JP4254377B2 - Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material - Google Patents

Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material Download PDF

Info

Publication number
JP4254377B2
JP4254377B2 JP2003184296A JP2003184296A JP4254377B2 JP 4254377 B2 JP4254377 B2 JP 4254377B2 JP 2003184296 A JP2003184296 A JP 2003184296A JP 2003184296 A JP2003184296 A JP 2003184296A JP 4254377 B2 JP4254377 B2 JP 4254377B2
Authority
JP
Japan
Prior art keywords
aluminum foil
conductive paint
printing
printed
double layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003184296A
Other languages
Japanese (ja)
Other versions
JP2005019795A (en
Inventor
論 堀越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2003184296A priority Critical patent/JP4254377B2/en
Publication of JP2005019795A publication Critical patent/JP2005019795A/en
Application granted granted Critical
Publication of JP4254377B2 publication Critical patent/JP4254377B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for manufacturing polarized substrates for a laminated electric double layer capacitor, wherein the products are the same in quality even when a conductive coating material is printed on both front and rear surfaces. <P>SOLUTION: The apparatus for manufacturing polarized substrates for a laminated electric double layer capacitor comprises a first printer 22 having a gravure cylinder surface 3 for printing a continuous belt shape of a conductive coating material 21 on one surface of an aluminum foil 20, and a second printer 23 having a gravure cylinder surface 12 for printing a rectangular shape of the conductive coating material 21 on the other surface of the aluminum foil 20. <P>COPYRIGHT: (C)2005,JPO&amp;NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、積層型電気二重層キャパシタを構成する分極基材の製造方法及びその分極基材の製造装置並びにそれらによる分極基材を用いた積層型電気二重層キャパシタに関する。
【0002】
【従来の技術】
従来の積層型電気二重層キャパシタ(以下、単に「キャパシタ」という)は、図6に示すように、電解液を含浸した活性炭電極101を接着した2枚の集電端子102の間に、分極基材103の両面に接着した活性炭電極101とセパレータ104とを交互に重ねたバイポーラ構造である。対向した活性炭電極101に挟まれるセパレータ104の最小単位をセル110と呼称する。キャパシタの内部にある電解液が漏れ出さないように、積層されたセル110の階層に、シール機能を有するパッキン105が挟み込まれる。キャパシタは、セル110とパッキン105と集電端子102とで構成するモジュールの両端から、穴付きエンドプレート106と、タップ穴付きエンドプレート107とで挟み、絶縁体108を介して締め付けボルト109で固定する構造である。上述した分極基材103には、各セル110間で電気を伝導する機能と電解質イオンを遮断する機能とが要求される。
【0003】
図4に示すように、分極基材103の表面a2と裏面b2との両面に、活性炭電極101との電気伝導性を向上させるため、導電性塗料を塗布する。また、電解質イオンがセル間を移動するのを遮断するため、分極基材103の材料には、表面が平滑である硬質アルミ箔を使用する。パッキンによるシールを確実に行うため、分極基材103の端部に導電性塗料を塗布しない未塗布部32を設け、アルミ箔の地金が露出した状態である。
分極基材103の表面に導電性塗料を塗布すると微細な凹凸ができ、毛細管現象が起こる。そのため、分極基材103の表面では、電解質に含まれる電解液の濡れ性が極めて良くなる。
【0004】
分極基材103にセル間導通穴33を設け、セル間の内圧を均等化している。このセル間導通穴33が導電性塗料の塗布部31に設けられると、分極基材103の断面部でイオン移動が起こり、漏れ電流が発生する原因となる。そのため、導電性塗料を塗布しない部分(未塗布部32)にセル間導通穴33が設けられる。
【0005】
図4に示した分極基材103の材料であるアルミ箔に導電性塗料を印刷する手段として、現在はスクリーン印刷法を用いている(例えば、特許文献1参照)。最初に、所定の大きさにアルミ箔を裁断する。その後、スクリーン印刷法によりこのアルミ箔の一方の面に導電性塗料を印刷し、印刷面を乾燥する。さらに、このアルミ箔のもう一方の面(導電性塗料を印刷していない反対面)に対しても、スクリーン印刷法により導電性塗料を印刷し、印刷面を乾燥している。このようにスクリーン印刷法によりアルミ箔に導電性塗料を印刷する方法は、作業が煩雑であり且つバッチ処理である。つまり、アルミ箔に導電性塗料を印刷する分極基材の製造装置は、アルミ箔を所定の位置に設置する工程と、このアルミ箔にスクリーン版を接着する工程と、導電性塗料を印刷する工程と、アルミ箔とスクリーン版とを離す工程と、導電性塗料を印刷したアルミ箔を送り出す工程と、などを有するため、装置自体のコストが高くなると共に、大量生産しても製造コストを低減する余地が限られるという問題がある。
【0006】
そのうえ、従来のスクリーン印刷法による分極基材の製造では歩留りが悪く、製造効率が良くないという問題があった。また、キャパシタは、セルを多数積層する構造であるため、誤って品質の悪いセルが混入したキャパシタを使用し続けると、他のセルにも悪影響を与え、キャパシタ全体の故障の原因ともなりかねないという問題があった。例えば、10個のセルで100Vを耐えているキャパシタでは、1個のセル当たり10Vである。このうち1個のセルが故障していると、他のセルの支持電圧が想定している支持電圧よりも高くなるという問題があった。
【0007】
そこで、分極基材を量産化するにあたり、グラビア印刷法(例えば、特許文献2参照)により、分極基材の材料であるアルミ箔に導電性塗料を印刷する製造装置を検討した。
この製造装置では、最初に、アルミ箔の一方の面に転写ロールのグラビア版を押し付け導電性塗料を印刷し、印刷面を乾燥する。さらに、このアルミ箔のもう一方の面(導電性塗料を印刷していない反体面)に対しても、転写ロールのグラビア版を押し付け導電性塗料を印刷し、印刷面を乾燥する。
よって、このような製造装置によれば、アルミ箔を転写ロールのグラビア版に誘導することにより、このアルミ箔に導電性塗料を印刷することができるので、一度に大量に生産する事ができ、製造コストを削減することができる。
【0008】
【特許文献1】
特開平10−13005号公報
【特許文献2】
特開2000−331874号公報
【特許文献3】
特開2002−141245号公報
【0009】
【発明が解決しようとする課題】
しかしながら、グラビア印刷法による製造装置を用いて、アルミ箔の両面に導電性塗料を印刷した場合、アルミ箔の表面と裏面とで印刷位置がずれる可能性がある。例えば、図5に示すように、アルミ箔の表面a3にてA−Aで示す裁断位置を基準にすると、アルミ箔の裏面b3における印刷位置が右方向にずれている場合がある。
【0010】
また、特許文献3に示すような、セラミック電子部品の製造装置を分極基材の製造装置に応用した装置が考えられるが、この製造装置の場合でも、上記グラビア印刷法による製造装置と同様に、一回目の印刷位置と二回目の印刷位置と、さらにその後の印刷位置とがずれる可能性がある。
【0011】
そのため、印刷位置がずれないように、印刷位置を制御する装置が必要になる。ただし、このような制御ができる装置は、非常に高価であるため、導入コストがかかるという問題点がある。
【0012】
さらに、分極基材の製造装置に印刷面を乾燥する工程を設けると、分極基材の材料であるアルミ箔は印刷面を乾燥する時の熱で膨張したり、乾燥工程から印刷工程までの間にて冷却し、収縮したりするため、アルミ箔の表面の印刷位置と裏面の印刷位置とで印刷位置のずれが生じすいという問題があることが分かった。
【0013】
本発明はこのような問題を解決するものであって、キャパシタを構成する分極基材が安価に且つ同一特性を持つように製造するのに有効な製造方法及びその分極基材の製造装置並びにその製造装置による分極基材を用いたキャパシタを提供することを目的とする。
【0014】
【課題を解決するための手段】
前述した課題を解決する第一の発明に係るキャパシタの分極基材の製造方法は、グラビア印刷法により、シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷し、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷することを特徴とする。なお、前記長方形状とは、広義の意味であり、正方形を含む。
この発明に係るキャパシタの分極基材の製造方法によれば、アルミ箔のそれぞれの面に導電性塗料を印刷する位置を制御する必要がない。
【0015】
上述した課題を解決する第二の発明に係るキャパシタの分極基材の製造装置は、シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷するグラビア版を有する第一印刷装置と、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷するグラビア版を有する第二印刷装置と、を備えることを特徴とする。なお、前記長方形状とは、広義の意味であり、正方形を含む。
また、分極基材の製造装置は、導電性塗料を長方形状に印刷するグラビア版を有する第一印刷装置と、導電性塗料を連続した帯状に印刷するグラビア版を有する第二印刷装置と、で構成しても良い。
また、分極基材の製造装置には、上記第一印刷装置と上記第二印刷装置の他に、分極基材の材料であるアルミ箔を設置する巻き出しロールと、印刷面を乾燥する乾燥炉と、アルミ箔の面を反転させる反転装置と、導電性塗料が印刷されたアルミ箔を巻き取る巻き取りロールと、を設けても良い。さらに、導電性塗料が両面に印刷されたアルミ箔を裁断する裁断装置を設けても良い。
さらに、第一印刷装置を備える分極基材の製造装置と第二印刷装置を備える分極基材の製造装置とに分けても良い。
【0016】
上述した課題を解決する第三の発明に係るキャパシタは、集電端子の間に、セパレータと当該セパレータを介して対向する二つの活性炭電極とからなるセルを収納し、当該セルの間に分極基材を挟んでセルを積層し、当該セルを前記集電端子の間にパッキンにより密封した積層型電気二重層キャパシタであって、前記分極基材の一方の面には、導電性塗料が帯状に印刷され、前記分極基材のもう一方の面には、導電性塗料が額縁状の未塗布部ができるように長方形状に印刷されていることを特徴とする。なお、前記長方形状とは、広義の意味であり、正方形を含む。
【0017】
【発明の実施の形態】
本発明によるキャパシタを構成する分極基材の製造装置とこの製造装置による分極基材を用いたキャパシタの実施の形態を以下に説明する。
【0018】
図1はグラビア印刷法による製造工程を示す概略図である。
分極基材の材料であるアルミ箔20に導電性塗料21を印刷する製造装置は、アルミ箔20を設置する巻き出しロール1と、アルミ箔20の一方の面に連続した帯状に導電性塗料21を印刷するグラビア版3を有する手段としての第一印刷装置22と、アルミ箔20に印刷した面を乾燥する乾燥炉8と、アルミ箔20の面を反転させる反転装置24と、アルミ箔20のもう一方の面(導電性塗料21を印刷していない反対面)に長方形状に導電性塗料21を印刷するグラビア版12を有する手段としての第二印刷装置23と、アルミ箔20に印刷した面を乾燥する乾燥炉17と、導電性塗料21を両面に印刷したアルミ箔30を巻き取る巻き取りロール19と、乾燥炉17から巻き取りロール19に誘導するガイドローラ18と、を有する。
【0019】
第一印刷装置22は、内部に導電性塗料21を有する塗料槽6と、この塗料槽6に一部が浸されて回転し、且つ外周面にグラビア版3を有する転写ロール5と、アルミ箔20をグラビア版3に押しつけて、グラビア版3の導電性塗料21をアルミ箔20に転写するバックアップローラ4と、巻き出しロール1から転写ロール5とバックアップローラ4との間にアルミ箔20を誘導するガイドローラ2と、印刷したアルミ箔20を乾燥炉8に誘導するガイドローラ7と、を有する。ここでは、アルミ箔20の一方の面に導電性塗料21を印刷する。なお、グラビア版3は、帯状に彫り込まれ、転写ロール5の曲面に貼り付けられることにより、アルミ箔20に導電性塗料21を連続した帯状に印刷する。
【0020】
反転装置24の構成は、二つのガイドローラからなる。ここで、ガイドローラ9とガイドローラ10とを介して、第一印刷装置22にて導電性塗料21を印刷したアルミ箔20の面は、第二印刷装置23では、反対の面になるように向きが変えられる。
【0021】
第二印刷装置23は、第一印刷装置22と同じ構成であり、内部に導電性塗料21を有する塗料槽15と、この塗料槽15に一部が浸されて回転し、且つ外周面にグラビア版12を有する転写ロール14と、アルミ箔20をグラビア版12に押しつけて、グラビア版12の導電性塗料21をアルミ箔20に転写するバックアップローラ13と、反転装置24から転写ロール14とバックアップローラ13との間にアルミ箔20を誘導するガイドローラ11と、印刷したアルミ箔20を乾燥炉17に誘導するガイドローラ16と、を有する。ここでは、アルミ箔20のもう一方の面(導電性塗料21を印刷していない反対面)に導電性塗料21を印刷する。なお、グラビア版12は、グラビア版12の外周辺と平行な二つの辺を持つ長方形状に彫り込まれ、転写ロール14の曲面に貼り付けられることにより、アルミ箔20に導電性塗料21を長方形状に定間隔で印刷する。
【0022】
次に、アルミ箔に導電性塗料を印刷する工程を以下に説明する。
分極基材20の材料であるアルミ箔20は、巻き出しロール1に設置される。アルミ箔20は、この巻き出しロール1からガイドローラ2を介して、グラビア版3とバックアップローラ4との間に誘導される。帯状に彫り込まれたグラビア版3を塗料槽6の導電性塗料21に漬け、図示されていないブレードで余分な導電性塗料21が落とされる。次に、アルミ箔20の一方の面にグラビア版3の導電性塗料21を押し付けることにより、アルミ箔20の表面には導電性塗料21が連続した帯状に印刷される。このアルミ箔20は、ガイドローラ7を介して乾燥炉8に誘導される。
【0023】
乾燥炉8にて、アルミ箔20に印刷された導電性塗料21を乾燥し、アルミ箔20は反転装置24に送られる。反転装置24では、アルミ箔20はガイドローラ9とガイドローラ10を介して、アルミ箔20に導電性塗料21を印刷した面が第二印刷装置23では、グラビア版12と反対の面になるように向きが変えられる。さらに、アルミ箔20は、ガイドローラ11を介して、グラビア版12とバックアップローラ13との間に誘導される。
【0024】
長方形状に彫り込まれたグラビア版12を塗料槽15の導電性塗料21に漬け、図示されていないブレードで余分な導電性塗料21が落とされる。次に、アルミ箔20のもう一方の面にグラビア版12の導電性塗料21を押し付けることにより、アルミ箔20の表面には導電性塗料21がアルミ箔20に平行な二辺を持つ長方形状に定間隔で印刷される。このアルミ箔20は、ガイドローラ16を介して乾燥炉17に誘導される。
【0025】
乾燥炉17にて、アルミ箔20に印刷された導電性塗料21を乾燥し、導電性塗料21を両面に印刷したアルミ箔30はガイドローラ18を介して、巻き取りロール19に誘導され、巻き取られる。よって、アルミ箔20の両面に導電性塗料21を連続的に印刷することができる。
このとき、導電性塗料21を両面に印刷したアルミ箔30は、図2に示すように、表面a1では連続した帯状に導電性塗料が印刷され、裏面b1では長方形状の導電性塗料の塗布部31が定間隔で形成される。
【0026】
その後、導電性塗料を両面に印刷したアルミ箔30を図2のA−Aで示す位置で裁断して、図3に示すように、表面a1には導電性塗料が帯状に印刷され、裏面b1には導電性塗料が額縁状の未塗布部32ができるように長方形状に印刷されている分極基材103を得ることができる。但し、セル内部の圧力を一定にするため、セル間導通穴33が設けられる。このセル間導通穴33は、電解質液による短絡が発生しないように、未塗布部32に形成される。
なお、本実施例である図2および図3において、アルミ箔の表面a1に形成される未塗布部32の幅と裏面b1に形成される未塗布部の幅とが一致し、裏面b1では導電性塗料塗布部31が正方形状のものを示している。
【0027】
図6はキャパシタユニットの基本構成図である。同図は前記「従来の技術」における説明でも使用したが、同図を用いて本発明に係るキャパシタを説明できるため、本発明の説明にも用いることとする。
図6に示すように、電解液を含浸した活性炭電極101を接着した2枚の集電端子102間に、分極基材103の両面に接着した活性炭電極101とセパレータ104とを交互に重ねたバイポーラ構造である。ここで、分極基材103は、上述した通り、図3に示すような構造である。対向した活性炭電極101に挟まれるセパレータ104の最小単位をセル110と呼称する。キャパシタの内部にある電解液が漏れ出さないように、積層されたセル110の階層に、シール機能を有するパッキン105が挟み込まれる。キャパシタは、セル110とパッキン105と集電端子102とで構成するモジュールの両端から、穴付きエンドプレート106と、タップ穴付きエンドプレート107とで挟み、絶縁体108を介して締め付けボルト109で固定する構造である。上述した分極基材103には、各セル110間で電気を伝導する機能と電解質イオンを遮断する機能とが要求される。
【0028】
分極基材103の表面に導電性塗料を塗布すると微細な凹凸ができ、毛細管現象が起こる。そのため、分極基材103の表面では電解質に含まれる電解液の濡れ性が極めて良くなる。
分極基材103にセル間導通穴を設け、セル110間の内圧を均等化している。導電性塗料の塗布部に、このセル間導通穴が設けられると、分極基材103の断面部でイオン移動が起こり、濡れ電流が発生する原因となる。そのため、導電性塗料を塗布しない部分にセル間導通穴が設けられる。
【0029】
導電性塗料として、酢酸ジエチルグリコールモノブチルエーテルフェノールの溶剤を用いフェノール系の樹脂をバインダーとしているものを使用した。
分極基材の一方の面には、導電性塗料が帯状に印刷され、前記分極基材のもう一方の面には、導電性塗料が額縁状の未塗布部ができるように長方形状に印刷されている分極基材である。
分極基材の一方の面の端部には導電性塗料が塗布されている箇所があるが、分極基材のもう一方の面はアルミ箔地金が出ており確実にシールできるので、電解液を通じてのイオン移動は起こらない。また、図3に示すように、セル間導通穴33は導電性塗料が塗られていない未塗布部32に設けられるので、この穴を通してのイオン移動の問題も生じない。
【0030】
このように導電性塗料をアルミ箔に印刷することで、アルミ箔の表面の印刷位置とアルミ箔の裏面の印刷位置とを制御する必要が無いため、安価な製造装置で同一特性を持つ分極基材を容易に且つ大量に製造することができる。
さらに、溶剤の揮発速度が遅いため、塗料の粘度変化が少なく、安定した塗布厚さを維持することができ、セル間の抵抗バラツキを低減することができる。
【0031】
また、上記導電性塗料の他に、溶剤として水を用い水ガラス系の樹脂をバインダーとしているものを使用した場合でも、溶剤として酢酸ジエチルグリコールモノブチルエーテルフェノールを使用した場合と同様な効果を得ることができる。つまり、上述した製造装置で導電性塗料をアルミ箔に印刷することで、アルミ箔の表面の印刷位置とアルミ箔の裏面の印刷位置とを制御する必要が無いため、安価な製造装置で同一特性を持つ分極基材を容易に且つ大量に製造することができる。
さらに、溶剤が水でバインダーが珪素を主体とした水ガラスであるため、有害性が少ない。
【0032】
また、上記導電性塗料の他に、溶剤として水を用いセルロース系バインダーのものを使用した場合でも、溶剤として酢酸ジエチルグリコールモノブチルエーテルフェノールを使用した場合と同様な効果を得ることができる。つまり、上述した製造装置で導電性塗料をアルミ箔に印刷することで、アルミ箔の表面の印刷位置とアルミ箔の裏面の印刷位置とを制御する必要が無いため、安価な製造装置で同一特性を持つ分極基材を容易に且つ大量に製造することができる。
さらに、含有物がバインダーとカーボンのみであるため他の導電性塗料と比較して初期抵抗を小さくすることができる。
【0033】
そのうえ、上記導電性塗料の他に、溶剤として水を用いセルロース系バインダーにアクリル系を添加したものを使用した場合でも、溶剤として酢酸ジエチルグリコールモノブチルエーテルフェノールを使用した場合と同様な効果を得ることができる。つまり、上述した製造装置で導電性塗料をアルミ箔に印刷することで、アルミ箔の表面の印刷位置とアルミ箔の裏面の印刷位置とを制御する必要が無いため、安価な製造装置で同一特性を持つ分極基材を容易に且つ大量に製造することができる。
さらに、アルミ箔との接着性が増し、キャパシタとして使用した場合に、長期間に渡って安定した特性を維持することができる。
【0034】
また、本発明に係る実施例の製造装置では、第一印刷装置でアルミ箔の一方の面に導電性塗料が連続した帯状に印刷され、第二印刷装置でアルミ箔のもう一方の面に導電性塗料が長方形状に定間隔で印刷されているが、第一印刷装置における印刷形状と第二印刷装置における印刷形状とを入れ換えても良い。つまり、第一印刷装置にてアルミ箔の一方の面に導電性塗料が長方形状に定間隔で印刷され、第二印刷装置にてアルミ箔のもう一方の面に導電性塗料が連続した帯状に印刷されるようにしても良い。
【0035】
また、本発明に係る実施例の製造装置では、第一印刷装置にある転写ロールのグラビア版は、帯状に彫り込まれているが、グラビア版の全体を印刷面とし、且つアルミ箔の幅よりも小さくすることにより、アルミ箔に導電性塗料が連続した帯状に印刷されるようにしても良い。
また、本発明に係る実施例の製造装置では、第二印刷装置にある転写ロールのグラビア版は、長方形状に彫り込まれているが、グラビア版をアルミ箔の幅より小さくし、且つグラビア版の全体を印刷面とし、且つ転写ロールの曲面上でグラビア版の端部同士が接しないようにすることにより、アルミ箔に導電性塗料が長方形状に定間隔で印刷されるようにしても良い。
【0036】
さらに、本発明に係る実施例の製造装置は、分極基材の一方の面に、連続した帯状に印刷する第一印刷装置と、分極基材のもう一方の面に、長方形状に定間隔で印刷する第二印刷装置と、を有しているが、第一印刷装置を有する製造装置と、第二印刷装置を有するされる製造装置と、に分けても良い。
【0037】
【発明の効果】
第1の発明に係るキャパシタの分極基材の製造方法によれば、グラビア印刷法により、シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷し、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷する方法なので、アルミ箔のそれぞれの面に導電性塗料を印刷する位置を制御する必要がなく、安価な製造装置で分極基材を製造でき、製造コストの削減を図ることができる。
【0038】
第2の発明に係るキャパシタの分極基材の製造装置によれば、前記シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷するグラビア版を有する第一印刷装置と、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷するグラビア版を有する第二印刷装置と、を備えるので、分極基材の材料であるアルミ箔の表面と裏面とに導電性塗料を連続的に印刷でき、一度に大量に生産することができるので、製造コストの削減を図ることができる。
【0039】
第3の発明に係るキャパシタによれば、集電端子の間に、セパレータと当該セパレータを介して対向する二つの活性炭電極とからなるセルを収納し、当該セルの間に分極基材を挟んでセルを積層し、当該セルを前記集電端子の間にパッキンにより密封した積層型電気二重層キャパシタであって、前記分極基材の一方の面には、導電性塗料が帯状に印刷され、前記分極基材のもう一方の面には、導電性塗料が額縁状の未塗布部ができるように長方形状に印刷されているキャパシタであり、分極基材が安価な製造装置により、大量に生産されるので、安価なキャパシタが得られる。
【図面の簡単な説明】
【図1】本発明の実施例に係るグラビア印刷方法の製造工程を示す概略図である。
【図2】本発明の実施例に係る製造装置によりアルミ箔の両面に導電性塗料を印刷した塗布部を示す図である。(a)はアルミ箔の表面を示す図であり、(b)はアルミ箔の裏面を示す図である。
【図3】本発明の実施例に係る分極基材を示す図である。(a)は分極基材の表面を示す図であり、(b)は分極基材の裏面を示す図である。
【図4】従来の方法による分極基材を示す図である。(a)は分極基材の表面を示す図であり、(b)は分極基材の裏面を示す図である。
【図5】従来の製造方法によりアルミ箔の両面に導電性塗料を印刷した塗布部を示す図である。(a)はアルミ箔の表面を示す図であり、(b)はアルミ箔の裏面を示す図である。
【図6】キャパシタユニットの基本構成図である。
【符号の説明】
3、12 グラビア版
4、13 バックアップローラ
5、14 転写ロール
8、17 乾燥炉
22 第一印刷装置
23 第二印刷装置
24 反転装置
30 導電性塗料を両面に印刷したアルミ箔
31 導電性塗料塗布部
32 未塗布部
101 活性炭電極
102 集電端子
103 分極基材(アルミ箔)
104 セパレータ
105 パッキン
106 穴付きエンドプレート
107 タップ穴付きエンドプレート
108 絶縁体
109 締め付けボルト
110 セル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for manufacturing a polarization base material constituting a multilayer electric double layer capacitor, a device for manufacturing the polarization base material, and a multilayer electric double layer capacitor using the polarization base material based thereon.
[0002]
[Prior art]
As shown in FIG. 6, a conventional multilayer electric double layer capacitor (hereinafter simply referred to as “capacitor”) has a polarization group between two current collecting terminals 102 to which an activated carbon electrode 101 impregnated with an electrolyte is bonded. This is a bipolar structure in which activated carbon electrodes 101 and separators 104 bonded to both surfaces of the material 103 are alternately stacked. A minimum unit of the separator 104 sandwiched between the opposed activated carbon electrodes 101 is referred to as a cell 110. A packing 105 having a sealing function is sandwiched between the layers of the stacked cells 110 so that the electrolyte in the capacitor does not leak out. The capacitor is sandwiched between the end plate 106 with a hole and the end plate 107 with a tapped hole from both ends of a module constituted by the cell 110, the packing 105, and the current collecting terminal 102, and fixed with a fastening bolt 109 via an insulator 108. It is a structure to do. The polarization base material 103 described above is required to have a function of conducting electricity between the cells 110 and a function of blocking electrolyte ions.
[0003]
As shown in FIG. 4, in order to improve the electrical conductivity with the activated carbon electrode 101, both sides of the surface a2 of the polarization base material 103 and the back surface b2 are apply | coated. Further, in order to block the movement of electrolyte ions between cells, a hard aluminum foil having a smooth surface is used as the material of the polarization substrate 103. In order to ensure sealing by packing, an uncoated portion 32 where no conductive paint is applied is provided at the end portion of the polarization base material 103, and the aluminum foil bare metal is exposed.
When a conductive paint is applied to the surface of the polarizing substrate 103, fine irregularities are formed, and a capillary phenomenon occurs. Therefore, the wettability of the electrolyte solution contained in the electrolyte is extremely improved on the surface of the polarization substrate 103.
[0004]
The polarization base material 103 is provided with the inter-cell conduction holes 33 to equalize the internal pressure between the cells. If the inter-cell conduction holes 33 are provided in the coating portion 31 of the conductive paint, ion movement occurs in the cross-sectional portion of the polarization base material 103, which causes a leakage current. Therefore, the inter-cell conduction hole 33 is provided in a portion where the conductive paint is not applied (uncoated portion 32).
[0005]
Currently, a screen printing method is used as means for printing a conductive paint on the aluminum foil that is the material of the polarization base material 103 shown in FIG. 4 (see, for example, Patent Document 1). First, the aluminum foil is cut into a predetermined size. Thereafter, a conductive paint is printed on one surface of the aluminum foil by a screen printing method, and the printed surface is dried. Further, the conductive paint is printed on the other surface of the aluminum foil (the opposite surface on which the conductive paint is not printed) by the screen printing method, and the printed surface is dried. As described above, the method of printing the conductive paint on the aluminum foil by the screen printing method is complicated and batch processing. In other words, the polarizing substrate manufacturing apparatus for printing a conductive paint on an aluminum foil includes a step of placing the aluminum foil in a predetermined position, a step of bonding a screen plate to the aluminum foil, and a step of printing the conductive paint. And the process of separating the aluminum foil and the screen plate, and the process of sending out the aluminum foil printed with the conductive paint, etc., increase the cost of the device itself and reduce the manufacturing cost even in mass production. There is a problem that the room is limited.
[0006]
In addition, the production of a polarizing substrate by the conventional screen printing method has a problem that the yield is poor and the production efficiency is not good. In addition, since the capacitor has a structure in which a large number of cells are stacked, if a capacitor in which a bad quality cell is mixed by mistake is used continuously, it may adversely affect other cells and may cause a failure of the entire capacitor. There was a problem. For example, in a capacitor that can withstand 100 V in 10 cells, the voltage is 10 V per cell. If one of these cells fails, there is a problem that the supporting voltage of the other cell becomes higher than the assumed supporting voltage.
[0007]
Therefore, in order to mass-produce polarized substrates, a manufacturing apparatus for printing a conductive paint on an aluminum foil, which is a material of a polarized substrate, was examined by a gravure printing method (see, for example, Patent Document 2).
In this manufacturing apparatus, first, a gravure plate of a transfer roll is pressed on one surface of an aluminum foil to print a conductive paint, and the printed surface is dried. Furthermore, the gravure plate of the transfer roll is pressed against the other surface of the aluminum foil (reverse surface on which no conductive paint is printed) to print the conductive paint, and the printed surface is dried.
Therefore, according to such a manufacturing apparatus, by guiding the aluminum foil to the gravure plate of the transfer roll, it is possible to print a conductive paint on the aluminum foil, so it can be produced in large quantities at a time, Manufacturing costs can be reduced.
[0008]
[Patent Document 1]
JP 10-13005 A [Patent Document 2]
JP 2000-331874 A [Patent Document 3]
Japanese Patent Laid-Open No. 2002-141245
[Problems to be solved by the invention]
However, when a conductive paint is printed on both surfaces of an aluminum foil using a manufacturing apparatus based on the gravure printing method, the printing position may be shifted between the front surface and the back surface of the aluminum foil. For example, as shown in FIG. 5, when the cutting position indicated by AA on the front surface a3 of the aluminum foil is used as a reference, the printing position on the back surface b3 of the aluminum foil may be shifted to the right.
[0010]
Moreover, although the apparatus which applied the manufacturing apparatus of a ceramic electronic component to the manufacturing apparatus of a polarization | polarized-light base material as shown in patent document 3 can be considered, even in the case of this manufacturing apparatus, like the manufacturing apparatus by the above-mentioned gravure printing method, There is a possibility that the first printing position, the second printing position, and the subsequent printing position may be shifted.
[0011]
Therefore, an apparatus for controlling the printing position is necessary so that the printing position does not shift. However, an apparatus that can perform such control has a problem that it is expensive to introduce because it is very expensive.
[0012]
Furthermore, if a process for drying the printing surface is provided in the polarizing substrate manufacturing apparatus, the aluminum foil, which is the material of the polarization substrate, expands due to the heat generated when the printing surface is dried, or between the drying process and the printing process. It has been found that there is a problem that it is difficult to cause a shift in the printing position between the printing position on the front surface of the aluminum foil and the printing position on the back surface.
[0013]
The present invention solves such a problem, and a manufacturing method effective for manufacturing a polarizing substrate constituting a capacitor at low cost and having the same characteristics, a manufacturing apparatus for the polarizing substrate, and the It is an object of the present invention to provide a capacitor using a polarizing substrate by a manufacturing apparatus.
[0014]
[Means for Solving the Problems]
The method for manufacturing a polarizing substrate of a capacitor according to the first invention for solving the above-mentioned problem is a gravure printing method in which a conductive paint is printed on one surface of a sheet-like aluminum foil in a continuous strip shape, A conductive paint is printed in a rectangular shape on the other surface of the sheet-like aluminum foil. The rectangular shape has a broad meaning and includes a square.
According to the method for manufacturing a polarizing substrate of a capacitor according to the present invention, it is not necessary to control the position where the conductive paint is printed on each surface of the aluminum foil.
[0015]
An apparatus for manufacturing a polarizing substrate of a capacitor according to a second invention that solves the above-described problem is a first printing having a gravure plate that prints a conductive paint in a continuous strip shape on one surface of a sheet-like aluminum foil. An apparatus and a second printing apparatus having a gravure plate for printing a conductive paint in a rectangular shape on the other surface of the sheet-like aluminum foil. The rectangular shape has a broad meaning and includes a square.
The polarizing substrate manufacturing apparatus includes a first printing apparatus having a gravure plate for printing a conductive paint in a rectangular shape, and a second printing apparatus having a gravure plate for printing the conductive paint in a continuous belt shape. It may be configured.
In addition to the first printing device and the second printing device, the polarizing substrate manufacturing apparatus includes an unwinding roll in which an aluminum foil that is a material of the polarizing substrate is installed, and a drying furnace that dries the printing surface. And a reversing device for reversing the surface of the aluminum foil, and a winding roll for winding the aluminum foil on which the conductive paint is printed may be provided. Furthermore, you may provide the cutting device which cuts the aluminum foil with which the electrically conductive coating material was printed on both surfaces.
Further, it may be divided into a polarizing substrate manufacturing apparatus including the first printing device and a polarizing substrate manufacturing apparatus including the second printing device.
[0016]
A capacitor according to a third aspect of the present invention for solving the above-described problem includes a cell comprising a separator and two activated carbon electrodes facing each other with the separator interposed between current collecting terminals, and a polarization group between the cells. A laminated electric double layer capacitor in which cells are stacked with a material sandwiched between them and sealed between the current collecting terminals with a packing, and a conductive paint is strip-shaped on one surface of the polarizing substrate. The conductive coating is printed in a rectangular shape so that a frame-like uncoated portion is formed on the other surface of the polarizing substrate. The rectangular shape has a broad meaning and includes a square.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a polarizing base material manufacturing apparatus constituting a capacitor according to the present invention and a capacitor using the polarizing base material by this manufacturing apparatus will be described below.
[0018]
FIG. 1 is a schematic view showing a manufacturing process by a gravure printing method.
The manufacturing apparatus that prints the conductive paint 21 on the aluminum foil 20 that is a material of the polarization base material includes the unwinding roll 1 on which the aluminum foil 20 is installed, and the conductive paint 21 in a continuous belt shape on one surface of the aluminum foil 20. The first printing device 22 as a means having the gravure plate 3 for printing, the drying furnace 8 for drying the surface printed on the aluminum foil 20, the reversing device 24 for reversing the surface of the aluminum foil 20, and the aluminum foil 20 The second printing device 23 as a means having the gravure plate 12 for printing the conductive paint 21 in a rectangular shape on the other surface (the opposite surface where the conductive paint 21 is not printed), and the surface printed on the aluminum foil 20 A drying furnace 17, a winding roll 19 for winding the aluminum foil 30 printed on both sides of the conductive paint 21, and a guide roller 18 for guiding the winding roll 19 from the drying furnace 17.
[0019]
The first printing device 22 includes a paint tank 6 having a conductive paint 21 therein, a transfer roll 5 having a gravure plate 3 on the outer peripheral surface thereof, a part of which is rotated by being immersed in the paint tank 6, and an aluminum foil. 20 is pressed against the gravure plate 3 to transfer the conductive paint 21 of the gravure plate 3 to the aluminum foil 20, and the aluminum foil 20 is guided between the unwinding roll 1 and the transfer roll 5 and the backup roller 4. And a guide roller 7 for guiding the printed aluminum foil 20 to the drying furnace 8. Here, the conductive paint 21 is printed on one surface of the aluminum foil 20. In addition, the gravure plate 3 is engraved in a band shape and attached to the curved surface of the transfer roll 5, thereby printing the conductive paint 21 on the aluminum foil 20 in a continuous band shape.
[0020]
The configuration of the reversing device 24 includes two guide rollers. Here, the surface of the aluminum foil 20 on which the conductive paint 21 is printed by the first printing device 22 via the guide roller 9 and the guide roller 10 is opposite to the surface of the second printing device 23. The direction can be changed.
[0021]
The second printing device 23 has the same configuration as that of the first printing device 22, and a paint tank 15 having a conductive paint 21 inside, a part of the paint tank 15 is immersed in the paint tank 15 and rotates, and a gravure is provided on the outer peripheral surface. A transfer roll 14 having a plate 12, a backup roller 13 for pressing the aluminum foil 20 against the gravure plate 12 and transferring the conductive paint 21 of the gravure plate 12 to the aluminum foil 20, and a transfer roll 14 and a backup roller from the reversing device 24. 13, a guide roller 11 that guides the aluminum foil 20, and a guide roller 16 that guides the printed aluminum foil 20 to the drying furnace 17. Here, the conductive paint 21 is printed on the other surface of the aluminum foil 20 (the opposite surface where the conductive paint 21 is not printed). The gravure plate 12 is engraved in a rectangular shape having two sides parallel to the outer periphery of the gravure plate 12 and is attached to the curved surface of the transfer roll 14 so that the conductive paint 21 is rectangular on the aluminum foil 20. Print at regular intervals.
[0022]
Next, the process of printing a conductive paint on an aluminum foil will be described below.
An aluminum foil 20 that is a material of the polarizing substrate 20 is installed on the unwinding roll 1. The aluminum foil 20 is guided between the gravure plate 3 and the backup roller 4 from the unwinding roll 1 through the guide roller 2. The gravure plate 3 engraved in a strip shape is dipped in the conductive paint 21 of the paint tank 6, and the excess conductive paint 21 is dropped with a blade (not shown). Next, the conductive paint 21 of the gravure plate 3 is pressed against one surface of the aluminum foil 20, whereby the conductive paint 21 is printed on the surface of the aluminum foil 20 in a continuous band shape. The aluminum foil 20 is guided to the drying furnace 8 through the guide roller 7.
[0023]
In the drying furnace 8, the conductive paint 21 printed on the aluminum foil 20 is dried, and the aluminum foil 20 is sent to the reversing device 24. In the reversing device 24, the surface of the aluminum foil 20 on which the conductive paint 21 is printed on the aluminum foil 20 through the guide roller 9 and the guide roller 10 is opposite to the surface of the gravure plate 12 in the second printing device 23. The direction can be changed. Further, the aluminum foil 20 is guided between the gravure plate 12 and the backup roller 13 via the guide roller 11.
[0024]
The gravure plate 12 engraved in a rectangular shape is dipped in the conductive paint 21 of the paint tank 15, and the excess conductive paint 21 is dropped with a blade (not shown). Next, the conductive paint 21 of the gravure plate 12 is pressed against the other surface of the aluminum foil 20 so that the conductive paint 21 has a rectangular shape with two sides parallel to the aluminum foil 20 on the surface of the aluminum foil 20. Printed at regular intervals. The aluminum foil 20 is guided to the drying furnace 17 through the guide roller 16.
[0025]
In the drying furnace 17, the conductive paint 21 printed on the aluminum foil 20 is dried, and the aluminum foil 30 on which the conductive paint 21 is printed on both sides is guided to the take-up roll 19 via the guide roller 18 and wound. Taken. Therefore, the conductive paint 21 can be continuously printed on both surfaces of the aluminum foil 20.
In this case, the aluminum foil 30 printed with conductive paint 21 on both sides, as shown in FIG. 2, the conductive coating is printed in a strip shape surface a 1 in succession with, the rear surface b 1 rectangular conductive coating The application part 31 is formed at regular intervals.
[0026]
Thereafter, the aluminum foil 30 printed with conductive paint on both sides was cut at the position shown by the line A-A FIG. 2, as shown in FIG. 3, on the surface a 1 conductive coating is printed in a band shape, the back surface In b 1, it is possible to obtain the polarization base material 103 in which the conductive coating is printed in a rectangular shape so that the frame-shaped uncoated portion 32 is formed. However, an inter-cell conduction hole 33 is provided in order to keep the pressure inside the cell constant. The inter-cell conduction holes 33 are formed in the uncoated portion 32 so that a short circuit due to the electrolyte solution does not occur.
2 and 3, which are the present embodiment, the width of the uncoated portion 32 formed on the surface a 1 of the aluminum foil matches the width of the uncoated portion formed on the back surface b 1 , and the back surface b In FIG. 1 , the conductive coating material application part 31 has a square shape.
[0027]
FIG. 6 is a basic configuration diagram of the capacitor unit. This figure is also used in the description in the above-mentioned “Prior Art”. However, since the capacitor according to the present invention can be explained using the figure, it will also be used in the explanation of the present invention.
As shown in FIG. 6, a bipolar structure in which activated carbon electrodes 101 and separators 104 bonded to both surfaces of a polarization base material 103 are alternately stacked between two collector terminals 102 to which an activated carbon electrode 101 impregnated with an electrolyte is bonded. It is a structure. Here, the polarization substrate 103 has a structure as shown in FIG. 3 as described above. A minimum unit of the separator 104 sandwiched between the opposed activated carbon electrodes 101 is referred to as a cell 110. A packing 105 having a sealing function is sandwiched between the layers of the stacked cells 110 so that the electrolyte in the capacitor does not leak out. The capacitor is sandwiched between the end plate 106 with a hole and the end plate 107 with a tapped hole from both ends of a module constituted by the cell 110, the packing 105, and the current collecting terminal 102, and fixed with a fastening bolt 109 via an insulator 108. It is a structure to do. The polarization base material 103 described above is required to have a function of conducting electricity between the cells 110 and a function of blocking electrolyte ions.
[0028]
When a conductive paint is applied to the surface of the polarizing substrate 103, fine irregularities are formed, and a capillary phenomenon occurs. Therefore, the wettability of the electrolyte contained in the electrolyte is extremely improved on the surface of the polarization base material 103.
The polarization base material 103 is provided with an inter-cell conduction hole to equalize the internal pressure between the cells 110. If the intercellular contact holes are provided in the conductive paint application part, ion migration occurs in the cross-sectional part of the polarization base material 103, which causes a wetting current. Therefore, a cell-to-cell conduction hole is provided in a portion where the conductive paint is not applied.
[0029]
As the conductive paint, a solvent using diethyl glycol monobutyl ether phenol solvent and a phenol resin as a binder was used.
On one side of the polarizing substrate, a conductive paint is printed in a strip shape, and on the other side of the polarizing substrate, the conductive paint is printed in a rectangular shape so that a frame-like uncoated portion is formed. A polarizing substrate.
There is a place where conductive paint is applied to the end of one side of the polarization base material, but the other side of the polarization base material has an aluminum foil bare metal that can be reliably sealed. There is no ion movement through. Further, as shown in FIG. 3, since the inter-cell conduction hole 33 is provided in the uncoated portion 32 where the conductive paint is not applied, the problem of ion movement through the hole does not occur.
[0030]
Since the conductive paint is printed on the aluminum foil in this way, there is no need to control the printing position on the front surface of the aluminum foil and the printing position on the back surface of the aluminum foil. The material can be manufactured easily and in large quantities.
Furthermore, since the volatilization rate of the solvent is slow, there is little change in the viscosity of the paint, a stable coating thickness can be maintained, and resistance variation between cells can be reduced.
[0031]
In addition to the above conductive paint, even when water is used as a solvent and a water glass resin is used as a binder, the same effect as when diethyl glycol monobutyl ether phenol is used as a solvent can be obtained. Can do. In other words, by printing the conductive paint on the aluminum foil with the above-described manufacturing apparatus, it is not necessary to control the printing position on the front surface of the aluminum foil and the printing position on the back surface of the aluminum foil. It is possible to easily and in large quantities produce a polarizing substrate having
Furthermore, since the solvent is water and the binder is water glass mainly composed of silicon, there is little toxicity.
[0032]
In addition to the conductive paint, even when water is used as a solvent and a cellulose binder is used, the same effect as that obtained when diethyl glycol monobutyl ether phenol is used as a solvent can be obtained. In other words, by printing the conductive paint on the aluminum foil with the above-described manufacturing apparatus, it is not necessary to control the printing position on the front surface of the aluminum foil and the printing position on the back surface of the aluminum foil. It is possible to easily and in large quantities produce a polarizing substrate having
Furthermore, since the inclusions are only binder and carbon, the initial resistance can be reduced as compared with other conductive paints.
[0033]
Moreover, in addition to the above conductive paint, even when water is used as a solvent and an acrylic binder is added to a cellulose binder, the same effect as when diethyl glycol monobutyl ether phenol is used as a solvent can be obtained. Can do. In other words, by printing the conductive paint on the aluminum foil with the above-described manufacturing apparatus, it is not necessary to control the printing position on the front surface of the aluminum foil and the printing position on the back surface of the aluminum foil. It is possible to easily and in large quantities produce a polarizing substrate having
Furthermore, the adhesiveness with the aluminum foil is increased, and when used as a capacitor, stable characteristics can be maintained over a long period of time.
[0034]
Further, in the manufacturing apparatus of the embodiment according to the present invention, the first printing apparatus prints the conductive paint on the one surface of the aluminum foil in a continuous band shape, and the second printing apparatus conducts the electric conduction on the other surface of the aluminum foil. Although the conductive paint is printed in a rectangular shape at regular intervals, the printing shape in the first printing device and the printing shape in the second printing device may be interchanged. In other words, conductive paint is printed at regular intervals in a rectangular shape on one surface of the aluminum foil in the first printing device, and the conductive paint is continuously striped on the other surface of the aluminum foil in the second printing device. It may be printed.
[0035]
Further, in the manufacturing apparatus of the embodiment according to the present invention, the gravure plate of the transfer roll in the first printing device is engraved in a strip shape, but the entire gravure plate is used as a printing surface, and more than the width of the aluminum foil. By making it small, the conductive paint may be printed on the aluminum foil in a continuous band shape.
In the manufacturing apparatus of the embodiment according to the present invention, the gravure plate of the transfer roll in the second printing device is engraved in a rectangular shape, but the gravure plate is made smaller than the width of the aluminum foil, and the gravure plate By making the whole as a printing surface and preventing the ends of the gravure plates from contacting each other on the curved surface of the transfer roll, the conductive paint may be printed on the aluminum foil in a rectangular shape at regular intervals.
[0036]
Furthermore, the manufacturing apparatus according to the embodiment of the present invention includes a first printing device that prints a continuous band on one surface of a polarizing substrate, and a rectangular shape at regular intervals on the other surface of the polarizing substrate. Although it has the 2nd printing apparatus which prints, you may divide into the manufacturing apparatus which has a 1st printing apparatus, and the manufacturing apparatus which has a 2nd printing apparatus.
[0037]
【The invention's effect】
According to the method for manufacturing a polarizing substrate of a capacitor according to the first aspect of the present invention, a conductive strip is printed on one surface of a sheet-shaped aluminum foil by a gravure printing method, and the sheet-shaped aluminum is printed. Since the conductive paint is printed in a rectangular shape on the other side of the foil, there is no need to control the position where the conductive paint is printed on each side of the aluminum foil. Manufacture is possible, and the manufacturing cost can be reduced.
[0038]
According to the apparatus for manufacturing a polarizing substrate of a capacitor according to the second invention, a first printing apparatus having a gravure plate for printing a conductive paint in a continuous strip shape on one surface of the sheet-like aluminum foil; Since the second printing device having a gravure plate for printing a conductive paint in a rectangular shape on the other surface of the sheet-like aluminum foil, the front and back surfaces of the aluminum foil that is a material of the polarization base material, In addition, the conductive paint can be printed continuously and can be produced in large quantities at a time, so that the manufacturing cost can be reduced.
[0039]
According to the capacitor of the third invention, a cell composed of a separator and two activated carbon electrodes facing each other through the separator is housed between current collecting terminals, and a polarization substrate is sandwiched between the cells. A multilayer electric double layer capacitor in which cells are stacked and the cells are sealed with packing between the current collecting terminals, and a conductive coating is printed in a band shape on one surface of the polarizing substrate, The other side of the polarizing substrate is a capacitor in which conductive paint is printed in a rectangular shape so that a frame-shaped unapplied part is formed, and the polarizing substrate is produced in large quantities by an inexpensive manufacturing device. Therefore, an inexpensive capacitor can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a manufacturing process of a gravure printing method according to an embodiment of the present invention.
FIG. 2 is a view showing an application portion in which a conductive paint is printed on both surfaces of an aluminum foil by a manufacturing apparatus according to an embodiment of the present invention. (A) is a figure which shows the surface of aluminum foil, (b) is a figure which shows the back surface of aluminum foil.
FIG. 3 is a view showing a polarizing substrate according to an embodiment of the present invention. (A) is a figure which shows the surface of a polarization base material, (b) is a figure which shows the back surface of a polarization base material.
FIG. 4 is a view showing a polarization substrate by a conventional method. (A) is a figure which shows the surface of a polarization base material, (b) is a figure which shows the back surface of a polarization base material.
FIG. 5 is a view showing an application portion in which a conductive paint is printed on both surfaces of an aluminum foil by a conventional manufacturing method. (A) is a figure which shows the surface of aluminum foil, (b) is a figure which shows the back surface of aluminum foil.
FIG. 6 is a basic configuration diagram of a capacitor unit.
[Explanation of symbols]
3, 12 Gravure plates 4, 13 Backup rollers 5, 14 Transfer rolls 8, 17 Drying furnace 22 First printing device 23 Second printing device 24 Inversion device 30 Aluminum foil 31 with conductive paint printed on both sides 31 32 Uncoated part 101 Activated carbon electrode 102 Current collecting terminal 103 Polarizing substrate (aluminum foil)
104 Separator 105 Packing 106 End plate with hole 107 End plate with tapped hole 108 Insulator 109 Fastening bolt 110 Cell

Claims (3)

積層型電気二重層キャパシタの分極基材の製造方法であって、グラビア印刷法により、シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷し、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷することを特徴とする積層型電気二重層キャパシタの分極基材の製造方法。A method of manufacturing a polarizing substrate of a multilayer electric double layer capacitor, wherein a conductive strip is printed on one surface of a sheet-like aluminum foil by a gravure printing method, and the sheet-like aluminum foil A method for producing a polarizing substrate of a multilayer electric double layer capacitor, wherein a conductive paint is printed in a rectangular shape on the other surface of the multilayer electric double layer capacitor. 積層型電気二重層キャパシタの分極基材の製造装置であって、シート状のアルミ箔の一方の面に、連続した帯状に導電性塗料を印刷するグラビア版を有する第一印刷装置と、前記シート状のアルミ箔のもう一方の面に、長方形状に導電性塗料を印刷するグラビア版を有する第二印刷装置と、を備えることを特徴とする積層型電気二重層キャパシタの分極基材の製造装置。A device for manufacturing a polarization base material of a multilayer electric double layer capacitor, the first printing device having a gravure plate for printing a conductive paint in a continuous strip shape on one surface of a sheet-like aluminum foil, and the sheet And a second printing device having a gravure plate for printing a conductive paint in a rectangular shape on the other surface of the aluminum foil in the shape of a multilayer electric double layer capacitor . 集電端子の間に、セパレータと当該セパレータを介して対向する二つの活性炭電極とからなるセルを収納し、当該セルの間に分極基材を挟んでセルを積層し、当該セルを前記集電端子の間にパッキンにより密封した積層型電気二重層キャパシタであって、前記分極基材の一方の面には、導電性塗料が帯状に印刷され、前記分極基材のもう一方の面には、導電性塗料が額縁状の未塗布部ができるように長方形状に印刷されていることを特徴とする積層型電気二重層キャパシタ。A cell composed of a separator and two activated carbon electrodes facing each other with the separator interposed between the current collecting terminals is housed, the cells are stacked with a polarization substrate sandwiched between the cells, and the cell is collected by the current collecting terminal. In the multilayer electric double layer capacitor sealed with a packing between terminals, a conductive paint is printed in a band shape on one surface of the polarization substrate, and on the other surface of the polarization substrate, A multilayer electric double layer capacitor, wherein the conductive paint is printed in a rectangular shape so that a frame-like uncoated portion is formed.
JP2003184296A 2003-06-27 2003-06-27 Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material Expired - Fee Related JP4254377B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003184296A JP4254377B2 (en) 2003-06-27 2003-06-27 Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003184296A JP4254377B2 (en) 2003-06-27 2003-06-27 Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material

Publications (2)

Publication Number Publication Date
JP2005019795A JP2005019795A (en) 2005-01-20
JP4254377B2 true JP4254377B2 (en) 2009-04-15

Family

ID=34184104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003184296A Expired - Fee Related JP4254377B2 (en) 2003-06-27 2003-06-27 Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material

Country Status (1)

Country Link
JP (1) JP4254377B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8411413B2 (en) * 2008-08-28 2013-04-02 Ioxus, Inc. High voltage EDLC cell and method for the manufacture thereof
US9209464B2 (en) 2009-09-24 2015-12-08 Corning Incorporated Current collectors having textured coating
JP5595848B2 (en) * 2010-09-24 2014-09-24 大日本スクリーン製造株式会社 Multilayer ceramic capacitor manufacturing equipment
JP2013175636A (en) * 2012-02-27 2013-09-05 Dainippon Screen Mfg Co Ltd Apparatus and method for manufacturing electric double-layer capacitor, and electronic sheet with electric double-layer capacitor manufactured by the same

Also Published As

Publication number Publication date
JP2005019795A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US5350645A (en) Polymer-lithium batteries and improved methods for manufacturing batteries
JP5697931B2 (en) Electrochemical capacitor
US8520367B2 (en) Method of manufacturing lithium ion capacitor and lithium ion capacitor manufactured using the same
JP5359136B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
CN105974677B (en) A kind of display panel, light alignment film and preparation method
EP1231656A4 (en) Polymer electrolytic fuel cell and method for producing the same
CA2616726A1 (en) Multilayered electrochemical energy storage device and method of manufacture thereof
CN107305960B (en) Battery, battery manufacturing method, and battery manufacturing apparatus
US8187343B2 (en) Methods of manufacturing electric double layer capacitor cell and electric double layer capacitor and apparatus for manufacturing electric double layer capacitor cell
WO2011111200A1 (en) Current collector and process for production thereof, and battery and process for production thereof
WO1993016497A1 (en) Method of producing thin cell
JP7199041B2 (en) BATTERY, BATTERY MANUFACTURING METHOD, AND BATTERY MANUFACTURING APPARATUS
JP2004330778A (en) Photogravure printing machine and manufacturing method of laminated ceramic electronic component
JP4254377B2 (en) Method for manufacturing polarization base material of multilayer electric double layer capacitor, manufacturing apparatus therefor, and multilayer electric double layer capacitor using the polarization base material
JP2001135306A (en) Producing method of electrode and gelled electrolyte battery
CN110600579A (en) Method for manufacturing a photovoltaic module and photovoltaic module obtained thereby
JP7054164B2 (en) Capacitive energy storage device and method of making the device
AU2018329871B2 (en) Capacitive energy storage device and method of producing the same
JP2010232078A (en) Dye-sensitized solar cell, manufacturing method of dye-sensitized solar cell, and manufacturing device of dye-sensitized solar cell
US20080101839A1 (en) Keyboard and Method for Producing a Keyboard
US20100307581A1 (en) Large area dye cells, and methods of production thereof
CN219280011U (en) Evaporation coating device
KR20210067936A (en) Current collector for electrode
JPH11317220A (en) Production of sheet electrode
KR20220120476A (en) Gravure plate, gravure printing press and method for manufacturing multilayer type electronic component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4254377

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees