JP4254270B2 - 熱感知回路 - Google Patents

熱感知回路 Download PDF

Info

Publication number
JP4254270B2
JP4254270B2 JP2003044955A JP2003044955A JP4254270B2 JP 4254270 B2 JP4254270 B2 JP 4254270B2 JP 2003044955 A JP2003044955 A JP 2003044955A JP 2003044955 A JP2003044955 A JP 2003044955A JP 4254270 B2 JP4254270 B2 JP 4254270B2
Authority
JP
Japan
Prior art keywords
temperature
determination
resistor
detection
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003044955A
Other languages
English (en)
Other versions
JP2004251852A (ja
Inventor
保司 小西
雅則 林
慎司 坂本
昭一 岡
剛嗣 和田
克裕 内沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Electric Works Co Ltd
Original Assignee
Panasonic Corp
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Works Ltd filed Critical Panasonic Corp
Priority to JP2003044955A priority Critical patent/JP4254270B2/ja
Publication of JP2004251852A publication Critical patent/JP2004251852A/ja
Application granted granted Critical
Publication of JP4254270B2 publication Critical patent/JP4254270B2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)
  • Fire-Detection Mechanisms (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、サーミスタ等の温度検知素子を用いて温度を検知する熱感知回路に関するものである。
【0002】
【従来の技術】
従来、火災報知器等として用いられる熱感知回路では、火災等に伴う温度をサーミスタ等の温度検知素子を用いて測定し、その測定温度が所定の温度を越えたり、その測定温度が所定の温度上昇率を越えて上昇したりしたことを検出することにより、火災の発生や測定対象の温度が所定の温度になったこと等を検出するものが知られている。このような熱感知回路においては、サーミスタ等の温度検知素子はその温度特性が線形ではないため、温度測定を行うために温度検知素子により得られた測定信号を補正する必要がある。
【0003】
例えばサーミスタは温度の上昇に応じて抵抗値が指数関数的に小さくなる。そのため、サーミスタに電流を流して生じた電圧を、A/Dコンバータによってデジタルデータに変換し、そのデジタルデータから指数関数を用いた演算処理によって、温度情報を取得するようにした熱感知回路が知られている。このような熱感知回路では、温度検知素子の温度特性を補正するために指数関数演算のような複雑な演算処理を行う必要があり、その演算処理のためにマイクロコンピュータが用いられている(例えば、特許文献1参照。)。
【0004】
【特許文献1】
特開平10−49773号公報
【0005】
【発明が解決しようとする課題】
しかし、上述のようにマイクロコンピュータを用いて温度検知素子の温度特性を補正する場合には、低コスト化することが困難であるという不都合がある。
【0006】
本発明の目的は、簡素な回路を用いて温度検知素子の温度特性を補正することができるとともに、低コスト化を図ることができる熱感知回路を提供することである。
【0007】
【課題を解決するための手段】
請求項1に記載の発明は、温度に応じて電気的な特性値が変化する温度検知素子を用いてその特性値に応じた検知電圧を生成する温度検知手段を備えた熱感知回路において、前記温度検知手段により生成された検知電圧をアナログデジタル変換したデジタルデータである検知電圧データを生成するAD変換手段と、前記AD変換手段により生成されたデジタルデータである検知電圧データをアドレスとして用いた当該アドレスに、その検知電圧データに対応すると共に前記温度検知素子の温度特性が補正された温度データを記憶したテーブル記憶手段と、前記AD変換手段により生成されたデジタルデータである検知電圧データが、前記テーブル記憶手段によってアドレスとして取得されることにより前記テーブル記憶手段から出力された温度データに基づいて、所定の判定条件が成立したことを検知する判定手段と、前記判定手段により前記判定条件が成立したことが検知されたとき、熱検知を報知する報知手段とを備えることを特徴としている。
【0008】
請求項1に記載の発明によれば、温度検知手段により温度に応じた検知電圧が生成され、AD変換手段により前記検知電圧がアナログデジタル変換されて検知電圧データが生成され、その検知電圧データがテーブル記憶手段のアドレスとして取得されることによりテーブル記憶手段によりその検知電圧データに対応する温度データが出力される。そして、テーブル記憶手段から出力された温度データに基づいて、判定手段により所定の判定条件が成立したことが検知されたとき、報知手段により熱検知が報知される。
【0009】
請求項2に記載の発明は、請求項1に記載の熱感知回路において、外部から取り込んだ電源電圧を安定化して前記AD変換手段がアナログデジタル変換を行うための基準電圧を生成する電源安定手段をさらに備えることを特徴としている。
【0010】
請求項2に記載の発明によれば、AD変換手段がアナログデジタル変換を行うための基準電圧が安定化される。この場合、AD変換手段のアナログデジタル変換によって生成された検知電圧データをアドレスとして、直接テーブル記憶手段からその検知電圧データに対応する温度データが出力されるので、前記基準電圧の電圧精度が直接温度データの精度に影響を与える。従って、基準電圧が安定化されることにより、温度データの精度が向上される。
【0011】
請求項3に記載の発明は、請求項1又は2に記載の熱感知回路において、前記AD変換手段と、前記AD変換手段と前記温度検知手段との間の接続を切り替えるための第1、第2、第3、第4のスイッチング手段とを有する集積回路と、前記第1、第2、第3、第4のスイッチング手段のオンオフを制御する抵抗モード切替手段とを備え、前記温度検知素子は、温度に応じて抵抗値が変化する感熱抵抗体であり、前記温度検知手段は、前記温度検知手段の外部から取り込まれた電源電圧を、直列接続された前記感熱抵抗体との間で分圧する第1の抵抗と、前記感熱抵抗体と前記第1の抵抗との接続点に接続されると共に前記温度検知手段の外部から取り込まれた電源電圧を直列接続された前記感熱抵抗体との間で分圧する第2の抵抗とを備え、前記集積回路は、前記第1の抵抗を介して前記感熱抵抗体と接続される第1の接続端子と、前記第2の抵抗を介して前記感熱抵抗体と接続される第2の接続端子とをさらに備え、前記第1のスイッチング手段は、前記第1の接続端子を介して前記第1の抵抗と接続されると共に前記第1の抵抗に流れる電流をオンオフし、前記第2のスイッチング手段は、前記第2の接続端子を介して前記第2の抵抗と接続されると共に前記第2の抵抗に流れる電流をオンオフし、前記第3のスイッチング手段は、前記第1の接続端子に導かれた電圧を、前記AD変換手段へ前記検知電圧として導くと共にオンオフし、前記第4のスイッチング手段は、前記第2の接続端子に導かれた電圧を、前記AD変換手段へ前記検知電圧として導くと共にオンオフし、前記抵抗モード切替手段は、前記AD変換手段へ導かれた検知電圧に応じて、前記第1、第4のスイッチング手段をオンさせると共に前記第2、第3のスイッチング手段をオフさせる第1の抵抗モードと、前記第2、第3のスイッチング手段をオンさせると共に前記第1、第4のスイッチング手段をオフさせる第2の抵抗モードとを切り替えることを特徴としている。
【0012】
請求項3に記載の発明によれば、第1の抵抗モードにおいて、第1のスイッチング手段がオンすることにより第1の接続端子を介して感熱抵抗体及び第1の抵抗に流される電流によって、感熱抵抗体と第1の抵抗との間に生じた検知電圧が、第2の接続端子と第4のスイッチング手段とを介してAD変換手段へ導かれる。また、第2の抵抗モードにおいて、第2のスイッチング手段がオンすることにより第2の接続端子を介して感熱抵抗体及び第2の抵抗に流される電流によって、感熱抵抗体と第2の抵抗との間に生じた検知電圧が、第1の接続端子と第3のスイッチング手段とを介してAD変換手段へ導かれる。
【0013】
この場合、第1の抵抗モードにおいては、第1の接続端子が感熱抵抗体及び第1の抵抗に電流を流す用途に用いられ、第2の接続端子が検知電圧をAD変換手段へ導く用途に用いられる。一方、第2の抵抗モードにおいては、第2の接続端子が感熱抵抗体及び第2の抵抗に電流を流す用途に用いられ、第1の接続端子が検知電圧をAD変換手段へ導く用途に用いられる。これにより、第1、第2の接続端子それぞれを、2つの異なった用途のために用いることができる。
【0014】
請求項4に記載の発明は、請求項1〜3のいずれかに記載の熱感知回路において、前記判定手段は、所定のサンプリング時間間隔毎のサンプリングタイミングにおいて前記テーブル記憶手段から出力された温度データを記憶する第1の記憶手段と、前記第1の記憶手段が前記温度データを記憶したサンプリングタイミングの直前のサンプリングタイミングにおいて前記テーブル記憶手段から出力された温度データを記憶する第2の記憶手段と、前記第1の記憶手段によって記憶された温度データと前記第2の記憶手段によって記憶された温度データとの間の差と所定の差動基準データとを比較して、その差が前記差動基準データの値よりも大きくなる差動成立状態を検知する差動判定手段と、外部から取り込んだ電源電圧が所定のリセット電圧以下となったとき、前記第1、第2の記憶手段を初期化させる電源監視手段とを備え、前記差動判定手段による差動成立状態の検知の有無に基づいて、前記判定条件が成立したことを検知することを特徴としている。
【0015】
請求項4に記載の発明によれば、テーブル記憶手段から出力された温度データが第1の記憶手段により記憶され、その温度データが記憶されたときよりも所定のサンプリング時間前の温度データが第2の記憶手段によって記憶される。そして、第1の記憶手段によって記憶された温度データと第2の記憶手段によって記憶された温度データとの間の差が所定の差動基準データの値よりも大きいとき、すなわち所定のサンプリング時間での温度上昇が所定の差動基準データの値よりも大きいとき、前記判定条件が成立したことを検知することが可能になる。さらに、判定手段は、電源電圧が所定のリセット電圧以下となったとき第1、第2の記憶手段を初期化させる電源監視手段を備えるので、電源電圧が所定のリセット電圧以下となったとき第1、第2の記憶手段が初期化される。
【0016】
請求項5に記載の発明は、請求項4に記載の熱感知回路において、前記判定手段は、前記テーブル記憶手段から出力された温度データと所定の定温基準データとを比較して、その温度データが前記定温基準データの値よりも大きくなる定温成立状態を検知する定温判定手段をさらに備え、前記判定手段は、前記差動判定手段による差動成立状態の検知の有無と、前記定温判定手段による定温成立状態の検知の有無とに応じて前記判定条件が成立したことを検知することを特徴としている。
【0017】
請求項5に記載の発明によれば、差動判定手段による差動成立状態の検知の有無と、定温判定手段による定温成立状態の検知の有無とに応じて前記判定条件が成立したことが検知されるので、所定のサンプリング時間での温度上昇が所定の差動基準データの値よりも大きいとき、及び温度が定温基準データの値よりも高温のときに、前記判定条件が成立したことを検知することが可能になる。
【0018】
請求項6に記載の発明は、請求項5に記載の熱感知回路において、前記差動成立状態の検知の有無に応じて前記判定条件が成立したことを検知する差動モードにする設定と、前記定温成立状態の検知の有無に応じて前記判定条件が成立したことを検知する定温モードにする設定とを受け付ける設定受付手段をさらに備え、前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、前記判定手段は、前記設定受付手段により前記定温モードにする設定が受け付けられた場合、前記定温成立状態を検知したとき前記判定条件が成立したことを検知し、前記設定受付手段により前記差動モードにする設定が受け付けられた場合、前記差動成立状態を検知したとき及び前記負温度特性抵抗体が短絡していることを示す短絡判定温度を前記定温基準データとして前記定温判定手段が定温成立状態を検知したとき、前記判定条件が成立したことを検知することを特徴としている。
【0019】
請求項6に記載の発明によれば、設定受付手段により定温モードにする設定が受け付けられた場合には、定温判定手段により定温成立状態が検知されたとき、判定手段によって前記判定条件が成立したことが検知される。また、設定受付手段により差動モードにする設定が受け付けられた場合には、差動判定手段により差動成立状態が検知されたとき判定手段によって前記判定条件が成立したことが検知され、さらに定温判定手段により前記短絡判定温度を定温基準データとして定温成立状態が検知されたときにも、判定手段によって前記判定条件が成立したことが検知される。
【0020】
これにより、ユーザーが設定受付手段を用いて定温モードと差動モードとを切替可能にされており、設定受付手段により差動モードにする設定が受け付けられた場合には、定温判定手段を用いて負温度特性抵抗体の短絡を検知することが可能になる。
【0021】
請求項7に記載の発明は、請求項1〜6のいずれかに記載の熱感知回路において、前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、前記温度データが所定の断線判定温度を下回るとき前記負温度特性抵抗体の断線を検知する断線検知手段を備え、前記報知手段は、前記断線検知手段により前記負温度特性抵抗体の断線が検知されたとき、熱検知を報知することを特徴としている。
【0022】
請求項7に記載の発明によれば、断線検知手段によって、前記温度データが所定の断線判定温度を下回るとき負温度特性抵抗体の断線が検知され、熱検知が報知される。この場合、断線検知手段は、温度データが所定の断線判定温度を下回るとき負温度特性抵抗体の断線を検知するので、断線検知手段を定温判定手段と同様の温度比較回路を用いて構成することができる。
【0023】
請求項8に記載の発明は、請求項1〜7のいずれかに記載の熱感知回路において、前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、前記温度データが所定の短絡判定温度を上回るとき前記負温度特性抵抗体の短絡を検知する短絡検知手段を備え、前記報知手段は、前記短絡検知手段により前記負温度特性抵抗体の短絡が検知されたとき、熱検知を報知することを特徴としている。
【0024】
請求項8に記載の発明によれば、短絡検知手段によって、前記温度データが所定の短絡判定温度を上回るとき負温度特性抵抗体の短絡が検知され、熱検知が報知される。この場合、短絡検知手段は、温度データが所定の短絡判定温度を上回るとき負温度特性抵抗体の短絡を検知するので、短絡検知手段を定温判定手段と同様の温度比較回路を用いて構成することができる。
【0025】
【発明の実施の形態】
(第1実施形態)
図1は、本発明の第1の実施形態に係る熱感知回路10の構成の一例を示すブロック図である。図1に示す熱感知回路10は、熱感知回路10の動作用電力の供給及び熱感知回路10から出力された報知信号を伝達するための一対の感知器回線11に、接続端子12を介して接続される。接続端子12の両極間には、感知器回線11に生じたサージ電圧を吸収して熱感知回路10の内部回路を保護するサージアブソーバ13が接続されている。また、接続端子12の両極間には、ダイオードブリッジ14が接続され、感知器回線11から取り込まれた電源電圧がダイオードブリッジ14により整流された後、定電圧回路15へ出力され、定電圧回路15から電源ライン16を介して熱感知回路10内の各部へ動作用の電源電圧VOPが出力される。
【0026】
電源ライン16には、例えば汎用のリセットIC(Integrated Circuit)からなるリセット回路17と、周囲の温度を検知してその検知した温度に応じた検知電圧を出力する感熱回路18と、感熱回路18から出力された検知電圧に基づいて例えば火災の発生に伴う所定の温度条件が成立したことを検知する集積回路100の接続端子109とが接続され、定電圧回路15から電源ライン16を介してリセット回路17、感熱回路18、及び集積回路100へ電源電圧VOPが出力される。
【0027】
ダイオードブリッジ14の一対の出力ライン間には、例えばサイリスタからなる報知出力回路19が接続されている。そして、所定の温度条件が成立したことを示す熱検知報知信号OUTが集積回路100から報知出力回路19へハイレベルで出力されたとき、報知出力回路19がオンされ、ダイオードブリッジ14の出力ライン間が短絡される。
【0028】
一方、感知器回線11には、感知器回線11に流れる電流を監視する図略の受信機が接続されている。この受信機は、報知出力回路19がオンすることにより感知器回線11に流れる電流が増加したことを、例えば火災発報等を示す熱検知の報知として検出するようにされている。
【0029】
熱感知回路10は、温度に応じて抵抗値が変化するサーミスタ20と、定電圧回路15から出力された電源電圧VOPを、直列接続されたサーミスタ20との間で分圧する抵抗21と、サーミスタ20と抵抗21との接続点に接続されると共に、電源電圧VOPを直列接続されたサーミスタ20との間で分圧する抵抗22とを備える。
【0030】
集積回路100は、AD変換器101、AD入力セレクタ102、アドレスデコーダ103、テーブルメモリ104、EEPROM(Electrically Erasable Programmable Read Only Memory)105、発振回路106、機種設定回路107、及び判定回路108の各回路ブロックと、スイッチSW1、スイッチSW2、及び接続端子109,110,111,112,113,114,115,116,117とを備え、集積回路100の外部に接続端子114を介してスイッチ24が、接続端子115を介してスイッチ25が接続されている。
【0031】
接続端子109には電源ライン16が接続され、定電圧回路15から出力された電源電圧VOPが接続端子109を介して集積回路100内の各回路ブロックへ供給される。また、接続端子113にはグラウンドライン23が接続され、グラウンド電位が接続端子113を介して集積回路100内の各回路ブロックへ供給される。
【0032】
スイッチSW1,SW2としては、例えばアナログスイッチが用いられる。そして、スイッチSW1は、接続端子110と接続端子113との間に介設され、スイッチSW2は、接続端子111と接続端子113との間に介設されている。そして、後述するAD入力セレクタ102からの低温モード(第1の抵抗モード)に応じた制御信号により、スイッチSW1がオン、スイッチSW2がオフされ、電源電圧VOPがサーミスタ20と抵抗21とで分圧され、サーミスタ20と抵抗21との接続点に生じた電圧が検知電圧Vsとして接続端子112を介してAD変換器101及びAD入力セレクタ102へ導かれる。
【0033】
また、後述するAD入力セレクタ102からの高温モード(第2の抵抗モード)に応じた制御信号により、スイッチSW1がオフ、スイッチSW2がオンされ、電源電圧VOPがサーミスタ20と抵抗22とで分圧され、サーミスタ20と抵抗22との接続点に生じた電圧が検知電圧Vsとして接続端子112を介してAD変換器101及びAD入力セレクタ102へ導かれる。
【0034】
AD変換器101は、例えば8ビットのA/Dコンバータであり、接続端子112を介して導かれた検知電圧Vsをアナログデジタル変換して8ビット長の検知電圧データDvsを生成すると共にアドレスデコーダ103へ出力する。また、AD変換器101がアナログデジタル変換するときの基準電圧Vrefとして、電源電圧VOPが用いられている。
【0035】
なお、基準電圧Vrefとしては、例えば電源電圧VOPを抵抗分圧する等により生成した電圧を用いても良い。また、電源電圧VOPを抵抗分圧する等により2種類の基準電圧Vref1と基準電圧Vref2とを生成し、基準電圧Vref1と基準電圧Vref2とを切り替えて、例えば低温モード時は基準電圧Vrefとして基準電圧Vref1を用い、高温モード時は基準電圧Vrefとして基準電圧Vref2を用いる構成としても良い。
【0036】
AD入力セレクタ102は、サーミスタ20の温度特性に対して低温時に適した温度補正を行う低温モードと、高温時に適した温度補正を行う高温モードとを有する抵抗モードの切替を行う。具体的には、AD入力セレクタ102は、例えばコンパレータを用いて構成され、接続端子112を介して導かれた検知電圧Vsと所定のモード切替電圧Vmとをコンパレータを用いて比較する。
【0037】
そして、AD入力セレクタ102は、例えば検知電圧Vsがモード切替電圧Vm未満のとき、低温モードとしてスイッチSW1をオン、スイッチSW2をオフさせると共に、低温モードであることを示すべく温度セレクト信号をローレベルでアドレスデコーダ103へ出力する。また、AD入力セレクタ102は、例えば検知電圧Vsがモード切替電圧Vm以上のとき、高温モードとしてスイッチSW1をオフ、スイッチSW2をオンさせると共に、高温モードであることを示すべく温度セレクト信号をハイレベルでアドレスデコーダ103へ出力する。
【0038】
なお、AD入力セレクタ102は、モード切替電圧Vmよりも低い下側モード切替電圧VmLとモード切替電圧よりも高い上側モード切替電圧VmHとを用い、低温モードから高温モードへ切り替えるときは、検知電圧Vsが上昇して下側モード切替電圧VmLに達したときに切替を行い、高温モードから低温モードへ切り替えるときは、検知電圧Vsが低下して上側モード切替電圧VmHに達したときに切替を行う構成としてもよい。これにより、低温モードから高温モードへの切り替えを行う検知電圧Vsと、高温モードから低温モードへの切り替えを行う検知電圧Vsとで電圧に差ができるので、例えば検知電圧Vsがモード切替電圧Vm付近でノイズの影響等により変動した場合であっても、誤って抵抗モードが切り替えられてしまうことが抑制される。
【0039】
アドレスデコーダ103は、AD入力セレクタ102から出力された温度セレクト信号をアドレスの1ビットに対応させると共に、AD変換器101から出力された8ビット長の検知電圧データDvsに付加して9ビットのアドレスとしてテーブルメモリ104へ出力する。
【0040】
テーブルメモリ104は、例えばROM(Read Only Memory)を用いて構成され、AD変換器101から出力された検知電圧データに対してサーミスタ20の温度特性の補正を施して、温度を表す温度データDtに変換する温度変換テーブルが予め記憶されている。図2は、テーブルメモリ104に記憶された温度変換テーブルの構成を説明するための説明図である。
【0041】
図2において、アドレス欄41にはテーブルメモリ104の9ビットのアドレスが16進数で記載され、データ欄42は、そのアドレスに記憶された8ビットのデータを16進数で示している。Sel欄43は、AD入力セレクタ102から出力された温度セレクト信号に対応するアドレスの最上位ビットを示し、温度セレクト信号がローレベル、すなわち低温モードのとき”0”にされ、温度セレクト信号がハイレベル、すなわち高温モードのとき”1”にされる。Dvs欄44は、検知電圧データDvsであり、テーブルメモリ104のアドレスの下位8ビットに対応している。
【0042】
また、温度コード欄45はすなわちテーブルメモリ104に記憶されたデータであり、Sel欄43が”0”のアドレスには、低温モード、すなわち電源電圧VOPをサーミスタ20と抵抗21とで分圧して得られた検知電圧データDvsに対応する温度を表す温度コードが記憶されている。また、Sel欄43が”1”のアドレスには、高温モード、すなわち電源電圧VOPをサーミスタ20と抵抗22とで分圧して得られた検知電圧データDvsに対応する温度を表す温度コードが記憶されている。この場合、温度コードとしては、例えば0.5℃を温度コードの1で表した8ビットのデータが用いられる。温度値欄46は、温度コード欄45に対応する温度値を示している。
【0043】
これにより、テーブルメモリ104は、アドレスデコーダ103から出力されたアドレスに応じて、サーミスタ20の温度特性を補正した温度データDtを判定回路108へ出力する。
【0044】
図1に戻ってEEPROM105と発振回路106とはプログラマブル発振器を構成し、EEPROM105に設定データを記憶させることにより、発振回路106から出力されるクロック信号CKの周波数を変更したり、その周波数を調整したりすることが可能にされている。EEPROM105と発振回路106とを用いる代わりに汎用のプログラマブル発振器を用いても良い。また、発振回路106を周波数固定の発振器により構成しても良い。また、発振回路106は、周波数がそれぞれことなる複数のクロック信号を出力する構成であっても良い。
【0045】
スイッチ24,25は、熱検知を判定するための判定方式を選択するための設定スイッチで、ユーザが切替可能にされている。スイッチ24は、電源ライン16に接続された接点26側とグラウンドライン23に接続された接点27側とに切替可能にされ、スイッチ25は、電源ライン16に接続された接点28側とグラウンドライン23に接続された接点29側とに切替可能にされている。これにより、スイッチ24が接点26側に切り替えられたとき接続端子114がハイレベルにされ、スイッチ24が接点27側に切り替えられたとき接続端子114がローレベルにされる。また、スイッチ25が接点28側に切り替えられたとき接続端子115がハイレベルにされ、スイッチ25が接点29側に切り替えられたとき接続端子115がローレベルにされる。
【0046】
機種設定回路107は、接続端子114,115の電圧レベルに応じた判定方式を設定する。例えば、接続端子114の信号名をMODE1、接続端子115の信号名をMODE2とすると、MODE1がローレベル、MODE2がハイレベルのとき差動式(1種)とし、MODE1及びMODE2がハイレベルのとき差動式(2種)とし、MODE1及びMODE2がローレベルのとき補償式とし、MODE1がハイレベル、MODE2がローレベルのとき定温式とする。そして、設定された判定方式を示す方式設定信号を判定回路108へ出力する。これにより、ユーザがスイッチ24,25を切り替えることによって、差動式(1種)、差動式(2種)、補償式、及び定温式のいずれかの判定方式を選択して設定することが可能にされている。
【0047】
判定回路108は、機種設定回路107により設定された判定方式に応じた判定条件で、その判定条件の成立を検出する。図3は、判定回路108の構成の一例を説明するためのブロック図である。図3に示す判定回路108は、テーブルメモリ104から出力された温度データDtを、クロック信号CKの立ち上がりエッジと同期して記憶するレジスタ120と、レジスタ120との間でシフトレジスタを構成し、クロック信号CKの立ち上がりエッジと同期して、直前のクロック信号CKの立ち上がりエッジでレジスタ120に記憶されていた温度データDtを1クロック前の温度データDtmとして記憶するレジスタ121とを備える。
【0048】
また、判定回路108は、レジスタ120により出力された温度データDtからレジスタ121により出力された温度データDtmを減算し、その減算値Ddtを温度差判定回路123へ出力する減算器122と、所定の差動基準データDdiff1を予め記憶した差動値レジスタ124と、差動基準データDdiff1とは異なる所定の差動基準データDdiff2を予め記憶した差動値レジスタ125とを備える。
【0049】
温度差判定回路123は、機種設定回路107からの方式設定信号が、例えば差動式(2種)を示す信号であった場合は差動値レジスタ125から出力される差動基準データDdiff2を差動基準データDdiffとして取り込み、方式設定信号が差動式(2種)以外の判定方式を示す信号であった場合は差動値レジスタ124から出力される差動基準データDdiff1を差動基準データDdiffとして取り込む。
【0050】
そして、温度差判定回路123は、比較回路を用いて減算値Ddtと差動基準データDdiffとを比較し、減算値Ddtが差動基準データDdiff以下の値であった場合は、温度差判定信号をローレベルでアップダウンカウンタ126へ出力する。一方、減算値Ddtが差動基準データDdiffよりも大きい値であった場合は、温度差判定信号をハイレベルでアップダウンカウンタ126へ出力する。
【0051】
これにより、例えばクロック信号CKの周期が1秒であった場合、1秒間の温度上昇が減算値Ddtとして生成され、その温度上昇値が差動基準データDdiffよりも大きい値であった場合、温度差判定信号がハイレベルで出力されるので、単位時間あたりの温度上昇、すなわち温度上昇率が所定の値を越えたことを検出することができる。また、ユーザがスイッチ24,25を用いて判定方式を差動式(1種)に設定したときと、差動式(2種)に設定したときで、検出の対象となる温度上昇率を変更することが可能になる。
【0052】
アップダウンカウンタ126は、温度差判定回路123から出力された温度差判定信号がハイレベルでクロック信号CKが立ち上がったときカウント値を1加算し、温度差判定信号がローレベルでクロック信号CKが立ち上がったときカウント値を1減算するアップダウンカウンタである。そして、カウント値が所定の閾値、例えば”10”以上になったとき、差動検出信号OUTdをハイレベルで出力セレクタ134へ出力する。
【0053】
この場合、所定の温度上昇率が所定の時間以上、例えばクロック信号CKの周期が1秒で閾値が10の場合10秒以上継続したとき、差動検出信号OUTdがハイレベルにされる。
【0054】
また、判定回路108は、所定の定温基準データDconstを予め記憶した定温値レジスタ127と、サーミスタ20が短絡した場合に検出される温度データを示す短絡基準データDshortを予め記憶した短絡値レジスタ128と、定温短絡判定回路129とを備える。
【0055】
定温短絡判定回路129は、例えば、機種設定回路107からの方式設定信号が、定温式又は補償式を示す信号であった場合は定温値レジスタ127から出力される定温基準データDconstを定温短絡基準データDcsとして取り込み、一方、方式設定信号が差動式(1種)又は差動式(2種)を示す信号であった場合は短絡値レジスタ128から出力される短絡基準データDshortを定温短絡基準データDcsとして取り込む。
【0056】
そして、定温短絡判定回路129は、比較回路を用いてレジスタ120から出力された温度データDtと定温短絡基準データDcsとを比較し、温度データDtが定温短絡基準データDcs以下の値であった場合は、定温短絡判定信号をローレベルでアップダウンカウンタ130へ出力し、一方、温度データDtが定温短絡基準データDcsよりも大きい値であった場合は、定温短絡判定信号をハイレベルでアップダウンカウンタ130へ出力する。
【0057】
これにより、定温短絡判定回路129は、判定方式が差動式(1種)又は差動式(2種)に設定されているときはサーミスタ20の短絡を検出するために用いられ、判定方式が定温式又は補償式に設定されているときはサーミスタ20による検知温度が所定の定温基準データDconstを越えたことを検出するために用いられるので、サーミスタ20の短絡を検出するためと、検知温度が所定の定温基準データDconstを越えたことを検出するためとにそれぞれ判定回路を備える必要がなく、回路が簡略化される。
【0058】
アップダウンカウンタ130は、アップダウンカウンタ126と同様のアップダウンカウンタで、定温短絡判定回路129から出力された定温短絡判定信号がハイレベルでクロック信号CKが立ち上がったときカウント値を1加算し、定温短絡判定信号がローレベルでクロック信号CKが立ち上がったときカウント値を1減算する。そして、カウント値が所定の閾値、例えば”10”以上になったとき、定温短絡検出信号OUTcsをハイレベルで出力セレクタ134へ出力する。
【0059】
また、判定回路108は、サーミスタ20が断線した場合に検出される温度データを示す断線基準データDopenを予め記憶した断線値レジスタ131と、断線判定回路132とを備える。断線判定回路132は、比較回路を用いてレジスタ120から出力された温度データDtと断線値レジスタ131から出力された断線基準データDopenとを比較し、温度データDtが断線基準データDopen以上の値であった場合は、断線判定信号をローレベルでアップダウンカウンタ133へ出力し、一方、温度データDtが断線基準データDopenよりも小さい値であった場合は、断線判定信号をハイレベルでアップダウンカウンタ133へ出力する。
【0060】
アップダウンカウンタ133は、アップダウンカウンタ126と同様のアップダウンカウンタで、断線判定回路132から出力された断線判定信号がハイレベルでクロック信号CKが立ち上がったときカウント値を1加算し、断線判定信号がローレベルでクロック信号CKが立ち上がったときカウント値を1減算する。そして、カウント値が所定の閾値、例えば”10”以上になったとき、断線検出信号OUToをハイレベルで出力セレクタ134へ出力する。
【0061】
出力セレクタ134は、断線検出信号OUTo、定温短絡検出信号OUTcs、差動検出信号OUTd、及び方式設定信号に基づき、熱検知報知信号OUTをハイレベルで接続端子116を介して報知出力回路19へ出力し、報知出力回路19をオンさせる。そして、感知器回線11に接続された図略の受信機が、熱検知の報知を検出する。
【0062】
図1に戻ってリセット回路17は、電源電圧VOPが低下したとき、接続端子117を介して集積回路100へリセット信号を出力し、判定回路108のレジスタ120,121、アップダウンカウンタ126,130,133を初期化させる。これにより、電源電圧VOPが低下して集積回路100の動作が不安定になったときに、判定回路108の誤動作により誤って熱検知の報知がされることが抑制される。
【0063】
次に、図1に示す熱感知回路10の動作を説明する。まず、低温モードにおいてスイッチSW1がオン、スイッチSW2がオフされた状態で、周囲温度がサーミスタ20に伝導し、サーミスタ20の温度が周囲温度とほぼ等しくなる。そして、サーミスタ20の温度に応じた抵抗がサーミスタ20に生じる。そして、定電圧回路15から出力された電源電圧VOPがサーミスタ20と抵抗21とで分圧され、サーミスタ20と抵抗21との接続点に生じた電圧が検知電圧Vsとして接続端子112を介してAD変換器101及びAD入力セレクタ102へ導かれる。これにより、周囲温度に応じた検知電圧Vsが生成される。
【0064】
次に、AD入力セレクタ102により、検知電圧Vsと下側モード切替電圧VmLとが比較され、例えば検知電圧Vsが下側モード切替電圧VmLに満たない場合、低温モードが維持され、温度セレクト信号がローレベルでアドレスデコーダ103へ出力される。一方、検知電圧Vsが下側モード切替電圧VmL以上の場合、低温モードから高温モードへと切り替えられ、スイッチSW1がオフ、スイッチSW2がオンされると共に、温度セレクト信号がハイレベルでアドレスデコーダ103へ出力される。
【0065】
次に、AD変換器101により、検知電圧Vsがアナログデジタル変換されて8ビット長の検知電圧データDvsが生成されると共にアドレスデコーダ103へ出力される。
【0066】
図4は、サーミスタ20の温度と検知電圧データDvsとの関係を示す図である。図4において、横軸はサーミスタ20の温度であり、縦軸はAD変換器101の出力値、すなわち検知電圧データDvsを10進数で表記した値である。また、グラフ47は、低温モード、すなわちスイッチSW1がオン、スイッチSW2がオフ、AD変換器101の基準電圧Vrefとして基準電圧Vref1を用いた場合のグラフである。また、グラフ48は、高温モード、すなわちスイッチSW1がオフ、スイッチSW2がオン、AD変換器101の基準電圧Vrefとして基準電圧Vref2を用いた場合のグラフである。
【0067】
グラフ47は、46℃(図4の破線49で示す温度)以下では、ほぼ直線に近いカーブを示すが、46℃を越えると直線性が悪くなる。一方、グラフ48は、40℃(図4の破線50で示す温度)以上ではほぼ直線に近いカーブを示すが、40℃未満の温度では直線性が悪くなる。この場合、例えばサーミスタ20の温度が43℃(図4の一点鎖線51で示す温度)のときの検知電圧Vsがモード切替電圧Vmとして設定され、サーミスタ20の温度が40℃のときの検知電圧Vsが下側モード切替電圧VmLとして設定され、サーミスタ20の温度が46℃のときの検知電圧Vsが上側モード切替電圧VmHとして設定されている。
【0068】
例えば、低温モードのとき、周囲温度が20℃から上昇すると、サーミスタ20の温度もまた上昇し、グラフ47に沿ってサーミスタ20の温度に応じた検知電圧データDvsがAD変換器101から出力される。さらに温度が上昇し、温度が40℃に達したとき検知電圧Vsが下側モード切替電圧VmLに達し、AD入力セレクタ102によってスイッチSW1がオフされ、スイッチSW2がオンされ、温度セレクト信号がハイレベルでアドレスデコーダ103へ出力されて高温モードに切り替えられる。
【0069】
これにより、温度が上昇して40℃以上になったときは、高温モードに切り替えられる結果、グラフ48に沿ってサーミスタ20の温度に応じた検知電圧データDvsがAD変換器101から出力される。従って、グラフ47の破線部52で示す直線性の悪い部分により温度検出精度が低下することが回避される。
【0070】
さらに、サーミスタ20の温度が40℃を越えて上昇すると、グラフ48に沿ってサーミスタ20の温度に応じた検知電圧データDvsがAD変換器101から出力される。この場合、40℃を越えた部分ではグラフ48は、ほぼ直線に近いカーブを示すので、グラフ48の直線性の悪い部分により温度検出精度が低下することがない。
【0071】
また、AD変換器101は、8ビットのAD変換器であるので検知電圧データDvsは10進数で0〜255の範囲で出力される。そこで、低温モードと高温モードとでAD変換器101の基準電圧Vrefを切り替えて、低温モードでは基準電圧Vref1とし、高温モードでは基準電圧Vref2とすることにより、グラフ47とグラフ48のほぼ直線に近いカーブを示す部分での検知電圧データDvsが10進数で0〜255の範囲に入るように調整されている。
【0072】
次に、アドレスデコーダ103によって、検知電圧データDvsと温度セレクト信号とに基づく9ビットのアドレスがテーブルメモリ104へ出力される。そして、そのアドレスに応じた温度データDtがテーブルメモリ104から判定回路108へ出力される。これにより、サーミスタ20の温度特性が高精度で補正され、精度の高い温度データDtが判定回路108へ出力される。
【0073】
図3を参照して、テーブルメモリ104から出力された温度データDtは、クロック信号CKの立ち上がりエッジと同期してレジスタ120に記憶され、レジスタ120に記憶されたその温度データDtは、次のクロック信号CKの立ち上がりエッジと同期してレジスタ121に温度データDtmとして記憶される。このとき、レジスタ120には新たな温度データDtが記憶される。これにより、例えばクロック信号CKの周期が1秒の場合、レジスタ121には温度データDtの1秒前の温度データDtmが記憶される。
【0074】
次に、減算器122によって、温度データDtから温度データDtmが減算され、その減算値Ddtが温度差判定回路123へ出力される。そして、判定方式として差動式(2種)が設定されているとき差動基準データDdiff2が差動基準データDdiffとされ、差動式(2種)以外の判定方式が設定されているとき、差動基準データDdiff1が差動基準データDdiffとされる。そして、温度差判定回路123により減算値Ddtと差動基準データDdiffとが比較され、減算値Ddtが差動基準データDdiff以下の値であった場合は、温度差判定信号がローレベルでアップダウンカウンタ126へ出力され、一方、減算値Ddtが差動基準データDdiffよりも大きい値であったとき、すなわち温度上昇率が所定の値を越えたことが検出されたとき、温度差判定信号がハイレベルでアップダウンカウンタ126へ出力される。
【0075】
次に、温度差判定信号がハイレベルの状態が10秒以上継続したとき、すなわち所定の温度上昇率が10秒以上継続したとき、アップダウンカウンタ126から差動検出信号OUTdがハイレベルで出力セレクタ134へ出力される。これにより、熱感知回路10を例えば火災報知器として用いた場合に、一時的な温度上昇により誤って火災の発生を報知してしまうことを抑制することができる。
【0076】
一方、定温短絡判定回路129において、判定方式として定温式又は補償式が設定されているとき定温基準データDconstが定温短絡基準データDcsとされ、判定方式として差動式(1種)又は差動式(2種)が設定されているとき短絡基準データDshortが定温短絡基準データDcsとされる。そして、定温短絡判定回路129により、レジスタ120から出力された温度データDtと定温短絡基準データDcsとが比較され、温度データDtが定温短絡基準データDcs以下の値であったとき、定温短絡判定信号がローレベルでアップダウンカウンタ130へ出力され、一方、温度データDtが定温短絡基準データDcsよりも大きい値であったとき、定温短絡判定信号がハイレベルでアップダウンカウンタ130へ出力される。
【0077】
次に、定温短絡判定信号がハイレベルの状態が10秒以上継続したとき、すなわち判定方式として定温式又は補償式が設定されているときは所定の温度以上の温度が10秒以上継続して検出されたとき、判定方式として差動式(1種)又は差動式(2種)が設定されているときはサーミスタ20の短絡が10秒以上継続して検出されたときに、アップダウンカウンタ130から定温短絡検出信号OUTcsがハイレベルで出力セレクタ134へ出力される。
【0078】
さらに、断線判定回路132により、レジスタ120から出力された温度データDtと断線基準データDopenとが比較され、温度データDtが断線基準データDopen以上の値であったとき、断線判定信号がローレベルでアップダウンカウンタ133へ出力され、一方、温度データDtが断線基準データDopenよりも小さい値であったとき、断線判定信号がハイレベルでアップダウンカウンタ133へ出力される。
【0079】
次に、断線判定信号がハイレベルの状態が10秒以上継続したとき、すなわちサーミスタ20の断線が10秒以上継続して検出されたとき、アップダウンカウンタ133から断線検出信号OUToがハイレベルで出力セレクタ134へ出力される。
【0080】
次に、出力セレクタ134によって、断線検出信号OUTo、定温短絡検出信号OUTcs、差動検出信号OUTd、及び方式設定信号に基づき、熱検知報知信号OUTがハイレベルで接続端子116を介して報知出力回路19へ出力され、報知出力回路19がオンされる。具体的には、出力セレクタ134は、例えば以下に示す論理和演算によって熱検知報知信号OUTを生成し、出力する。
【0081】
例えば、方式設定信号が差動式(1種)及び差動式(2種)を示す信号であった場合、OUT=OUTo+OUTcs+OUTdとして熱検知報知信号OUTが生成される。これにより、サーミスタ20の温度の上昇率が所定の上昇率を越えた場合、サーミスタ20が短絡した場合、及びサーミスタ20が断線した場合に熱検知報知信号OUTがハイレベルで出力され、報知出力回路19がオンされ、感知器回線11に接続された図略の受信機により、熱検知の報知が検出される。
【0082】
また、方式設定信号が補償式を示す信号であった場合、例えば、OUT=OUTo+OUTcs+OUTdとして熱検知報知信号OUTが生成される。これにより、サーミスタ20の温度の上昇率が所定の上昇率を越えた場合、サーミスタ20の温度が所定の温度を越えた場合、及びサーミスタ20が断線した場合に熱検知報知信号OUTがハイレベルで出力され、報知出力回路19がオンされ、感知器回線11に接続された図略の受信機により、熱検知の報知が検出される。
【0083】
また、方式設定信号が定温式を示す信号であった場合、例えば、OUT=OUTo+OUTcsとして熱検知報知信号OUTが生成される。これにより、サーミスタ20の温度が所定の温度を越えた場合、及びサーミスタ20が断線した場合に熱検知報知信号OUTがハイレベルで出力され、報知出力回路19がオンされ、感知器回線11に接続された図略の受信機により、熱検知の報知が検出される。これにより、図5に示すように、判定方式の設定内容に応じて判定内容が切り替えられる。
【0084】
なお、サーミスタ20は、抵抗値が小さくなるほど温度が高いことを示すので、サーミスタ20が短絡した場合は温度データDtが高温を示す。従って、判定方式が補償式及び定温式に設定されているときにサーミスタ20が短絡した場合は、温度データDtが定温基準データDconstよりも大きい値となる結果、熱検知報知信号OUTがハイレベルで出力され、報知出力回路19がオンされ、感知器回線11に接続された図略の受信機により、熱検知の報知が検出される。
【0085】
(第2実施形態)
次に、本発明の第2の実施形態による熱感知回路10aについて説明する。図6は、本発明の第2の実施形態による熱感知回路10aの構成の一例を示すブロック図である。なお、図1に示す熱感知回路10と同様の部分には同一符号を付している。
【0086】
図6に示す熱感知回路10aと図1に示す熱感知回路10とでは、下記の点で異なる。すなわち、図6に示す熱感知回路10aにおける感熱回路18aは、検知電圧Vsを接続端子112へ導くために、熱感知回路10における感熱回路18が備えた信号ライン30を備えない。また、熱感知回路10aにおける集積回路100aは、接続端子112を備えない。
【0087】
集積回路100aは、接続端子110とAD変換器101及びAD入力セレクタ102aとの間に介設されたスイッチSW3と、接続端子111とAD変換器101及びAD入力セレクタ102aとの間に介設されたスイッチSW4とを備える。
【0088】
AD入力セレクタ102aは、低温モードのときスイッチSW1,SW4をオン、スイッチSW2,SW3をオフさせると共に、低温モードであることを示すべく温度セレクト信号をローレベルでアドレスデコーダ103へ出力する一方、高温モードのときスイッチSW1,SW4をオフ、スイッチSW2,SW3をオンさせると共に、高温モードであることを示すべく温度セレクト信号をハイレベルでアドレスデコーダ103へ出力する。
【0089】
その他の構成は図1に示す熱感知回路10とほぼ同様であるので、以下本実施の形態の特徴的な点について、その動作を説明する。図6に示す熱感知回路10aにおいては、低温モードのとき、AD入力セレクタ102aによってスイッチSW1,SW4がオン、スイッチSW2,SW3がオフされる。そして、電源電圧VOPがサーミスタ20と抵抗21とで分圧され、サーミスタ20と抵抗21との接続点に生じた電圧が検知電圧Vsとして抵抗22、接続端子111、及びSW4を介してAD変換器101及びAD入力セレクタ102へ導かれる。
【0090】
一方、高温モードのとき、AD入力セレクタ102aによってスイッチSW1,SW4がオフ、スイッチSW2,SW3がオンされる。そして、電源電圧VOPがサーミスタ20と抵抗22とで分圧され、サーミスタ20と抵抗22との接続点に生じた電圧が検知電圧Vsとして抵抗21、接続端子110、及びSW3を介してAD変換器101及びAD入力セレクタ102へ導かれる。
【0091】
これにより、集積回路100aにおいては、低温モードのときは接続端子111が検知電圧Vsを入力するために用いられ、高温モードのときは接続端子110が検知電圧Vsを入力するために用いられるので、集積回路100のように検知電圧Vsを入力するための専用の接続端子112を備える必要がなく、接続端子数を1つ少なくすることができる。
【0092】
(第3実施形態)
次に、本発明の第3の実施形態による熱感知回路10bについて説明する。図7は、本発明の第3の実施形態による熱感知回路10bの構成の一例を示すブロック図である。なお、図6に示す熱感知回路10aと同様の部分には同一符号を付している。
【0093】
図7に示す熱感知回路10bと図6に示す熱感知回路10aとでは、下記の点で異なる。すなわち、熱感知回路10bはリセット回路17を備えない。また、熱感知回路10bにおける集積回路100bは、接続端子117を備えず、電源監視回路135、電圧レギュレータ136、及び接続端子137を備える。
【0094】
その他の構成は図6に示す熱感知回路10aとほぼ同様であるので、以下本実施の形態の特徴的な点について、その動作を説明する。
【0095】
電源監視回路135は、電源電圧VOPが所定の電圧以下に低下したとき、判定回路108へリセット信号を出力し、判定回路108のレジスタ120,121、アップダウンカウンタ126,130,133を初期化させる。これにより、電源電圧VOPが低下して集積回路100bの動作が不安定になったときに、判定回路108の誤動作により誤って熱検知の報知がされることが抑制される。また、集積回路100の外部からリセット信号を受け付ける必要がないので、接続端子117を備える必要がなく、接続端子数を1つ少なくすることができる。
【0096】
電圧レギュレータ136は、電源電圧VOPを安定化して集積回路100b内の各部へ動作用電源電圧として出力すると共に、基準電圧Vref1及び基準電圧Vref2をより高精度で生成し、AD変換器101へ出力する。これにより、電源電圧VOPの電圧変動の影響が低減されるので、集積回路100bの動作が安定する。また、AD変換器101のアナログデジタル変換の基準電圧となる基準電圧Vref1及び基準電圧Vref2の電圧精度を向上させることができるので、AD変換器101のアナログデジタル変換の精度が向上し、検知電圧データDvsの精度を向上させることができ、熱感知回路10bの温度検出精度が向上する。
【0097】
また、電圧レギュレータ136により生成された動作用電源電圧は、接続端子137を介して感熱回路18aへ出力される。これにより、電圧レギュレータ136によって安定化された動作用電源電圧を用いて検知電圧Vsが生成されるので、検知電圧Vsの精度が向上し、熱感知回路10bの温度検出精度が向上する。
【0098】
なお、温度検知素子は、サーミスタに限られず、ポジスタ、白金測温抵抗体等の感熱抵抗体や、熱電対等の温度検知素子を用いても良い。また、熱感知回路10,10a,10bは、火災報知器に限られず、例えば工場の生産工程等における熱処理装置の熱を検知するために用いられる熱感知回路等であってもよい。また、報知手段は、感知器回線11を介して接続された受信機に、熱検知の報知を示す信号を出力するものに限られず、例えばブザー、ランプ等によって、熱検知を報知するものであってもよい。
【0099】
【発明の効果】
請求項1に記載の発明によれば、前記検知電圧データがテーブル記憶手段のアドレスとして取得されることによりテーブル記憶手段からその検知電圧データに対応する温度データが出力されるので、温度検知素子の温度特性の補正を簡素な回路を用いて行うことができる。
【0100】
請求項2に記載の発明によれば、所定の判定条件が成立したことを検知するために用いられる温度データの精度を向上させることができるので、熱検知を報知する精度を向上させることができる。
【0101】
請求項3に記載の発明によれば、第1、第2の接続端子それぞれを、2つの異なった用途のために用いることができるので、集積回路の接続端子数を少なくすることができ、低コスト化することができる。
【0102】
請求項4に記載の発明によれば、所定のサンプリング時間での温度上昇が所定の差動基準データの値よりも大きいとき、すなわち温度の上昇率が所定の上昇率を上回るとき、熱検知を報知することができる。また、判定手段は、電源電圧が所定のリセット電圧以下となったとき第1、第2の記憶手段を初期化させる電源監視手段を備えるので、判定手段を集積回路化した場合に第1、第2の記憶手段を初期化させる信号を外部から受け付けるための接続端子を集積回路に備える必要がない。従って、集積回路の接続端子数を少なくすることができ、低コスト化することができる。
【0103】
請求項5に記載の発明によれば、温度の上昇率が所定の上昇率を上回るときと、温度が所定の温度よりも高温のときとに熱検知を報知することができる。
【0104】
請求項6に記載の発明によれば、設定受付手段により差動モードにする設定が受け付けられたとき、定温判定手段を用いて負温度特性抵抗体の短絡を検知することができるので、負温度特性抵抗体の短絡検知のための回路を別途設ける必要がなく、負温度特性抵抗体の短絡を検知するための回路規模の増大を抑制することができる。
【0105】
請求項7に記載の発明によれば、断線検知手段を定温判定手段と同様の温度比較回路を用いて構成することができるので、負温度特性抵抗体の断線を検知するためにAD変換手段及びテーブル記憶手段を用いることが可能となり、負温度特性抵抗体の断線を検知するための回路規模の増大を抑制することができる。
【0106】
請求項8に記載の発明によれば、短絡検知手段を定温判定手段と同様の温度比較回路を用いて構成することができるので、負温度特性抵抗体の断線を検知するためにAD変換手段及びテーブル記憶手段を用いることが可能となり、負温度特性抵抗体の短絡を検知するための回路規模の増大を抑制することができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態に係る熱感知回路の構成の一例を示すブロック図である。
【図2】テーブルメモリに記憶された温度変換テーブルの構成を説明するための説明図である。
【図3】判定回路の構成の一例を説明するためのブロック図である。
【図4】サーミスタの温度と検知電圧データとの関係を示す図である。
【図5】判定方式に応じた判定内容の一覧を示す図である。
【図6】本発明の第2の実施形態による熱感知回路の構成の一例を示すブロック図である。
【図7】本発明の第3の実施形態による熱感知回路の構成の一例を示すブロック図である。
【符号の説明】
10,10a,10b 熱感知回路
11 感知器回線
16 電源ライン
18,18a 感熱回路(温度検知手段)
19 報知出力回路(報知手段)
20 サーミスタ(負温度特性抵抗体)
21 抵抗(第1の抵抗)
22 抵抗(第2の抵抗)
23 グラウンドライン
24,25 スイッチ
30 信号ライン
100,100a,100b 集積回路
101 AD変換器(AD変換手段)
102,102a AD入力セレクタ(抵抗モード切替手段)
103 アドレスデコーダ
104 テーブルメモリ(テーブル記憶手段)
106 発振回路
107 機種設定回路(設定受付手段)
108 判定回路(判定手段)
110 接続端子(第1の接続端子)
111 接続端子(第2の接続端子)
112 接続端子
120 レジスタ(第1の記憶手段)
121 レジスタ(第2の記憶手段)
122 減算器
123 温度差判定回路(差動判定手段)
124,125 差動値レジスタ
126,130,133 アップダウンカウンタ
127 定温値レジスタ
128 短絡値レジスタ
129 定温短絡判定回路(定温判定手段,短絡検知手段)
131 断線値レジスタ
132 断線判定回路(断線検知手段)
134 出力セレクタ
135 電源監視回路(電源監視手段)
136 電圧レギュレータ(電源安定手段)
SW1 スイッチ(第1のスイッチング手段)
SW2 スイッチ(第2のスイッチング手段)
SW3 スイッチ(第3のスイッチング手段)
SW4 スイッチ(第4のスイッチング手段)

Claims (8)

  1. 温度に応じて電気的な特性値が変化する温度検知素子を用いてその特性値に応じた検知電圧を生成する温度検知手段を備えた熱感知回路において、
    前記温度検知手段により生成された検知電圧をアナログデジタル変換したデジタルデータである検知電圧データを生成するAD変換手段と、
    前記AD変換手段により生成されたデジタルデータである検知電圧データをアドレスとして用いた当該アドレスに、その検知電圧データに対応すると共に前記温度検知素子の温度特性が補正された温度データを記憶したテーブル記憶手段と、
    前記AD変換手段により生成されたデジタルデータである検知電圧データが、前記テーブル記憶手段によってアドレスとして取得されることにより前記テーブル記憶手段から出力された温度データに基づいて、所定の判定条件が成立したことを検知する判定手段と、
    前記判定手段により前記判定条件が成立したことが検知されたとき、熱検知を報知する報知手段とを備えることを特徴とする熱感知回路。
  2. 外部から取り込んだ電源電圧を安定化して前記AD変換手段がアナログデジタル変換を行うための基準電圧を生成する電源安定手段をさらに備えることを特徴とする請求項1記載の熱感知回路。
  3. 前記判定手段と、前記AD変換手段と、前記AD変換手段と前記温度検知手段との間の接続を切り替えるための第1、第2、第3、第4のスイッチング手段とを有する集積回路と、
    前記第1、第2、第3、第4のスイッチング手段のオンオフを制御する抵抗モード切替手段とを備え、
    前記温度検知素子は、温度に応じて抵抗値が変化する感熱抵抗体であり、
    前記温度検知手段は、前記温度検知手段の外部から取り込まれた電源電圧を、直列接続された前記感熱抵抗体との間で分圧する第1の抵抗と、前記感熱抵抗体と前記第1の抵抗との接続点に接続されると共に前記温度検知手段の外部から取り込まれた電源電圧を直列接続された前記感熱抵抗体との間で分圧する第2の抵抗とを備え、
    前記集積回路は、前記第1の抵抗を介して前記感熱抵抗体と接続される第1の接続端子と、前記第2の抵抗を介して前記感熱抵抗体と接続される第2の接続端子とをさらに備え、
    前記第1のスイッチング手段は、前記第1の接続端子を介して前記第1の抵抗と接続されると共に前記第1の抵抗に流れる電流をオンオフし、
    前記第2のスイッチング手段は、前記第2の接続端子を介して前記第2の抵抗と接続されると共に前記第2の抵抗に流れる電流をオンオフし、
    前記第3のスイッチング手段は、前記第1の接続端子に導かれた電圧を、前記AD変換手段へ前記検知電圧として導くと共にオンオフし、
    前記第4のスイッチング手段は、前記第2の接続端子に導かれた電圧を、前記AD変換手段へ前記検知電圧として導くと共にオンオフし、
    前記抵抗モード切替手段は、前記AD変換手段へ導かれた検知電圧に応じて、前記第1、第4のスイッチング手段をオンさせると共に前記第2、第3のスイッチング手段をオフさせる第1の抵抗モードと、前記第2、第3のスイッチング手段をオンさせると共に前記第1、第4のスイッチング手段をオフさせる第2の抵抗モードとを切り替えることを特徴とする請求項1又は2記載の熱感知回路。
  4. 前記判定手段は、所定のサンプリング時間間隔毎のサンプリングタイミングにおいて前記テーブル記憶手段から出力された温度データを記憶する第1の記憶手段と、
    前記第1の記憶手段が前記温度データを記憶したサンプリングタイミングの直前のサンプリングタイミングにおいて前記テーブル記憶手段から出力された温度データを記憶する第2の記憶手段と、
    前記第1の記憶手段によって記憶された温度データと前記第2の記憶手段によって記憶された温度データとの間の差と所定の差動基準データとを比較して、その差が前記差動基準データの値よりも大きくなる差動成立状態を検知する差動判定手段と、
    外部から取り込んだ電源電圧が所定のリセット電圧以下となったとき、前記第1、第2の記憶手段を初期化させる電源監視手段とを備え、
    前記差動判定手段による差動成立状態の検知の有無に基づいて、前記判定条件が成立したことを検知することを特徴とする請求項1〜3のいずれかに記載の熱感知回路。
  5. 前記判定手段は、前記テーブル記憶手段から出力された温度データと所定の定温基準データとを比較して、その温度データが前記定温基準データの値よりも大きくなる定温成立状態を検知する定温判定手段をさらに備え、
    前記判定手段は、前記差動判定手段による差動成立状態の検知の有無と、前記定温判定手段による定温成立状態の検知の有無とに応じて前記判定条件が成立したことを検知することを特徴とする請求項4に記載の熱感知回路。
  6. 前記差動成立状態の検知の有無に応じて前記判定条件が成立したことを検知する差動モードにする設定と、前記定温成立状態の検知の有無に応じて前記判定条件が成立したことを検知する定温モードにする設定とを受け付ける設定受付手段をさらに備え、
    前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、
    前記判定手段は、前記設定受付手段により前記定温モードにする設定が受け付けられた場合、前記定温成立状態を検知したとき前記判定条件が成立したことを検知し、前記設定受付手段により前記差動モードにする設定が受け付けられた場合、前記差動成立状態を検知したとき及び前記負温度特性抵抗体が短絡していることを示す短絡判定温度を前記定温基準データとして前記定温判定手段が定温成立状態を検知したとき、前記判定条件が成立したことを検知することを特徴とする請求項5に記載の熱感知回路。
  7. 前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、
    前記温度データが所定の断線判定温度を下回るとき前記負温度特性抵抗体の断線を検知する断線検知手段を備え、
    前記報知手段は、前記断線検知手段により前記負温度特性抵抗体の断線が検知されたとき、熱検知を報知することを特徴とする請求項1〜6のいずれかに記載の熱感知回路。
  8. 前記感熱抵抗体は温度の上昇に応じて抵抗値が小さくなる負温度特性抵抗体であり、
    前記温度データが所定の短絡判定温度を上回るとき前記負温度特性抵抗体の短絡を検知する短絡検知手段を備え、
    前記報知手段は、前記短絡検知手段により前記負温度特性抵抗体の短絡が検知されたとき、熱検知を報知することを特徴とする請求項1〜7のいずれかに記載の熱感知回路。
JP2003044955A 2003-02-21 2003-02-21 熱感知回路 Expired - Lifetime JP4254270B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044955A JP4254270B2 (ja) 2003-02-21 2003-02-21 熱感知回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044955A JP4254270B2 (ja) 2003-02-21 2003-02-21 熱感知回路

Publications (2)

Publication Number Publication Date
JP2004251852A JP2004251852A (ja) 2004-09-09
JP4254270B2 true JP4254270B2 (ja) 2009-04-15

Family

ID=33027509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044955A Expired - Lifetime JP4254270B2 (ja) 2003-02-21 2003-02-21 熱感知回路

Country Status (1)

Country Link
JP (1) JP4254270B2 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008111761A (ja) * 2006-10-31 2008-05-15 Sanyo Electric Co Ltd 温度検出装置
JP5063260B2 (ja) * 2007-08-27 2012-10-31 能美防災株式会社 熱感知器
JP4657339B2 (ja) * 2008-10-09 2011-03-23 能美防災株式会社 火災警報器
KR101263291B1 (ko) * 2012-06-21 2013-05-10 주식회사 포드림 목조전통건축물 재난 상황 조기 경보 시스템
JP6115102B2 (ja) * 2012-11-30 2017-04-19 株式会社ノーリツ 異常温度検知センサの断線検出装置および給湯装置
CN113465767B (zh) * 2020-03-31 2024-03-29 Tdk株式会社 温度检测电路、气体检测装置与温度检测方法

Also Published As

Publication number Publication date
JP2004251852A (ja) 2004-09-09

Similar Documents

Publication Publication Date Title
JP5577141B2 (ja) 温度検出のための回路及び方法
US8718152B2 (en) Two-wire transmitter
JP4254270B2 (ja) 熱感知回路
JP3231887B2 (ja) 熱感知器
JP2009250613A (ja) 温度検出装置
CN113608111B (zh) 一种精准检测输入信号幅度的***
JP4294633B2 (ja) ガス検出装置
US20190246026A1 (en) Image sensor device and method capable of detecting actual temperature range in which the image sensor device is being operated without using accurate temperature sensor
JP3210875B2 (ja) 補償式火災感知器
JP2985131B1 (ja) サ―ミスタ監視装置
JP2006121822A (ja) 無線通信装置及び無線通信装置における電力増幅回路の異常検出方法
JPH06186090A (ja) 熱アナログ式火災感知器
JP2005345380A (ja) 故障検知機能付き電子回路
JP2007003420A (ja) ガス警報器
JP6108516B2 (ja) ガス検出装置
US20240230570A9 (en) Gas sensor
JP4548192B2 (ja) 水位検知装置
JP4495563B2 (ja) 警報器
JP2000214030A (ja) 圧力センサ回路
RU64408U1 (ru) Устройство для обнаружения движущихся объектов
KR100283658B1 (ko) 온도검출 보상회로 및 보상방법
JPH07198672A (ja) 酸素センサの寿命診断装置
JP2784414B2 (ja) 電池電圧低下検出装置
JP2022106378A (ja) 温度測定回路及び温度測定装置
KR20170046471A (ko) 반도체식 가스센서를 이용한 가스 경보장치

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090119

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4254270

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140206

Year of fee payment: 5

EXPY Cancellation because of completion of term