JP4251542B2 - Skeletal structure member for transport machinery - Google Patents

Skeletal structure member for transport machinery Download PDF

Info

Publication number
JP4251542B2
JP4251542B2 JP2003189808A JP2003189808A JP4251542B2 JP 4251542 B2 JP4251542 B2 JP 4251542B2 JP 2003189808 A JP2003189808 A JP 2003189808A JP 2003189808 A JP2003189808 A JP 2003189808A JP 4251542 B2 JP4251542 B2 JP 4251542B2
Authority
JP
Japan
Prior art keywords
structure member
granular material
solidified
skeletal structure
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003189808A
Other languages
Japanese (ja)
Other versions
JP2005022511A (en
Inventor
省二 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Original Assignee
Honda Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2003189808A priority Critical patent/JP4251542B2/en
Publication of JP2005022511A publication Critical patent/JP2005022511A/en
Application granted granted Critical
Publication of JP4251542B2 publication Critical patent/JP4251542B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両、産業車両、船舶、航空機、自動車、自動二輪車等の輸送機械用骨格構造部材に関する。
【0002】
【従来の技術】
骨格構造部材として、骨格部材に粉粒体を充填したものが知られている。(例えば、特許文献1、特許文献2及び特許文献3参照。)。
【0003】
【特許文献1】
特開2002−193649公報(第9−10頁、図1−図4)
【特許文献2】
米国特許第4610836号公報(第3−5欄、図1、図2)
【特許文献3】
米国特許第4695343号公報(第3−5欄、図1、図2)
【0004】
特許文献1を図15で説明し、特許文献2を図16で説明する。
図15は従来の骨格構造部材を構成する固形化粉粒体を示す第1拡大断面図であり、固形化粉粒体(即ち、複数の粉粒体を結合して固めたもの)200は、粉粒体201…(…は複数個を示す。以下同じ。)と、これらの粉粒体201…を固形にするために粉粒体201…のそれぞれの間に満たした樹脂、接着剤等のバインダ202とからなり、粉粒体201を構造的に密に型に投入した後、バインダ202を流し込んで形成する。この固形化粉粒体200は、車体等の骨格部材内に挿入することで骨格構造部材を形成するものであり、車体の強度、剛性の向上を図る。
【0005】
図16は従来の骨格構造部材を構成する固形化粉粒体を示す第2拡大断面図であり、固形化粉粒体210は、接着剤211をコーティングした粉粒体としてのガラス製の小球体212…からなり、これらの小球体212…をガラス繊維製のクロスで包み、骨格部材内に満たすことで骨格構造部材を形成する。特許文献3にも同様の構造が記載されている。
【0006】
図17は従来の骨格構造部材を構成する固形化粉粒体を示す第3拡大断面図であり、固形化粉粒体214は、外部からの加熱、例えば、ヒータ、マイクロウェーブ等によって粉粒体215…の表面を融解させることで粉粒体215同士を結合したものである。なお、216…は粉粒体215の表面が融解後に固化した固化部である。
【0007】
【発明が解決しようとする課題】
図15に示した固形化粉粒体200では粉粒体201のみの場合に比べてバインダ202の分だけ重量が増し、図16に示した固形化粉粒体210でも同様に、小球体212のみの場合よりも接着剤211の分だけの重量が増すため、これらの固形化粉粒体200,210を用いた骨格構造部材の重量増が大きくなる。
【0008】
また、粉粒体201又は小球体212を密に充填すれば、固形化粉粒体200,210の剛性が高められるが、閉空間に粉粒体201又は小球体212を満たすには、外部から加圧する等の手段を講じなければならなず、容易ではない。
【0009】
図18は従来の骨格構造部材の表面融解を示す作用図であり、図17に示した粉粒体215の表面融解により出来た固化部216を拡大した拡大図である。
このように、固化部216によって粉粒体215同士の結合範囲が広くなり、結合は非常に強固となる。
【0010】
次に、上記の固形化粉粒体200,210を用いた骨格構造部材を曲げ試験で強制的に曲げ変形させて、骨格構造部材の吸収エネルギー量を求める。
図19は骨格構造部材の曲げ試験の方法を示す説明図であり、曲げ試験は、骨格構造部材220を2つの支点221,221で支え、これらの支点221,221の間隔の中央位置に対応する骨格構造部材220の上面に曲げ試験機の押圧片222を介して下向きの荷重Fを加えて行う。なお、δは押圧片222のストローク量、即ち下方への変位量、223(骨格構造部材220中に描いた破線)は、骨格構造部材220内に挿入した固形化粉粒体を示す。
【0011】
図20は骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係を略式に示すグラフであり、縦軸は荷重F、横軸は変位量δを表す。
このグラフでは、変位量δが小さいうちは、荷重Fは直線的に急激に立ち上がり、そして、荷重Fの増加は次第に小さくなって最大の荷重f1が発生し、この後は、変形量δが大きくなるにつれて、荷重Fは次第に減少し、やがてほぼ一定になる。
【0012】
立ち上がりの直線部の上端の荷重をL、直線の角度をαとすると、角度αが大きいほど、また、荷重Lが大きい(即ち、直線部が長い)ほど骨格構造部材の剛性は大きい。更に、荷重f1が大きいほど、骨格構造部材の強度は大きい。
【0013】
このグラフ上の線と横軸とで挟まれた部分の面積は、仕事量、即ち骨格構造部材の変形による吸収エネルギー量であり、例えば、車両の骨格構造における衝突時の吸収エネルギー量を求める場合に使用するものである。
【0014】
図21(a)〜(d)は骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係及び吸収エネルギー量を示す説明図である。
(a)は荷重Fと変位量δとの関係を示すグラフであり、縦軸は荷重F、横軸は変位量δを表す。
グラフ中の試料1は、図20に示したものと同一のもので、例えば中空の四角形断面とし、内部に固形化粉粒体を挿入していない骨格構造部材の結果である。
【0015】
試料2は、試料1の最大の荷重f1となる変位量より大きい変位量では、試料1よりも荷重Fが大きくなる。
試料3は、試料1の荷重f1となる変位量より大きい変位量では、試料2よりも荷重Fが大きくなる。
【0016】
これらの試料1〜試料3の吸収エネルギー量を示したのが(b)である。
(b)では縦軸が吸収エネルギー量Eを表す。試料1〜試料3の各吸収エネルギー量をe1〜e3とすると、e1<e2<e3となる。
【0017】
(c)は荷重Fと変位量δとの関係を示すグラフであり、縦軸は荷重F、横軸は変位量δを表す。
試料4は、試料1よりも立ち上がりの角度α(図20参照)を大きくし、且つ試料1の荷重f1よりも大きな荷重f2を最大値とするものであり、荷重f2のときの変位量よりも大きな変位量δでは、次第に試料1に重なる。
【0018】
試料5は、試料4よりも立ち上がりの角度α(図20参照)を大きくし、且つ試料4の荷重f2よりも大きな荷重f3を最大値とするものであり、荷重f3のときの変位量よりも大きな変位量δでは、次第に試料1に重なる。
【0019】
これらの試料1、試料4及び試料5の吸収エネルギー量を示したのが(d)である。
(d)では縦軸が吸収エネルギー量Eを表す。試料4、試料5の各吸収エネルギー量をe4、e5とすると、e1<e4<e5となる。
【0020】
以上の(a)〜(d)より、荷重Fの最大値が大きくなっただけでは吸収エネルギー量の増加は小さいが、荷重Fの最大値を大きくするとともに、最大荷重発生後の荷重を高く維持すれば、吸収エネルギー量の増加を大きくすることができる。
【0021】
図22は従来の骨格構造部材の曲げ試験結果としての変形状態を示す説明図である。
例えば、固形化粉粒体200(図15も参照)を挿入した骨格構造部材205を曲げ試験で変形させた場合、固形化粉粒体200を挿入した部分はほとんど変形せず、固形化粉粒体200の端部側が大きく変形した。206は大きく変形して屈曲した骨格部材207の屈曲部である。
【0022】
これは、粉粒体の高い充填率とバインダによる強い結合のために、固形化粉粒体200を挿入した部分の強度が非常に高まり、固形化粉粒体200以外の部分に歪みが集中したと考えられる。
【0023】
図23は従来の骨格構造部材の曲げ試験により得られた荷重と変位量との関係を示すグラフであり、縦軸は荷重F、横軸は変位量δを表す。各データの最大の変位量δは、変位量δを次第に増していって、急激に荷重Fが低下する直前の値である(以下同じ)。
【0024】
図中に短い破線で示した比較例1は、中空の四角形断面を有する骨格構造部材で固形化粉粒体を挿入していないもののデータであり、最大の変位量d5は大きいが、最大の荷重f5は小さい。
【0025】
一点鎖線で示した比較例2は、図15及び図22に示した骨格構造部材、即ち中実の粉粒体をバインダで結合した固形化粉粒体を備えたもののデータであり、粉粒体の結合が強固であるために最大の荷重f6は大きくなるが、曲げ試験の早期に固形化粉粒体以外の部分が局部的に大きく変形することにより最大の変位量d6は小さくなる。
【0026】
二点鎖線で示した比較例3は、図16に示した骨格構造部材、即ち中実の粉粒体に接着剤をコーティングして結合した固形化粉粒体を備えたもののデータであり、粉粒体の結合が強固なために最大の荷重f7は比較例2よりも大きくなるが、比較例2と同様に局部的な変形が大きいため、最大の変位量d7は小さい。
【0027】
長い破線で示した比較例4は、中実の粉粒体を表面融解させて結合した固形化粉粒体を備えたもののデータであり、表面融解によって粉粒体の結合が強固なために最大の荷重f8は比較例2とほぼ同等であるが、荷重f8の発生した変位量δよりも変位量が大きくなると、荷重Fは急激に低下し、その変位量d8は大きくならない。このような荷重Fの低下を抑えることができれば、大きな荷重を大きな変位量まで維持でき、骨格構造部材の吸収エネルギー量が増大できる。
【0028】
そこで、本発明の目的は、輸送機械用骨格構造部材を改良することで、粉粒体の固形化に伴う重量増を抑え、しかも、骨格構造部材の吸収エネルギー量を増大させることにある。
【0029】
【課題を解決するための手段】
上記目的を達成するために請求項1は、輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置した骨格構造部材であって、粉粒体を、その表面に部分的に無機材料層を形成することで無機材料層の間から外部に粉粒体の表面である露出部を露出させ、この露出部を加熱したときに表面融解させて粉粒体が互いに部分的に結合するようにしたことを特徴とする。
【0030】
例えば、粉粒体の表面全体を融解させることにより粉粒体同士を結合する場合にはその結合が非常に強固になり、固形化粉粒体に外部から荷重が作用した場合に、結合部が割れて破片となり、破片が移動しないために歪みが集中する。従って、骨格構造部材に局部的に変形が進行し、大きな荷重を支えることができなくなる。
【0031】
これに対して、本発明では、粉粒体を、互いに部分的に表面融解させることにより結合することで、固形化粉粒体に外部から荷重が作用した場合に、固形化粉粒体は、部分的に表面融解し固化した固化部が剥がれて粉粒体単体となって流動性を備えるようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。
【0032】
この結果、骨格構造部材をほぼ均等に且つ大きな変形量まで変形させることができる。このとき、バインダによる粉粒体の結合ほど強固ではないが、粉粒体の大きな結合によって、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材の吸収エネルギー量を増大させることができる。
【0033】
また、粉粒体同士が表面融解により結合するため、粉粒体同士の結合に接着剤や樹脂等のバインダを用いるのに比べて、固形化に伴う重量増を抑えることができる。
【0034】
更に、粉粒体に部分的に無機材料層を形成することで、粉粒体を容易に部分的に結合させることができる。
【0035】
【発明の実施の形態】
本発明の実施の形態を添付図に基づいて以下に説明する。なお、図面は符号の向きに見るものとする。
図1は本発明に係る輸送機械用骨格構造部材の斜視図であり、中空とした骨格部材11内に固形化粉粒体を充填した輸送機械用骨格構造部材12(以下、単に「骨格構造部材12」と記す。)を示す。なお、13,13は骨格部材11の両端を塞ぐ端部閉塞部材である。
【0036】
図2は図1の2−2線断面図であり、骨格構造部材12は、骨格部材11内に隔壁部材15,15を取付け、これらの隔壁部材15,15の間の空間に固形化粉粒体16を充填したことを示す。ここでは、固形化粉粒体16を骨格構造部材12の長手方向の中央に配置した。図中の18…は粉粒体であり、実際には外径が10μm〜5.0mmであるが、説明の都合上、大きく描いた(以下同じ)。
【0037】
図3は図1の3−3線断面図であり、中空の四角形断面とした骨格部材11内に、粉粒体18…をそれぞれ結合させて固形にした固形化粉粒体16を充填したことを示す。
【0038】
図4は本発明に係る固形化粉粒体の結合状態を示す拡大断面図であり、加熱による表面融解の後に部分的に結合した粉粒体18…を示す。
粉粒体18は、熱可塑性樹脂製の粉粒体18Aと、この粉粒体18Aの表面に部分的に形成した無機材料層23…とからなる。なお、24…は無機材料層23…の間から外部に露出した粉粒体18Aの表面である露出部である。
【0039】
粉粒体18同士は、加熱により露出部24…が融解した後に冷却によって固化した固化部22…で結合する。
無機材料層23を形成する無機材料としては、炭酸カルシウム、酸化チタンが好適である。
【0040】
図5は本発明に係る骨格構造部材の製造方法を示す作用図である。
まず、無機材料を粉粒体18Aの表面に部分的に付着、あるいは部分的にコーティングすることで無機材料層23…を形成した粉粒体18…を造る。
次に、粉粒体18…を骨格部材11内に所定量投入する。
そして、骨格部材11及び粉粒体18…を加熱する。
【0041】
これにより、各粉粒体18が部分的に表面融解を起こし、詳しくは、各粉粒体18の露出部24…(図4参照)のみが融解し、各粉粒体18の融解部分同士が一体になり、冷却した後に、粉粒体18同士が部分的に結合して、即ち粉粒体18同士が固化部22…を介して結合して固形化粉粒体16を形成し、骨格構造部材12が出来る。
【0042】
例えば、車両では、車両骨格部材内に粉粒体18を投入しておき、車両の塗装を乾燥させるために製造ラインに設けた塗装乾燥路で130〜200℃に加熱すれば、塗装乾燥の完了とほぼ同時に骨格構造部材が出来る。従って、別に加熱装置を必要とせず、しかも粉粒体18のための加熱時間も別に必要がないから、コストアップ及び製造工数の増加を抑えることができる。
また、粉粒体18Aを熱可塑性樹脂製とすることで低い温度で融解させることができるため、高温を発生させるような特別な加熱装置を必要としない。
【0043】
図6(a)〜(d)は骨格構造部材の曲げ試験の結果を示す説明図であり、(a)及び(b)は実施例(本実施の形態)、(c)及び(d)は比較例を示す。
(a)は骨格構造部材12(図2も参照)の曲げ試験を実施した後の状態を示す拡大正面図であり、骨格構造部材12の固形化粉粒体16(図中の破線部)を充填した部分がほぼ円弧状に変形したことを示す。
【0044】
(b)は骨格構造部材12の曲げ試験時に発生する歪みを説明する図であり、模式的に描いた骨格構造部材12を2つの支点31,31で支え、これらの支点31,31の間隔の中央位置に対応する骨格構造部材12の上面に下向きの荷重Fを加えたときに、骨格構造部材12の支点31,31間に発生する歪みをグラフとして表したものである。縦軸は歪み、横軸は骨格構造部材12の長手方向の位置を表す。
【0045】
支点31,31の位置では歪みはゼロであり、この位置から次第に固形化粉粒体16(図中のハッチングを施した部分)に近づくにつれて歪みは徐々に増加し、固形化粉粒体16の位置では歪みは一定になる。このときの歪みをε1とする。
【0046】
(c)は無機材料層を有していない中実の粉粒体を表面融解させて形成した固形化粉粒体を挿入した骨格構造部材230の曲げ試験を実施した後の状態を示す拡大正面図であり、骨格構造部材230の固形化粉粒体231(図中の破線部)を充填した部分はほとんど変形せず、固形化粉粒体231の外側の骨格部材232が大きく変形したことを示す。
【0047】
(d)は骨格構造部材230の曲げ試験時に発生する歪みを説明する図であり、模式的に描いた骨格構造部材230を2つの支点221,221で支え、これらの支点221,221の間隔の中央位置に対応する骨格構造部材230の上面に下向きの荷重Fを加えたときに、骨格構造部材230の支点221,221間に発生する歪みをグラフとして表したものである。縦軸は歪み、横軸は骨格構造部材230の長手方向の位置を表す。
【0048】
支点221,221の位置では歪みはゼロであり、この位置から次第に固形化粉粒体231に近づくにつれて歪みは急激に増加し、固形化粉粒体231の両端部近傍の外方位置で歪みは最大になる。このときの歪みをε2とする。
そして、歪みが最大となる位置から固形化粉粒体231の端部までは歪みが減少し、固形化粉粒体231の位置では歪みが一定になる。このときの歪みをε3とする。
【0049】
以上の(a)〜(d)において、比較例の骨格構造部材230では、固形化粉粒体230の剛性が過度に大きいために固形化粉粒体231はほとんど変形せず、歪みε3は小さくなるが、骨格部材232が局部的に大きく変形し、歪みε2は非常に大きくなる。従って、曲げ試験の早期に荷重Fは大きく低下する。即ち、吸収エネルギー量は少ない。
【0050】
これに対して、実施例の骨格構造部材12では、固形化粉粒体16の剛性が比較例の固形化粉粒体231に比べて小さく、曲げ試験によって固形化粉粒体16が徐々に変形しするとともにほぼ均一に変形するため、比較例の最大の歪みε2に対して最大の歪みε1を抑えることができる。即ち、歪みε1は歪みε2よりもdだけ小さい。従って、実施例の骨格構造部材12では、曲げ試験において大きな変位量まで高い荷重を維持することができ、比較例に対して吸収エネルギー量をより増大させることができる。
【0051】
図7(a)〜(c)は本発明に係る骨格構造部材の曲げ試験時の変形を示す作用図であり、図19に示したのと同じ方法で骨格構造部材12の曲げ試験を実施し、そのときの骨格構造部材12の変形、詳しくは、固形化粉粒体16の変化を説明する。
(a)において、骨格構造部材12に荷重Fを加える。なお、32は荷重Fを加えた骨格部材11上の加重点である。
【0052】
(b)において、骨格構造部材12が撓み、加重点32近傍の粉粒体18では、粉粒体18の固化部22…(図4参照)が剥がれて粉粒体18同士の結合が外れて、粉粒体18…が矢印で示すように移動し、骨格部材11の内部圧力が激増するのを抑える。
【0053】
(c)において、骨格構造部材12の撓みが更に大きくなると、粉粒体18…の固化部の剥がれが進行し、固形化粉粒体16(図(a)参照)の大部分は粉粒体18単体に戻って矢印のように流動し、歪みを拡散させる。
従って、骨格構造部材12は局部的に変形せず、ほぼ均一に変形するため、大きな荷重を維持しつつ流動によって大きな変位量まで安定して変形することができる。
【0054】
図8は本発明に係る骨格構造部材の曲げ試験終了後の断面図であり、曲げ試験開始前に、固形化粉粒体に、骨格構造部材12の長手方向に直角な方向に直線として描いた線34〜線38の変化を見ると、曲げ試験終了後では、例えば、線35の両端の点、即ち骨格部材11と交わる点を端点41,42とし、これらの端点41,42を通る直線43を引いたときに、直線35は、直線43よりも骨格構造部材12の端部側に湾曲していることが分かる。即ち、骨格部材11の上部が凹状に変形することで、前述した表面融解部が剥がれた粉粒体は、白抜き矢印で示すように、一方の隔壁部材15側に流動したことが分かる。
【0055】
図9は本発明に係る骨格構造部材の曲げ試験の結果得られた荷重と変位量との関係を示すグラフであり、縦軸は荷重F、横軸は変位量δを表す。
実施例(中実粉+無機材料層)の骨格構造部材12のデータ(実線で示す。)は、立ち上がりの直線部の長さ、例えば変位量d9における荷重f9は比較例2〜比較例4に対してそれほど大きくないが、大きな変位量まで徐々に荷重Fが増加する。従って、本発明の骨格構造部材12では、比較例1〜比較例4に比べて吸収エネルギー量をより増大させることができる。
【0056】
図10(a),(b)は本発明に係る骨格構造部材を車両に採用した例を示す斜視図である。
(a)において、本発明の骨格構造部材は、車体前部のエンジン両側方下方に配置するフロントサイドフレーム51,51、車室の両側方下部に配置するサイドシル52,52、左右のサイドシル52,52間に渡したフロントフロアクロスメンバ53、サイドシル52,52から立ち上げたセンタピラー54,54、サイドシル52,52から後方へ延ばしたリヤフレーム56,56に採用する。
【0057】
また、(b)において、本発明の骨格構造部材は、フロントピラー61,61、フロントドア(不図示)内及びリヤドア(不図示)内にそれぞれ配置したドアビーム62,63、ルーフの両側部に設けたルーフサイドレール64,64、左右のルーフサイドレール64,64に渡したルーフレール66,67に採用する。
【0058】
図11(a)〜(e)は本発明に係る骨格構造部材をフロントサイドフレームに採用した例の説明図である。なお、骨格構造部材としてのフロントサイドフレーム51の符号51を、ここでは便宜上、51A〜51Eと変更した。フロントサイドフレーム51A〜51Dでは、粉粒体18…を、直接に骨格部材内に充填し、フロントサイドフレーム51Eでは、粉粒体18…を予め別の骨格部材内に充填した状態で骨格部材内に挿入する。
【0059】
(a)に示すフロントサイドフレーム51Aは、アウタパネル71と、このアウタパネル71よりもエンジン室側に設けたインナパネル72とから骨格部材73を形成し、この骨格部材73内に粉粒体18…を充填した部材である。なお、フロントサイドフレーム51Aに粉粒体18を充填する場合に、フロントサイドフレーム51Aの長手方向全体に充填してもよいし、あるいは、フロントサイドフレーム51Aの長手方向に部分的に充填する、即ち、フロントサイドフレーム51A内に長手方向に所定間隔を開けて2枚の隔壁を設け、これら2枚の隔壁間に粉粒体18を充填してもよい。以下に述べる部位についても同様である。
【0060】
(b)に示すフロントサイドフレーム51Bは、斜面75を設けたアウタパネル76と、このアウタパネル76のエンジン室側に設けるとともに斜面77を形成したインナパネル78とから骨格部材81を形成し、この骨格部材81に粉粒体18…を充填した部材である。
【0061】
(c)に示すフロントサイドフレーム51Cは、アウタパネル71と、インナパネル72と、これらのアウタパネル71及びインナパネル72の内側に取付けた隔壁83とから骨格部材84を形成し、アウタパネル71及びインナパネル72内の隔壁83で区画した第1室85及び第2室86のうちの第1室85内に粉粒体18…を充填した部材である。
【0062】
(d)に示すフロントサイドフレーム51Dは、(c)に示したフロントサイドフレーム51Cの第2室86に粉粒体18…を充填した部材である。
(e)に示すフロントサイドフレーム51Eは、骨格部材88内に粉粒体18…を充填し、この骨格部材88を骨格部材73の内側に配置した部材である。
【0063】
図12(a)〜(d)は本発明に係る骨格構造部材をリヤフレームに採用した例の説明図である。なお、骨格構造部材としてのリヤフレーム56の符号56を、ここでは便宜上、56A〜56Dと変更した。
(a)に示すリヤフレーム56Aは、パネル部材としてのロアパネル91と、このロアパネル91の上部に設けたパネル部材としてのリヤフロアパネル92との間に粉粒体18を充填した部材である。
【0064】
(b)に示すリヤフレーム56Bは、ロアパネル91と、このロアパネル91の上部に取付けたサブロアパネル93との間に粉粒体18…を充填した部材である。
【0065】
(c)に示すリヤフレーム56Cは、ロアパネル91の上部に取付けたサブロアパネル93と、このサブロアパネル93の上部に設けたリヤフロアパネル92との間に粉粒体18を充填した部材である。
【0066】
(d)に示すリヤフレーム56Dは、ロアパネル91とリヤフロアパネル92とで囲まれる閉空間内に骨格部材94を配置し、この骨格部材94内に粉粒体18…を充填した部材である。
【0067】
また、骨格部材94内には粉粒体18…を充填せず、骨格部材94とその周囲のパネル部材としてのロアパネル91、リヤフロアパネル92とで囲まれる空間95に粉粒体18…を充填してもよく、更には、骨格部材94内及び空間95内の両方に粉粒体18…を充填してもよい。
【0068】
図13(a)〜(c)は本発明に係る骨格構造部材をセンタピラーに採用した例の説明図である。なお、骨格構造部材としてのセンタピラー54の符号54を、ここでは便宜上、54A〜54Cと変更した。
(a)に示したセンタピラー54Aは、アウタパネル96と、このアウタパネル96の車室側に配置したインナパネル97とで骨格部材98を形成し、この骨格部材98に粉粒体18…を充填した部材である。
【0069】
(b)に示したセンタピラー54Bは、アウタパネル96とインナパネル97との間に補強部材101を取付けることで骨格部材102を形成し、補強部材101とアウタパネル96との間に粉粒体18…を充填した部材である。
【0070】
(c)に示したセンタピラー54Cは、アウタパネル96とインナパネル97との間に補強部材101を取付け、この補強材101とインナパネル97との間に粉粒体18…を充填した部材である。
【0071】
図14(a)〜(c)は本発明に係る骨格構造部材をルーフサイドレールに採用した例の説明図である。なお、骨格構造部材としてのルーフサイドレール64の符号を、ここでは便宜上、64A〜64Cと変更した。
【0072】
(a)に示したルーフサイドレール64Aは、アウタパネル104と、このアウタパネル104の車室側に配置したインナパネル105とで骨格部材106を形成し、この骨格部材106に粉粒体18…を充填した部材である。
【0073】
(b)に示したルーフサイドレール64Bは、アウタパネル104とインナパネル105との間に補強部材107を取付けることで骨格部材108を形成し、補強部材107とアウタパネル104との間に粉粒体18…を充填した部材である。
【0074】
(c)に示したルーフサイドレール64Cは、アウタパネル104とインナパネル105との間に補強部材107を取付けることで骨格部材108を形成し、補強部材107とインナパネル105との間に粉粒体18…を充填した部材である。
【0075】
以上の図5で説明したように、本発明第1には、輸送機械の骨格部材11内及び/又は骨格部材11とその周囲のパネル部材(例えば、図12に示したロアパネル91、リヤフロアパネル92)とで囲まれる空間(例えば、図12に示した空間95)に、複数の粉粒体18を結合して固めた固形化粉粒体16を配置した骨格構造部材12であって、粉粒体18を、互いに部分的に表面融解させることにより結合するようにしたことを特徴とする。
【0076】
例えば、粉粒体の表面全体を融解させることにより粉粒体同士を結合する場合にはその結合が非常に強固になり、固形化粉粒体に外部から荷重が作用した場合に、結合部が割れて破片となり、破片が移動しないために歪みが集中する。従って、骨格構造部材に局部的に変形が進行し、大きな荷重を支えることができなくなる。
【0077】
これに対して、本発明では、粉粒体18を、互いに部分的に表面融解させることにより結合することで、固形化粉粒体16に外部から荷重が作用した場合に、固形化粉粒体16は、部分的に表面融解し固化した固化部22…が剥がれて粉粒体18の単体となって流動性を備えるようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。
【0078】
この結果、骨格構造部材12をほぼ均等に且つ大きな変形量まで変形させることができる。このとき、バインダによる粉粒体の結合ほど強固ではないが、粉粒体18の大きな結合によって、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材12の吸収エネルギー量を増大させることができる。
【0079】
また、粉粒体18同士が表面融解により結合するため、粉粒体18同士の結合に接着剤や樹脂等のバインダを用いるのに比べて、固形化に伴う重量増を抑えることができる。
【0080】
本発明は第2に、粉粒体18Aを、その表面に部分的に無機材料層23…を形成することで加熱したときに部分的に表面融解させるようにしたことを特徴とする。
粉粒体18に部分的に無機材料層23…を形成することで、粉粒体18を容易に部分的に結合させることができる。
【0081】
尚、本発明の実施の形態では、骨格部材内に粉粒体をそのまま投入したが、これに限らず、袋(ゴム製、ポリエチレン等の樹脂製、紙製のもの)や容器に予め詰めた状態で骨格部材内に投入してもよい。
【0082】
【発明の効果】
本発明は上記構成により次の効果を発揮する。
請求項1の輸送機械用骨格構造部材は、粉粒体を、その表面に部分的に無機材料層を形成することで無機材料層の間から外部に粉粒体の表面である露出部を露出させ、この露出部を加熱したときに表面融解させて粉粒体が互いに部分的に結合するようにしたので、固形化粉粒体に外部から荷重が作用した場合に、固形化粉粒体は、部分的に表面融解し固化した固化部が剥がれて粉粒体単体となって流動性を備えるようになり、外部からの荷重により発生する歪みを拡散して歪みの集中を防ぐことができる。
【0083】
この結果、骨格構造部材をほぼ均等に且つ大きな変形量まで変形させることができる。このとき、バインダによる粉粒体の結合ほど強固ではないが、粉粒体の大きな結合によって、大きな変位量まで大きな荷重を支えることができ、従来に比較して、骨格構造部材の吸収エネルギー量を増大させることができる。
【0084】
また、粉粒体同士が表面融解により結合するため、粉粒体同士の結合に接着剤や樹脂等のバインダを用いるのに比べて、固形化に伴う重量増を抑えることができる。
【0085】
更に、粉粒体を、その表面に部分的に無機材料層を形成したので、粉粒体に部分的に形成した無機材料層によって、粉粒体を容易に部分的に結合させることができる。
【図面の簡単な説明】
【図1】本発明に係る輸送機械用骨格構造部材の斜視図
【図2】図1の2−2線断面図
【図3】図1の3−3線断面図
【図4】本発明に係る固形化粉粒体の結合状態を示す拡大断面図
【図5】本発明に係る骨格構造部材の製造方法を示す作用図
【図6】骨格構造部材の曲げ試験の結果を示す説明図
【図7】本発明に係る骨格構造部材の曲げ試験時の変形を示す作用図
【図8】本発明に係る骨格構造部材の曲げ試験終了後の断面図
【図9】本発明に係る骨格構造部材の曲げ試験の結果得られた荷重と変位量との関係を示すグラフ
【図10】本発明に係る骨格構造部材を車両に採用した例を示す斜視図
【図11】本発明に係る骨格構造部材をフロントサイドフレームに採用した例の説明図
【図12】本発明に係る骨格構造部材をリヤフレームに採用した例の説明図
【図13】本発明に係る骨格構造部材をセンタピラーに採用した例の説明図
【図14】本発明に係る骨格構造部材をルーフサイドレールに採用した例の説明図
【図15】従来の骨格構造部材を構成する固形化粉粒体を示す第1拡大断面図
【図16】従来の骨格構造部材を構成する固形化粉粒体を示す第2拡大断面図
【図17】従来の骨格構造部材を構成する固形化粉粒体を示す第3拡大断面図
【図18】従来の骨格構造部材の表面融解を示す作用図
【図19】骨格構造部材の曲げ試験の方法を示す説明図
【図20】骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係を略式に示すグラフ
【図21】骨格構造部材の曲げ試験の結果として得られる荷重と変位量との関係及び吸収エネルギー量を示す説明図
【図22】従来の骨格構造部材の曲げ試験結果としての変形状態を示す説明図
【図23】従来の骨格構造部材の曲げ試験により得られた荷重と変位量との関係を示すグラフ
【符号の説明】
11…骨格部材、12…輸送機械用骨格構造部材、16…固形化粉粒体、18,18A…粉粒体、23…無機材料層、24…露出部、91,92…パネル部材(ロアパネル、リヤフロアパネル)、95…空間。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a framework structure member for a transport machine such as a railway vehicle, an industrial vehicle, a ship, an aircraft, an automobile, and a motorcycle.
[0002]
[Prior art]
As a skeleton structure member, a skeleton member filled with powder particles is known. (For example, refer to Patent Document 1, Patent Document 2, and Patent Document 3.)
[0003]
[Patent Document 1]
JP 2002-193649 A (page 9-10, FIGS. 1 to 4)
[Patent Document 2]
US Pat. No. 4,610,836 (columns 3-5, FIGS. 1 and 2)
[Patent Document 3]
US Pat. No. 4,695,343 (column 3-5, FIGS. 1 and 2)
[0004]
Patent Document 1 will be described with reference to FIG. 15, and Patent Document 2 will be described with reference to FIG.
FIG. 15 is a first enlarged cross-sectional view showing a solidified granular material constituting a conventional skeletal structure member. A solidified granular material (that is, a solidified granular material combined 200) is: In order to make these powders 201 ... solid, such as resin, adhesive, etc., in order to make these powders 201 ... solid It consists of a binder 202, and after the granular material 201 is structurally densely put into a mold, the binder 202 is poured into the mold. The solidified granular material 200 forms a skeletal structure member by being inserted into a skeleton member such as a vehicle body, and improves the strength and rigidity of the vehicle body.
[0005]
FIG. 16 is a second enlarged cross-sectional view showing a solidified granular material constituting a conventional skeletal structure member, and the solidified granular material 210 is a glass microsphere as a granular material coated with an adhesive 211. The skeleton structure member is formed by wrapping these small spheres 212 with a glass fiber cloth and filling the skeleton member. Patent Document 3 also describes a similar structure.
[0006]
FIG. 17 is a third enlarged cross-sectional view showing a solidified granular material constituting a conventional skeletal structure member. The solidified granular material 214 is heated by external heating, for example, a heater, microwave, etc. The particles 215 are bonded together by melting the surfaces of 215. In addition, 216... Is a solidified portion where the surface of the granular material 215 is solidified after melting.
[0007]
[Problems to be solved by the invention]
In the solidified granular material 200 shown in FIG. 15, the weight is increased by the amount of the binder 202 compared to the case of only the granular material 201, and in the same way, only the small sphere 212 in the solidified granular material 210 shown in FIG. Since the weight corresponding to the amount of the adhesive 211 is increased as compared with the case of, the increase in the weight of the skeleton structure member using the solidified powder particles 200 and 210 is increased.
[0008]
Further, if the powder particles 201 or the small spheres 212 are densely packed, the rigidity of the solidified powder particles 200 and 210 can be increased. However, in order to fill the powder particles 201 or the small spheres 212 in the closed space, from the outside It is not easy to take pressure.
[0009]
FIG. 18 is an operation diagram showing surface melting of a conventional skeletal structure member, and is an enlarged view in which a solidified portion 216 formed by surface melting of the powder body 215 shown in FIG. 17 is enlarged.
Thus, the solidified part 216 widens the bonding range between the powder bodies 215, and the bonding becomes very strong.
[0010]
Next, the skeleton structure member using the solidified powder particles 200 and 210 is forcibly bent and deformed in a bending test, and the amount of absorbed energy of the skeleton structure member is obtained.
FIG. 19 is an explanatory view showing a bending test method for a skeletal structure member. In the bending test, the skeletal structure member 220 is supported by two fulcrums 221, 221 and corresponds to the center position of the distance between these fulcrums 221, 221. A downward load F is applied to the upper surface of the skeletal structure member 220 via a pressing piece 222 of a bending tester. In addition, δ is the stroke amount of the pressing piece 222, that is, the downward displacement amount, and 223 (broken line drawn in the skeletal structure member 220) indicates the solidified granular material inserted into the skeleton structure member 220.
[0011]
FIG. 20 is a graph schematically showing the relationship between the load and the displacement obtained as a result of the bending test of the skeletal structure member, where the vertical axis represents the load F and the horizontal axis represents the displacement δ.
In this graph, while the displacement amount δ is small, the load F rises linearly and abruptly, and the increase in the load F gradually decreases to generate the maximum load f1, and thereafter, the deformation amount δ increases. As it becomes, the load F gradually decreases and eventually becomes substantially constant.
[0012]
Assuming that the load at the upper end of the rising straight portion is L and the angle of the straight line is α, the rigidity of the skeletal structure member increases as the angle α increases and the load L increases (that is, the straight portion increases). Furthermore, the greater the load f1, the greater the strength of the skeletal structure member.
[0013]
The area of the portion sandwiched between the line on the graph and the horizontal axis is the work amount, that is, the absorbed energy amount due to deformation of the skeletal structure member. For example, when calculating the absorbed energy amount at the time of collision in the skeleton structure of the vehicle It is used for
[0014]
FIGS. 21A to 21D are explanatory views showing the relationship between the load and the displacement obtained as a result of the bending test of the skeletal structure member and the amount of absorbed energy.
(A) is a graph showing the relationship between the load F and the displacement amount δ, where the vertical axis represents the load F and the horizontal axis represents the displacement amount δ.
Sample 1 in the graph is the same as that shown in FIG. 20, and is a result of a skeletal structure member having, for example, a hollow quadrangular cross section and no solidified powder particles inserted therein.
[0015]
In the sample 2, the load F is larger than that in the sample 1 when the displacement amount is larger than the displacement amount that becomes the maximum load f1 of the sample 1.
In the sample 3, the load F is larger than that in the sample 2 when the displacement amount is larger than the displacement amount that becomes the load f1 of the sample 1.
[0016]
(B) shows the amount of absorbed energy of Sample 1 to Sample 3.
In (b), the vertical axis represents the absorbed energy amount E. If the absorbed energy amounts of Sample 1 to Sample 3 are e1 to e3, e1 <e2 <e3.
[0017]
(C) is a graph showing the relationship between the load F and the displacement amount δ, where the vertical axis represents the load F and the horizontal axis represents the displacement amount δ.
The sample 4 has a rising angle α (see FIG. 20) larger than that of the sample 1 and a load f2 larger than the load f1 of the sample 1 is set to the maximum value, and is larger than the displacement amount at the load f2. When the displacement amount δ is large, it gradually overlaps the sample 1.
[0018]
The sample 5 has a rising angle α (see FIG. 20) larger than that of the sample 4 and has a load f3 larger than the load f2 of the sample 4 as a maximum value, which is larger than the displacement amount at the time of the load f3. When the displacement amount δ is large, it gradually overlaps the sample 1.
[0019]
(D) shows the absorbed energy amounts of Sample 1, Sample 4 and Sample 5.
In (d), the vertical axis represents the absorbed energy amount E. When the absorbed energy amounts of the sample 4 and the sample 5 are e4 and e5, e1 <e4 <e5.
[0020]
From the above (a) to (d), the increase in the amount of absorbed energy is small only by increasing the maximum value of the load F, but the maximum value of the load F is increased and the load after the maximum load is generated is kept high. If so, the increase in the amount of absorbed energy can be increased.
[0021]
FIG. 22 is an explanatory view showing a deformation state as a result of a bending test of a conventional skeletal structure member.
For example, when the skeletal structure member 205 into which the solidified granular material 200 (see also FIG. 15) is deformed by a bending test, the portion into which the solidified granular material 200 is inserted hardly deforms, and the solidified granular material The end side of the body 200 was greatly deformed. Reference numeral 206 denotes a bent portion of the skeleton member 207 which is greatly deformed and bent.
[0022]
This is because the strength of the portion where the solidified granular material 200 is inserted is greatly increased due to the high filling rate of the granular material and the strong bonding by the binder, and distortion is concentrated on the portion other than the solidified granular material 200. it is conceivable that.
[0023]
FIG. 23 is a graph showing a relationship between a load and a displacement obtained by a bending test of a conventional skeletal structure member, where the vertical axis represents the load F and the horizontal axis represents the displacement δ. The maximum displacement amount δ of each data is a value immediately before the load F is suddenly decreased by gradually increasing the displacement amount δ (hereinafter the same).
[0024]
Comparative Example 1 indicated by a short broken line in the figure is data of a skeletal structure member having a hollow quadrangular cross section in which no solidified granular material is inserted. The maximum displacement d5 is large, but the maximum load is shown. f5 is small.
[0025]
The comparative example 2 shown with the dashed-dotted line is the data of the skeletal structure member shown in FIG. 15 and FIG. 22, that is, the data including the solidified granular material obtained by binding the solid granular material with a binder. The maximum load f6 is increased because of the strong bonding, but the maximum amount of displacement d6 is reduced by a large local deformation of parts other than the solidified granular material in the early stage of the bending test.
[0026]
Comparative Example 3 indicated by a two-dot chain line is data of the skeletal structure member shown in FIG. 16, that is, the solid structure having a solid powder and bonded to the solid powder by coating with an adhesive. The maximum load f7 is larger than that of Comparative Example 2 due to the strong bonding of the grains, but the maximum displacement d7 is small because of the large local deformation as in Comparative Example 2.
[0027]
Comparative Example 4 shown by a long broken line is data of a solidified granular material obtained by bonding solid powder particles by melting the surface, and the maximum is due to the strong bonding of the granular materials by surface melting. The load f8 is substantially the same as that of the comparative example 2, but when the displacement amount becomes larger than the displacement amount δ generated by the load f8, the load F rapidly decreases and the displacement amount d8 does not increase. If such a decrease in the load F can be suppressed, a large load can be maintained up to a large displacement amount, and the amount of absorbed energy of the skeletal structure member can be increased.
[0028]
Therefore, an object of the present invention is to improve the skeletal structure member for transport machinery, thereby suppressing an increase in weight associated with solidification of the granular material and increasing the amount of absorbed energy of the skeleton structure member.
[0029]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a solidified powder obtained by combining and solidifying a plurality of powder particles in a space surrounded by a frame member of a transport machine and / or a frame member and a surrounding panel member. A skeletal structure member in which granules are arranged, By partially forming an inorganic material layer on the surface, the exposed part, which is the surface of the granular material, is exposed from between the inorganic material layers to the outside, and when this exposed part is heated, the surface is melted and the granular material But Part of each other Yui It is characterized by having matched.
[0030]
For example, when the powder particles are bonded together by melting the entire surface of the powder particles, the bond becomes very strong, and when a load is applied to the solidified powder particles from the outside, It breaks into pieces, and the distortion concentrates because the pieces do not move. Accordingly, the skeleton structure member is locally deformed and cannot support a large load.
[0031]
On the other hand, in the present invention, when the powder particles are bonded to each other by partially melting each other, when a load acts on the solidified powder particles from the outside, the solidified powder particles are: The solidified part that is partially melted and solidified on the surface peels off and becomes a single granular material and has fluidity, and strain generated by an external load can be diffused to prevent strain concentration.
[0032]
As a result, the skeletal structure member can be deformed almost uniformly and to a large deformation amount. At this time, although it is not as strong as the bonding of the powder particles by the binder, the large bonding of the powder particles can support a large load up to a large displacement amount, and the amount of absorbed energy of the skeletal structure member is smaller than before. Can be increased.
[0033]
In addition, since the powder particles are bonded to each other by surface melting, an increase in weight due to solidification can be suppressed as compared to using a binder such as an adhesive or a resin for bonding powder particles.
[0034]
More By forming the inorganic material layer partially on the granular material, the granular material can be easily partially bonded.
[0035]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. The drawings are viewed in the direction of the reference numerals.
FIG. 1 is a perspective view of a skeletal structure member for transport machinery according to the present invention. The skeletal structure member 12 for transport machinery (hereinafter simply referred to as “skeleton structure member”) in which a solid skeleton member is filled in a hollow skeleton member 11. 12 ”). Reference numerals 13 and 13 denote end closing members that close both ends of the skeleton member 11.
[0036]
2 is a cross-sectional view taken along the line 2-2 of FIG. 1, and the skeletal structure member 12 has partition members 15 and 15 mounted in the skeleton member 11, and solidified powder particles in the space between these partition members 15 and 15. The body 16 is filled. Here, the solidified powder particles 16 are arranged in the center of the skeleton structure member 12 in the longitudinal direction. In the figure, 18... Is a granular material, and actually has an outer diameter of 10 .mu.m to 5.0 mm, but is drawn large for convenience of explanation (the same applies hereinafter).
[0037]
FIG. 3 is a cross-sectional view taken along line 3-3 of FIG. 1, and the solidified granular material 16 that is solidified by combining the granular material 18... Indicates.
[0038]
FIG. 4 is an enlarged cross-sectional view showing the bonded state of the solidified powder particles according to the present invention, showing the powder particles 18... Partially bonded after surface melting by heating.
The powder body 18 is composed of a thermoplastic resin powder body 18A and an inorganic material layer 23 partially formed on the surface of the powder body 18A. In addition, 24 ... is an exposed part which is the surface of the granular material 18A exposed to the outside from between the inorganic material layers 23 ....
[0039]
The powder particles 18 are bonded together by solidified portions 22 that are solidified by cooling after the exposed portions 24 are melted by heating.
As the inorganic material forming the inorganic material layer 23, calcium carbonate and titanium oxide are suitable.
[0040]
FIG. 5 is an operation diagram showing a method for manufacturing a skeletal structure member according to the present invention.
First, the granular material 18 with the inorganic material layer 23 formed by partially attaching or partially coating the surface of the granular material 18A with the inorganic material is produced.
Next, a predetermined amount of the granular materials 18 are put into the skeleton member 11.
And the skeleton member 11 and the granular material 18 ... are heated.
[0041]
Thereby, each granular material 18 raise | generates partially surface melting, and specifically, only the exposed part 24 ... (refer FIG. 4) of each granular material 18 melt | dissolves, and the fusion | melting parts of each granular material 18 are mutually. After being united and cooled, the powder particles 18 are partially bonded to each other, that is, the powder particles 18 are bonded to each other through the solidified portion 22 to form the solidified powder particles 16, and the skeleton structure The member 12 is made.
[0042]
For example, in a vehicle, if the granular material 18 is put into a vehicle skeleton member and heated to 130 to 200 ° C. in a coating drying path provided in a production line in order to dry the coating of the vehicle, the drying of the coating is completed. At the same time, a skeletal structure member can be formed. Therefore, a separate heating device is not required, and a separate heating time for the granular material 18 is not necessary, so that an increase in cost and an increase in manufacturing steps can be suppressed.
Moreover, since it can be made to melt | melt at low temperature by making the granular material 18A into a product made from a thermoplastic resin, the special heating apparatus which generate | occur | produces high temperature is not required.
[0043]
6 (a) to 6 (d) are explanatory views showing the results of a bending test of the skeletal structure member. (A) and (b) are examples (this embodiment), and (c) and (d) are A comparative example is shown.
(A) is an enlarged front view which shows the state after implementing the bending test of the frame | skeleton structure member 12 (refer also FIG. 2), and solidified granular material 16 (the broken line part in a figure) of the frame | skeleton structure member 12 is shown. It shows that the filled portion is deformed into a substantially arc shape.
[0044]
(B) is a figure explaining the distortion which generate | occur | produces at the time of the bending test of the frame | skeleton structure member 12, the frame | skeleton structure member 12 drawn typically is supported by the two fulcrum 31,31, and the space | interval of these fulcrum 31,31 is shown. The graph shows the distortion generated between the fulcrums 31, 31 of the skeletal structure member 12 when a downward load F is applied to the upper surface of the skeleton structure member 12 corresponding to the center position. The vertical axis represents strain, and the horizontal axis represents the longitudinal position of the skeletal structure member 12.
[0045]
The strain is zero at the positions of the fulcrums 31, 31, and the strain gradually increases from this position toward the solidified powder 16 (hatched portion in the figure), and the solidified powder 16 The distortion is constant at the position. The distortion at this time is assumed to be ε1.
[0046]
(C) is an enlarged front view showing a state after performing a bending test of a skeletal structure member 230 into which a solidified granular material formed by melting a solid granular material having no inorganic material layer is surface-melted. It is a figure and the part filled with the solidified granular material 231 (broken line part in the figure) of the skeleton structural member 230 is hardly deformed, and the skeleton member 232 outside the solidified granular material 231 is greatly deformed. Show.
[0047]
(D) is a figure explaining the distortion which generate | occur | produces at the time of the bending test of the frame structure member 230, the frame structure member 230 drawn typically is supported by the two fulcrum points 221,221, and the space | interval of these support points 221,221 is shown. The graph shows the distortion generated between the fulcrums 221 and 221 of the skeleton structure member 230 when a downward load F is applied to the upper surface of the skeleton structure member 230 corresponding to the center position. The vertical axis represents strain, and the horizontal axis represents the longitudinal position of the skeletal structure member 230.
[0048]
The strain is zero at the positions of the fulcrums 221, 221. The strain gradually increases from the position toward the solidified powder particles 231, and the strain is increased at the outer positions near both ends of the solidified powder particles 231. Become the maximum. The distortion at this time is assumed to be ε2.
And distortion decreases from the position where distortion becomes the maximum to the edge part of solidification granular material 231, and distortion becomes constant in the position of solidification granular material 231. The distortion at this time is assumed to be ε3.
[0049]
In the above (a) to (d), in the skeleton structure member 230 of the comparative example, since the rigidity of the solidified granular material 230 is excessively large, the solidified granular material 231 hardly deforms and the strain ε3 is small. However, the skeleton member 232 is greatly deformed locally, and the strain ε2 becomes very large. Accordingly, the load F is greatly reduced at an early stage of the bending test. That is, the amount of absorbed energy is small.
[0050]
In contrast, in the skeletal structure member 12 of the example, the rigidity of the solidified powder particles 16 is smaller than that of the solidified powder particles 231 of the comparative example, and the solidified powder particles 16 are gradually deformed by a bending test. However, since it deforms substantially uniformly, the maximum strain ε1 can be suppressed with respect to the maximum strain ε2 of the comparative example. That is, the strain ε1 is smaller than the strain ε2 by d. Therefore, in the skeletal structure member 12 of the example, a high load can be maintained up to a large displacement amount in the bending test, and the amount of absorbed energy can be further increased compared to the comparative example.
[0051]
7 (a) to 7 (c) are operation diagrams showing deformation during the bending test of the skeletal structure member according to the present invention. The bending test of the skeletal structure member 12 was performed in the same manner as shown in FIG. The deformation of the skeletal structure member 12 at that time, specifically, the change of the solidified granular material 16 will be described.
In (a), a load F is applied to the skeletal structure member 12. Reference numeral 32 denotes a weighting point on the skeleton member 11 to which the load F is applied.
[0052]
In (b), the skeletal structure member 12 is bent, and in the granular material 18 in the vicinity of the load point 32, the solidified portion 22 (see FIG. 4) of the granular material 18 is peeled off and the bonding between the granular materials 18 is released. , The granular material 18... Moves as indicated by an arrow, and the internal pressure of the skeleton member 11 is prevented from increasing drastically.
[0053]
In (c), when the flexure of the skeletal structure member 12 is further increased, the solidified part of the granular material 18 is peeled off, and most of the solidified granular material 16 (see FIG. 1A) is a granular material. 18 returns to the simple substance and flows as indicated by an arrow to diffuse the strain.
Therefore, the skeletal structure member 12 does not deform locally but deforms almost uniformly, so that it can be stably deformed to a large displacement amount by flow while maintaining a large load.
[0054]
FIG. 8 is a cross-sectional view of the skeletal structure member according to the present invention after the bending test is completed, and is drawn as a straight line in the direction perpendicular to the longitudinal direction of the skeletal structure member 12 on the solidified powder before starting the bending test. Looking at changes in the lines 34 to 38, after the end of the bending test, for example, the points at both ends of the line 35, that is, the points intersecting the skeleton member 11 are the end points 41 and 42, and a straight line 43 passing through these end points 41 and 42 is obtained. It can be seen that the straight line 35 is curved toward the end of the skeletal structure member 12 with respect to the straight line 43 when. That is, it can be seen that the granular material from which the above-described surface melting portion has peeled off flows into the one partition wall member 15 side as indicated by the white arrow by deforming the upper part of the skeleton member 11 into a concave shape.
[0055]
FIG. 9 is a graph showing the relationship between the load and the displacement obtained as a result of the bending test of the skeletal structure member according to the present invention, where the vertical axis represents the load F and the horizontal axis represents the displacement δ.
The data (indicated by the solid line) of the skeletal structure member 12 of the example (solid powder + inorganic material layer) is the length of the rising straight portion, for example, the load f9 at the displacement d9 is in Comparative Example 2 to Comparative Example 4. On the other hand, although not so large, the load F gradually increases to a large displacement amount. Therefore, in the skeleton structure member 12 of the present invention, the amount of absorbed energy can be further increased as compared with Comparative Examples 1 to 4.
[0056]
10 (a) and 10 (b) are perspective views showing an example in which the skeletal structure member according to the present invention is employed in a vehicle.
In (a), the skeletal structure member of the present invention includes front side frames 51 and 51 disposed below both sides of the engine at the front of the vehicle body, side sills 52 and 52 disposed at the lower portions on both sides of the vehicle compartment, The front floor cross member 53 passed between 52, the center pillars 54 and 54 raised from the side sills 52 and 52, and the rear frames 56 and 56 extending rearward from the side sills 52 and 52 are employed.
[0057]
In (b), the frame structure member of the present invention is provided on the front pillars 61 and 61, door beams 62 and 63 disposed in the front door (not shown) and the rear door (not shown), and both sides of the roof. The roof side rails 64, 64 and the left and right roof side rails 64, 64 are used for the roof rails 66, 67.
[0058]
11 (a) to 11 (e) are explanatory views of an example in which the skeleton structure member according to the present invention is adopted for the front side frame. In addition, the code | symbol 51 of the front side frame 51 as a skeleton structure member was changed with 51A-51E here for convenience. In the front side frames 51A to 51D, the granular material 18 is directly filled in the skeleton member, and in the front side frame 51E, the granular material 18 is filled in the other skeleton member in advance. Insert into.
[0059]
A front side frame 51 </ b> A shown in FIG. 5A forms a skeleton member 73 from an outer panel 71 and an inner panel 72 provided closer to the engine chamber than the outer panel 71, and the granular material 18. It is a filled member. In addition, when filling the granular material 18 in the front side frame 51A, it may be filled in the entire longitudinal direction of the front side frame 51A, or may be partially filled in the longitudinal direction of the front side frame 51A. Alternatively, two partition walls may be provided in the front side frame 51A at a predetermined interval in the longitudinal direction, and the powder 18 may be filled between the two partition walls. The same applies to the parts described below.
[0060]
The front side frame 51 </ b> B shown in FIG. 5B forms a skeleton member 81 from an outer panel 76 provided with an inclined surface 75 and an inner panel 78 provided on the engine chamber side of the outer panel 76 and formed with an inclined surface 77. 81 is a member in which the granular material 18 is filled.
[0061]
The front side frame 51 </ b> C shown in FIG. 5C forms a skeleton member 84 from the outer panel 71, the inner panel 72, and the outer panel 71 and the partition wall 83 attached to the inner side of the inner panel 72, and the outer panel 71 and the inner panel 72. It is a member in which the first and second chambers 85 and 86 partitioned by the inner partition wall 83 are filled with the powder bodies 18.
[0062]
A front side frame 51D shown in (d) is a member in which the second chamber 86 of the front side frame 51C shown in (c) is filled with the granular material 18.
The front side frame 51 </ b> E shown in (e) is a member in which the skeleton member 88 is filled with the powder particles 18, and the skeleton member 88 is disposed inside the skeleton member 73.
[0063]
12 (a) to 12 (d) are explanatory views of an example in which the skeleton structure member according to the present invention is employed in the rear frame. In addition, the code | symbol 56 of the rear frame 56 as a skeleton structure member was changed to 56A-56D here for convenience.
A rear frame 56 </ b> A shown in FIG. 5A is a member in which the granular material 18 is filled between a lower panel 91 as a panel member and a rear floor panel 92 as a panel member provided on the upper portion of the lower panel 91.
[0064]
The rear frame 56 </ b> B shown in FIG. 5B is a member in which powder particles 18 are filled between the lower panel 91 and the sub-lower panel 93 attached to the upper portion of the lower panel 91.
[0065]
A rear frame 56 </ b> C shown in FIG. 5C is a member in which the granular material 18 is filled between a sub-lower panel 93 attached to the upper part of the lower panel 91 and a rear floor panel 92 provided on the upper part of the sub-lower panel 93.
[0066]
The rear frame 56 </ b> D shown in FIG. 6D is a member in which a skeleton member 94 is disposed in a closed space surrounded by the lower panel 91 and the rear floor panel 92, and the granular material 18 is filled in the skeleton member 94.
[0067]
In addition, the skeleton member 94 is not filled with the powder particles 18, but the space 95 surrounded by the skeleton member 94 and the lower panel 91 and the rear floor panel 92 as the surrounding panel members is filled with the powder particles 18. Alternatively, both the skeleton member 94 and the space 95 may be filled with the powder particles 18.
[0068]
FIGS. 13A to 13C are explanatory views of an example in which the skeleton structure member according to the present invention is adopted as a center pillar. In addition, the code | symbol 54 of the center pillar 54 as a skeleton structure member was changed into 54A-54C here for convenience.
In the center pillar 54A shown in FIG. 5A, a skeleton member 98 is formed by an outer panel 96 and an inner panel 97 arranged on the vehicle compartment side of the outer panel 96, and the skeleton member 98 is filled with powder particles 18. It is a member.
[0069]
The center pillar 54 </ b> B shown in FIG. 5B forms the skeleton member 102 by attaching the reinforcing member 101 between the outer panel 96 and the inner panel 97, and the granular material 18 between the reinforcing member 101 and the outer panel 96. Is a member filled with
[0070]
The center pillar 54 </ b> C shown in FIG. 5C is a member in which the reinforcing member 101 is attached between the outer panel 96 and the inner panel 97 and the granular material 18 is filled between the reinforcing material 101 and the inner panel 97. .
[0071]
14 (a) to 14 (c) are explanatory views of an example in which the skeletal structure member according to the present invention is adopted for a roof side rail. In addition, the code | symbol of the roof side rail 64 as a skeleton structure member was changed into 64A-64C here for convenience.
[0072]
The roof side rail 64 </ b> A shown in (a) forms a skeleton member 106 by the outer panel 104 and the inner panel 105 disposed on the vehicle compartment side of the outer panel 104, and the skeleton member 106 is filled with powder particles 18. It is a member.
[0073]
The roof side rail 64 </ b> B shown in FIG. 5B forms a skeleton member 108 by attaching a reinforcing member 107 between the outer panel 104 and the inner panel 105, and the granular material 18 is formed between the reinforcing member 107 and the outer panel 104. Is a member filled with.
[0074]
The roof side rail 64 </ b> C shown in (c) forms a skeletal member 108 by attaching a reinforcing member 107 between the outer panel 104 and the inner panel 105, and a granular material between the reinforcing member 107 and the inner panel 105. 18 is a member filled with.
[0075]
As described above with reference to FIG. 5, the first aspect of the present invention includes a panel member (for example, the lower panel 91 and the rear floor panel 92 shown in FIG. 12) in and / or around the skeleton member 11 of the transport machine. ) Is a skeletal structure member 12 in which solidified powder particles 16 in which a plurality of powder particles 18 are combined and hardened are disposed in a space (for example, the space 95 shown in FIG. 12), The bodies 18 are combined with each other by partially melting the surfaces.
[0076]
For example, when the powder particles are bonded together by melting the entire surface of the powder particles, the bond becomes very strong, and when a load is applied to the solidified powder particles from the outside, It breaks into pieces, and the distortion concentrates because the pieces do not move. Accordingly, the skeleton structure member is locally deformed and cannot support a large load.
[0077]
On the other hand, in the present invention, when the powder particles 18 are bonded to each other by partially melting the surfaces thereof, the solidified powder particles are applied when a load acts on the solidified powder particles 16 from the outside. 16, the solidified portion 22 ... which is partially melted and solidified on the surface is peeled off to become a single body of the powder 18 and has fluidity, and the strain generated by an external load is diffused to concentrate the strain. Can be prevented.
[0078]
As a result, the skeletal structure member 12 can be deformed substantially uniformly and to a large deformation amount. At this time, although not as strong as the bonding of the powder particles by the binder, a large load can be supported by a large bond of the powder particles 18, and the absorbed energy of the skeletal structure member 12 compared to the conventional case. The amount can be increased.
[0079]
Moreover, since the powder particles 18 are bonded to each other by surface melting, an increase in weight due to solidification can be suppressed as compared with the case where a binder such as an adhesive or a resin is used for bonding the powder particles 18.
[0080]
Secondly, the present invention is characterized in that the powder 18A is partially melted when heated by partially forming the inorganic material layer 23 on the surface thereof.
By forming the inorganic material layer 23 on the powder body 18 partially, the powder body 18 can be easily partially bonded.
[0081]
In the embodiment of the present invention, the granular material is put into the skeleton member as it is, but not limited to this, and packed in a bag (made of rubber, resin such as polyethylene, paper) or a container in advance. You may throw in in a frame | skeleton member in a state.
[0082]
【The invention's effect】
The present invention exhibits the following effects by the above configuration.
The framework structure member for a transport machine according to claim 1, By partially forming an inorganic material layer on the surface, the exposed part, which is the surface of the granular material, is exposed from between the inorganic material layers to the outside, and when this exposed part is heated, the surface is melted and the granular material But Part of each other Yui As a result, when a load is applied to the solidified powder from outside, the solidified powder is partially melted and solidified, and the solidified part is peeled off to flow as a single powder. Therefore, the strain generated by the external load can be diffused to prevent the concentration of the strain.
[0083]
As a result, the skeletal structure member can be deformed almost uniformly and to a large deformation amount. At this time, although it is not as strong as the bonding of the powder particles by the binder, the large bonding of the powder particles can support a large load up to a large displacement amount, and the amount of absorbed energy of the skeletal structure member is smaller than before. Can be increased.
[0084]
In addition, since the powder particles are bonded to each other by surface melting, an increase in weight due to solidification can be suppressed as compared to using a binder such as an adhesive or a resin for bonding powder particles.
[0085]
More , Partly form an inorganic material layer on its surface Completion Therefore, the granular material can be easily partially bonded by the inorganic material layer partially formed on the granular material.
[Brief description of the drawings]
FIG. 1 is a perspective view of a skeletal structure member for a transport machine according to the present invention.
2 is a sectional view taken along line 2-2 of FIG.
3 is a sectional view taken along line 3-3 in FIG.
FIG. 4 is an enlarged cross-sectional view showing a combined state of the solidified granular material according to the present invention.
FIG. 5 is an operation diagram showing a method for manufacturing a skeletal structure member according to the present invention.
FIG. 6 is an explanatory diagram showing the results of a bending test of a skeletal structure member
FIG. 7 is an operation diagram showing deformation during a bending test of a skeletal structure member according to the present invention.
FIG. 8 is a sectional view of the skeletal structure member according to the present invention after the bending test is completed.
FIG. 9 is a graph showing a relationship between a load and a displacement obtained as a result of a bending test of a skeletal structure member according to the present invention.
FIG. 10 is a perspective view showing an example in which a skeletal structure member according to the present invention is employed in a vehicle.
FIG. 11 is an explanatory diagram of an example in which the skeletal structure member according to the present invention is employed in a front side frame.
FIG. 12 is an explanatory diagram of an example in which the skeletal structure member according to the present invention is employed in a rear frame.
FIG. 13 is an explanatory diagram of an example in which the skeleton structural member according to the present invention is adopted for a center pillar.
FIG. 14 is an explanatory diagram of an example in which the skeletal structure member according to the present invention is adopted for a roof side rail.
FIG. 15 is a first enlarged cross-sectional view showing a solidified powder body constituting a conventional skeletal structure member
FIG. 16 is a second enlarged cross-sectional view showing a solidified powder body constituting a conventional skeletal structure member
FIG. 17 is a third enlarged cross-sectional view showing a solidified granular material constituting a conventional skeletal structure member
FIG. 18 is an action diagram showing surface melting of a conventional skeletal structure member.
FIG. 19 is an explanatory view showing a bending test method for a skeletal structure member.
FIG. 20 is a graph schematically showing a relationship between a load and a displacement obtained as a result of a bending test of a skeleton structural member.
FIG. 21 is an explanatory diagram showing the relationship between the load and the amount of displacement and the amount of absorbed energy obtained as a result of the bending test of the skeletal structure member.
FIG. 22 is an explanatory view showing a deformation state as a result of a bending test of a conventional skeletal structure member.
FIG. 23 is a graph showing a relationship between a load and a displacement obtained by a bending test of a conventional skeletal structure member.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 11 ... Skeletal member, 12 ... Skeletal structure member for transport machinery, 16 ... Solidified powder, 18, 18A ... Powder, 23 ... Inorganic material layer, 24 ... exposed part, 91, 92 ... Panel members (lower panel, rear floor panel), 95 ... space.

Claims (1)

輸送機械の骨格部材内及び/又は骨格部材とその周囲のパネル部材とで囲まれる空間に、複数の粉粒体を結合して固めた固形化粉粒体を配置した骨格構造部材であって、
前記粉粒体は、その表面に部分的に無機材料層を形成することで前記無機材料層の間から外部に粉粒体の表面である露出部が露出し、この露出部が加熱したときに表面融解して粉粒体が互いに部分的に結合することを特徴とする輸送機械用骨格構造部材。
A skeletal structure member in which a solidified granular material obtained by combining and solidifying a plurality of powder particles is disposed in a space surrounded by a skeleton member of a transport machine and / or a skeleton member and a surrounding panel member,
When the exposed part which is the surface of a granular material is exposed to the exterior from between the inorganic material layers by forming an inorganic material layer partially on the surface of the granular material, and the exposed part is heated transportation machinery frame structure member, wherein a granular material by surface melting partially binding to each other.
JP2003189808A 2003-07-01 2003-07-01 Skeletal structure member for transport machinery Expired - Fee Related JP4251542B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003189808A JP4251542B2 (en) 2003-07-01 2003-07-01 Skeletal structure member for transport machinery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003189808A JP4251542B2 (en) 2003-07-01 2003-07-01 Skeletal structure member for transport machinery

Publications (2)

Publication Number Publication Date
JP2005022511A JP2005022511A (en) 2005-01-27
JP4251542B2 true JP4251542B2 (en) 2009-04-08

Family

ID=34187908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003189808A Expired - Fee Related JP4251542B2 (en) 2003-07-01 2003-07-01 Skeletal structure member for transport machinery

Country Status (1)

Country Link
JP (1) JP4251542B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4825037B2 (en) * 2006-04-06 2011-11-30 本田技研工業株式会社 Frame structure
JP5103039B2 (en) * 2007-03-16 2012-12-19 本田技研工業株式会社 Frame structure for transportation equipment
JP7135275B2 (en) * 2016-03-03 2022-09-13 日本製鉄株式会社 Vehicle structural member
JP7296692B2 (en) * 2016-03-03 2023-06-23 日本製鉄株式会社 Vehicle structural member
JP7135274B2 (en) * 2016-03-03 2022-09-13 日本製鉄株式会社 Vehicle structural member

Also Published As

Publication number Publication date
JP2005022511A (en) 2005-01-27

Similar Documents

Publication Publication Date Title
US20230192197A1 (en) Method of making a laminate, an energy absorbing device, an energy absorbing device composition, and a forming tool
JP6981322B2 (en) Vehicle skeleton structure
KR101597852B1 (en) Reinforcement assembly
JP4696651B2 (en) Vehicle pillar structure
JP2018192934A (en) Back frame of seat for vehicle
JP4251542B2 (en) Skeletal structure member for transport machinery
CN105015459A (en) Stiffening and/or strengthening a structural member using a pre-made microtruss insert
JP2008126835A (en) Vehicular skelton member structure and manufacturing method of vehicular skeleton member
JP2009083756A (en) Vehicular side member structure
KR101277861B1 (en) Front Body for Electric Vehicle
JP2005199353A (en) Body or body part for automobile
KR20180078819A (en) Method of manufacturing hybrid vehicle body part with different material
JP3813526B2 (en) Method for forming solid powder
JPWO2005002949A1 (en) Skeletal structure member for transport machinery and manufacturing method thereof
JPWO2005003589A1 (en) Skeletal structure member for transport machinery and method for manufacturing the same
JP3964834B2 (en) Skeletal structure member for transport machinery and manufacturing method thereof
JP5707933B2 (en) Method for producing hollow structure provided with foam reinforcing member
JP5655558B2 (en) Hollow structure provided with foam reinforcing member and method for manufacturing the same
Baumeister Methods for filling hollow structures with aluminium foam
JP5655560B2 (en) Hollow structure provided with foam reinforcing member and method for manufacturing the same
JP5655561B2 (en) Hollow structure provided with foam reinforcing member and method for manufacturing the same
JP2020083028A (en) Bumper reinforcement
JP3764691B2 (en) Vehicle skeleton structure and method for forming solidified granular material
JP2005022512A (en) Skeletal structure member for transportation machine
JP2023076418A (en) Plastic composite base material panel and method for molding the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090114

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees