JP4254943B2 - Wastewater treatment system - Google Patents

Wastewater treatment system Download PDF

Info

Publication number
JP4254943B2
JP4254943B2 JP2002138927A JP2002138927A JP4254943B2 JP 4254943 B2 JP4254943 B2 JP 4254943B2 JP 2002138927 A JP2002138927 A JP 2002138927A JP 2002138927 A JP2002138927 A JP 2002138927A JP 4254943 B2 JP4254943 B2 JP 4254943B2
Authority
JP
Japan
Prior art keywords
reaction tank
gas
spray
ozone
tank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002138927A
Other languages
Japanese (ja)
Other versions
JP2003326285A (en
Inventor
彦治 若生
誠 安田
栄一 佐藤
兼一 坂本
隆史 村山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanagawa Prefecture
Original Assignee
Kanagawa Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanagawa Prefecture filed Critical Kanagawa Prefecture
Priority to JP2002138927A priority Critical patent/JP4254943B2/en
Publication of JP2003326285A publication Critical patent/JP2003326285A/en
Application granted granted Critical
Publication of JP4254943B2 publication Critical patent/JP4254943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は紫外線とオゾンを利用した揮発性有機塩素化合物質、シアン化合物質及び有機物質を分解処理するためのシステムに関する。
【0002】
【従来の技術】
廃水中の汚濁物質を分解除去するための一つの方法として、処理すべき廃水中への紫外線の照射による分解又はオゾンガスの曝気による酸化分解あるいは紫外線照射下でオゾンガスを曝気する相乗酸化分解法などの廃水処理技術を応用した廃水処理システムが公知である。
【0003】
しかし、この公知の廃水処理システムは下記理由により夫々に課題を抱えている。
(a)汚濁物質を含有する被処理水中へ紫外線を照射する場合には、紫外線が水に吸収されてしまうために汚濁物質の分解処理に必要な紫外線の照射強度分布がランプの近傍と遠方とで大きく異なる。さらに、被処理水が着色あるいは懸濁している場合には、さらに紫外線の吸収量が大きくなるため紫外線の照射強度の減衰勾配を少なくする手段が必要である。
(b)被処理水中にオゾンガス又はオゾン化空気を曝気方式で供給する場合には、水中でこのガス体が気泡を形成してしまいオゾンと水中の汚濁物質との接触酸化分解反応の面積が小さくなるため供給したオゾン量に対して反応に関わらない未利用オゾンが排出されている。
(c)オゾンガス又はオゾン化空気を供給する手段として被処理水の送水経路の途中にエジェクターを取り付け同ガス体を吸入混合させる方法もあるが反応槽内へ必要なオゾン量を常に安定的に供給溶存させることが難しい。
(d)被処理水中にオゾンガス又はオゾン化空気を曝気方式あるいは上記エジェクター方式で供給する場合、反応槽における曝気により被処理水から気化又は気散した揮発性汚濁物質が廃ガスと未利用オゾンガスと共に排出されてしまう恐れがある。このために反応槽からの排気経路には活性炭による吸着装置あるいは、廃オゾン吸収装置が装備されている。
しかし、この活性炭は吸着量が飽和した時には更新交換又は再生が必要になる。
【0004】
【発明が解決しようとする課題】
以上の理由から、上記従来の廃水処理システムは、廃水中の汚濁物質を分解処理する目的のために曝気方式あるいはエジェクター方式を採用した場合にオゾンと紫外線の相乗酸化分解反応効果の有効的な発揮領域が限定され、又、特に廃水中に溶存している揮発性有機塩素化合物質が曝気により気散分離され未利用オゾンと共に分解されることなく排気されてしまうために、紫外線とオゾンの相乗酸化分解反応の領域拡大、オゾンの利用効率向上及び気散してしまう揮発性有機塩素化合物質の無害化を可能とすることが求められている。
【0005】
本発明の目的はかかる現状を打破するため、廃水処理における反応槽内の相乗効果領域を従来の処理方法よりも格段に拡大、安定させ、しかも未利用オゾン排出量を著しく低下させると同時に廃水中の揮発性物質の酸化分解処理をも可能とする2つの処理機能を有する廃水処理システムを提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するため、本発明は、反応槽内で紫外線とオゾンとの相乗酸化分解反応により廃水中の汚濁物質を分解処理する廃水処理システムにおいて、前記反応槽として、噴霧式反応槽と気相反応槽とを配置し、前記噴霧式反応槽内には、該噴霧式反応槽内に廃水を霧状にして供給する噴霧手段と、該噴霧式反応槽の内部へオゾンガスを供給するオゾン供給部及び紫外線発光ランプとを設け、前記気相反応槽には、前記噴霧式反応槽から排出した排出ガスの供給手段と、オゾン供給部及び紫外線発光ランプとを配置し、この噴霧式反応槽と気相反応槽との間に、噴霧式反応槽からの排出ガスを気液分離して気相反応槽へ供給するコンデンサーを配置し、前記噴霧式反応槽から排出する処理水をガス封止配管部を経由して処理水タンクへ排出するようにしたことを要旨とする。
【0007】
上述した本発明のシステムにおいて、下記の各構成とすることが可能である。
前記噴霧式反応槽と気相反応槽の間にコンデンサーを設け、前記排出ガスを該コンデンサーを介して気液分離したのちに気相反応槽に導入するように構成し、前記噴霧式反応槽から処理水をガス封止配管部を介して処理水タンクへ排出させるとともに、噴霧式反応槽内と気相反応槽内のガス圧とガス体の流れを安定化させ、紫外線とオゾンの相乗酸化分解反応領域を拡大維持できるように構成し、前記噴霧式反応槽からの排出ガス中のオゾン濃度を検出するセンサーと、前記気相反応槽からの排出ガス中のオゾン濃度を検出するセンサーを設け、センサーの検出信号に応じて前記気相反応槽に供給するオゾン量及びオゾンの排出濃度を制御できるように構成し、前記噴霧式反応槽および気相反応槽が複数に配列する構成とする
【0008】
本発明のシステムは上述した各構成からなるもので、その廃水処理方法の作用及び効果は下記の通りである。
廃水中の汚濁物質の分解反応を行うための反応槽(以下、噴霧式反応槽と称する)内に紫外線を照射しながらオゾン又はオゾン化空気を反応槽内へ吹き込むと共に処理すべき汚濁対象水(以下、被処理水と称する)を霧状にして供給し、微細粒子状の水中に含有する汚濁物質と紫外線及びオゾンと接触させて相乗酸化分解反応を促進させる。
【0009】
被処理水を噴霧することにより微細粒子となるため、微細粒子中の汚濁物質とオゾンガスとの接触反応面積が大きくなリ、汚濁物質とオゾンとの酸化分解反応効率が向上すると共に紫外線が霧相を透過する際の紫外線の照射強度勾配が小さくなり反応槽内での紫外線とオゾンによる相乗酸化分解反応効果の発揮領域が大きく拡大させることが可能となり、結果として汚濁物質の分解反応効率が向上する。
【0010】
又、噴霧式反応槽において被処理水中に溶存する揮発性物質及び汚濁性気体が気化し水中から分離され未利用オゾンガスと共に別に併設した紫外線を照射する反応槽(以下、気相反応槽と称する)内へ移送し紫外線とオゾンの相乗酸化分解反応が行われることを可能としている。
【0011】
噴霧式反応槽及び気相反応槽は被処理水の汚濁成分及び濃度に応じて、夫々の反応槽を複数に直列又は並列に組み合わせることを可能としている。
又、反応槽内の分解処理手段としては、紫外線発光ランプからの紫外線とオゾンの両者を用いることができる。
【0012】
【発明の実施の形態】
図1は本発明の廃水処理システムの一実施例を示す。
同図において、1は被処理水(廃水)タンク、2はランプ洗浄水タンク、3は濾過器、4は空気又は酸素をオゾン化するオゾン化装置、5は(噴霧式)反応槽、6はガス封止配管部、7は処理水タンク、V1〜V4は自動開閉バルブ、Pは送水ポンプ、8はコンデンサー、9は気相反応槽、10,11はオゾン濃度センサー、12,13はガス封止配管部である。
【0013】
反応槽5内には、その上部に噴霧ノズル5a、下部にオゾン化装置4と連結されたオゾン供給部5b及び紫外線発光ランプ5cが設けられている。
【0014】
以上が本発明システムの実施例としての基本的構成であり、このシステムにおいて、被処理水を受け入れる被処理水タンク1からバルブV1を開けて送水ポンプPにより濾過器3を介して噴霧ノズルを閉塞させるような固形物等を事前に除去し噴霧式反応槽5へ被処理水を送液する。
【0015】
送液された被処理水は噴霧式反応槽5内の上部に装備した噴霧ノズル5aにより当該反応槽内へ噴霧される。噴霧された被処理水は微細粒子となって紫外線発光ランプ5cからの紫外線とオゾン供給部5bからのオゾンとの相乗酸化分解反応により汚濁物質を分解しながら当該反応槽5の底部に達し再凝縮し処理水として排出させる。
【0016】
この処理水を当該反応槽5から排出させる場合に当該反応槽5の内部において紫外線とオゾンによる相乗酸化分解反応領域の安定維持をはかるために、当該反応槽からの処理水は排出配管内でガス封止をして噴霧微粒子及びオゾンガス並びに気散したガス体が処理水と一緒に流出しないように工夫をした配管構造となっているガス封止配管部6を介してタンク7に排出される。
【0017】
この噴霧式反応槽5へ装備する紫外線発光ランプ5cは、当該噴霧式反応槽5の底部または上部若しくは側面に図1に示すように縦方向に配置し、分解反応に必要な紫外線強度が得られる本数の発光ランプを挿入することが可能となるような構造とする。
【0018】
噴霧式反応槽5へのオゾンガス又はオゾン化空気は当該反応槽の下部のオゾン供給部5bより吹き込み当該反応槽の上部より排出する上向流とするのが好適である。この特徴は、当該反応槽の上部から噴霧した被処理水の微細粒子が当該反応槽の下部より吹き込んだオゾンガス又はオゾン化空気の上向流に乗せられて噴霧した微細粒子との接触反応時間を確実に維持することが可能となり、オゾンを噴霧微粒子の内部まで吸収させることができる。又、照射される紫外線は噴霧された霧状相を投射するために紫外線の照射強度勾配を小さくすることが可能となる。この効果により当該反応槽内で被処理水の微細粒子に含有する汚濁物質と紫外線とオゾンとの相乗酸化分解反応が効率良く確実に進行させるために必要な反応時間を安定に維持することができる。
【0019】
噴霧する微細粒子の粒径は必要以上に微細化することは気体と微細粒子との接触面が増えてオゾン溶解に有利であるが当該反応槽5で照射する紫外線の照射強度勾配が増大してしまうため、その分だけ相乗反応領域が狭くなる。また、微細粒子がオゾンガス又はオゾン化空気の上向流に添って当該反応槽から流出する量が大きくならないようにするために噴霧する微細粒子の粒径を必要以上に微細化することは得策でない。
【0020】
噴霧式反応槽5内に装備した紫外線発光ランプ5cの被処理水の噴霧微細粒子と接する表面は、被処理水に含有している微細懸濁物質又は当該反応槽内で紫外線とオゾンとの相乗分解反応で生成した反応生成物質が沈着しランプ表面を汚してしまうため紫外線の照射強度を著しく低下させてしまう恐れがあるために、ランプ5cの洗浄手段を設けるのがよい。
【0021】
その手段は、例えば、噴霧式水処理装置の稼動中又は稼動の停止した直後にV1バルブを閉めてV2バルブを開けて、タンク2から洗浄水を送水ポンプPにより噴霧式反応槽5内に噴霧させることにより紫外線発光ランプ5cの表面を洗い流し、この洗い流した後の洗浄廃水は当該反応槽5の底部にある処理水の排出配管のV3バルブを閉めてV4バルブを開けることにより被処理水タンク1へと送り返す。この洗浄操作が終了した後に再び被処理水を噴霧式反応槽5で分解処理を継続するために洗浄時に操作した各バルブを元の開閉位置に戻す。この洗浄に要する時間、洗浄水量及び噴霧圧力は図示していない運転側制御システムの中に任意にセットすることを可能とする自動化された方法をとることができる。
【0022】
次に更に廃水中の揮発性有機塩素化合物などのように廃水から気化分離する物質の分解相乗酸化を万全なものとすると共に噴霧式反応槽から流出してくる未利用オゾンを有効利用して相乗酸化分解を行い、未利用オゾンの外部への排出を減らすため、コンデンサー8、気相反応槽9及びオゾン濃度センサー10,11を設けてある。気相反応槽9内には紫外線発光ランプ9aが設けられ、反応槽5、コンデンサー8及び反応槽9は直列に連結され、コンデンサー8及び反応槽9の底部はガス封止配管部12,13を介してタンク1に連結されている。
【0023】
噴霧式反応槽5から噴霧により被処理水から気化又は気散した汚濁性気体と噴霧微粒子並びに分解反応に関わらなかった未利用オゾンは当該反応槽5の上部から排気配管を通してコンデンサー8で霧状微粒子を除去した後に汚濁性気体を分解処理するための気相反応槽9へ送り込む。この気相反応槽9では紫外線とオゾンによる相乗酸化分解反応を行う。なお、コンデンサー8で凝縮された凝縮水は噴霧式反応槽の底部からの処理水配管と同じ構造のガス封止配管13で被処理水タンク1へ戻す仕組みとなっている。
【0024】
気相反応槽9内の上部より紫外線発光ランプ9aを挿入し噴霧式反応槽5から送気された未利用オゾンガス並びに気化した汚濁性気体又は揮発性有機塩素化合物質を含有する気体を当該反応槽の下部9bより吹き込み当該反応槽9の上部から排出する。
【0025】
当該反応槽9内に装備する紫外線ランプ9aの強度及び分解反応に必要なオゾンの量は当該反応槽に流入する気体の汚濁物質の種類並びに汚濁濃度によって決定しなければならない。なお、分解反応に必要なオゾン量が噴霧式反応槽5から流入してくる未利用オゾン量だけでは不足する場合には、その不足分に足りるオゾンガス又はオゾン化空気を補給することのできる構造とするのがよい。
【0026】
気相反応槽9の底部に蓄積される凝縮水は、ガス封止構造のドレン配管13で引き抜き被処理水タンク1へ戻す。
【0027】
またオゾン濃度センサー10,11は夫々反応槽5,9からの排気ガス中のオゾン濃度を検出するもので、その検出信号に応じてオゾン化装置4によるオゾン供給量及び排出濃度を制御するのが好適である。
【0028】
噴霧式反応槽5又は気相反応槽9は、高濃度の処理或いは処理水質の高度処理が要求されるときに各反応槽を複数に配列する。
【0029】
図2は上記直列配列に関する本発明の実施例を示す。同図において、21及び22は噴霧式反応槽で、複数配列されており、夫々の反応槽21,22内には噴霧ノズル21a,22a、オゾン供給部21b,22b、紫外線発光ランプ21c,22cが設けられている。
【0030】
23及び24は複数配列された気相反応槽で、各反応槽23,24内には紫外線発光ランプ23a,24aが設けられている。
【0031】
反応槽21には、タンク25から被処理水がポンプPにより送られ、更に該反応槽21で前述のようにして処理された処理水は後段のポンプPにより反応槽22に送られ、該反応槽22で同様にして処理された処理水がガス封止配管部26を介してタンク28に排出される。タンク28内の処理水は2回の分解処理をうけているので、前記実施例の場合より一層処理が完全なものとなる。
【0032】
この場合、オゾンガスはオゾン化装置27から反応槽22に供給され、更に該反応槽22を介して反応槽21に供給することが可能である。また気相反応槽23には、噴霧式反応槽21からの排気ガス又はオゾン化装置27からのオゾンガスがバルブ31により選択的に送られ、更に該反応槽23からの排気ガスが気相反応槽24に送られ気体状あるいは揮発性の汚濁物質が相乗酸化分解により処理される。気相反応槽23,24内の廃水はガス封止管部29,30を介してタンク25に戻される。
【0033】
図3は、一例として金属メッキ工場の廃水のCOD物質を、従来(曝気方式)(a)及び本発明(噴霧方式)(b)の方法で酸化分解処理した場合の処理効果を比較するグラフである。本発明の方法によりCOD物質の除去効果が向上していることは明らかである。
【0034】
表1は噴霧式反応槽と気相反応槽の組み合わせによる揮発性有機塩素化合物質の実廃水に適用した処理効果の一例である。
また、表2は工場廃水を被処理水として各種の検証試験を実施した結果を要約したものであり、シアン、COD及び有機塩素化合物質は分解除去率及び分解に要したオゾン必要量からみても、本発明の方法が向上していることが実証された。
【0035】
【表1】

Figure 0004254943
【0036】
【表2】
Figure 0004254943
【0037】
【発明の効果】
以上説明したように本発明によれば、紫外線とオゾンの併用による相乗酸化分解反応の領域を拡大、安定させることにより、酸化分解反応に必要なオゾン必要量が低減となり、オゾンを製造するための消費電力が削減されかつ、未利用オゾンを少なくし、大気中へ排出されるオゾン量を減らすことが可能となる。本発明は製造加工工程からの排出水あるいは地下水の汚染原因物質であるシアン化合物質及び揮発性有機塩素化合物質を分解処理することが可能な処理装置を提供する。
【図面の簡単な説明】
【図1】本発明の一実施例を示すブロック図である。
【図2】本発明の他の実施例を示すブロック図である。
【図3】本発明及び従来の方法による処理効果を比較したグラフである。
【符号の説明】
1 被処理水タンク
2 ランプ洗浄水タンク
3 濾過器
4 オゾン化装置
5 噴霧式反応槽
6 ガス封止配管部
7 処理水タンク
V1〜V4 自動開閉バルブ
P 送水ポンプ
8 コンデンサー
9 気相反応槽、
10,11 オゾン濃度センサー
12,13 ガス封止配管部[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a system for decomposing volatile organochlorine compounds, cyanide compounds and organic substances using ultraviolet rays and ozone.
[0002]
[Prior art]
One method for decomposing and removing pollutants in wastewater is to decompose the wastewater to be treated by ultraviolet irradiation, oxidative decomposition by aeration of ozone gas, or synergistic oxidative decomposition method in which ozone gas is aerated under ultraviolet irradiation. Wastewater treatment systems applying wastewater treatment technology are known.
[0003]
However, this known wastewater treatment system has its own problems for the following reasons.
(A) In the case of irradiating ultraviolet rays into the water to be treated containing pollutants, the ultraviolet rays are absorbed by the water, so that the irradiation intensity distribution of the ultraviolet rays necessary for the decomposition treatment of the pollutants is near and far from the lamp. It differs greatly. Further, when the water to be treated is colored or suspended, the amount of absorbed ultraviolet light is further increased, and means for reducing the attenuation gradient of the ultraviolet irradiation intensity is required.
(B) When ozone gas or ozonized air is supplied to the water to be treated by the aeration method, the gas body forms bubbles in the water and the area of the catalytic oxidative decomposition reaction between ozone and pollutants in the water is small. Therefore, unused ozone that is not involved in the reaction is discharged with respect to the supplied ozone amount.
(C) As a means of supplying ozone gas or ozonized air, there is a method of attaching an ejector in the middle of the water supply path of the treated water and sucking and mixing the same gas body, but the required amount of ozone is always stably supplied into the reaction tank. Difficult to dissolve.
(D) When ozone gas or ozonized air is supplied to the water to be treated by the aeration method or the ejector method, the volatile pollutants evaporated or diffused from the water to be treated by aeration in the reaction tank together with waste gas and unused ozone gas There is a risk of being discharged. For this purpose, the exhaust path from the reaction tank is equipped with an adsorption device using activated carbon or a waste ozone absorption device.
However, this activated carbon needs to be replaced or regenerated when the adsorption amount is saturated.
[0004]
[Problems to be solved by the invention]
For the above reasons, the conventional wastewater treatment system described above effectively demonstrates the synergistic oxidative decomposition effect of ozone and ultraviolet rays when an aeration method or an ejector method is used for the purpose of decomposing pollutants in wastewater. Since the volatile organochlorine compounds dissolved in the wastewater are limited in the area and exhausted without being decomposed by aeration and decomposed together with unused ozone, synergistic oxidation of ultraviolet rays and ozone It is required to expand the decomposition reaction area, to improve the utilization efficiency of ozone, and to detoxify volatile organochlorine compounds that disperse.
[0005]
The purpose of the present invention is to break down the current situation, and thus the synergistic effect area in the reaction tank in wastewater treatment is greatly expanded and stabilized as compared with conventional treatment methods, and at the same time, the amount of unused ozone emission is remarkably reduced. Another object of the present invention is to provide a wastewater treatment system having two treatment functions that enables oxidative decomposition treatment of volatile substances.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a wastewater treatment system for decomposing and treating pollutants in wastewater by a synergistic oxidative decomposition reaction between ultraviolet rays and ozone in a reaction tank. A spraying means for supplying wastewater into the spraying reaction tank in the form of a mist, and an ozone supply for supplying ozone gas to the inside of the spraying reaction tank. And an ultraviolet emission lamp, and the gas phase reaction tank is provided with means for supplying exhaust gas discharged from the spray reaction tank, an ozone supply part and an ultraviolet emission lamp, and the spray reaction tank Between the gas phase reaction tank, a condenser for gas-liquid separation of the exhaust gas from the spray reaction tank and supplying it to the gas phase reaction tank is arranged, and the treated water discharged from the spray reaction tank is gas-sealed piping To the treated water tank via And gist that so as to.
[0007]
In the system of the present invention described above, the following configurations can be adopted.
A condenser is provided between the spray reaction tank and the gas phase reaction tank, and the exhaust gas is separated into gas and liquid through the condenser and then introduced into the gas phase reaction tank. Discharges treated water to the treated water tank via the gas-sealed piping, stabilizes the gas pressure and gas flow in the spray-type reaction vessel and gas-phase reaction vessel, and synergistic oxidative decomposition of UV and ozone The reaction area is configured to be expanded and maintained, and a sensor for detecting the ozone concentration in the exhaust gas from the spray reaction tank and a sensor for detecting the ozone concentration in the exhaust gas from the gas phase reaction tank are provided, configured to be able to control emission concentration ozone amount and ozone is supplied to the gas phase reactor in response to the detection signals of both sensors, the spray reactor and gas phase reactor is configured to arrange a plurality.
[0008]
The system of the present invention has the above-described configurations, and the operation and effect of the wastewater treatment method are as follows.
Contamination target water to be treated while ozone or ozonized air is blown into the reaction tank while irradiating ultraviolet rays into a reaction tank (hereinafter referred to as a spray-type reaction tank) for decomposing the pollutants in the wastewater. In the following, the water to be treated is supplied in the form of a mist and brought into contact with the pollutant contained in the fine particulate water, ultraviolet rays and ozone to promote the synergistic oxidative decomposition reaction.
[0009]
Since the water to be treated becomes fine particles by spraying the water to be treated, the contact reaction area between the pollutant and ozone gas in the fine particles is increased, the efficiency of the oxidative decomposition reaction between the pollutant and ozone is improved, and ultraviolet rays are fogged. The irradiation intensity gradient of ultraviolet rays when passing through the water becomes smaller, and the area where the synergistic oxidative decomposition reaction effect by ultraviolet rays and ozone in the reaction tank can be greatly expanded, resulting in improved decomposition efficiency of pollutants. .
[0010]
Also, a reaction tank (hereinafter referred to as a gas phase reaction tank) in which a volatile substance and a pollutant gas dissolved in the water to be treated are vaporized and separated from the water and irradiated with ultraviolet light separately provided together with unused ozone gas in the spray reaction tank. It is transported into the interior, and the synergistic oxidative decomposition reaction of ultraviolet rays and ozone can be performed.
[0011]
The spray-type reaction tank and the gas-phase reaction tank allow a plurality of reaction tanks to be combined in series or in parallel depending on the contamination components and concentration of the water to be treated.
Moreover, as the decomposition treatment means in the reaction tank, both ultraviolet rays and ozone from an ultraviolet light emitting lamp can be used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 shows an embodiment of the wastewater treatment system of the present invention.
In the figure, 1 is a treated water (waste water) tank, 2 is a lamp wash water tank, 3 is a filter, 4 is an ozonizer for ozonizing air or oxygen, 5 is a (spray type) reaction tank, 6 is Gas-sealed piping section, 7 is a treated water tank, V1 to V4 are automatic opening / closing valves, P is a water supply pump, 8 is a condenser, 9 is a gas phase reaction tank, 10 and 11 are ozone concentration sensors, and 12 and 13 are gas seals. It is a stop piping part.
[0013]
In the reaction tank 5, an spray nozzle 5a is provided in the upper part, and an ozone supply part 5b and an ultraviolet light emitting lamp 5c connected to the ozonizer 4 are provided in the lower part.
[0014]
The above is the basic configuration as an embodiment of the system of the present invention. In this system, the valve V1 is opened from the water tank 1 to receive the water to be treated, and the spray nozzle is closed via the filter 3 by the water pump P. Such solids are removed in advance, and the water to be treated is sent to the spray reaction tank 5.
[0015]
The treated water sent is sprayed into the reaction tank 5 by a spray nozzle 5 a equipped at the upper part of the spray reaction tank 5 . The sprayed water to be treated becomes fine particles and reaches the bottom of the reaction tank 5 while resolving the pollutants by synthesizing and decomposing the ultraviolet rays from the ultraviolet light emitting lamp 5c and ozone from the ozone supply section 5b. It is discharged as treated water.
[0016]
When the treated water is discharged from the reaction tank 5 , the treated water from the reaction tank 5 is discharged from the reaction pipe 5 in order to maintain the synergistic oxidative decomposition reaction region by ultraviolet rays and ozone. It is discharged to the tank 7 through the gas sealing pipe portion 6 having a piping structure that is devised so that the sprayed fine particles, ozone gas, and diffused gas body do not flow out together with the treated water after gas sealing. .
[0017]
The ultraviolet light emitting lamp 5c equipped in the spray reaction tank 5 is arranged in the vertical direction as shown in FIG. 1 at the bottom, top or side of the spray reaction tank 5, and the ultraviolet intensity required for the decomposition reaction is obtained. The structure is such that the number of light emitting lamps can be inserted.
[0018]
Ozone or ozonized air to spray the reaction vessel 5 is preferred to the upward flow of exhaust from the top of the reaction vessel 5 is blown from the ozone supply portion 5b of the bottom of the reaction vessel 5. This feature, contact reaction between the fine particles of the water to be treated was sprayed from the top of the reaction vessel 5 is put on the upward flow of the ozone gas or ozonated air was blown from the bottom of the reaction vessel 5 sprayed fine particles The time can be reliably maintained, and ozone can be absorbed to the inside of the spray fine particles. Moreover, since the irradiated ultraviolet rays project the sprayed mist phase, the irradiation intensity gradient of the ultraviolet rays can be reduced. By this effect, it is possible to stably maintain the reaction time necessary for the synergistic oxidative decomposition reaction between the pollutant contained in the fine particles of the water to be treated, ultraviolet rays and ozone to proceed efficiently and reliably in the reaction tank 5 . it can.
[0019]
It is advantageous to make the particle size of the fine particles to be atomized more than necessary, which is advantageous for ozone dissolution by increasing the contact surface between the gas and the fine particles. However, the irradiation intensity gradient of ultraviolet rays irradiated in the reaction vessel 5 is increased. Therefore, the synergistic reaction region is narrowed accordingly. It is also advisable to reduce the particle size of the fine particles to be sprayed more than necessary so that the amount of the fine particles flowing out of the reaction tank 5 along the upward flow of ozone gas or ozonized air does not increase. Not.
[0020]
The surface of the ultraviolet light emitting lamp 5c equipped in the spray reaction tank 5 that comes into contact with the sprayed fine particles of the water to be treated is a fine suspended substance contained in the water to be treated or the ultraviolet rays and ozone in the reaction tank 5 . Since the reaction product produced by the synergistic decomposition reaction deposits and contaminates the lamp surface, there is a possibility that the irradiation intensity of the ultraviolet rays may be remarkably reduced. Therefore, it is preferable to provide a means for cleaning the lamp 5c.
[0021]
The means is, for example, that the spray-type water treatment device 5 is in operation or immediately after the operation is stopped, the V1 valve is closed and the V2 valve is opened, and the washing water is supplied from the tank 2 into the spray-type reaction tank 5 by the water pump P. The surface of the ultraviolet light emitting lamp 5c is washed away by spraying, and the washing waste water after washing is treated with a treated water tank by closing the V3 valve of the treated water discharge pipe at the bottom of the reaction tank 5 and opening the V4 valve. Send back to 1. After this washing operation is completed, in order to continue the decomposition treatment of the water to be treated in the spray reaction tank 5, each valve operated at the time of washing is returned to the original open / close position. The time required for the cleaning, the amount of cleaning water, and the spray pressure can be an automated method that can be arbitrarily set in an operation control system (not shown).
[0022]
Next, the decomposition and synergistic oxidation of substances that are vaporized and separated from wastewater such as volatile organic chlorine compounds in wastewater is made complete, and unused ozone flowing out from the spray reactor 5 is effectively utilized. In order to perform synergistic oxidative decomposition and reduce discharge of unused ozone to the outside, a condenser 8, a gas phase reaction tank 9, and ozone concentration sensors 10, 11 are provided. An ultraviolet light emitting lamp 9 a is provided in the gas phase reaction tank 9, the reaction tank 5, the condenser 8 and the reaction tank 9 are connected in series, and the bottoms of the condenser 8 and the reaction tank 9 are connected to gas-sealed piping parts 12 and 13. Via the tank 1.
[0023]
The polluted gas vaporized or diffused from the water to be treated by spraying from the spraying reaction tank 5 and the sprayed fine particles, and the unused ozone not involved in the decomposition reaction are atomized fine particles in the condenser 8 from the upper part of the reaction tank 5 through the exhaust pipe. Is removed, and the pollutant gas is sent to the gas phase reaction tank 9 for decomposition treatment. In this gas phase reaction tank 9, a synergistic oxidative decomposition reaction is performed by ultraviolet rays and ozone. The condensed water condensed in the condenser 8 is returned to the treated water tank 1 through the gas sealing pipe 13 having the same structure as the treated water pipe from the bottom of the spray reaction tank 5 .
[0024]
An ultraviolet light emitting lamp 9a is inserted from the upper part of the gas phase reaction tank 9, and unused ozone gas sent from the spray type reaction tank 5 and vaporized pollutant gas or volatile organic chlorine compound containing gas are contained in the reaction tank. 9 is blown in from the lower part 9 b and discharged from the upper part of the reaction tank 9.
[0025]
The intensity of the ultraviolet lamp 9a equipped in the reaction tank 9 and the amount of ozone necessary for the decomposition reaction must be determined by the type of the pollutant substance in the gas flowing into the reaction tank 9 and the pollution concentration. In addition, when the amount of ozone necessary for the decomposition reaction is insufficient only by the amount of unused ozone flowing in from the spray-type reaction tank 5, it is possible to supply ozone gas or ozonized air sufficient for the shortage. It is good to do.
[0026]
Condensed water accumulated at the bottom of the gas phase reaction tank 9 is drawn out through the drain pipe 13 having a gas-sealed structure and returned to the water tank 1 to be treated.
[0027]
The ozone concentration sensors 10 and 11 detect the ozone concentration in the exhaust gas from the reaction vessels 5 and 9, respectively. The ozone supply amount and the exhaust concentration by the ozonizer 4 are controlled according to the detection signal. Is preferred.
[0028]
The spray reaction tank 5 or the gas phase reaction tank 9 arranges a plurality of reaction tanks when a high concentration treatment or a high quality treatment water is required.
[0029]
FIG. 2 shows an embodiment of the invention relating to the above series arrangement. In the same figure, 21 and 22 are spray type reaction tanks, which are arranged in a plurality. In each of the reaction tanks 21 and 22, spray nozzles 21a and 22a, ozone supply sections 21b and 22b, and ultraviolet light emitting lamps 21c and 22c are provided. Is provided.
[0030]
A plurality of gas phase reaction tanks 23 and 24 are arranged, and ultraviolet light emitting lamps 23a and 24a are provided in the reaction tanks 23 and 24 , respectively.
[0031]
Water to be treated is sent from the tank 25 to the reaction tank 21 by the pump P, and the treated water treated in the reaction tank 21 as described above is sent to the reaction tank 22 by the pump P at the subsequent stage, and the reaction is performed. The treated water treated in the same manner in the tank 22 is discharged to the tank 28 through the gas sealing pipe part 26. Since the treated water in the tank 28 has undergone two decomposition treatments, the treatment is more complete than in the above embodiment.
[0032]
In this case, ozone gas can be supplied from the ozonizer 27 to the reaction tank 22 and further supplied to the reaction tank 21 via the reaction tank 22 . Further, exhaust gas from the spray reaction tank 21 or ozone gas from the ozonizer 27 is selectively sent to the gas phase reaction tank 23 by a valve 31, and the exhaust gas from the reaction tank 23 is further sent to the gas phase reaction tank. The gaseous or volatile pollutant is sent to 24 and treated by synergistic oxidative decomposition. Waste water in the gas phase reaction tanks 23 and 24 is returned to the tank 25 through the gas sealing pipe portions 29 and 30.
[0033]
FIG. 3 is a graph comparing the processing effects when the COD material of wastewater from a metal plating factory is subjected to oxidative decomposition treatment by the conventional (aeration method) (a) and the present invention (spray method) (b) method as an example. is there. It is clear that the removal effect of the COD substance is improved by the method of the present invention.
[0034]
Table 1 is an example of the treatment effect applied to the actual waste water of volatile organochlorine compounds by the combination of the spray reaction tank and the gas phase reaction tank.
Table 2 summarizes the results of various verification tests conducted using factory wastewater as treated water. Cyanide, COD, and organochlorine compounds are decomposed and removed as well as the ozone required for decomposition. It has been demonstrated that the method of the present invention is improved.
[0035]
[Table 1]
Figure 0004254943
[0036]
[Table 2]
Figure 0004254943
[0037]
【The invention's effect】
As described above, according to the present invention, the required amount of ozone required for the oxidative decomposition reaction is reduced by expanding and stabilizing the area of the synergistic oxidative decomposition reaction by the combined use of ultraviolet rays and ozone. It is possible to reduce power consumption, reduce unused ozone, and reduce the amount of ozone discharged into the atmosphere. The present invention provides a treatment apparatus capable of decomposing cyanide compounds and volatile organochlorine compounds, which are pollutants causing discharge water or groundwater from manufacturing processes.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an embodiment of the present invention.
FIG. 2 is a block diagram showing another embodiment of the present invention.
FIG. 3 is a graph comparing the processing effects of the present invention and a conventional method.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 To-be-treated water tank 2 Lamp washing water tank 3 Filter 4 Ozonizer 5 Spray type reaction tank 6 Gas sealing piping part 7 Treated water tank V1-V4 Automatic open / close valve P Water supply pump 8 Condenser 9 Gas phase reaction tank,
10, 11 Ozone concentration sensor 12, 13 Gas-sealed piping

Claims (3)

反応槽内で紫外線とオゾンとの相乗酸化分解反応により廃水中の汚濁物質を分解処理する廃水処理システムにおいて、
前記反応槽として、噴霧式反応槽と気相反応槽とを配置し、前記噴霧式反応槽内には、該噴霧式反応槽内に廃水を霧状にして供給する噴霧手段と、該噴霧式反応槽の内部へオゾンガスを供給するオゾン供給部及び紫外線発光ランプとを設け、前記気相反応槽には、前記噴霧式反応槽から排出した排出ガスの供給手段と、オゾン供給部及び紫外線発光ランプとを配置し、この噴霧式反応槽と気相反応槽との間に、噴霧式反応槽からの排出ガスを気液分離して気相反応槽へ供給するコンデンサーを配置し、前記噴霧式反応槽から排出する処理水をガス封止配管部を経由して処理水タンクへ排出するようにしたことを特徴とする廃水処理システム。
In a wastewater treatment system that decomposes pollutants in wastewater by a synergistic oxidative decomposition reaction between ultraviolet rays and ozone in the reaction tank,
As the reaction tank, a spray-type reaction tank and a gas-phase reaction tank are arranged, and in the spray-type reaction tank, spray means for supplying waste water into the spray-type reaction tank in a mist form, and the spray-type reaction tank An ozone supply unit for supplying ozone gas to the inside of the reaction tank and an ultraviolet light emission lamp are provided, and the gas phase reaction tank includes a supply means for exhaust gas discharged from the spray reaction tank, an ozone supply unit, and an ultraviolet light emission lamp. Between the spray-type reaction tank and the gas-phase reaction tank, and a condenser for separating the gas discharged from the spray-type reaction tank into a gas-phase reaction tank after gas-liquid separation is arranged. A wastewater treatment system characterized in that treated water discharged from a tank is discharged to a treated water tank via a gas-sealed piping section.
前記紫外線発光ランプを前記各反応槽内に縦方向に配置するとともに、これら紫外線ランプの洗浄手段を設けたことを特徴とする請求項1記載の廃水処理システム。  2. The wastewater treatment system according to claim 1, wherein the ultraviolet light emitting lamps are arranged in the vertical direction in each of the reaction vessels, and cleaning means for these ultraviolet lamps is provided. 前記噴霧式反応槽および気相反応槽が複数に配列されていることを特徴とする請求項1又は2に記載の廃水処理システム。The wastewater treatment system according to claim 1 or 2 , wherein a plurality of the spray reaction tanks and gas phase reaction tanks are arranged.
JP2002138927A 2002-05-14 2002-05-14 Wastewater treatment system Expired - Lifetime JP4254943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002138927A JP4254943B2 (en) 2002-05-14 2002-05-14 Wastewater treatment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002138927A JP4254943B2 (en) 2002-05-14 2002-05-14 Wastewater treatment system

Publications (2)

Publication Number Publication Date
JP2003326285A JP2003326285A (en) 2003-11-18
JP4254943B2 true JP4254943B2 (en) 2009-04-15

Family

ID=29700243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002138927A Expired - Lifetime JP4254943B2 (en) 2002-05-14 2002-05-14 Wastewater treatment system

Country Status (1)

Country Link
JP (1) JP4254943B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1819639A4 (en) * 2004-11-30 2012-05-02 Univ Tulane Nebulizing treatment method
US8273252B2 (en) 2005-06-03 2012-09-25 Ultrasound Brewery Solution reactor and method for solution reaction
DE102007022265A1 (en) * 2007-05-09 2008-11-13 Thies Gmbh & Co. Kg Method and device for dyeing a textile substrate
CO6290094A1 (en) * 2009-12-23 2011-06-20 Ecopetrol Sa COMBINED SYSTEM FOR THE REMOVAL OF PHENOLS AND OTHER ORGANIC POLLUTANTS AND REDUCTION OF WASTE TOXICITY
CN104355393B (en) * 2014-11-24 2017-04-12 桑德集团有限公司 Deep treatment method for trace toxic and harmful organic pollutants in reclaimed water

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2813354B2 (en) * 1988-10-24 1998-10-22 ジンプロ・エンヴィロメンタル・インコーポレーテッド Decomposition of volatile organic halogenated compounds contained in gas and aqueous solution
JPH0631286A (en) * 1992-07-14 1994-02-08 Ishikawajima Harima Heavy Ind Co Ltd Ozone water concentration control device for ozone water preparation device
JP3365819B2 (en) * 1993-05-10 2003-01-14 正 持麾 Method for producing dissolved oxygen in water
JPH10230285A (en) * 1997-02-19 1998-09-02 Toshiba Corp High speed ozone reaction system
JP2000237773A (en) * 1999-02-23 2000-09-05 Meidensha Corp Ozone generating quantity controller and its control method

Also Published As

Publication number Publication date
JP2003326285A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
KR101780698B1 (en) Treatment system for harmful waste gases including NOx
KR102202651B1 (en) Deodorizing system using medicine fluid and single tower for acidic and alkaline gas
KR101591849B1 (en) Washer type deodorizing apparatus
KR101768007B1 (en) Treatment apparatus and method for offensive gas
CN202876643U (en) Waste gas purifying treatment device
CN108434958A (en) A kind of sludge workshop foul gas advanced treatment device and its treatment process
JP2008036513A (en) Unit and system for gas treatment
KR20120013733A (en) Malodor gas of animal-excretion removing method
CN215654635U (en) A supporting deodorization system for alkali slag resourceful treatment
JP4254943B2 (en) Wastewater treatment system
KR100984387B1 (en) Compact typed apparatus capable of removing malodor gas of animal-excretion
KR20090062058A (en) Foul smell decreasing system using ozone-oxidants
AU2003200768B2 (en) System for decomposing organic compound
JPH09155160A (en) Apparatus for decomposing and removing volatile organic compound and method therefor
JP3699055B2 (en) Equipment for decomposing gaseous organic compounds
JP2006272052A (en) Method and device for treating organic substance-containing water
KR101915440B1 (en) Treatment system for harmful waste gases including NOx
KR101284826B1 (en) Deodorizing device for sewer facilities and deodorizing method
JPH11192418A (en) Treatment of waste gas containing organic solvent and device therefor
KR200408897Y1 (en) Apparatus for purifying gas using ozone water
JPH1133535A (en) Method and apparatus for removing volatile organic compound
KR200166358Y1 (en) Waste gas treatment system
KR102588294B1 (en) Odor gas deodorization device using oh radical oxygen water
KR101398348B1 (en) Apparatus for treating waste water enable of preventing scum
KR20230164778A (en) Clean system using low temperature plasma

Legal Events

Date Code Title Description
RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20040506

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040708

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20041214

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050427

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050929

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051114

A072 Dismissal of procedure [no reply to invitation to correct request for examination]

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20060124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070502

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080807

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term