JP4251531B2 - Riveromycin A derivative, process for producing the same and protein synthesis inhibitor - Google Patents

Riveromycin A derivative, process for producing the same and protein synthesis inhibitor Download PDF

Info

Publication number
JP4251531B2
JP4251531B2 JP2002217714A JP2002217714A JP4251531B2 JP 4251531 B2 JP4251531 B2 JP 4251531B2 JP 2002217714 A JP2002217714 A JP 2002217714A JP 2002217714 A JP2002217714 A JP 2002217714A JP 4251531 B2 JP4251531 B2 JP 4251531B2
Authority
JP
Japan
Prior art keywords
compound
group
reveromycin
derivative
protein synthesis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002217714A
Other languages
Japanese (ja)
Other versions
JP2004059471A (en
Inventor
猛 清水
健郎 臼井
清隆 町田
裕之 長田
忠 中田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
RIKEN Institute of Physical and Chemical Research
Original Assignee
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by RIKEN Institute of Physical and Chemical Research filed Critical RIKEN Institute of Physical and Chemical Research
Priority to JP2002217714A priority Critical patent/JP4251531B2/en
Publication of JP2004059471A publication Critical patent/JP2004059471A/en
Application granted granted Critical
Publication of JP4251531B2 publication Critical patent/JP4251531B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、リベロマイシンA誘導体、およびその製造方法に関する。本発明は、さらに、リベロマイシンA誘導体を有効成分として含有する蛋白質合成阻害剤に関する。
【0002】
【従来の技術】
癌細胞の異常な増殖は、細胞増殖因子伝達系の異常に由来することが多い。例えば、多くの癌細胞では自己増殖を促進する腫瘍増殖因子アルファ (TGF-α)を分泌することが知られている。従ってTGF-αの作用を選択的に阻害する薬剤は新しい抗腫瘍剤として期待される。TGF-αと類似の細胞増殖因子である上皮増殖因子 (EGF) のシグナル伝達阻害剤として、本発明者等によって発見されたのがリベロマイシンA(化合物1)、C(化合物2)、D(化合物3)および弱い活性を有するリベロマイシンB(化合物4)である(Takahashi, H.; Osada, H.; Koshino, H.; Kudo, T.; Amano, S.; Shimizu, S.; Yoshihama, M.; Isono, K. J. Antibiot. 1992, 45, 1409-1413)。
【0003】
【化6】

Figure 0004251531
【0004】
リベロマイシンAは抗真菌剤としての活性を有し、また原核細胞には作用せず、真核細胞に選択的な蛋白質合成阻害剤としての活性も有している。しかしながら、リベロマイシンAは、酸性、塩基性両条件下において、不安定な化合物であり、容易に失活してしまう。
従って、上記のような活性を保持し、かつより安定な化合物の開発が望まれている。
【0005】
【発明が解決しようとする課題】
本発明は、上記の希求に応えるものであり、蛋白質阻害活性を有し、かつ高い安定性を有するリベロマイシンA誘導体、その製造方法およびそれを有効成分とする蛋白質合成阻害剤の提供を課題とする。
【0006】
【課題を解決するための手段】
本発明者等は、上記課題の解決のために、鋭意研究を行った。本発明者等は、まずリベロマイシンAの類縁体を多種合成し、それらの化合物の蛋白質合成阻害活性について検討した。その結果、リベロマイシンA誘導体の蛋白質阻害活性の発現には、リベロマイシンAの構造の24位カルボキシル基および5位の水酸基が必須であること、また、18位ヘミサクシニル基は、蛋白質阻害活性の発現には必須でないことが明らかとなった。リベロマイシンAは塩基性あるいは酸性条件下で18位のヘミサクシニル基が加水分解を受けやすく不安定であること、および上記の知見に基づいて、本発明者等はリベロマイシンAの構造の24位カルボキシル基および5位の水酸基を保持し、18位のヘミサクシニル基がより安定性の高い置換基に置換されたリベロマイシンA誘導体を製造した。本発明はこのようにして完成するに至ったものであり、本発明の要旨は、以下の通りである。(1) 下記の一般式(I)
【0007】
【化7】
Figure 0004251531
【0008】
(一般式(I)中、Rは炭素数が1〜9のアルコキシ基、メトキシメトキシ基、ベンジルオキシ基、メチルチオメトキシ基、またはトリエチルシリルオキシ基を示す。)
で示される化合物。
(2) 下記の構造式(II)で示される化合物。
【0009】
【化8】
Figure 0004251531
【0010】
(3) 下記の構造式(III)で示される化合物。
【化9】
Figure 0004251531
【0011】
(4) 1)リベロマイシンAの18位のヘミサクシニル基を水酸基に加水分解し、
2)1位および24位のカルボキシル基をエステル化し、
3)5位の水酸基を保護基で保護し、
4)18位の水酸基をメチル化し、
5)1位および24位のエステル基を加水分解し、
6)5位の保護基を脱保護する、
ことを特徴とする構造式(IV)
【0012】
【化10】
Figure 0004251531
【0013】
で示される化合物の製造方法。
(5) 1)リベロマイシンAの18位のヘミサクシニル基を水酸基に加水分解し、
2)1位および24位のカルボキシル基をエステル化し、
3)5位の水酸基を保護基で保護し、
4)18位の水酸基をメチルチオメチル化し、
5)1位および24位のエステル基を選択的に加水分解し、
6)5位の保護基を脱保護する、
ことを特徴とする構造式(V)
【0014】
【化11】
Figure 0004251531
【0015】
で示される化合物の製造方法。
(6) 一般式(I)で示される化合物を有効成分として含有することを特徴とする蛋白質合成阻害剤。
【0016】
【発明の実施の形態】
以下、本発明を詳細に説明する。
(1)本発明のリベロマイシンA誘導体
本発明のリベロマイシンA誘導体は、リベロマイシンA誘導体のうち、蛋白質阻害活性を有し、かつ高い安定性を有する化合物である。
すなわち、本発明のリベロマイシンA誘導体は、下記の一般式(I)
【0017】
【化12】
Figure 0004251531
【0018】
(一般式(I)中、Rは炭素数が1〜9のアルコキシ基、メトキシメトキシ基、ベンジルオキシ基、メチルチオメトキシ基、またはトリエチルシリルオキシ基を示す。)
で示される化合物である。
【0019】
前記炭素数が1〜9のアルコキシ基としては、メトキシ基、エトキシ基などが挙げられる。
Rとしては、メトキシ基、メチルチオメトキシ基などが好ましい。
【0020】
(2)本発明のリベロマイシンA誘導体の製造方法
本発明のリベロマイシンA誘導体は、限定されないが、例えば、以下のようにして製造することができる。反応における条件、例えば、試薬、触媒、溶媒、反応温度、反応時間などは通常よく知られた有機合成手法に基づいて、適宜変更することができ、このような変更を含む方法も本発明の範囲に属する。
【0021】
【化13】
Figure 0004251531
【0022】
本発明の好ましい一形態であって、安定な誘導体であるC18-メトキシ体(化合物17)は、以下のようにして合成することができる。リベロマイシンA(化合物1)を1N LiOH、NaOH、KOHなどのアルカリで処理すると、容易にC18-ヒドロキシ体(化合物14)が得られる。
化合物14を、TMSCHN2(トリメチルシリルジアゾメタン)などのメチル化剤で処理しエステル化した後、TBSCl(t-ブチルジメチルシリルクロライド)などの保護剤を用いて5位水酸基を保護し、C5-シリルエーテル(化合物16)とする。ついで、化合物16をTHF(テトラヒドロフラン)などの有機溶媒中、NaHなどの水素化金属、およびMeI(ヨウ化メチル)などのメチル化剤と反応させると、18位水酸基のメチル化後、エステルの加水分解が起きる。続いてTBAF (テトラブチルアンモニウムフルオライド) などの脱保護剤でTBS基を除去するとC18-メトキシ体(化合物17)が得られる。
また、本発明の好ましい別の形態であって、安定な誘導体であるC18-MTM(メチルチオメチル)エーテル(化合物20)は、以下のようにして合成することができる。化合物16を DMSO-Ac2O(無水酢酸)で処理すると好収率で C18-MTM エーテル(化合物19)が生成する。化合物19をLiOHなどのアルカリを用いて加水分解すると選択的加水分解反応が進行し、シリル基の脱保護後、ジカルボン酸(化合物20)およびモノカルボン酸(化合物21)が得られる。
【0023】
また、その他のリベロマイシンA誘導体は、以下のようにして合成することができる。
リベロマイシンA(化合物1)を、4当量のTBSCl、TMSCl、またはTESCl(トリエチルシリルクロライド)などのシリル化剤で処理し、5位水酸基および3個のカルボキシル基をシリル化後、メタノールなどで処理すると、シリルエステルのみの加溶媒分解が容易に起こり、C5-シリルエーテル(化合物5等)が好収率で得られる。
24位エステルの合成に関しては、化合物1を1ないし2当量のCH2N2(ジアゾメタン)、TMSCHN2などのメチル化剤で処理し、C24-エステル(化合物6, 8, 9および11)、C24-カルボン酸(化合物7, 10および12)を得ることが出来る。
また、トリエステル(化合物6)を接触還元後、HMPA(ヘキサメチルホスホリックトリアミド)中、 LiSPr(リチウムプロパンチオレート)と処理すると、好収率で飽和体(化合物13)を得ることができる。化合物1を直接接触還元しても化合物13を得ることができる。
【0024】
C18-ヒドロキシ体(化合物14)は酸に非常に不安定で、p-TsOH(水酸化p-トルエンスルホン酸)あるいはHCl等の酸で処理することによって容易に異性化し、5,6-スピロアセタール(化合物15)を得ることができる。
なお、C5-シリルエーテル体(化合物16)も、p-TsOHやCDCl3、PPTS(ピリジニウム-p-トルエンスルホネート)等の弱酸で処理すると、容易にトランスアセタール化反応を起こし5,6-スピロアセタールが生成する。さらにNaHなどの水素化金属、およびMeIなどのメチル化剤で処理後、TBAFなどの脱保護剤でTBS基の脱保護を行うと、C19-メトキシ体(化合物18)を得ることができる。
【0025】
(3)リベロマイシンA誘導体の安定性
リベロマイシンA(RM-A) は、酸性、塩基性両条件下において、加水分解を受けやすく、C18-スクシニル基の脱離反応を起こす可能性がある。従って、リベロマイシンAのC18-ヘミサクシニル基をより安定性の高い置換基に置換することにより、リベロマイシンAに対して、より安定性の高いリベロマイシンA誘導体を得ることができる。例えば、C18-メトキシ誘導体(C18-OMe) ではC18位の水酸基はメチル化されており、スクシニル基の脱離に比べてこのメチル基の脱離反応は非常に起りにくい。同様に、C18-メチルチオメトキシ誘導体(C18-OMTM)ではC18位の水酸基はメチルチオメチル化されており、スクシニル基の加水分解に比べてこのメチルチオメチル基の加水分解反応も非常に起りにくい。また、RM-AのC18-スクシニル基の脱離の結果、RM-Aの基本骨格である6,6-スピロアセタール構造は、特に酸性条件下において、容易に不活性体であるリベロマイシンB(RM-B) 型の5,6-スピロアセタール構造に変換される。しかしながら、C18-OMeおよびC18-OMTMは、このようなスピロアセタールの異性化反応も起こさない。以上の2点から、C18-OMeおよびC18-OMTMは、酸、塩基に対する安定性の面でRM-A より優れている。
【0026】
(4)リベロマイシンA誘導体の蛋白質合成阻害活性
本発明のリベロマイシンA誘導体は、in vitro蛋白質合成阻害活性を有する。in vitro蛋白質合成阻害活性は、IleRS (イソロイシン-tRNA合成酵素)阻害活性に基づく活性なので両活性はほぼパラレルである。
IleRS阻害活性の測定は、例えば、出芽酵母などのIleRSを含む酵素を調製し、この酵素と、さらにATP、ラジオアイソトープなどでラベルしたL-イソロイシン、未ラベルL-イソロイシン、酵母由来のtRNAなどを含む酵素反応溶液を調製し、リベロマイシン誘導体を添加した場合、および添加しない場合(コントロール)について反応を行い、反応産物であるL-イソロイシルtRNAの放射活性などを測定し、両活性を比較することによって行うことができる。
【0027】
in vitro蛋白質合成阻害活性の測定は、例えば、TNT T7 Quick coupled Transcription/Translation System(Promega 社)などのIn vitro転写・翻訳システムなどを用いて測定を行うことができる。具体的には、赤血球ライゼートを調製し、鋳型DNA、T7ポリメラーゼ、アミノ酸混合液、ラジオアイソトープなどでラベルしたアミノ酸混合液、RNaseインヒビター、ヌクレアーゼフリー水などを含む反応溶液を調製し、リベロマイシン誘導体を添加した場合、および添加しない場合(コントロール)について反応を行い、In vitro蛋白質合成によって生じるラジオアイソトープなどでラベルしたアミノ酸を含む蛋白質バンドの有無を検出することによって行うことができる。
【0028】
(5)本発明の蛋白質合成阻害剤
上記リベロマイシンA誘導体は、常法により薬学的に許容された担体と組合わせて錠剤、散剤、カプセル剤、注射剤、吸入剤または外用剤等の製剤とすることができ、経口または非経口投与により蛋白質合成阻害剤として臨床に供される。投与量は治療すべき症状及び投与方法により左右されるが、成人1日あたり1mg〜1,000mgである。尚、抗生物質リベロマイシンA誘導体のマウス急性毒性値は100mg/kg以上(静注)である。なお、本発明の蛋白質合成阻害剤は、本発明のリベロマイシンA誘導体を有効成分として含有する以外は、通常の方法を採用し、調製、投与などをすることが可能である。
【0029】
【実施例】
以下に実施例および試験例をあげて本発明をさらに詳細に説明するが、本発明はこれらに限定されるものではない。なお、実施例および試験例において、前記リベロマイシンA誘導体の合成スキームを参照のこと。
【0030】
【実施例1】
リベロマイシンA C18-メトキシ誘導体の合成
リベロマイシンA(化合物1)のエステル化
リベロマイシンA (19.8 mg, 30μmol) のベンゼン-MeOH(メタノール) (4 :1, 3 ml) 溶液にTMSCHN2 (0.5〜1.5 equiv.) を加えて室温で10〜15分攪拌した。溶媒を減圧留去後残渣をプレパラティブ薄層クロマトグラフィー(n-ヘキサン : AcOEt(酢酸エチル) : AcOH(酢酸) = 50 : 50 : 1) にて精製して、エステル(化合物6-12)を得た。
化合物10: 1H NMR (500 MHz, CDCl3) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.83 (t, J = 6.9 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H), 1.70 (s, 3H), 2.22 (brs, 3H), 3.42 (m, 1H), 3.74 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.68 (d, J = 7.8 Hz, 1H), 5.47 (dd, J = 6.0, 5.0 Hz, 1H), 5.49 (dd, J = 15.6, 7.3 Hz, 1H), 5.85 (brs, 1H), 5.88 (d, J = 15.6 Hz, 1H), 6.20 (d, J = 15.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.40 (dd, J = 15.6, 7.8 Hz, 1H), 7.01 (dd, J = 15.6, 7.3 Hz, 1H).
化合物11: 1H NMR (500 MHz, CDCl3) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.83 (t, J = 6.9 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H), 1.70 (s, 3H), 2.25 (brs, 3H), 3.42 (m, 1H), 3.73 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.59 (d, J = 8.3 Hz, 1H), 5.51 (dd, J = 15.6, 7.4 Hz, 1H), 5.55 (dd, J = 7.4, 7.4 Hz, 1H), 5.83 (brs, 1H), 5.85 (d, J = 15.6 Hz, 1H), 6.22 (d, J = 15.6 Hz, 1H), 6.33 (d, J = 15.6 Hz, 1H), 6.37 (dd, J = 15.6, 8.3 Hz, 1H), 7.05 (dd, J = 15.6, 7.4 Hz, 1H).
化合物12: 1H NMR (500 MHz, CDCl3) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.82 (t, J = 6.9 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H), 1.71 (s, 3H), 2.21 (brs, 3H), 3.42 (m, 1H), 3.70 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.60 (d, J = 8.2 Hz, 1H), 5.45 (dd, J = 6.4, 6.4 Hz, 1H), 5.50 (dd, J = 15.6, 7.3 Hz, 1H), 5.86 (brs, 1H), 5.88 (d, J = 15.6 Hz, 1H), 6.19 (d, J = 15.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.41 (dd, J = 15.6, 8.2 Hz, 1H), 7.09 (dd, J = 15.6, 7.8 Hz, 1H).
【0031】
C18-ヒドロキシ体(化合物14)の合成
リベロマイシンA(4.2 mg, 6.4μmol) に1N LiOH (0.5 ml) を加えて室温で一昼夜攪拌した。この反応溶液に0 ℃で1N HClを加え酸性とした後、AcOEtで抽出した。有機層を飽和食塩水で洗浄後、MgSO4で乾燥し溶媒を留去して、C18-ヒドロキシ体(化合物14) (黄色油状物 : 3.7 mg, 82%) を得た。
化合物14: 1H NMR (500 MHz, CD3OD) δ = 0.80 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 3H), 1.76 (s, 3H), 2.26 (d, J = 1.2 Hz, 3H), 3.54 (m, 1H), 4.01 (d, J = 7.6 Hz, 1H), 4.07 (brt, 1H), 5.53 (dd, J = 15.6, 7.3 Hz, 1H), 5.61 (dd, 1H), 5.81 (dd, J = 15.9, 1.5 Hz, 1H) , 5.83 (s, 1H), 6.25 (d, J = 15.6 Hz, 1H), 6.38 (d, J = 15.3 Hz, 1H), 6.44 (dd, J = 15.6, 9.2 Hz, 1H), 6.98 (dd, J = 15.9, 7.9 Hz, 1H).
【0032】
C5-シリルエーテル(化合物16)の合成
窒素雰囲気下、C18-ヒドロキシ体(化合物14) (33.1 mg, 59.0μmol) のbenzene : MeOH = 4 : 1 (500 μl) 混合溶液に、室温でTMSCHN2 (16.9 mg, 0.148 mmol) を加え、10分間攪拌した。溶媒を留去しジエステルを得た。ジエステルのDMF(ジメチルホルムアミド)(500μl) 溶液に、室温でイミダゾール(12.1 mg, 0.18 mmol) 、TBSCl (13.4 mg, 0.089 mmol) を加えて同温で一昼夜攪拌した。AcOEtで希釈し、有機層をH2O、飽和食塩水で順次洗浄後、MgSO4で乾燥し溶媒を留去した。残渣をシリカゲルカラムクロマトグラフィ (n-hexane : AcOEt = 2 : 1) にて精製して、C5-シリルエーテル(化合物16) (黄色油状物 : 12.4 mg, 30%)を得た。
化合物16: 1H NMR (500 MHz, CD3OD) δ = 0.76 (d, J = 6.4 Hz, 3H), 0.84 (t, J = 6.4 Hz, 3H), 0.87 (s, 9H), 1.01 (d, J = 6.9 Hz, 3H), 1.69 (s, 3H), 2.27 (s, 3H), 3.43 (ddd, J = 9.6, 5.0, 5.0 Hz, 1H), 3.70 (s, 3H), 3.70 (s, 3H), 3.95 (d, J = 8.7 Hz, 1H), 4.07 (dd, J = 6.9, 6.4 Hz, 1H), 5.41 (dd, J = 15.6, 6.9 Hz, 1H), 5.51 (t, J = 6.4 Hz, 1H), 5.78 (d, J = 15.6 Hz, 1H), 5.81 (brs, 1H), 6.11 (d, J = 15.6 Hz, 1H), 6.29 (d, J = 15.6 Hz, 1H), 6.38 (dd, J = 15.6, 8.7 Hz, 1H), 6.98 (dd, J = 15.6, 7.3 Hz, 1H).
13C NMR (125 MHz, CD3OD) δ = 12.8, 14.0, 14.2, 14.3, 18.2, 17.6, 23.9, 23.9, 25.
9, 27.5, 27.6, 31.7, 32.2, 33.3, 35.1, 37.3, 43.8, 51.1, 51.4, 70.8, 74.8, 76.9, 82.5, 96.1, 119.5, 120.6, 127.2, 127.9, 133.9, 134.2, 136.0, 137.0, 151.6, 151.9, 167.2, 167.3.
【0033】
C18-メトキシ体(化合物17)の合成
窒素雰囲気下、C5-シリルエーテル(化合物16) (12.4 mg, 17.7 μmol) のTHF (500μl) 溶液に、室温でNaH (1.1 mg, 26.6μmol) およびMeI (3.3μl, 53.0μmol) を加え同温で一昼夜攪拌した。溶媒を留去後AcOEtで希釈し2N-Na2CO3で抽出した。水層に0 ℃で2N-HClを加え酸性 (pH 3 〜 1) とした後AcOEtで抽出した。有機層を飽和食塩水で洗浄後、MgSO4で乾燥した。溶媒を留去して無色油状物を得た。この無色油状物のDMF (200μl) 溶液にTBAF (ca. 7.8 mg) を加えて、3日間攪拌した。反応溶液をAcOEtで希釈した後有機層を1N HCl 、飽和食塩水で順次洗浄した。MgSO4で乾燥し溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー (n-hexane : AcOEt = 20 : 1) にて精製して、C18-メトキシ体(化合物17) (黄色油状物 : 3.5 mg, 34%) を得た。
化合物17: 1H NMR (500 MHz, CD3OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 (d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d, J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13C NMR (125 MHz, CD3OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
【0034】
【実施例2】
リベロマイシンA C18-メチルチオメトキシ誘導体の合成
C18-MTM エーテル(化合物20および21)の合成
窒素雰囲気下、上記実施例1で得られたC18-ヒドロキシ体(化合物16) (14.9 mg, 20.0 μmol) のAc2O (300μl)-DMF (300μl) 溶液を室温で3日間攪拌した。0 °Cに冷却、脱気後2N-Na2CO3-AcOEtを加えた。有機層を飽和食塩水で洗浄後MgSO4で乾燥した。溶媒を留去後得られる粗C18-OMTM体(化合物19) (無色油状物 : 15.7 mg) にTHF(3 ml)-MeOH(9 ml)-1NLiOH(1 ml) を加え、室温で2日間攪拌した。反応溶媒を減圧留去後、氷-EtOAcで希釈した。有機層を飽和食塩水で洗浄後MgSO4で乾燥した。 溶媒を留去後残渣(無色油状物 : 14.7 mg) をDMF(0.5 ml) に溶かしTBAF (26.1 mg, 100.0 μmol) を加え、室温で2日間攪拌した。反応混合物に氷-EtOAcを加え、有機層を順次1NHCl, H2O, 飽和食塩水で洗浄した。 MgSO4で乾燥し溶媒を留去後、残渣をシリカゲルカラムクロマトグラフィー (n-hexane : AcOEt : AcOH = 50 : 50 : 1) にて精製して、C18-MTM エーテル(化合物20) (無色油状物 : 6.2 mg, 50%)およびC18-MTM エーテル(化合物21) (無色油状物 : 2.2 mg, 16%) を得た。
化合物20: 1H NMR (500 MHz, CD3OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 (d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d, J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13C NMR (125 MHz, CD3OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
化合物21: 1H NMR (500 MHz, CD3OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 (d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d, J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13C NMR (125 MHz, CD3OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
【0035】
本発明のリベロマイシンA誘導体の活性を以下の方法に従って測定した。
【試験例】
本発明のリベロマイシンA誘導体のin vitro蛋白質合成阻害活性およびIleRS阻害活性
各リベロマイシンA誘導体のIleRS阻害活性をMiyamoto, Y.等の文献(Miyamoto, Y., Machida, K., Mizunuma, M., Sato N, Miyahara, K.,Hirata, D., Usui, T., Takahashi, H., Osada, H., and Miyakawa, T. Identication of Saccharomyces cerevisiae Isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. (2002) J. Biol. Chem. in press.)に従って測定した。具体的には、以下のようにして測定した。
【0036】
イソロイシル-tRNA合成酵素(isoleucyl-tRNA synthetase)の活性測定
(出芽酵母(S. cerevisiae)由来の粗酵素調整)
S.cerevisiae W303-1A(a) Δyrs1::HIS3 Δyrr1::TRP1 Δpdr1::hisG-URA3-hisG-Δpdr3::hisG-URA3-hisG 株を500 ml のYPD培地(1% イーストエキストラクト, 2% ポリペプトン, 2% グルコース)で一晩培養した。培養液を5000 g、10分遠心して細胞を回収し、100mM トリス塩酸バッファー (pH 8.0), 10 mM MgCl2, 1 mM ジチオスレイトールを用いて洗浄した。同バッファーを用いて、細胞を(1 mg/ g湿細胞)になるように再懸濁し、氷上に10分放置した。細胞懸濁液に、1 mMフェニルメチルスルホニルフルオライド、グラスビーズ(425-600 mm, 直径, Sigma社)を入れて30秒間激しく撹拌することを10回繰り返した。得られた細胞破砕液を、4度で10000 g 、15分遠心して上清を得た。得られた上清の蛋白量をProtein Assay (BioRad 社)を用いて測定した後、10 mg/mlに調整してマイナス80度で凍結保存した。
【0037】
(出芽酵母のIleRS(isoleucyl-tRNA synthetase)の大腸菌発現および組換え大腸菌由来IleRS酵素調整)
出芽酵母のIleRS遺伝子の翻訳領域を含むDNA断片を、大腸菌発現用プラスミドpET21-b(Novagen 社)にBamHI/HindIIIサイトで組みこんだ。pET21-b IleRSを大腸菌株 BL21(DE3)に形質転換した。得られた形質転換体を10 ml のLB培地(1 % NaCl, 0.5 % イーストエキストラクト, 1 % トリプトン, アンピシリン 50 μg/ml)中、28度で2時間培養後、イソプロピル−チオ−β−ガラクトピラノシドを0.2 mM添加して、さらに4時間培養した。6000 g、15分の遠心で菌体を回収後、50 mM トリス塩酸バッファー (pH8.0), 1 mM EGTA, 25 % シュークロース, 0.5 mM フェニルメチルスルホニルフルオライド,0.5 mM ジチオスレイトールに懸濁した。菌体懸濁液を5 秒間ソニケーションすることを3回繰り返して、菌体を破砕した。菌体破砕液を、4度で15000 g、15分遠心して上清を得た。得られた上清を、IleRS画分として使用した。IleRS画分は、10 mg/ml、終濃度50 %グリセロールになるように調整して、マイナス20度で保存した。
【0038】
(イソロイシル-tRNA合成酵素反応の測定)
本酵素反応の測定は、基質にATP、ラジオアイソトープでラベルされたL-イソロイシン、ラジオアイソトープでラベルされていないL-イソロイシン、酵母tRNAを用いて、反応生成物であるイソロイシル-tRNAに含まれる放射活性を測定することで行った。
酵素反応溶液:
1サンプルあたり50 μlで反応を行った。
反応液の組成は、20 mM イミダゾール塩酸 (pH 7.5), 75 mM KCl, 5 mM MgCl2, 0.5 mM ジチオスレイトール, 4 mg/mlウシ血清アルブミン, 30 μM 冷L-イソロイシン、3 mM ATP、3.5 mg/mlイーストトータルtRNA(Roche Molecular Biochemicals社)、 1 μ CiラジオアイソトープL-イソロイシン*、酵母抽出液 100 mg protein /ml**になるように調整した。リベロマイシンA、BまたはリベロマイシンA誘導体を添加する場合は、1〜1,000 ng/ml*** となるように添加した。
*ラジオアイソトープは、Amersham Biosciences 社から、[3H]-L-イソロイシン (66 Ci/mmol)を購入して使用した。
**大腸菌発現IleRSを酵素源とした場合には、IleRS画分を10 mg/mlになるように添加して反応を行った。
***リベロマイシンA、Bまたは評価したいリベロマイシンA誘導体を添加した。リベロマイシンA誘導体の種類についてはリベロマイシンA誘導体の合成スキーム中に示した化合物番号として表1に示す。
【0039】
酵素反応溶液を25度で20分間インキュベートした後、5 % トリクロロ酢酸を1 ml 添加して、反応を停止後、4度で一晩放置して反応したイソロイシル-tRNAを完全に沈殿させた。沈殿をグラスフィルターで濾過して、氷冷した5 % トリクロロ酢酸で3回洗浄した。洗浄したグラスフィルターを液体シンチレーションカウンター(TRICARB 2000, PACKARD社)で測定した。
リベロマイシンA、BまたはリベロマイシンA誘導体を添加しない場合(コントロール)の放射活性に対する、リベロマイシンまたはリベロマイシンA誘導体を添加した場合の放射活性阻害率50%の時の酵素反応溶液中のリベロマイシンA、BまたはリベロマイシンA誘導体の濃度をIC50とする。
結果を表2に示す。
【0040】
in vitro蛋白質合成阻害活性の測定
TNT T7 Quick coupled Transcription/Translation System(Promega 社)のキットを用いて、ウサギ網状赤血球ライゼート中の蛋白合成能に対するリベロマイシンA誘導体の影響を検討した。
【0041】
【表1】
Figure 0004251531
【0042】
リベロマイシンA、BおよびリベロマイシンA誘導体を添加する場合は、リベロマイシンA、BまたはリベロマイシンA誘導体を1,000 ng/mlの濃度で反応液に添加し、氷上で20分インキュベートした。(薬剤は、DMSOに溶解したものをDMSO終濃度1%になるように添加した。)
蛋白質合成反応は、反応液にラジオアイソトープラベルされた35Sアミノ酸(Met,Cys)、*Pro-mix(1,000 Ci/mmol)をサンプルあたり1 μl(約 1 μCi)添加して反応を開始し、30度で90分間反応を続けた。
【0043】
2×サンプルバッファー(0.25 mM トリス-塩酸, pH 6.8, 10% 2-メルカプトエタノール, 4% SDS, 10% シュークロース, 0.004% ブロモフェノールブルー)を反応液に25 μl加えて、100度で3分間加熱して反応を停止した。それぞれのサンプルは、10% アクリルアミドゲルでSDSPAGEを行い、オートラジオグラフィーを行った。
【0044】
In vitro蛋白質合成により生じたラジオアイソトープラベルされたアミノ酸を含む蛋白質バンドを検出した。リベロマイシンA、BまたはリベロマイシンA誘導体を添加しない場合(コントロール)に検出されるIn vitro蛋白質合成により生じる蛋白質バンドが薬剤処理により完全に消失した場合に、活性有り(+)とみなした。
結果を表2に示す。
【0045】
【表2】
Figure 0004251531
【0046】
リベロマイシンA(化合物1)より誘導したC5-シリルエーテル(化合物5)、トリエステル(化合物6)、ジエステル(化合物7-9),飽和体(化合物13), C18-OMTM-C24-エステル(化合物21)および5,6-スピロアセタール(化合物15および18)には全く活性は見られなかった。モノエステル(化合物10-12)はIleRS阻害活性を示したがC24-エステル(化合物11)の活性は非常に弱い。リベロマイシンA(化合物1)の18位ヘミサクシニル基を化学修飾したC18-サクシネート(化合物12)、C18-ヒドロキシ体(化合物14)、C18-メトキシ体(化合物17)およびC18-MTMエーテル(化合物20)は活性を示した。
特にC18-メトキシ体(化合物17)はより安定な化合物であり、活性も強いことから注目すべきである。以上のことより、24位カルボキシル基および5位の水酸基はリベロマイシンAおよびその誘導体の活性発現に必須であり、また18-ヘミサクシニル基は活性発現に必須でないことが判明した。
【0047】
【発明の効果】
本発明により、蛋白質合成阻害活性を有し、かつ高い安定性を有するリベロマイシンA誘導体、その製造方法およびそれを有効成分とする蛋白質合成阻害剤が提供される。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reveromycin A derivative and a method for producing the same. The present invention further relates to a protein synthesis inhibitor containing a reveromycin A derivative as an active ingredient.
[0002]
[Prior art]
Abnormal growth of cancer cells often results from abnormalities in the cell growth factor transmission system. For example, many cancer cells are known to secrete tumor growth factor alpha (TGF-α) that promotes self-growth. Therefore, a drug that selectively inhibits the action of TGF-α is expected as a new antitumor agent. As the signal growth inhibitor of epidermal growth factor (EGF), which is a cell growth factor similar to TGF-α, the present inventors have discovered reveromycin A (compound 1), C (compound 2), D ( Compound 3) and weakly active reveromycin B (compound 4) (Takahashi, H .; Osada, H .; Koshino, H .; Kudo, T .; Amano, S .; Shimizu, S .; Yoshihama, M .; Isono, KJ Antibiot. 1992, 45, 1409-1413).
[0003]
[Chemical 6]
Figure 0004251531
[0004]
Reveromycin A has activity as an antifungal agent, does not act on prokaryotic cells, and has activity as a protein synthesis inhibitor selective to eukaryotic cells. However, reveromycin A is an unstable compound under both acidic and basic conditions and easily deactivates.
Therefore, development of a more stable compound that retains the above activity is desired.
[0005]
[Problems to be solved by the invention]
The present invention responds to the above-mentioned demand, and it is an object to provide a reveromycin A derivative having protein inhibitory activity and high stability, a method for producing the same, and a protein synthesis inhibitor comprising the same as an active ingredient. To do.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have intensively studied to solve the above problems. The present inventors first synthesized various analogs of reveromycin A and examined the protein synthesis inhibitory activity of these compounds. As a result, the expression of the protein inhibitory activity of the reveromycin A derivative requires that the 24-position carboxyl group and the 5-position hydroxyl group of the structure of reveromycin A are essential, and the 18-position hemisuccinyl group has a protein inhibitory activity. It became clear that it was not essential for expression. Based on the above findings, the inventors of the reveromycin A position 24 in the structure of reveromycin A is based on the fact that the hemisuccinyl group at position 18 is susceptible to hydrolysis and is unstable under basic or acidic conditions. A reveromycin A derivative was produced in which the carboxyl group and the hydroxyl group at the 5-position were retained, and the hemisuccinyl group at the 18-position was substituted with a more stable substituent. The present invention has been completed as described above, and the gist of the present invention is as follows. (1) The following general formula (I)
[0007]
[Chemical 7]
Figure 0004251531
[0008]
(In the general formula (I), R represents an alkoxy group having 1 to 9 carbon atoms, methoxymethoxy group, a benzyloxy group, a methylthiomethoxy group or triethylsilyl group.)
A compound represented by
(2) A compound represented by the following structural formula (II).
[0009]
[Chemical 8]
Figure 0004251531
[0010]
(3) A compound represented by the following structural formula (III).
[Chemical 9]
Figure 0004251531
[0011]
(4) 1) Hydrolysis of the hemisuccinyl group at position 18 of reveromycin A to a hydroxyl group;
2) Esterify the carboxyl groups at positions 1 and 24,
3) Protect the hydroxyl group at position 5 with a protecting group,
4) Methylation of the 18th hydroxyl group
5) Hydrolyze 1st and 24th ester groups,
6) Deprotect the 5-position protecting group,
Structural formula (IV)
[0012]
[Chemical Formula 10]
Figure 0004251531
[0013]
The manufacturing method of the compound shown by these.
(5) 1) Hydrolysis of the 18-position hemisuccinyl group of reveromycin A to a hydroxyl group;
2) Esterify the carboxyl groups at positions 1 and 24,
3) Protect the hydroxyl group at position 5 with a protecting group,
4) Methylthiomethylation of the 18th hydroxyl group
5) Selectively hydrolyze 1st and 24th ester groups,
6) Deprotect the 5-position protecting group,
Structural formula (V)
[0014]
Embedded image
Figure 0004251531
[0015]
The manufacturing method of the compound shown by these.
(6) A protein synthesis inhibitor comprising a compound represented by the general formula (I) as an active ingredient.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
(1) Reveromycin A derivative of the present invention The reveromycin A derivative of the present invention is a compound having a protein inhibitory activity and high stability among the reveromycin A derivatives.
That is, the reveromycin A derivative of the present invention has the following general formula (I):
[0017]
Embedded image
Figure 0004251531
[0018]
(In the general formula (I), R represents an alkoxy group having 1 to 9 carbon atoms, methoxymethoxy group, a benzyloxy group, a methylthiomethoxy group or triethylsilyl group.)
It is a compound shown by these.
[0019]
The alkoxy group of the carbon number 1-9, methoxy group, and etc. ethoxy group.
As R, a methoxy group, etc. is not preferable methylthiomethoxy group.
[0020]
(2) Production method of reveromycin A derivative of the present invention The reveromycin A derivative of the present invention is not limited, but can be produced, for example, as follows. Conditions in the reaction, such as reagents, catalysts, solvents, reaction temperature, reaction time, etc. can be appropriately changed based on generally well-known organic synthesis techniques, and methods including such changes are also within the scope of the present invention. Belonging to.
[0021]
Embedded image
Figure 0004251531
[0022]
The C18-methoxy compound (compound 17), which is a preferred embodiment of the present invention and is a stable derivative, can be synthesized as follows. When reveromycin A (compound 1) is treated with an alkali such as 1N LiOH, NaOH, KOH, etc., a C18-hydroxy compound (compound 14) is easily obtained.
Compound 14 is treated with a methylating agent such as TMSCHN 2 (trimethylsilyldiazomethane) and esterified, and then the 5-position hydroxyl group is protected with a protecting agent such as TBSCl (t-butyldimethylsilyl chloride) to produce C5-silyl ether. (Compound 16). Next, when compound 16 is reacted with a hydrogenation metal such as NaH and a methylating agent such as MeI (methyl iodide) in an organic solvent such as THF (tetrahydrofuran), the methyl ester of the 18-position hydroxyl group is added to hydrolyze the ester. Decomposition occurs. Subsequently, when the TBS group is removed with a deprotecting agent such as TBAF (tetrabutylammonium fluoride), a C18-methoxy compound (compound 17) is obtained.
Further, C18-MTM (methylthiomethyl) ether (compound 20), which is another preferred embodiment of the present invention and is a stable derivative, can be synthesized as follows. Treatment of compound 16 with DMSO-Ac 2 O (acetic anhydride) produces C18-MTM ether (compound 19) in good yield. When compound 19 is hydrolyzed with an alkali such as LiOH, a selective hydrolysis reaction proceeds, and after deprotection of the silyl group, dicarboxylic acid (compound 20) and monocarboxylic acid (compound 21) are obtained.
[0023]
Other reveromycin A derivatives can be synthesized as follows.
Reveromycin A (compound 1) is treated with 4 equivalents of a silylating agent such as TBSCl, TMSCl, or TESCl (triethylsilyl chloride), silylated at the 5-position hydroxyl group and 3 carboxyl groups, and then treated with methanol, etc. Then, solvolysis of only the silyl ester occurs easily, and C5-silyl ether (compound 5 etc.) can be obtained in good yield.
For the synthesis of the 24-position ester, compound 1 is treated with 1 to 2 equivalents of a methylating agent such as CH 2 N 2 (diazomethane), TMSCHN 2 to give C24-esters (compounds 6, 8, 9 and 11), C24 -Carboxylic acids (compounds 7, 10 and 12) can be obtained.
In addition, when the triester (compound 6) is catalytically reduced and then treated with LiSPr (lithium propanethiolate) in HMPA (hexamethylphosphoric triamide), a saturated product (compound 13) can be obtained in good yield. . Compound 13 can also be obtained by direct catalytic reduction of compound 1.
[0024]
The C18-hydroxy compound (compound 14) is very unstable to acid, and is easily isomerized by treatment with an acid such as p-TsOH (hydroxylated p-toluenesulfonic acid) or HCl to produce 5,6-spiroacetal. (Compound 15) can be obtained.
C5-silyl ethers (compound 16) can easily undergo a transacetalization reaction when treated with weak acids such as p-TsOH, CDCl 3 , PPTS (pyridinium-p-toluenesulfonate), and 5,6-spiroacetal. Produces. Further, after treatment with a metal hydride such as NaH and a methylating agent such as MeI, the T19 group is deprotected with a deprotecting agent such as TBAF, whereby a C19-methoxy compound (compound 18) can be obtained.
[0025]
(3) Stability of reveromycin A derivative Reberomycin A (RM-A) is susceptible to hydrolysis under both acidic and basic conditions and may cause elimination reaction of C18-succinyl group. Therefore, by replacing the C18-hemisuccinyl group of reveromycin A with a more stable substituent, a more stable reveromycin A derivative can be obtained for reveromycin A. For example, in the C18-methoxy derivative (C18-OMe), the hydroxyl group at the C18 position is methylated, and this elimination reaction of the methyl group hardly occurs compared to the elimination of the succinyl group. Similarly, in the C18-methylthiomethoxy derivative (C18-OMTM), the hydroxyl group at the C18 position is methylthiomethylated, and the hydrolysis reaction of this methylthiomethyl group is much less likely to occur than the hydrolysis of the succinyl group. In addition, as a result of elimination of the C18-succinyl group of RM-A, the 6,6-spiroacetal structure, which is the basic skeleton of RM-A, is easily inactive, such as reberomycin B ( Converted to 5,6-spiroacetal structure of type RM-B). However, C18-OMe and C18-OMTM do not cause such a spiroacetal isomerization reaction. From the above two points, C18-OMe and C18-OMTM are superior to RM-A in terms of acid and base stability.
[0026]
(4) Protein synthesis inhibitory activity of reveromycin A derivative The reveromycin A derivative of the present invention has in vitro protein synthesis inhibitory activity. Since the in vitro protein synthesis inhibitory activity is based on IleRS (isoleucine-tRNA synthetase) inhibitory activity, both activities are almost parallel.
IleRS inhibitory activity is measured, for example, by preparing an enzyme containing IleRS, such as budding yeast, and L-isoleucine labeled with ATP, radioisotope, unlabeled L-isoleucine, yeast-derived tRNA, etc. Prepare a reaction solution containing enzyme, react with and without the addition of reveromycin derivative (control), measure the radioactivity of the reaction product L-Isoleucil tRNA, and compare both activities Can be done by.
[0027]
In vitro protein synthesis inhibitory activity can be measured using, for example, an in vitro transcription / translation system such as TNT T7 Quick coupled Transcription / Translation System (Promega). Specifically, erythrocyte lysate was prepared, a reaction solution containing a template DNA, T7 polymerase, amino acid mixture, amino acid mixture labeled with radioisotope, RNase inhibitor, nuclease-free water, etc. The reaction can be performed when added or not added (control), and the presence or absence of a protein band containing an amino acid labeled with a radioisotope generated by in vitro protein synthesis can be detected.
[0028]
(5) Protein synthesis inhibitor of the present invention The above-mentioned reveromycin A derivative is used in combination with a pharmaceutically acceptable carrier by a conventional method, such as tablets, powders, capsules, injections, inhalants or external preparations. It can be used clinically as a protein synthesis inhibitor by oral or parenteral administration. The dosage depends on the symptoms to be treated and the method of administration, but is 1 mg to 1,000 mg per day for an adult. The acute toxicity value of the antibiotic reveromycin A derivative in mice is 100 mg / kg or more (intravenous injection). The protein synthesis inhibitor of the present invention can be prepared, administered, etc. by employing ordinary methods except that it contains the reveromycin A derivative of the present invention as an active ingredient.
[0029]
【Example】
Hereinafter, the present invention will be described in more detail with reference to Examples and Test Examples, but the present invention is not limited to these. In the examples and test examples, see the synthesis scheme of the reveromycin A derivative.
[0030]
[Example 1]
Synthesis of reveromycin A C18-methoxy derivative Esterification of reveromycin A (compound 1) TMSCHN 2 (0.5 ~) in a solution of reveromycin A (19.8 mg, 30 μmol) in benzene-MeOH (methanol) (4: 1, 3 ml) 1.5 equiv.) Was added and stirred at room temperature for 10-15 minutes. After distilling off the solvent under reduced pressure, the residue was purified by preparative thin-layer chromatography (n-hexane: AcOEt (ethyl acetate): AcOH (acetic acid) = 50: 50: 1) to give the ester (compound 6-12). Obtained.
Compound 10: 1 H NMR (500 MHz, CDCl 3 ) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.83 (t, J = 6.9 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H) , 1.70 (s, 3H), 2.22 (brs, 3H), 3.42 (m, 1H), 3.74 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.68 (d, J = 7.8 Hz, 1H), 5.47 (dd, J = 6.0, 5.0 Hz, 1H), 5.49 (dd, J = 15.6, 7.3 Hz, 1H), 5.85 (brs, 1H), 5.88 (d, J = 15.6 Hz, 1H ), 6.20 (d, J = 15.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.40 (dd, J = 15.6, 7.8 Hz, 1H), 7.01 (dd, J = 15.6, 7.3 Hz) , 1H).
Compound 11: 1 H NMR (500 MHz, CDCl 3 ) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.83 (t, J = 6.9 Hz, 3H), 1.09 (d, J = 6.9 Hz, 3H) , 1.70 (s, 3H), 2.25 (brs, 3H), 3.42 (m, 1H), 3.73 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.59 (d, J = 8.3 Hz, 1H), 5.51 (dd, J = 15.6, 7.4 Hz, 1H), 5.55 (dd, J = 7.4, 7.4 Hz, 1H), 5.83 (brs, 1H), 5.85 (d, J = 15.6 Hz, 1H ), 6.22 (d, J = 15.6 Hz, 1H), 6.33 (d, J = 15.6 Hz, 1H), 6.37 (dd, J = 15.6, 8.3 Hz, 1H), 7.05 (dd, J = 15.6, 7.4 Hz , 1H).
Compound 12: 1 H NMR (500 MHz, CDCl 3 ) δ = 0.77 (d, J = 6.4 Hz, 3H), 0.82 (t, J = 6.9 Hz, 3H), 1.10 (d, J = 6.9 Hz, 3H) , 1.71 (s, 3H), 2.21 (brs, 3H), 3.42 (m, 1H), 3.70 (s, 3H), 4.13 (dd, J = 6.4, 6.0 Hz, 1H), 4.60 (d, J = 8.2 Hz, 1H), 5.45 (dd, J = 6.4, 6.4 Hz, 1H), 5.50 (dd, J = 15.6, 7.3 Hz, 1H), 5.86 (brs, 1H), 5.88 (d, J = 15.6 Hz, 1H ), 6.19 (d, J = 15.6 Hz, 1H), 6.37 (d, J = 15.6 Hz, 1H), 6.41 (dd, J = 15.6, 8.2 Hz, 1H), 7.09 (dd, J = 15.6, 7.8 Hz , 1H).
[0031]
Synthesis of C18-hydroxy compound (Compound 14) 1N LiOH (0.5 ml) was added to reveromycin A (4.2 mg, 6.4 μmol), and the mixture was stirred overnight at room temperature. The reaction solution was acidified with 1N HCl at 0 ° C. and extracted with AcOEt. The organic layer was washed with saturated brine, dried over MgSO 4 and evaporated to give a C18-hydroxy compound (compound 14) (yellow oil: 3.7 mg, 82%).
Compound 14: 1 H NMR (500 MHz, CD 3 OD) δ = 0.80 (d, J = 6.4 Hz, 3H), 0.86 (t, J = 7.0 Hz, 3H), 1.08 (d, J = 6.7 Hz, 3H ), 1.76 (s, 3H), 2.26 (d, J = 1.2 Hz, 3H), 3.54 (m, 1H), 4.01 (d, J = 7.6 Hz, 1H), 4.07 (brt, 1H), 5.53 (dd , J = 15.6, 7.3 Hz, 1H), 5.61 (dd, 1H), 5.81 (dd, J = 15.9, 1.5 Hz, 1H), 5.83 (s, 1H), 6.25 (d, J = 15.6 Hz, 1H) , 6.38 (d, J = 15.3 Hz, 1H), 6.44 (dd, J = 15.6, 9.2 Hz, 1H), 6.98 (dd, J = 15.9, 7.9 Hz, 1H).
[0032]
Synthesis of C5-silyl ether (Compound 16) Under a nitrogen atmosphere, TMSCHN 2 (C18-hydroxy compound (Compound 14) (33.1 mg, 59.0 μmol) in a benzene: MeOH = 4: 1 (500 μl) mixed solution at room temperature. 16.9 mg, 0.148 mmol) was added and stirred for 10 minutes. The solvent was distilled off to obtain a diester. To a DMF (dimethylformamide) (500 μl) solution of the diester, imidazole (12.1 mg, 0.18 mmol) and TBSCl (13.4 mg, 0.089 mmol) were added at room temperature, and the mixture was stirred overnight at the same temperature. After dilution with AcOEt, the organic layer was washed successively with H 2 O and saturated brine, dried over MgSO 4 and evaporated. The residue was purified by silica gel column chromatography (n-hexane: AcOEt = 2: 1) to obtain C5-silyl ether (Compound 16) (yellow oil: 12.4 mg, 30%).
Compound 16: 1 H NMR (500 MHz, CD 3 OD) δ = 0.76 (d, J = 6.4 Hz, 3H), 0.84 (t, J = 6.4 Hz, 3H), 0.87 (s, 9H), 1.01 (d , J = 6.9 Hz, 3H), 1.69 (s, 3H), 2.27 (s, 3H), 3.43 (ddd, J = 9.6, 5.0, 5.0 Hz, 1H), 3.70 (s, 3H), 3.70 (s, 3H), 3.95 (d, J = 8.7 Hz, 1H), 4.07 (dd, J = 6.9, 6.4 Hz, 1H), 5.41 (dd, J = 15.6, 6.9 Hz, 1H), 5.51 (t, J = 6.4 Hz, 1H), 5.78 (d, J = 15.6 Hz, 1H), 5.81 (brs, 1H), 6.11 (d, J = 15.6 Hz, 1H), 6.29 (d, J = 15.6 Hz, 1H), 6.38 ( dd, J = 15.6, 8.7 Hz, 1H), 6.98 (dd, J = 15.6, 7.3 Hz, 1H).
13 C NMR (125 MHz, CD 3 OD) δ = 12.8, 14.0, 14.2, 14.3, 18.2, 17.6, 23.9, 23.9, 25.
9, 27.5, 27.6, 31.7, 32.2, 33.3, 35.1, 37.3, 43.8, 51.1, 51.4, 70.8, 74.8, 76.9, 82.5, 96.1, 119.5, 120.6, 127.2, 127.9, 133.9, 134.2, 136.0, 137.0, 151.6, 151.9, 167.2, 167.3.
[0033]
Synthesis of C18-methoxy compound (compound 17) Under a nitrogen atmosphere, a solution of C5-silyl ether (compound 16) (12.4 mg, 17.7 μmol) in THF (500 μl) at room temperature with NaH (1.1 mg, 26.6 μmol) and MeI ( 3.3 μl, 53.0 μmol) was added, and the mixture was stirred overnight at the same temperature. The solvent was distilled off, diluted with AcOEt, and extracted with 2N—Na 2 CO 3 . The aqueous layer was acidified (pH 3 to 1) by adding 2N-HCl at 0 ° C. and extracted with AcOEt. The organic layer was washed with saturated brine and dried over MgSO 4 . The solvent was distilled off to obtain a colorless oil. TBAF (ca. 7.8 mg) was added to a DMF (200 μl) solution of this colorless oil, and the mixture was stirred for 3 days. The reaction solution was diluted with AcOEt, and then the organic layer was washed successively with 1N HCl and saturated brine. After drying with MgSO 4 and distilling off the solvent, the residue was purified by silica gel column chromatography (n-hexane: AcOEt = 20: 1) to give a C18-methoxy compound (compound 17) (yellow oil: 3.5 mg, 34%).
Compound 17: 1 H NMR (500 MHz, CD 3 OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 ( d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d , J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13 C NMR (125 MHz, CD 3 OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
[0034]
[Example 2]
Synthesis of reveromycin A C18-methylthiomethoxy derivative
Synthesis of C18-MTM ether (compounds 20 and 21) Ac 2 O (300 μl) -DMF (300 μl) of C18-hydroxy compound (compound 16) (14.9 mg, 20.0 μmol) obtained in Example 1 above under nitrogen atmosphere The solution was stirred at room temperature for 3 days. After cooling to 0 ° C. and degassing, 2N—Na 2 CO 3 —AcOEt was added. The organic layer was washed with saturated brine and dried over MgSO 4 . THF (3 ml) -MeOH (9 ml) -1NLiOH (1 ml) was added to the crude C18-OMTM compound (compound 19) (colorless oil: 15.7 mg) obtained after evaporation of the solvent, and the mixture was stirred at room temperature for 2 days. did. The reaction solvent was distilled off under reduced pressure and diluted with ice-EtOAc. The organic layer was washed with saturated brine and dried over MgSO 4 . After evaporation of the solvent, the residue (colorless oil: 14.7 mg) was dissolved in DMF (0.5 ml), TBAF (26.1 mg, 100.0 μmol) was added, and the mixture was stirred at room temperature for 2 days. Ice-EtOAc was added to the reaction mixture, and the organic layer was washed successively with 1N HCl, H 2 O, and saturated brine. After drying with MgSO 4 and distilling off the solvent, the residue was purified by silica gel column chromatography (n-hexane: AcOEt: AcOH = 50: 50: 1) to give C18-MTM ether (compound 20) (colorless oil) : 6.2 mg, 50%) and C18-MTM ether (compound 21) (colorless oil: 2.2 mg, 16%).
Compound 20: 1 H NMR (500 MHz, CD 3 OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 ( d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d , J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13 C NMR (125 MHz, CD 3 OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
Compound 21: 1 H NMR (500 MHz, CD 3 OD) δ = 0.81 (d, J = 6.4 Hz, 3H), 1.12 (d, J = 6.9 Hz, 3H), 1.79 (s, 3 H), 2.30 ( d, J = 1.0 Hz, 3H), 3.23 (s, 3H), 3.49 (m, 1H), 4.11 (dd, J = 7.3, 6.4 Hz, 1H), 4.19 (d, J = 9.2 Hz, 1H), 5.57 (dd, J = 15.6, 7.3 Hz, 1H), 5.62 (t, J = 5.5 Hz, 1H), 5.85 (dd, J = 15.6 Hz, 1.4, 1H), 5.90 (brs, 1H), 6.28 (d , J = 15.6 Hz, 1H), 6.44 (d, J = 15.6 Hz, 1H), 6.52 (dd, J = 15.6, 9.2 Hz, 1H), 7.02 (dd, J = 15.6, 7.0 Hz, 1H).
13 C NMR (125 MHz, CD 3 OD) δ = 13.9, 14.3, 14.7, 15.2, 18.0, 23.9, 24.0, 24.4, 26.
4, 28.8, 30.7, 32.6, 33.1, 34.8, 34.0, 37.1, 44.2, 58.9, 76.1, 76.9, 76.2, 80.8, 97.0, 120.5, 121.2, 127.9, 129.5, 135.3, 135.4, 137.8, 138.6, 152.9, 152.9, 170.1, 170.4.
[0035]
The activity of the reveromycin A derivative of the present invention was measured according to the following method.
[Test example]
In Vitro Protein Synthesis Inhibitory Activity and IleRS Inhibitory Activity of the Reveromycin A Derivatives of the Present Invention The IleRS inhibitory activity of each of the reveromycin A derivatives is described in Miyamoto, Y. et al. (Miyamoto, Y., Machida, K., Mizunuma, M. , Sato N, Miyahara, K., Hirata, D., Usui, T., Takahashi, H., Osada, H., and Miyakawa, T.Identication of Saccharomyces cerevisiae Isoleucyl-tRNA synthetase as a target of the G1-specific inhibitor Reveromycin A. (2002) J. Biol. Chem. in press. Specifically, it measured as follows.
[0036]
Activity measurement of isoleucyl-tRNA synthetase
(Preparation of crude enzyme derived from S. cerevisiae)
S. cerevisiae W303-1A (a) Δyrs1 :: HIS3 Δyrr1 :: TRP1 Δpdr1 :: hisG-URA3-hisG-Δpdr3 :: hisG-URA3-hisG strain in 500 ml YPD medium (1% yeast extract, 2% (Polypeptone, 2% glucose). The culture solution was centrifuged at 5000 g for 10 minutes, and the cells were collected and washed with 100 mM Tris-HCl buffer (pH 8.0), 10 mM MgCl 2 , 1 mM dithiothreitol. Using the same buffer, the cells were resuspended to (1 mg / g wet cells) and left on ice for 10 minutes. To the cell suspension, 1 mM phenylmethylsulfonyl fluoride and glass beads (425-600 mm, diameter, Sigma) were added and stirred vigorously for 30 seconds 10 times. The obtained cell lysate was centrifuged at 10000 g for 15 minutes at 4 degrees to obtain a supernatant. The amount of protein in the resulting supernatant was measured using Protein Assay (BioRad), adjusted to 10 mg / ml, and stored frozen at minus 80 degrees.
[0037]
(Expression of budding yeast IleRS (isoleucyl-tRNA synthetase) in E. coli and preparation of recombinant E. coli-derived IleRS enzyme)
A DNA fragment containing the IleRS gene translation region of Saccharomyces cerevisiae was incorporated into the E. coli expression plasmid pET21-b (Novagen) at the BamHI / HindIII site. pET21-b IleRS was transformed into E. coli strain BL21 (DE3). The resulting transformant was cultured in 10 ml of LB medium (1% NaCl, 0.5% yeast extract, 1% tryptone, ampicillin 50 μg / ml) at 28 degrees for 2 hours, and then isopropyl-thio-β-galacto Pyranoside was added at 0.2 mM and further cultured for 4 hours. The cells were collected by centrifugation at 6000 g for 15 minutes, and then suspended in 50 mM Tris-HCl buffer (pH 8.0), 1 mM EGTA, 25% sucrose, 0.5 mM phenylmethylsulfonyl fluoride, 0.5 mM dithiothreitol. did. The cell suspension was crushed by repeating sonication of the cell suspension for 5 seconds three times. The cell disruption solution was centrifuged at 15000 g for 15 minutes at 4 degrees to obtain a supernatant. The resulting supernatant was used as the IleRS fraction. The IleRS fraction was adjusted to 10 mg / ml and a final concentration of 50% glycerol, and stored at minus 20 degrees.
[0038]
(Measurement of isoleucyl-tRNA synthetase reaction)
The enzyme reaction was measured using ATP as a substrate, L-isoleucine labeled with a radioisotope, L-isoleucine not labeled with a radioisotope, and yeast tRNA, and the radiation contained in the isoleucil-tRNA product. This was done by measuring the activity.
Enzyme reaction solution:
The reaction was performed at 50 μl per sample.
The composition of the reaction solution was 20 mM imidazole hydrochloride (pH 7.5), 75 mM KCl, 5 mM MgCl 2 , 0.5 mM dithiothreitol, 4 mg / ml bovine serum albumin, 30 μM cold L-isoleucine, 3 mM ATP, 3.5 It was adjusted to be mg / ml yeast total tRNA (Roche Molecular Biochemicals), 1 μCi radioisotope L-isoleucine *, and yeast extract 100 mg protein / ml **. When adding reveromycin A, B or a reveromycin A derivative, it added so that it might become 1-1000 ng / ml ***.
* Radioisotopes were purchased from Amersham Biosciences with [ 3 H] -L-isoleucine (66 Ci / mmol).
** When E. coli-expressed IleRS was used as the enzyme source, the IleRS fraction was added to a concentration of 10 mg / ml for reaction.
*** Reveromycin A, B or the reveromycin A derivative to be evaluated was added. The types of reveromycin A derivatives are shown in Table 1 as the compound numbers shown in the synthesis scheme of reveromycin A derivatives.
[0039]
After incubating the enzyme reaction solution at 25 ° C. for 20 minutes, 1 ml of 5% trichloroacetic acid was added to stop the reaction, and then left overnight at 4 ° C. to completely precipitate the reacted isoleucyl-tRNA. The precipitate was filtered through a glass filter and washed three times with ice-cold 5% trichloroacetic acid. The washed glass filter was measured with a liquid scintillation counter (TRICARB 2000, PACKARD).
The reveromycin in the enzyme reaction solution when the inhibition rate of radioactivity is 50% when the reveromycin or the reveromycin A derivative is added to the radioactivity when the reveromycin A, B or reveromycin A derivative is not added (control) a, the concentration of B or reveromycin a derivative and IC 50.
The results are shown in Table 2.
[0040]
Measurement of protein synthesis inhibitory activity in vitro
Using the kit of TNT T7 Quick coupled Transcription / Translation System (Promega), the effect of reveromycin A derivative on the protein synthesis ability in rabbit reticulocyte lysate was examined.
[0041]
[Table 1]
Figure 0004251531
[0042]
In the case of adding reveromycin A, B and a reveromycin A derivative, reveromycin A, B or a reveromycin A derivative was added to the reaction solution at a concentration of 1,000 ng / ml and incubated on ice for 20 minutes. (The drug dissolved in DMSO was added to a final DMSO concentration of 1%.)
The protein synthesis reaction is started by adding 1 μl (about 1 μCi) of 35 S amino acid (Met, Cys) and * Pro-mix (1,000 Ci / mmol) labeled with radioisotope to the reaction mixture, The reaction was continued for 90 minutes at 30 degrees.
[0043]
Add 25 μl of 2 × sample buffer (0.25 mM Tris-HCl, pH 6.8, 10% 2-mercaptoethanol, 4% SDS, 10% sucrose, 0.004% bromophenol blue) to the reaction mixture, and then at 100 degrees for 3 minutes The reaction was stopped by heating. Each sample was subjected to SDSPAGE on a 10% acrylamide gel and autoradiography was performed.
[0044]
A protein band containing radioisotope-labeled amino acids generated by in vitro protein synthesis was detected. When the protein band generated by in vitro protein synthesis detected when no reveromycin A, B or reveromycin A derivative was added (control) completely disappeared by the drug treatment, it was regarded as active (+).
The results are shown in Table 2.
[0045]
[Table 2]
Figure 0004251531
[0046]
C5-silyl ether (compound 5), triester (compound 6), diester (compound 7-9), saturated (compound 13), C18-OMTM-C24-ester (compound) derived from reveromycin A (compound 1) 21) and 5,6-spiroacetal (compounds 15 and 18) showed no activity. The monoester (compound 10-12) showed IleRS inhibitory activity, but the activity of the C24-ester (compound 11) is very weak. C18-succinate (compound 12), C18-hydroxy compound (compound 14), C18-methoxy compound (compound 17) and C18-MTM ether (compound 20) obtained by chemically modifying the 18-position hemisuccinyl group of reveromycin A (compound 1) ) Showed activity.
In particular, the C18-methoxy compound (Compound 17) is a more stable compound and should be noted because of its strong activity. From the above, it has been found that the carboxyl group at the 24th position and the hydroxyl group at the 5th position are essential for the expression of the activity of reveromycin A and its derivatives, and the 18-hemisuccinyl group is not essential for the expression of the activity.
[0047]
【The invention's effect】
INDUSTRIAL APPLICABILITY According to the present invention, there are provided a reveromycin A derivative having protein synthesis inhibitory activity and high stability, a production method thereof, and a protein synthesis inhibitor containing the same as an active ingredient.

Claims (6)

下記の一般式(I)
Figure 0004251531
(一般式(I)中、Rは炭素数が1〜9のアルコキシ基、メトキシメトキシ基、ベンジルオキシ基、メチルチオメトキシ基、またはトリエチルシリルオキシ基を示す。)
で示される化合物。
The following general formula (I)
Figure 0004251531
(In the general formula (I), R represents an alkoxy group having 1 to 9 carbon atoms, methoxymethoxy group, a benzyloxy group, a methylthiomethoxy group or triethylsilyl group.)
A compound represented by
下記の構造式(II)で示される化合物。
Figure 0004251531
A compound represented by the following structural formula (II).
Figure 0004251531
下記の構造式(III)で示される化合物。
Figure 0004251531
A compound represented by the following structural formula (III).
Figure 0004251531
1)リベロマイシンAの18位のヘミサクシニル基を水酸基に加水分解し、
2)1位および24位のカルボキシル基をエステル化し、
3)5位の水酸基を保護基で保護し、
4)18位の水酸基をメチル化し、
5)1位および24位のエステル基を加水分解し、
6)5位の保護基を脱保護する、
ことを特徴とする構造式(IV)
Figure 0004251531
で示される化合物の製造方法。
1) Hydrolysis of the 18-position hemisuccinyl group of reveromycin A to a hydroxyl group;
2) Esterify the carboxyl groups at positions 1 and 24;
3) protecting the hydroxyl group at the 5-position with a protecting group;
4) Methylation of the hydroxyl group at position 18
5) hydrolyzing the ester groups at positions 1 and 24;
6) Deprotect the 5-position protecting group,
Structural formula (IV)
Figure 0004251531
The manufacturing method of the compound shown by these.
1)リベロマイシンAの18位のヘミサクシニル基を水酸基に加水分解し、
2)1位および24位のカルボキシル基をエステル化し、
3)5位の水酸基を保護基で保護し、
4)18位の水酸基をメチルチオメチル化し、
5)1位および24位のエステル基を選択的に加水分解し、
6)5位の保護基を脱保護する、
ことを特徴とする構造式(V)
Figure 0004251531
で示される化合物の製造方法。
1) Hydrolysis of the 18-position hemisuccinyl group of reveromycin A to a hydroxyl group;
2) Esterify the carboxyl groups at positions 1 and 24;
3) protecting the hydroxyl group at the 5-position with a protecting group;
4) Methylthiomethylation of the hydroxyl group at position 18
5) Selectively hydrolyzing the ester groups at positions 1 and 24,
6) Deprotect the 5-position protecting group,
Structural formula (V)
Figure 0004251531
The manufacturing method of the compound shown by these.
請求項1に記載の一般式(I)で示される化合物を有効成分として含有することを特徴とする蛋白質合成阻害剤。A protein synthesis inhibitor comprising the compound represented by formula (I) according to claim 1 as an active ingredient.
JP2002217714A 2002-07-26 2002-07-26 Riveromycin A derivative, process for producing the same and protein synthesis inhibitor Expired - Fee Related JP4251531B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002217714A JP4251531B2 (en) 2002-07-26 2002-07-26 Riveromycin A derivative, process for producing the same and protein synthesis inhibitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002217714A JP4251531B2 (en) 2002-07-26 2002-07-26 Riveromycin A derivative, process for producing the same and protein synthesis inhibitor

Publications (2)

Publication Number Publication Date
JP2004059471A JP2004059471A (en) 2004-02-26
JP4251531B2 true JP4251531B2 (en) 2009-04-08

Family

ID=31939101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002217714A Expired - Fee Related JP4251531B2 (en) 2002-07-26 2002-07-26 Riveromycin A derivative, process for producing the same and protein synthesis inhibitor

Country Status (1)

Country Link
JP (1) JP4251531B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014255381A1 (en) 2013-04-17 2015-10-08 Pfizer Inc. N-piperidin-3-ylbenzamide derivatives for treating cardiovascular diseases
CN112933243B (en) * 2021-01-25 2023-06-27 中山大学 Complex crystal of isoleucyl tRNA synthetase and Lei Fumei element A, and preparation method and application thereof

Also Published As

Publication number Publication date
JP2004059471A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
CA2112129C (en) Oxazolidine derivative and pharmaceutically acceptable salt thereof
EP0605230B1 (en) Hexahydronaphthalene ester derivatives, their preparation and their therapeutic uses
JPH02250870A (en) Cholesterol biosynthesis-inhibiting compound
US11629161B2 (en) Synthesis of 1:1:1 co-crystal of 1-cyano-2-(4-cyclopropyl-benzyl)-4-(ß-d-glucopyranos-1-yl)-benzene, L-proline and water
JPH0347167A (en) Heterocyclic homologue of mevaronolactone
WO1993016980A1 (en) Cholesterol lowering compounds
JP2004524281A (en) DNA methyltransferase inhibitor
EP2146991A2 (en) Triazolopyridine carboxamide derivatives, preparation thereof and therapeutic use thereof
EP1939192A1 (en) Cyclopentanone derivatives, method of synthesis and uses thereof
JPH08176070A (en) Didepside derivative and pi3 kinase inhibitor
EP0214708B1 (en) Griseolic acid derivatives, their preparation and their use
JP4251531B2 (en) Riveromycin A derivative, process for producing the same and protein synthesis inhibitor
JPS61233681A (en) Novel substituted glutaric acid lactone derivative and antihyperlipemic
Jana et al. C-Triazolyl β-d-furanosides as LpxC inhibitors: stereoselective synthesis and biological evaluation
US20150080578A1 (en) Taxane Compounds, Compositions and Methods
JPH02292237A (en) Alpha-fluoroshikimic acid derivative, preparation thereof, pharmaceutical composition containing same for treating bacteria and fungus infection, bactricide and herbicide contaning same and intermediate therefor
WO2013115167A1 (en) Amuvatinib derivative
KR100293335B1 (en) Hexahydronaphthalene ester derivative, its manufacturing method and its therapeutic application
JP2744843B2 (en) New conagenin derivatives
EP0434376A2 (en) Ivermectin derivative compounds and process for preparing the same
WO1994008940A1 (en) Acyclic tricarboxylic acid compounds
JP2582785B2 (en) Novel HMG-CoA reductase inhibitor
EP0318060B1 (en) Griseolic acid derivatives, their preparation and their use
US5405948A (en) 1,5-diyne-3-cycloalkene compounds
JP2002284777A (en) Physiologically active substance, method for producing the same and use thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031201

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040319

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081001

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090116

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees