with the progress of wear of the tread part becomes more than twice that of the conventional one. As a result, a decrease in wet road steering stability accompanying the progress of wear is reliably suppressed. In addition, since the number of corners formed by the intersection of the main part and the connecting part is twice or more that of the conventional art, it is possible to reliably suppress a decrease in the bending rigidity of the land part due to the formation of the sipe.
[0009]
Also, straight Susumuji, especially driving of the icy and snowy road surfaces, the braking performance can be effectively improved.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
In FIGS. 1 and 2, 11 is a pneumatic tire that can be used in all seasons and has excellent snow and snow performance. The tread portion 12 of the pneumatic tire 11 has a single layer rubber or two layers of rubber, for example, an outer layer. Is composed of foamed rubber having a large number of closed cells inside, and a top tread 13 in which the inner layer is composed of normal rubber (non-foamed rubber) having a higher hardness than the outer layer is disposed. On the outer surface of the tread portion 12, a plurality of wide main grooves 15 extending in the circumferential direction and separated in the axial direction, here three wide main grooves 15 are formed. Here, four ribs 16 as land portions extending continuously in the circumferential direction are defined.
[0011]
A narrow sipe 20 is formed at the outer surface of at least a part of the ribs 16, here a pair of outer ribs 16a and 16b located on the outermost side in the width direction, in the center in the width direction. The tire 11 continuously extends in the circumferential direction over the entire circumference. The depths of these sipes 20 are the same at any position and are slightly shallower than the groove depth of the main groove 15. Here, at least some of the sipes 20 of the sipes 20 and, in this embodiment, all of the sipes 20 are substantially the same in the extending direction (circumferential direction) with their own length shifted in the extending direction (circumferential direction). 3 or more main portions 21 extending in the direction) and the adjacent end portions of the adjacent main portions 21 are connected to each other, and at least two main portions 21 extending in the width direction in the direction substantially perpendicular to the main portions 21 are connected. It is comprised from the connection part 22, and the whole opening shape is exhibiting square wave shape.
[0012]
The adjacent main portions 21 are inclined in opposite directions with respect to the radial direction so that the distance L between the adjacent main portions 21 becomes deeper. Here, the main portion 21a located on the tread center S side is in the radial direction. The main portion 21b located on the tread end E side is inclined so as to approach the tread end E toward the inner side in the radial direction. The connecting portion 22 has a trapezoidal shape that becomes wider as it gets deeper.
[0013]
Next, when the pneumatic tire 11 as described above is run, as the tread portion 12 wears, the groove depth of the main groove 15 gradually becomes shallow and the drainage performance decreases, and the wet road handling stability decreases. I think that. However, in this embodiment, as described above, the adjacent main portions 21a and 21b of the sipe 20 are inclined so as to expand in the depth direction, and the adjacent ends of these main portions 21a and 21b are connected to each other. As the tread portion 12 is worn, the opening ends of the main portions 21a and 21b gradually separate in the width direction from the state shown in FIG. 3 toward the state shown in FIG.
[0014]
As a result, the length of the opening end of the connecting portion 22 that connects these main portions 21a and b gradually increases, in other words, the total length (edge length) of the opening end of the sipe 20 gradually increases. Thus, drainage (water removal performance) is improved, and a decrease in wet road maneuvering stability is effectively suppressed. Here, each sipe 20 described above is composed of three or more main parts 21a, 21b and two or more connecting parts 22, so that the total length of the sipe opening end as the tread part 12 wears is increased. The increase rate is more than twice that of a conventional sipe having one connecting portion, and this reliably suppresses a decrease in wet road maneuvering stability associated with the progress of wear. In addition, since the number of corners formed by orthogonally crossing the main parts 21a, b and the connecting part 22 is more than twice that of the prior art, the bending rigidity of the rib (land part) 16 is reduced due to the formation of the sipe 20. Can also be reliably suppressed.
[0015]
Further, as described above, when the sipe 20 continuously extends in the circumferential direction over the entire circumference of the pneumatic tire 11, the opening end length of the connecting portion 22 extending in the width direction as the wear progresses ( Since the edge length) is gradually increased, the catch in the traveling direction is increased, thereby effectively improving the driving and braking performance on the icy and snowy road surface.
[0016]
In FIG. 5, reference numeral 31 denotes a vulcanization mold used when manufacturing the above-described pneumatic tire 11, and the vulcanization mold 31 has a tread mold mounting surface 32 for molding the tread portion 12. The tread embossing surface 32 is provided with a plurality of main bones 33 extending in the circumferential direction and separated in the axial direction, here three projecting main bones 33. These main bones 33 are provided on the tread portion 12 of the unvulcanized tire. A main groove 15 is formed. Further, the tread shaping surface 32 is formed with concave grooves 34 on both sides of the main bone 33, and these concave grooves 34 form ribs 16 on the tread portion 12 of the unvulcanized tire.
[0017]
Reference numeral 38 denotes a plurality of blades for forming the sipe 20 on the outer surface of the rib 16. Each of these blades 38 is provided in at least a part of the concave grooves 34, here the outermost concave grooves 34 in the width direction. ing. These blades 38 continuously extend in the circumferential direction over the entire circumference of the molding surface 32. Each blade 38 has an embedded portion 39 at the outer end in the radial direction, and this embedded portion 39 is embedded in the vulcanization mold 31. Reference numeral 40 denotes a sipe forming portion that extends substantially radially inward from the embedded portion 39. The sipe forming portion 40 protrudes from the molding surface 32, specifically, the surface (bottom surface) of the concave groove 34. The height is the same at any position and is slightly lower than the height of the main bone 33.
[0018]
Here, at least some of the blades 38, and in this embodiment, the sipe forming portions 40 of all of the blades 38 are displaced in the extending direction (circumferential direction) by their own length (in this case, the circumferential direction). Direction in which three or more main portions 41a, 41b extending in the direction) and the adjacent ends of the adjacent main portions 41a, 41b are connected to each other, and a direction substantially orthogonal to the main portions 41a, 41b (here, the axial direction) 2) extending two or more connecting portions 42. The pair of main portions 41a, 41b are inclined in opposite directions with respect to the radial direction so that the mutual distance M increases as they protrude, that is, the main portion 41a located on the axially central side is radially inward. The main portion 41b located on the outer end side in the axial direction is inclined outward in the axial direction as it goes inward in the radial direction. As a result, the connecting portion 42 protrudes as it protrudes. It has a trapezoid with a wider width.
[0019]
Here, if the inclination angle of the main portions 41a and 41b with respect to the radial direction is too small, the above-described decrease in wet road steering stability cannot be effectively suppressed. Since it is difficult to extract the blade 38 from the vulcanized tire after vulcanization, the inclination angle is preferably in the range of 3 to 15 degrees.
[0020]
When an unvulcanized tire is vulcanized using such a vulcanization mold 31, the unvulcanized tire is stored in the vulcanization mold 31, and then a high temperature and high pressure is contained in the bladder. The vulcanized medium is injected to press the unvulcanized tire against the molding surface including the tread molding surface 32. At this time, the sipe forming portion 40 of the main bone 33 and the blade 38 is pushed into the tread portion 12 of the unvulcanized tire, and a plurality of main grooves 15 are formed on the outer surface of the tread portion 12, and the outermost rib in the width direction A sipe 20 is accurately and easily formed on the outer surface of 16.
[0021]
FIG. 6 is a diagram showing a second embodiment of the present invention. In this embodiment, the radially outer end openings (openings on the outer surface of the ribs 16) of the main portions 21a and 21b in a new tire are arranged on a single straight line, that is, the main portions at the radially outer ends. The distance L between 21a and b is set to zero. If the sipe 45 is as described above, the cornering performance in a high μ region such as a dry road surface can be improved.
[0022]
In order to form such a sipe 45, blades 46 are installed on the molding surface 32 of the vulcanizing mold 31, and the embedded portion 47 of each blade 46 has a continuous ring shape as shown in FIG. On the other hand, the main portions 49a and 49b of the sipe forming portion 48 inclined in opposite directions and the triangular connecting portion 50 extend almost radially inward from the embedded portion 47. As a result, the portion of the blade 46 that intersects the molding surface 32 of the main portions 49a and 49b, that is, the boundary between the embedded portion 47 and the main portions 49a and 49b is arranged on a single straight line. If such a vulcanization mold 31 is used, the aforementioned sipe 45 can be easily formed.
[0023]
In the above-described embodiment, the sipe 20 is formed on the rib 16 provided in the tread portion 12. However, in the present invention, the sipe is applied to a land portion such as a lug or a block provided in the tread portion. You may make it form. In the above-described embodiment, the main portions 21a and 21b extend linearly. However, in the present invention, they may be bent in a wave shape or a zigzag shape.
[0024]
【Example】
Next, test results will be described. In this test, the comparative tires 1 and 2 formed with sipes similar to those in the first embodiment described above, except that the distance L between adjacent main parts is constant regardless of the depth, A test tire having a sipe similar to that of the first embodiment was prepared. Here, the distance L between adjacent main parts in the comparison tires 1 and 2 (the length of the connecting part) L is constant 5 mm and 10 mm, respectively, and between the main parts of the sipe in the test tire The distance (the length of the connecting portion) L was 5 mm and 10 mm at the opening end and the deepest portion, respectively. Further, in these comparative tires 1 and 2 and the test tire, the circumferential length and depth of each main part were 20 mm and 9 mm, respectively, and the size was 195/70 R15 8PR.
[0025]
Next, each tire described above is mounted on a large one-box car, and the tests on dry road handling stability, wet road handling stability, snow handling stability, and ice handling stability are performed for new tires and main groove depth. It was performed at the time of wear when 60% of the wear was worn. The test results are shown in Table 1 below.
[0026]
[Table 1]
Figure 0004255165
[0027]
Here, the aforementioned test result is a feeling evaluation of a professional driver when the one-box car is created by spraying water on a dry road, a test course, and running on a wet road, a snowy road, and an ice sheet, A tire (comparative tire 1) serving as an evaluation standard is represented by 3, and was evaluated in five stages with plus and minus added. Here, in the evaluation, the larger the numerical value, the better the addition of a plus. From Table 1, the dry road maneuvering stability of each tire is improved in the same manner as the wear progresses. However, the performance of wet roads, on the snow, and on the ice is lowered as the wear progresses. It can be understood that the test tire is most strongly suppressed.
[0028]
Further, an abrasion resistance test was also performed on each of the tires described above. As a result, when the comparative tire 1 was represented by an index 100, the comparative tire 2 was 80, and the test tire was 98. Here, in the abrasion resistance test, after the one box car traveled 40,000 km, the depth of the remaining main groove was measured at 10 locations, and the average value was expressed as an index.
[0029]
【The invention's effect】
As described above, according to the present invention, it is possible to reliably suppress wet road maneuvering stability associated with a decrease in the bending rigidity of the land portion and the progress of wear.
[Brief description of the drawings]
FIG. 1 is a plan view of a pneumatic tire showing a first embodiment of the present invention.
FIG. 2 is a cutaway perspective view of an end portion of a tread.
FIG. 3 is a plan view of the vicinity of a sipe on the tread surface.
FIG. 4 is a plan sectional view in the vicinity of the groove bottom of the sipe.
FIG. 5 is a cutaway perspective view showing a vulcanization mold.
FIG. 6 is a cutaway perspective view similar to FIG. 2, showing a second embodiment of the present invention.
FIG. 7 is a cutaway perspective view showing a vulcanization mold.
[Explanation of symbols]
11 ... Pneumatic tire 12 ... Tread part
20 ... Sipe 21 ... Main part
22 ... Connecting part

Claims (2)

トレッド部に複数のサイプが形成された空気入りタイヤにおいて、空気入りタイヤの全周に亘って周方向に延びているサイプのうち少なくとも一部のサイプを、略同一方向に延びるとともに延在方向に互いにずれた3個以上の主部と、隣接する主部の近接する端部同士を連結するとともに、主部に対して略直交する方向に延びる2個以上の連結部とから構成し、かつ、隣接する主部を、深くなるに従い相互間距離Lが大となるよう半径方向に対してそれぞれ逆方向に傾斜させたことを特徴とする空気入りタイヤ。In a pneumatic tire in which a plurality of sipes are formed in the tread portion, at least some of the sipes extending in the circumferential direction over the entire circumference of the pneumatic tire are extended in substantially the same direction and in the extending direction. It is composed of three or more main parts shifted from each other and two or more connection parts extending in a direction substantially orthogonal to the main part while connecting adjacent end parts of adjacent main parts, and A pneumatic tire characterized in that adjacent main portions are inclined in opposite directions with respect to the radial direction so that the distance L between the adjacent main portions increases as the depth increases. 空気入りタイヤのトレッド部を型付けする型付け面に、サイプを形成する複数のブレードが設けられた空気入りタイヤの加硫用金型において、型付け面の全周に亘って周方向に延びているブレードのうち少なくとも一部のブレードの型付け面から突出しているサイプ形成部を、略同一方向に延びるとともに延在方向に互いにずれた3個以上の主部と、隣接する主部の近接する端部同士を連結するとともに、主部に対して略直交する方向に延びる2個以上の連結部とから構成し、かつ、隣接する主部を、突出するに従い相互間距離Mが大となるよう半径方向に対してそれぞれ逆方向に傾斜させたことを特徴とする空気入りタイヤの加硫用金型。In a pneumatic tire vulcanization mold in which a plurality of blades for forming sipes are provided on a molding surface for molding a tread portion of a pneumatic tire, the blade extends in the circumferential direction over the entire circumference of the molding surface Of the sipe forming portion protruding from the molding surface of at least some of the blades, the three or more main portions extending in substantially the same direction and shifted from each other in the extending direction, and adjacent end portions of the adjacent main portions And two or more connecting portions extending in a direction substantially orthogonal to the main portion, and the adjacent main portions are arranged in the radial direction so that the mutual distance M increases as they protrude. A mold for vulcanizing a pneumatic tire, wherein the mold is inclined in the opposite direction.
JP12661899A 1999-05-07 1999-05-07 Pneumatic tire and its vulcanization mold Expired - Fee Related JP4255165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12661899A JP4255165B2 (en) 1999-05-07 1999-05-07 Pneumatic tire and its vulcanization mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12661899A JP4255165B2 (en) 1999-05-07 1999-05-07 Pneumatic tire and its vulcanization mold

Publications (2)

Publication Number Publication Date
JP2000318413A JP2000318413A (en) 2000-11-21
JP4255165B2 true JP4255165B2 (en) 2009-04-15

Family

ID=14939669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12661899A Expired - Fee Related JP4255165B2 (en) 1999-05-07 1999-05-07 Pneumatic tire and its vulcanization mold

Country Status (1)

Country Link
JP (1) JP4255165B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10101507A1 (en) * 2001-01-12 2002-08-01 Continental Ag vehicle tires
DE10108595C1 (en) * 2001-02-22 2002-11-28 Continental Ag vehicle tires
JP4274355B2 (en) * 2003-04-09 2009-06-03 東洋ゴム工業株式会社 Pneumatic tire
US7143799B2 (en) * 2003-11-20 2006-12-05 The Goodyear Tire & Rubber Company Three-dimensional sipes for treads
JP5099914B2 (en) 2008-10-03 2012-12-19 東洋ゴム工業株式会社 Pneumatic tire
DE102012101447A1 (en) * 2012-02-23 2013-08-29 Continental Reifen Deutschland Gmbh Tread pattern of a vehicle tire
FR2988032B1 (en) * 2012-03-15 2015-04-10 Michelin & Cie HIGH THICK BEARING TAPE FOR CIVIL ENGINEERING TIRES
JP5835388B2 (en) * 2014-03-25 2015-12-24 横浜ゴム株式会社 Pneumatic tire
JP6405222B2 (en) * 2014-12-17 2018-10-17 東洋ゴム工業株式会社 Sipe blade and tire mold inspection method
WO2018122713A1 (en) * 2016-12-27 2018-07-05 Pirelli Tyre S.P.A. Tyre for vehicle wheels
JP6911560B2 (en) * 2017-06-19 2021-07-28 横浜ゴム株式会社 Pneumatic tires
JP2019104409A (en) 2017-12-13 2019-06-27 Toyo Tire株式会社 Pneumatic tire

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2544251B1 (en) * 1983-04-12 1986-05-09 Michelin & Cie RELIEF ELEMENTS OF A TIRE TREAD COMPRISING WAVY OR BROKEN TRACK INCISIONS
JP2892030B2 (en) * 1989-03-20 1999-05-17 株式会社ブリヂストン Pneumatic tire with blocks separated by sipes
JPH0481806U (en) * 1990-11-28 1992-07-16
JPH0825367A (en) * 1994-07-15 1996-01-30 Bridgestone Corp Tire vulcanizing mold and production of metal blade used therein
JP3553170B2 (en) * 1995-01-23 2004-08-11 株式会社ブリヂストン Pneumatic tire
JP3499995B2 (en) * 1995-12-29 2004-02-23 住友ゴム工業株式会社 Pneumatic tire
JP3517721B2 (en) * 1996-04-15 2004-04-12 東洋ゴム工業株式会社 Pneumatic tire and tire sipe forming piece structure
JP2849576B2 (en) * 1996-08-05 1999-01-20 住友ゴム工業株式会社 Pneumatic tire
JP3062096B2 (en) * 1996-08-26 2000-07-10 日本碍子株式会社 Aggregate, mold for molding tire using the same, and method for producing them
JP3636253B2 (en) * 1996-09-11 2005-04-06 株式会社ブリヂストン Mold for vulcanizing pneumatic tires
JPH10315715A (en) * 1997-05-20 1998-12-02 Yokohama Rubber Co Ltd:The Pneumatic tire

Also Published As

Publication number Publication date
JP2000318413A (en) 2000-11-21

Similar Documents

Publication Publication Date Title
JP3636253B2 (en) Mold for vulcanizing pneumatic tires
KR101100020B1 (en) Pneumatic tire
US10099441B2 (en) Tire vulcanization mold and method for manufacturing tire
US20140090761A1 (en) Tire tread for a trailer-type heavy vehicle and molding component
JP3359000B2 (en) Pneumatic tire
US10814676B2 (en) Tread for heavy truck winter tire
US11685193B2 (en) Tire tread for HGV trailer
JP5403077B2 (en) Pneumatic tire
JP4628151B2 (en) Pneumatic tire
JP6139843B2 (en) Pneumatic tire
CN112203869B (en) Tire tread comprising wavy grooves and sipes
JP4255165B2 (en) Pneumatic tire and its vulcanization mold
JP4524826B2 (en) Pneumatic tire for running on snowy and snowy roads
JP2019131152A (en) Pneumatic tire
JP3273772B2 (en) studless tire
JP5171179B2 (en) Pneumatic tire
JP2019104413A (en) Pneumatic tire
JP4557652B2 (en) Pneumatic tire and manufacturing method thereof
JP4753342B2 (en) Pneumatic radial tire
EP3995324B1 (en) Tire with one or more recesses in the lateral grooves of at least one shoulder portion
JPH1024707A (en) Pneumatic tire for ice/snow road
JP5353975B2 (en) Pneumatic tire
JP2006151231A (en) Pneumatic tire
EP4234275B1 (en) A tread block arrangement having a sipe
JP7489186B2 (en) tire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060327

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090127

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090127

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees